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Despite significant advances in our understanding of parturitional selection 

factors, we know little about the impact of reproductive load on the hominin skeleton. 

During human pregnancy, maternal shape and mass distribution change as abdominal 

muscles stretch and separate to accommodate fetal growth. One important biomechanical 

consequence of these shape changes is an anterior shift in location of the maternal center 

of mass that generates strong bending moments about the hip. 

It is argued that positional adjustments in lumbar lordosis and anterior sagittal 

pelvic tilt during pregnancy ensure upper body stability by maintaining the maternal 

center of mass in a biomechanically efficient position relative to the hip joints (Bullock et 

al., 1987; Dumas et al., 1995; Franklin and Conner-Kerr, 1998; Foti et al., 2000). While 

these adjustments may be favorable for upper body control, they redistribute forces 

through the spinal column, shifting load onto dorsal vertebral structures that are less 

heavily loaded under nonparous conditions, subjecting the neural arch to increasing 
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compressive and shearing loads. This study tests the prediction that sexual dimorphism in 

the human lumbopelvic region reflects female adaptive resistance to biomechanical 

failure resulting from obstetric load-induced acute lumbar lordosis.  

Results demonstrate that as fetal load approaches half of its expected term mass, 

gravid women begin to alter their posture and gait by increasing lumbar lordosis and 

anterior pelvic tilt. When experimentally constrained from positional adjustment, 

maternal center of mass anteriorly translates 3.2 cm. However, when gravid women self-

select their stance positions, the center of mass remains stationary, translating less than 

0.5 cm during pregnancy, suggesting that adjustments in lordosis and pelvic tilt mediate 

the biomechanical instability of obstetric load. Female vertebrae are dorsally wedged at 

lumbar levels L3, L4 and L5. At these lordotic levels, females have relatively large and 

oblique zygapophyseal facets. Conversely, lordotic wedging in human males is less 

extensive along the column, occurring at lumbar levels L4 and L5. Human lumbopelvic 

sexual dimorphism is consistent with the spinal loading patterns of the gravid analyses, 

indicating that unique features of female lumbar vertebrae are adapted to resist structural 

risks of bipedal obstetric load.  
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Chapter 1: Introduction 

This dissertation research investigates the functional relevance of sexual 

dimorphism in osteological features of the human lumbopelvic complex. It departs from 

previous work in its novel focus on postural and locomotor biomechanics of obstetric 

load. Specifically, the study hypothesizes that aspects of the female lumbopelvic complex 

represent unique adaptations to structural risks associated with bipedality, incurred under 

conditions of fetal load. This hypothesis differs from the current view that lumbopelvic 

shape sexual dimorphism is functionally related to parturitional adaptation alone (Tague 

and Lovejoy, 1986; Rosenberg 1992; Tague, 1992). 

Through an integrated approach of comparative morphology and positional and 

gait kinematics, this study investigates both postural and locomotor challenges 

experienced by the gravid modern human female and explores their relevance in the 

evolution of hominin bipedality. The experimental kinematic approach tests hypotheses 

on weight redistribution and loading of the human female pelvis during pregnancy, while 

the comparative morphometric approach places these results into a broader phylogenetic 

and evolutionary context.  

The study focuses on four critical questions: 1) To what extent does sexual 

dimorphism of the lumbopelvic complex in humans differ from that of other extant 

primates? 2) Do kinematic adjustments in lumbar lordosis and sagittal pelvic tilt during 

human pregnancy mediate risk associated with obstetric spinal loading? 3) Which aspects 

of human lumbopelvic sexual dimorphism are associated with fetal load? and 4) To what 
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extent is sexual dimorphism in the human lumbopelvic complex an evolutionary solution 

to the bipedal challenge of hominin fetal load?   

FETAL LOAD AND ORTHOGRADY 

Among all primates during pregnancy, maternal shape and mass distribution 

change as abdominal muscles stretch and separate to accommodate fetal growth (Abitbol, 

1996; Gilleard et al., 1996). One important biomechanical consequence of these shape 

changes in orthograde primates, those that frequently maintain an upright position, is an 

anterior shift in location of the maternal center of mass (COM). As COM translates 

farther from the supporting joints and body support base, bending moments increase 

about the hip, reducing upper body stability (Dumas et al., 1995; Jensen et al., 1996). 

Habitual bipedalism, the human form of orthogrady, makes this a persistent challenge for 

reproductively active females.  

