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TECHNICAL ADVANCE Open Access

True and false positive rates for different
criteria of evaluating statistical evidence
from clinical trials
Don van Ravenzwaaij1* and John P. A. Ioannidis2

Abstract

Background: Until recently a typical rule that has often been used for the endorsement of new medications by the
Food and Drug Administration has been the existence of at least two statistically significant clinical trials favoring
the new medication. This rule has consequences for the true positive (endorsement of an effective treatment) and
false positive rates (endorsement of an ineffective treatment).

Methods: In this paper, we compare true positive and false positive rates for different evaluation criteria through
simulations that rely on (1) conventional p-values; (2) confidence intervals based on meta-analyses assuming fixed
or random effects; and (3) Bayes factors. We varied threshold levels for statistical evidence, thresholds for what
constitutes a clinically meaningful treatment effect, and number of trials conducted.

Results: Our results show that Bayes factors, meta-analytic confidence intervals, and p-values often have similar
performance. Bayes factors may perform better when the number of trials conducted is high and when trials have
small sample sizes and clinically meaningful effects are not small, particularly in fields where the number of non-
zero effects is relatively large.

Conclusions: Thinking about realistic effect sizes in conjunction with desirable levels of statistical evidence, as well
as quantifying statistical evidence with Bayes factors may help improve decision-making in some circumstances.

Keywords: US Food and Drug Administration, p-values, Strength of Evidence, Bayes Factors

Introduction
For over half a century, the US Food and Drug Adminis-
tration (or FDA) has been one of the primary regulatory
agencies worldwide when it comes to providing quality
control of new drugs and biologics, or medications, for
clinical use [1]. Included in the many responsibilities of
the FDA is the endorsement of new medications. Endorse-
ment of new medications is a rigorous process that follows
many stages of multiple clinical trials. Data in each of
these trials is evaluated, typically independently, by con-
ducting some form of statistical inference. Typically, some
null hypothesis is postulated, stating that the new medica-
tion is ineffective (more precisely, works similarly to a
placebo medicine without any active component). This

hypothesis is then evaluated using a Null Hypothesis
Significance Test, which quantifies the probability of
obtaining data with an effect at least as strong as that in
the data at hand using a p-value. The effect is typically
considered statistically significant when a two-sided test
yields a p-value lower than 0.05 and the effect is in the
expected direction [2, 3]. In order to mitigate the risk of
incorrectly concluding effectiveness, the FDA typically re-
quires “… at least two adequate and well-controlled stud-
ies, each convincing on its own, to establish effectiveness.”
(p. 3) [4].
In previous work [5], we showed with simulations that

using a criterion of at least two statistically significant
trials, quantified by p-values lower than 0.05, leads to
inconsistent strength of evidence in different circum-
stances. In particular, we demonstrated that for cases
when many clinical trials were conducted out of which
exactly two were statistically significant (say, 2 out of 5),
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the decision to endorse can be much improved by quan-
tifying the evidence of all trials (not just the statistically
significant ones) and a natural, convenient way to do this
would be by using Bayes factors [6]. In scenarios where
blind application of a criterion of two significant trials
would always lead to endorsement, Bayes factors would
lead to different inferences depending on the presumed
underlying population effect.
The scenario of endorsement of medication following

a number of registered clinical trials (RCTs) of which
only a minority has been statistically significant at a p-
value threshold of < 0.05 is not uncommon for certain
groups of medication. For instance, in the field of antide-
pressants, citalopram was endorsed following 5 RCTs of
which only 2 were statistically significant (the non-
significant trials had p-values ranging from 0.224 to
0.964). Sertraline similarly was endorsed following 5
RCTs of which only 1 (or 2, if one counts a trial with
three ‘sub-trials’ of which only one was statistically sig-
nificant) was statistically significant (the non-significant
trials had p-values ranging from 0.21 to 0.87). The anti-
depressant mirtazapine was endorsed following 10 RCTs
of which 5 were statistically significant (the non-
significant trials had p-values ranging from 0.19 to 0.49).
Finally, bupropion was endorsed after 3 RCTs, only one
of which was statistically significant (the non-significant
trials had p-values ranging from 0.16 to 0.53). More de-
tails of the FDA registered data of these clinical trials for
these medications can be found in [7] (see also [8] for a
Bayesian meta-analysis).
The endorsement of new medications is certainly not a