It is argued that during human pregnancy positional adjustments in lumbar 

lordosis and anterior sagittal pelvic tilt ensure upper body stability by maintaining the 

maternal COM in a biomechanically efficient position (Bullock et al., 1987; Dumas et al., 

1995; Franklin and Conner-Kerr, 1998; Foti et al., 2000). In the absence of kinematic 

adjustments, gravitational force draws the upper body anteriorly downward inducing 

torque about the hips (Ortengren and Andersson, 1977). In this gravid biomechanical 

context, resistance to hip moments requires sustained muscle contraction, an effort which 

is energetically costly and potentially injurious. While favorable for upper body control, 

positional changes in lumbar lordosis and pelvic tilt are also problematic in that they 

redistribute proportional loading through the vertebral column, adding stress to structures 

that are less heavily loaded under nonparous conditions.    
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BIOMECHANICS OF HUMAN SPINAL LOADING 

Human spinal loading is particularly complex due to the secondary vertebral 

curve of the lumbar segment. This unique human lordosis becomes morphologically 

defined during the developmental period of toddler transition from quadrupedal crawling 

to bipedal walking. Lumbar lordosis positions the center of mass in vertical alignment 

over the biacetabular axis, functioning as a stabilization mechanism of the upper body. 

As a result of both static morphology, largely the vertebral body wedging of the lower 

lumbar region, and dynamic movements of sagittal flexion and extension along the entire 

lumbar vertebral column, loading proportions of the vertebral bodies and the neural arch 

components differ at various levels of the lumbar spine (Pal and Routal, 1987). The load-

bearing capacity of lumbar vertebral bodies is relatively high, afforded by both large 

centrum endplate size and approximate transverse orientation of the centrum articular 

surfaces. As a result of bipedal lumbar lordosis the magnitude of loading through the 

human neural arch zygapophyses is nearly 25% of the total static spinal load (Adams and 

Hutton, 1980; Louis, 1985). Dynamic increase in lordosis immediately intensifies loading 

force through the zygapophyses (Davis, 1961).  

Compared to earlier hominins and relative to body size, modern humans present 

large centrum endplates, particularly of the lower lumbar region (Rose, 1975; Shapiro, 

1993a). Based on estimated body size, the centrum surface area of australopithecine 

lumbar vertebrae was relatively small compared to modern humans (Shapiro, 1993a; 

Sanders, 1998). Yet, relative to modern humans, australopithecines appear to have had 

large lumbar zygapophyses and massive sacral superior facets (Sanders, 1998). Vertebral 

proportions in the Australopithecus specimens A.L. 288-1 and Sts-14 led Sanders (1998) 

to propose that australopithecines may have evolved a derived biomechanical channel for 

lumbar spinal loading, one characterized by a higher percentage of compressive force 
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transmitted through the dorsal vertebral components.  If, as is generally accepted, these 

two early hominin specimens were female (Robinson, 1972; Tague and Lovejoy, 1986; 

Wood and Quinney, 1996), the observed robusticity of their dorsal pillar facets may 

exemplify a broad sex-specific morphology related to fetal load in all hominins. 

Recovery of additional fossil vertebrae is needed to increase the likelihood of multi-sex 

sampling before biomechanical predictions of fetal load adaptation in early bipeds can be 

properly tested. Should results of this analysis support the study hypotheses, the question 

of agreement in morphology and sex assignment in A.L. 288-1 and Sts-14 will be worth 

pursuing as more fossil material becomes available.  

In some respects, the preserved morphology of the lumbar vertebral column of 

KNM-WT 15000 (Homo ergaster), a presumed male, is similar to that of earlier 

australopithecines, i.e., relatively small centra and robust dorsal pillar elements (Latimer 

and Ward, 1993; Sanders, 1995), which may argue against the above hypothesis.  

However, the juvenile status of the Nariokotome specimen precludes direct comparison 

with adult human morphology as any observed similarity in the youthful KNM-WT 

15000 and adult modern human female may derive from errant projection of one taxon’s 

ontogenetic phase on that of another. 