purely statistical process alone and it is not using simply
an automated count of statistically significant results.
Aside from numerically evaluating the efficacy of the main
outcome, usually careful thought is given to potential side
effects, the urgency of the availability of a new treatment,
and a qualitative evaluation of the design, conduct and
findings in each of these RCTs. A nuanced assessment of
the global evidence takes place before reaching licensing
decisions. Some guidance exists in this regard, but details
may be applied differently in each case and translating re-
sults from clinical trials into a licensing decision can be
convoluted. Nevertheless, the statistical evaluation is an
important centerpiece of the endorsement process, so care
should be taken for this component to evaluate the avail-
able evidence as optimally as possible, before other con-
siderations are superimposed.
There are many ways one may define optimal evalu-

ation of the available evidence. One could seek to
minimize the endorsement of ineffective medications, or
false positives (the equivalent of maximizing true nega-
tives: not endorsing ineffective medications, see e.g., [9]).
An advantage of such a criterion is that most of the
medications that become available to the market will

work. However, setting too stringent a criterion of this
type might lead to many effective medications not passing
the bar for endorsement, leading to patients being de-
prived of potentially effective treatment. A different criter-
ion would be to maximize true positives (the equivalent of
minimizing false negatives). Such a policy would prioritize
making all working medications available in the market, at
the cost of having some ineffective medications pass
through as well. Within any kind of statistical evaluation
tool, these two criteria typically trade off against one an-
other, but across different statistical inferential methods,
dominant approaches are theoretically possible, where one
method offers higher true positive rates without necessar-
ily offering a higher false positive rate.
In this paper, we examine the consequences of using a

statistical evaluation criterion of two significant trials for
the true and false positive rates in the specific case
where exactly five trials were conducted (e.g., a situation
seen in the citalopram scenario). We compare these to
two alternatives: quantifying all available evidence with
confidence intervals based on a summary effect size
measure obtained from meta-analysis, and with Bayes
factors. For both the null hypothesis significance test
and the Bayesian test, choices need to be made for the
threshold of evidence that would trigger endorsement.
The null hypothesis test traditionally uses an α of 0.05,
but recently a lower α of 0.005 was proposed [10]. No
consensus exists for the Bayesian threshold of endorse-
ment, although criteria of Bayes factors of 20 [11] and
10 [12] have been proposed as a threshold for strong evi-
dence. We conducted simulations, varying the number
of clinical trials that were conducted, the distribution of
true effect sizes in the population, the number of partici-
pants per randomized control, the statistical evaluation
method, the threshold for quantifying statistical evidence,
and the threshold for an effect being considered clinically
meaningful. We evaluated the outcomes by looking at the
true positive and false positive rates simultaneously.

Method
We conducted simulations for the scenarios of 2 clinical
trials, 3 clinical trials, and 5 clinical trials. For each of
these scenarios, we conducted four sets of simulations.
For every set, we generated 8000 data sets of 2, 3, or 5
clinical trials each (a total of 16,000, 24,000, or 40,000
trials, depending on the scenario). All of the data sets
were intended to mimic two–condition between–sub-
jects experiments with an experimental group and a con-
trol (e.g., placebo) group. The four sets of simulations
differed in the distribution of true population effect sizes
between the two groups. For all sets of simulations, there
was a distribution of non-zero effect sizes, normally dis-
tributed with a mean of 0.4 (a small to moderate effect)
and a standard deviation of 0.13. For the first three sets
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of simulations, there additionally was a number of zero-
effects. The sets differed in the relative frequency of
non-zero and zero effects: the first set of simulations
had a 25% occurrence rate of null effects, the second set
of simulations had a 50% occurrence rate of null effects,
the third set of simulations had a 75% occurrence rate of
null effects, and the fourth set of simulations did not in-
clude any null effects. These different numbers reflect
different rates of ‘a-priori optimism’ of the occurrence of
true effects (25, 50, 75, and 0%) among medications sub-
jected to stage III trials that try to secure licensing.
Throughout the paper, we work with effect sizes in stan-
dardized form to facilitate computations and allow for
comparison across results. For specific cases, effect sizes
can be re-expressed in absolute form by multiplying by
the standard deviation. Of note, standardized effects of
the same magnitude may be clinically actionable in some
cases, but not in others, depending on what the standard
deviation is, what outcome they pertain to, and what the
risk-benefit involved is.
Therefore, our simulations are:
p123 ~ N (0, 1)
Set 1: 25% of e1 ~ N (0, 1); 75% of e1 ~ N(δ, 1)
Set 2: 50% of e2 ~ N (0, 1); 50% of e2 ~ N(δ, 1)
Set 3: 75% of e3 ~ N (0, 1); 25% of e3 ~ N(δ, 1)
Set 4: e4 ~ N(δ, 1)
δ ~ N (0.4, 0.13)
where p123 indicates simulated data for the placebo

groups in all sets of simulations; e1, e2, e3, and e4 indicate
simulated data for the experimental groups in the first,
second, third, and fourth set of simulations respectively;
and where δ indicates the population effect size for a
given iteration. The notation ~N(μ,σ) indicates that
values were drawn from a normal distribution with
mean and standard deviation parameters given by μ and
σ, respectively.
The choice of parameters is consistent with empirical

data. For example, one empirical assessment of 743 ran-
domized trials on cancer, neurological and other diseases
estimated an average treatment effect of the new treatment
versus the old or placebo corresponding to a hazard ratio
of 0.9 (i.e., a small effect) [13] and it is assumed that about
half of the treatments that reach that stage of testing for
these diseases may have some efficacy [14]. Among the 18
oncology drugs licensed by FDA between 2000 and 2011,
the median hazard ratio was about 0.7, i.e. a moderate effect
[15]. However, early trials may have inflated effect sizes.
Large-scale evaluation of about a quarter of a million trials
suggests that large effects may be seen in some small trials,
but typically do not hold up upon further evaluation; thus
most treatment effects of effective interventions are likely
to be small or modest [16]. In the case of antidepressants
like citalopram, the estimated standardized treatment effect
in large meta-analysis is about 0.3 [17].

For each distribution of effect size simulation set, we
ran four different kinds of number of participants per
group in each trial: n = 20, n = 50, n = 100, and n = 400.
These numbers are typical of what is seen in much of
the biomedical literature. For example, the mean sample
size (both arms combined) of the 743 randomized trials
discussed above was 400 participants (200 per arm) [13]
with substantial variability across different interventions
and the average randomized trial published in 2000–
2006 had a median sample size of 80 (both arms com-
bined) [18]. For anti-depressants, randomized trials with
between 20 and 50 participants per arm are not uncom-
mon, and in some cases arms with fewer than 20 partici-
pants are analyzed by FDA [7].
Thus, to sum up, our simulations varied along the fol-

lowing dimensions:

1. Prevalence of true null effect size: 25, 50, 75, and 0%
2. Number of participants per group: 20, 50, 100, and 400

This resulted in a total of 16 types of simulations. We
replicated each simulation type 2000 times. Every indi-
vidual simulation contained data from 2, 3, or 5 clinical
trials, each containing a control (placebo or reference
standard of care treatment) group and an experimental
group.
We replicated this set of simulations with one important

modification: we replaced the fixed effects model with a
random effects model. Specifically, the fixed effects model
prescribes e ~ N(δ, 1) with δ~ N (0.4, 0.13). The random
effects model prescribes e ~ N (δi, 1) with δi ~ N(δ, 0.1)
and δ ~ N (0.4, 0.13), where δ indicates the population ef-
fect size for a given iteration and δi indicates the popula-
tion effect size for a given trial i and an iteration. Results
of these sensitivity analyses are qualitatively similar and
may be found in the Additional file 1, available at https://
osf.io/9yvd2/.
For each replication, we performed three types of ana-

lyses. Firstly, we conducted one-sided independent-samples
t-tests for each of the trials. This resulted in a single p-value
for each trial. Secondly, we calculated three kinds of meta-
analytic 95% confidence intervals (CI) for the underlying ef-
fect size: a fixed effect method using inverse variance
weighting, the DerSimonian and Laird (DSL) random effect
method and the more conservative Hartung, Knapp, Sidik,
and Jonkman (HKSJ) random effect method (see e.g.,
Appendix 1 in [19] for statistical details).
Thirdly, we conducted a one-sided independent-samples