HUMAN PELVIC SEXUAL DIMORPHISM 

Pelvic shape is arguably the most recognizable difference in the bony anatomy of 

human males and females. The pelvic aperture of adult females is relatively broad 

mediolaterally, the subpubic angle more obtuse than that of males and the ischiopubic 

ramis arced (Washburn, 1948; Phenice, 1969; Ubelaker and Volk, 2002). Cephalopelvic 

proportions between the human neonate and the adult female, respectively, provide the 

basis for our current understanding of human pelvic sexual dimorphism, as many 

investigators have concluded that the human female pelvis is derived as a result of 
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parturitional selection pressure favoring a maternal birth canal sufficiently spacious for 

delivery of a relatively large brained or large bodied fetus (e.g., Berge et al., 1984; Tague 

and Lovejoy, 1986; Abitbol, 1987, 1996; Rosenberg, 1988, 1992; Hager, 1989, 1996; 

Ruff, 1995; Walrath and Glantz, 1996; Trevathan and Rosenberg, 2001).  

Human parturition begins with the cephalic sagittal axis of the fetus aligned 

mediolaterally at the inlet of the maternal pelvis.  The fetal head and body then rotate in 

order to navigate the pelvic midplane which is broadest anteroposteriorly and 

circumscribed by bony walls of the ilia, pubic symphysis and sacrum. Navigation of the 

birth canal in early hominins is thought to have proceeded nonrotationally, with the broad 

sagittal axis of the neonate head aligned mediolaterally, without reorientation through the 

pelvic midplane (Tague and Lovejoy, 1986; Rosenberg, 1992). The leading hypothesis 

for emergence of the rotational birth mechanism emphasizes an encephalization event of 

rapid increase in average absolute and relative adult cranial capacity in late Middle 

Pleistocene Homo (Begun and Walker, 1993; Rightmire, 1990; Trinkaus and Wolpoff, 

1992; Ruff et al., 1997; but see Kappelman, 1996). From adult cranial expansion an 

increase in fetal cranial capacity is inferred, driving shape change in pelvic birth canal 

(Ruff, 1995). The rotational mechanism in modern humans further argued for the unique 

nature of human parturitional obstetrics and the large degree of human pelvic sexual 

dimorphism.  

However, not all data support the rotational conclusion. Berge et al. (1984) in 

their study of australopithecine pelvic shape concluded that given chimpanzee-like fetal 

skull proportions a rotational mechanism similar to that of modern humans would have 

characterized australopithecine birth. Stoller (1995) provided parturitional radiographic 

observation of fetal rotation in both Saimiri and Papio, demonstrating that rotational 

descent by the human fetus is not unique among primates. While our study of pelvic 
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sexual dimorphism has pivoted on the parturition stage of primate reproductive success, 

there remain points of disagreement and uncertainty as to the selection pressures driving 

pelvic sex differences in modern humans. Clearly, the anatomical and functional 

complexity of the lumbopelvic complex continues to challenge our copious and best 

efforts. 

It is important to stress that our current understanding of human pelvic sexual 

dimorphism is ultimately limited in scope by overlooking the broader stresses of 

reproductive load and narrowly focusing on sexual dimorphism in pelvic morphology 

directly related to the birthing event. The obstetric demands of parturition clearly impact 

pelvic form, yet they are mechanistically limited to localized interactions between the 

fetal body and the maternal true pelvis. Because pregnancy exerts marked, recurrent 

biomechanical stress on the postural and locomotor skeleton, reproductive factors other 

than the immediate mechanisms of birth are likely to have influenced the evolution of 

human lumbopelvic morphology, particularly given the unique spinal loading patterns 

associated with bipedal lumbar lordosis. For in their collective role as a functional 

complex, lumbar vertebrae and pelvic elements provide support and flexibility required 

for posture and locomotion, the biomechanical environment of which changes during 

pregnancy.  

HUMAN LUMBAR VERTEBRAL SEXUAL DIMORPHISM 

Studies of sexual dimorphism in human lumbar vertebrae have been largely 

descriptive (Cunningham, 1889; Derry, 1912; Trotter, 1929; Danforth, 1930; Odgers, 

1933; Bornstein and Peterson, 1966; DeBeer Kaufman, 1974; Knussman and Finke, 

1980). Where functional inferences were drawn, investigators concluded that lumbar 

vertebral morphology in females accommodates their relatively large lumbosacral angle, 

a feature of the pelvis spatially relevant to parturition (Derry, 1912; Tague, 1992).  
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Recent work on sexual dimorphism in the human lumbar vertebral column 

demonstrates that females present relatively smaller centrum surface areas than males, 

suggesting they carry a greater proportion of their spinal load dorsally (Whitcome, 1999, 

2000).  Additional research is needed to assess the biomechanical signals of the 

zygapophyseal areas and entire neural arch anatomy along the lumbosacral spine. 

Identification of the differential distribution of load between the vertebral bodies and 

zygapophyses is currently based on size of gross structures and relative surface areas of 

joints (Pal and Routal, 1991; Shapiro, 1993b), yet these features alone do not fully 

account for load trajectory and magnitude.  Furthermore, previous comparative works 

quantified only lumbar regions with the modal count of five vertebrae. Because there is 

variation in the total number of human lumbar vertebrae, from as few as four to as many 

as six (Latimer and Ward, 1993), further study is needed on sex differences in modern 

humans whose lumbar columns are nonmodal in number, particularly the extra-modal 

number of six lumbar vertebrae, which appears to be the modal lumbar number in 

australopithecines (Robinson, 1972; Sanders, 1998; Tobias, 1998; but see Haeusler et al., 

2002). Because lumbar and sacral vertebrae provide the main load-bearing capacity of the 

human axial skeleton, any skeletal adaptation to the stresses of obstetric load is likely to 

be evident among them. 

HUMAN REPRODUCTIVE BIOMECHANICS  

The developing fetus and its placenta alter maternal body proportions and mass 

distribution (Jensen et al., 1996). From these shape changes an anterior shift in the 

maternal center of mass is expected (Mittlemark et al., 1991; Abitbol, 1996a, 1996b). The 

relative position of the body center of mass holds implications for the kinematics of 

pregnant gait (Stokes et al., 1989). Therefore, any analysis of the effect of obstetric load 

effect on posture and locomotion should take into account the possible translation of 



 8

center of mass during pregnancy. Investigated together as in this study, center of mass 

position and human posture and gait adjustments during pregnancy will inform our 

understanding of the biomechanical conditions inherent in bipedal obstetric load. 

Using these techniques, changes in lumbar lordosis and pelvic tilt during 

pregnancy can be biomechanically assessed in the context of Pal and Routal’s two-pillar 

model of spinal force transmission (Pal and Routal, 1986, 1987). The model demonstrates 

that distributional change in the magnitude of compressive force between the ventral 

pillar of vertebral bodies and the dorsal pillar of the neural arch components is due to 

dynamic changes in spinal curvature. Angular excursions of the intervertebral and 

lumbosacral joints within the sagittal plane kinematically alter lumbar lordosis. Both 

spinal extension and pelvic anterior rotation may augment the lumbar curve.  

Kinematic change in lumbar lordosis occurs during pregnancy. A survey of 

previous studies shows a lack of consensus as to the direction of lordotic change. While 

Bullock et al. (1987) and Franklin and Conner-Kerr (1998) reported an angular increase 

of 7 degrees in human lumbar lordosis from early pregnancy through end stage of the 

third trimester, reduction in lumbar lordosis during pregnancy has also been documented 

(Snijders et al., 1976; Foti et al., 2000). The latter studies tested only one stage of 

pregnancy, two weeks prior to partum. In targeting a narrow window in what is within 

humans a lengthy reproductive process, the full influence of fetal load on maternal 

positional biomechanics remains undetermined. The inference of Foti et al., (2000) was 

established indirectly from data that showed a decrease in maternal stature. The 

interpretation is not conclusive as height loss during pregnancy may result from change 

in postural factors other than lumbar lordosis.  

The human pattern of spinal loading during pregnancy will be better understood 

from new research closely tracking a large number of women within a longitudinal 
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framework directly testing the location of COM and angles of lordosis and pelvic tilt, one 

designed to document multiple stages of increasing fetal load.  

IMPLICATIONS OF PRIMATE ORTHOGRADY 

While lumbar lordosis is unique to hominins and functionally linked to 

bipedalism, a range of orthograde behaviors among other primates generates similar 

compressive loadings (Rose, 1975; Shapiro, 1993a, 1995: Johnson and Shapiro, 1998; 

Shapiro and Simons, 2002). Therefore, evolutionary adaptations to orthograde fetal load 

may not be limited to bipeds, and comparative investigation of other primates in 

orthograde and pronograde contexts are a necessary adjunct to test the functional role of 

lumbopelvic morphology in managing fetal load.  

Specifically, this study hypothesizes that sexual dimorphism in the human 

lumbopelvic region reflects female adaptive resistance to biomechanical failure resulting 

from fetal load-induced acute lumbar lordosis. If as predicted, human fetal load 

kinematically increases lumbar lordosis, the bony structures supported in the vertebral 

column’s dorsal pillar are subject to increased risk of structural failure. Biomechanical 

failures, such as spondylolysis and spondylolythesis are correlated with relative increase 

in lordotic acuity which exposes the neural arch to both increasing compressive and 

increasing shearing loads (Bogduk, 1999). Since the hominin evolutionary skeleton has 

been repetitively loaded in this fashion, adaptations to fetal load are expected in dorsal 

pillar structures of the female vertebral column.  