Bayesian t-test for the data of all trials combined. The ve-
hicle of choice for quantifying the evidence was the one-
sided Jeffreys Zellner-Siow (JZS) Bayes factor [20]. This
one-sided Bayes factor quantifies the relative likelihood of
the one-sided alternative hypothesis, the experimental
group has a higher mean than the control group, against
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the null hypothesis, the experimental group has the same
mean as the control group. The JZS Bayes factor is calcu-
lated by comparing the marginal likelihood of the data
under the point null hypothesis to the marginal likelihood
of the data under the alternative hypothesis, integrated
over a range of plausible alternative hypotheses. The range
of alternative hypotheses is given by a prior on the effect
size parameter δ, which follows a Cauchy distribution cen-
tered on zero with a scale parameter of r = √2/2 (see [20],
Equation in note 4). The Cauchy prior is typically referred
to as an objective prior, because it satisfies a number of
general desiderata [21, 22]. These include model selection
consistency (data generated under a model should lead to
a Bayes factor for this model converging to infinite as
sample size increases) and predictive matching (there ex-
ists a minimum sample size for which one should not be
able to distinguish between models, leading to a Bayes fac-
tor of 1). Contrary to a Normal prior, the Cauchy prior in
addition satisfies the criterion of information consistency
(different sequences of data with the same sample size for
which likelihood ratios go to infinity should have corre-
sponding Bayes factors that also go to infinity). We omit
further details here for brevity but point the interested
reader to [21].
Bayes factors were calculated using the BayesFactor R

package [23]. For comparison, we calculated minimum
Bayes factors [6, 24] using the pCalibrate package, also
available in R [25]. Minimum Bayes factors quantify the
upper bound of evidence against the null hypothesis for
a number of priors under the alternative. As a result, it
is more liberal than the JZS Bayes factor, leading to
higher true and false positive rates. The reader interested
in a comparison of the two Bayes factors is referred to
the Additional file 1.
Once p-values, meta-analytic 95% CIs, and Bayes fac-

tors were obtained, different evidential thresholds and
thresholds for clinical meaningfulness were combined to
obtain true positive and false positive rates. For the null hy-
pothesis significance test, the main manuscript reports a
significance level α of 0.025, which corresponds to a two-
sided test with significance level 0.05, followed by a check
for the direction of the effect. Alternative significance levels
α of 0.05 and 0.005 are reported in the Additional file 1.
For the meta-analytic 95% CIs, the lower bound was used.
For the Bayesian tests, Bayes Factor thresholds of 3, 10, and
50 were used. In order to decide whether a positive result
counts as a true or false positive, a threshold needs to be
established for an effect being clinically meaningful. We
varied the clinically meaningful threshold from 0 (corre-
sponding to a scenario where each non-zero effect is mean-
ingful, no matter how small), 0.15, 0.3, and 0.45 (where
only effect sizes higher than the respective numbers are
clinically meaningful). There is a large literature on the
clinically minimum important difference (CMID) in the

biomedical literature and we used this as rough guid-
ance for selecting these values. A simple approach is
that a standardized effect of at least 0.5 is needed [26].
However, we erred on the side of being more lenient,
since small effects may still be clinically meaningful, de-
pending on the type of outcome, the setting, and the
baseline risk involved [27, 28].
The quantification of true positives and false positives

proceeds as follows. Taking as an example an α of 0.05
and a clinically meaningful threshold of 0.15, four sce-
narios are possible:

– True positive: The true effect size is higher than
0.15, and at least two trials produced a p-value lower
than 0.05

– False negative: The true effect size is higher than
0.15, and fewer than two trials produced a p-value
lower than 0.05

– False positive: The true effect size is lower than 0.15,
and at least two trials produced a p-value lower than
0.05

– True negative: The true effect size is lower than
0.15, and fewer than two trials produced a p-value
lower than 0.05

The false negative rate is equal to 1 minus the true
positive rate and the true negative rate is equal to 1
minus the false positive rate. For the meta-analytic 95%
CI, taking as an example a clinically meaningful thresh-
old of 0.15, four scenarios are possible:

– True positive: The true effect size is higher than
0.15, and the lower bound of the meta-analytic 95%
CI is higher than zero

– False negative: The true effect size is higher than
0.15, and the lower bound of the meta-analytic 95%
CI is lower than zero

– False positive: The true effect size is lower than 0.15,
and the lower bound of the meta-analytic 95% CI is
higher than zero

– True negative: The true effect size is lower than
0.15, and the lower bound of the meta-analytic 95%
CI is lower than zero

For the Bayesian tests, taking as an example a Bayes Fac-
tor threshold of 10 and a clinically meaningful threshold
of 0.15, four scenarios are possible:

– True positive: The true effect size is higher than
0.15, and the Bayes Factor is higher than 10

– False negative: The true effect size is higher than
0.15, and the Bayes Factor is lower than 10

– False positive: The true effect size is lower than 0.15,
and the Bayes Factor is higher than 10
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– True negative: The true effect size is lower than
0.15, and the Bayes Factor is lower than 10

The code for these simulations is freely available on
https://osf.io/9yvd2/.

Results
For the simulation scenario of five clinical trials, true
positives are plotted against false positives for different
evidence criteria and for different thresholds for a clinic-
ally meaningful effect when the prevalence of the true
null effect is 25% in Fig. 1. In all panels, the y-axis repre-
sents the proportion of true positives and the x-axis rep-
resents the proportion of false positives. Different panels
indicate different numbers of participants per trial, and
different colors represent different thresholds of a clin-
ical meaningful effect. The ideal scenario of detecting
100% true positives and 0% false positives is represented
by the top-left of each panel. Note that for the conven-
tional statistical significance results and a clinically

meaningful threshold of 0, false positive rates can be
analytically calculated with 1-((1-α)^5 + (1-α)^4*α*5).
The expression for the false positive rates is less straight-
forward when the effect size of 0 tested in null hypoth-
esis significance testing differs from the clinically
meaningful effect value used to categorize the underlying
population effect as true or false. To keep results con-
sistent, we display simulation results for all levels of clin-
ical meaningful effects.
The results show to what extent working with more

stringent criteria for statistical evidence reduces the pro-
portion of false positives at the expense of reducing the
proportion of true positives. This is as it should be, more
conservative decision criteria trade off a reduction in the
endorsement of ineffective medication against a lower
endorsement of effective medication.
When looking at the performance of the meta-analytic

95% CI, we see that across the board the meta-analytic
methods are associated with a higher true positive and a
higher false positive rate. Regardless of sample size and

Fig. 1 Proportion of true positives plotted against proportion of false positives when the prevalence of true null effects is 25%. Open symbols
indicate conventional significance level α, closed symbols indicate Bayes factor thresholds, the +, x, and * symbols indicate meta-analytic 95% CIs,
and different colors indicate different levels of clinically meaningful differences
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clinical significance threshold, the HKSJ method is more
conservative than the DSL method, which is in turn
more conservative than the fixed effects method.
Next, we compare the results of the conventional stat-

istical significance results to Bayesian testing results.
Across the board, the panels show that Bayesian criteria
for decision making are slightly more to the top and
more to the left of conventional decision criteria in par-
ticular when small sample sizes are involved. For in-
stance, for n = 20, compared to two trials with p < 0.025,
a decision rule based on an overall Bayes factor higher
than 50 results in a slightly higher proportion of true
positives and a slightly lower proportion of false posi-
tives. Using more stringent or more relaxed criteria for
statistical evidence shifts the balance between propor-
tions true and false positives, but does not change the
fact that for every two-significant-trial criterion, there is
a corresponding BF > x criterion with more true positives
and fewer false positives combined (see Additional file 1
for details). The BF criteria seem better than both the

conventional criteria and the meta-analytic methods in
particular with large meaningful clinical difference
thresholds. The difference between the two inferential
methods becomes smaller with larger trials and is not
discernible with 400 participants per arm.
To what extent do the results differ when we assume a

higher prevalence of true null effects? The answer for a
null-effect prevalence of 50% can be found in Fig. 2. The
layout is similar to that of Fig. 1.
Comparing the results for a 50% prevalence of true null

effects to those for a 25% prevalence of true null effects,
one clear observation is that the proportion of false posi-
tives dwindles across the board. The majority of false posi-
tives are caused by effects that come from the non-null
normal distribution, but do not pass the clinically meaning-
ful threshold. This means that the more true negatives
there are, the lower the proportion of false positives is. The
proportion of true positives is unaffected, which is again as
it should be, given that nothing changed across these simu-
lations within the distribution of non-null effects.

Fig. 2 Proportion of true positives plotted against proportion of false positives when the prevalence of true null effects is 50%. Open symbols
indicate conventional significance level α, closed symbols indicate Bayes factor thresholds, the +, x, and * symbols indicate meta-analytic 95% CIs,
and different colors indicate different levels of clinically meaningful differences
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Importantly, we again find the pattern that Bayesian
criteria are typically associated with a combination of
higher true positive rates and lower false positive rates
than conventional statistical significance-based decision
criteria, especially with small sample sizes (n = 20 per
arm) and somehow more prominently with larger clinic-
ally meaningful differences. We also replicate the result
that the Bayesian methods perform slightly better than
both the p-value criterion and the meta-analytic CIs
when employed for decision making purposes.
Results for a null-effect prevalence of 75% can be

found in Fig. 3. The layout is similar to that of Fig. 2.
Consistent with the comparison of previous results, we

see the reduction in false positives across the board. The
better performance of the Bayesian evaluation criterion,
both in terms of true positives and in terms of false posi-
tives is seen again with small sample sizes.
Lastly, results are plotted for an ideal scenario in

which there exist only non-null effects, or a prevalence

of true null effects of 0% (all tested medications are truly
effective). Results can be found in Fig. 4.
The scenario of no null effects displays the previous

pattern of results in its most extreme: identical true
positive rates, relatively bad false positive rates when the
clinically meaningful threshold is anything higher than
zero, and better performance of the Bayesian evaluation
criterion.
Results for the simulation scenarios of three clinical

trials were qualitatively similar to those for five clinical
trials reported here. For two clinical trials, the signifi-
cance method (i.e., both trials were significant) per-
formed very similar to the Bayesian method. Detailed
results can be found in the Additional file 1.
In order to get a better handle on the performance of

the different types of meta-analysis, we examined for dif-
ferent sample sizes how often the meta-analytic confi-
dence intervals included the true population effect size.
The results are plotted in Table 1.

Fig. 3 Proportion of true positives plotted against proportion of false positives when the prevalence of true null effects is 75%. Open symbols
indicate conventional significance level α, closed symbols indicate Bayes factor thresholds, the +, x, and * symbols indicate meta-analytic 95% CIs,
and different colors indicate different levels of clinically meaningful differences
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Inspection of the table shows that the coverage of
the HKSJ method (the probability that the true effect
is included in the 95% confidence interval) was better
than the coverage of the DSL method which was in
turn better than the coverage of the fixed effects
method. HKSJ is well-known to be a better method
in most circumstances and this is also consistent with
what we observed.

Discussion
In this study, we simulated clinical trial data comparing
an experimental group to a control group (placebo or
other standard of care). Simulations differed in the num-
ber of clinical trials conducted, the proportion of true
null effects versus non-null effects, and the number of
participants in each trial. For all simulations, we com-
pared the true and false positive rates when strength of
evidence was quantified by counting the number of sig-
nificant results, quantified by p-values lower than a cer-
tain significance level α, by constructing meta-analytic
95% confidence intervals and assessing their overlap with
a clinically meaningful effect, or by Bayes factor asses-
sing the overall strength of evidence provided by the five
trials. True and false positive rates were defined using
four different thresholds of an effect being considered
clinically meaningful.
The take-home message when surveying the results of

all simulations together is that quantifying evidence with

Fig. 4 Proportion of true positives plotted against proportion of false positives when the prevalence of true null effects is 0%. Open symbols
indicate conventional significance level α, closed symbols indicate Bayes factor thresholds, the +, x, and * symbols indicate meta-analytic 95% CIs,
and different colors indicate different levels of clinically meaningful differences

Table 1 Proportion of times the true population effect size was
included in the three different meta-analytic confidence
intervals. Rows represent the three meta-analytic methods,
columns represent different sample sizes

20 50 100 400

Fixed .856 .887 .893 .903

DSL .928 .933 .936 .938

HKSJ .944 .946 .950 .948
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Bayes factors compared to counting the number of sta-
tistically significant results or meta-analytic confidence
intervals leads to a higher true positive rate for a given
false positive rate, or a lower false positive rate for a
given true positive rate, especially when relatively small
trials are involved. We find this result irrespective of the
significance level or Bayes factor threshold chosen. Our
results get more pronounced as the incidence rate of
true null effects gets lower. The latter should be particu-
larly relevant in the assessment of stage III clinical trials,
where the prevalence of truly null effects is arguably
lower than for stage I and II trials.
Meta-analysis is a powerful tool for estimating the size

of an unknown population effect size across the results
of several independent studies. In our simulations, we
confirmed that the meta-analytic confidence intervals
often captured the true population effect size, and HKSJ
performed better than DSL random effects which in turn
performed better than fixed effects. For purposes of
making a dichotomous yes/no decision however, Bayes-
ian methods appeared to be the (slightly) superior choice
in scenarios where sample size was low. Apparently, the
strength of meta-analytic methods is in making assess-
ments about the continuum of the effect size and its un-
certainty, rather than binary decisions.
Bayesian methods for statistical inference have been

recommended for use in the analysis of clinical trials be-
fore [29, 30], and have been discussed in the context of
the regulatory process ([31], see also the rest of this spe-
cial issue), but they are still much less commonly used
than p-values from null hypothesis significance testing.
In fact, across the biomedical literature, null hypothesis
significance testing seems to be about 100-fold more
commonly used than Bayesian inference [32]. While pre-
viously underuse of Bayesian methods may have been
excused by the unavailability of means to carry out these
analyses, recently a number of free and user-friendly
types of software have been developed [23, 33, 34], such
that technical limitations should no longer be a concern.
Some caveats need to be discussed. It is important to

stress that the approval process does not hinge exclusively
on an evaluation of the available statistical evidence in a
strictly quantitative manner, nor do we wish for quantita-
tive automation to replace nuanced reasoning. Rather,
qualitative aspects of the appropriateness of the design,
conduct and analysis of the trial should continue to be
evaluated as well as the relevance of the outcomes used,
potential safety implications, and side-effects and harms
that could affect the benefit-risk ratio. Each of these con-
siderations will factor into the endorsement process and
can lead to a different desired tradeoff for maximizing true
positives versus minimizing false positives. Our simula-
tions should provide some guidance on how this tradeoff
should be influenced by the anticipated distribution of

effects in the relevant drug group or subfield. Our results
and subsequent recommendations should be taken to
apply to the statistical component of the evaluation
process, and should be combined with other utilities to
come to the appropriate analysis strategy.
We should also caution that the absolute magnitude of

difference in performance between the Bayesian and p-
value-based criteria was often small or negligible in sev-
eral of the simulations. Moreover, it is typically difficult
to know what the likely values are for the frequency of
null effects in specific fields and applications. The advan-
tage of the Bayesian criteria seemed clearer when sample
sizes were small and clinically meaningful differences
were not small. With large sample sizes and small clinic-
ally meaningful differences, the three inferential ap-
proaches seemed to have very similar performance.
Finally, we used popular but arbitrary cut-offs for both

statistical significance and Bayes factors and in fact both
of these take continuous values. Such dichotomization
may cause loss of information for both types of criteria.
The modest superiority of the Bayesian approach may

be due to the fact that it considers all evidence in a cu-
mulative manner, while the rule of having two statisti-
cally significant results adds a further dichotomization in
counting “positive” and “negative” trials, with further
loss of information.

Conclusion
Allowing for these caveats, evaluating the results of mul-
tiple clinical trials with Bayes factors is a useful approach
that, in some circumstances may lead to a higher true
positive rate for the same false positive rate, compared
to an analysis strategy based on simply counting the
number of significant results. Decisions on the appropri-
ate Bayes factor threshold should be based on additional
utilities that are not part of the statistical process and
may also be informed by the anticipated prevalence of
true null effects.
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