Although the biomechanical consequences of lumbar lordosis are likely to result 

in a pattern of lumbopelvic sexual dimorphism unique to bipeds, generalized orthogrady 

absent of lumbar lordosis may result in some measure of sexual dimorphism. Because the 

lumbar transverse processes of orthograde primates project dorsally and are related to 

maintaining orthograde postures by resisting ventral flexion of the trunk (Shapiro, 1993b, 
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1995; Ward, 1993; Sanders and Bodenbender, 1994, Johnson and Shapiro, 1998), 

transverse processes of orthograde females may be more dorsally oriented and relatively 

larger than those of the males. While the presence of lumbopelvic sexual dimorphism is 

predicted in nonhuman orthograde primates, without lumbar lordosis non bipedal 

orthograde females are likely to present ventral pillar structures relatively larger than 

those of males, in accordance with kyphotic postural support of obstetric load, a 

contrasting pattern to that expected in bipeds. 

OBSTETRIC LOAD: NEW HYPOTHESIS FOR HUMAN LUMBOPELVIC SEXUAL 
DIMORPHISM 

Any persistent interpretation of sexual dimorphism in lumbar and sacral vertebrae 

as compliant to the pelvis obscures the possibility that vertebrae perform a more 

immediate functional role in trunk biomechanics. As a framework for interpreting the 

scope of human lumbopelvic sexual dimorphism, our current parturition-centered 

conclusions are limited in focusing exclusively on pelvic morphology directly related to 

the birthing event, thereby overlooking the attendant stresses of reproductive load. 

Although pregnancy is intermittent, the duration and recurrence of fetal load exert 

marked stress on the postural and locomotor skeleton, holding implications not only for 

modern humans, but for earlier bipeds, and therefore, our reconstruction of hominin 

evolution. 

SIGNIFICANCE OF THE STUDY 

The major hypothesis introduced in this study proposes that aspects of the human 

lumbopelvic complex represent unique female adaptations to structural risks associated 

with bipedality under conditions of fetal load. Despite significant advances in our 

understanding of parturitional selection factors, we still know very little about the impact 

of reproductive load on the hominin skeleton. Identification of sexually dimorphic 
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features in the human lumbopelvic complex that are not fundamentally linked to 

parturition will broaden our evolutionary perspective by introducing the notion that 

female morphology is not singly driven by childbirth events but is more complexly 

impacted by a suite of reproductive demands.  Adaptations of this nature are likely to 

have had a more basal influence on the hominin lineage than previously inferred. If fetal 

load generates sex-specific lumbopelvic loading in humans, it is possible that early 

hominin adaptations similar to those in modern female lumbopelvic morphology arose in 

association with orthogrady and fetal load prior to the encephalization events that 

introduced fetal head and body size selection for a larger maternal birth canal.  

The relevance of this study is perhaps best exemplified by women whose 

pregnancies are accompanied by fatigue and discomfort of the lower back. By and large 

gravid women manage obstetric load well, likely due to the mechanisms this study aims 

to identify. That bipedal obstetric load can lead to compromised posture and locomotion 

(e.g., Moore et al., 1990; Ostgaard, 1993; Dumas et al., 1995) highlights the potential 

vulnerability of the lumbopelvic complex in mediating obstetric load and provides 

support for the recognition that, in addition to pelvic canal dimensions, morphology of 

the lumbar and sacral vertebrae is also key to female reproductive success. The adult 

female lumbopelvic complex is subject to strong selection pressures, applied not only at 

parturition, the terminal event of pregnancy, but also throughout pregnancy, the 

protracted period of increasing fetal mass. 

ORGANIZATION SUMMARY  

Following this introductory Chapter 1, Chapter 2 investigates the impact of 

obstetric load on the kinematics of human female positional behavior. Posture and 

locomotor data were collected from nineteen women across six successive periods during 

pregnancy and a period postpartum to determine location of total body center of mass and 
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segmental position angles to better understand mechanisms of posture and gait under 

conditions of fetal load and the relevancy of these interactions to hominin bipedal 

evolution. Chapter 3 investigates the human lumbopelvic complex to identify the 

presence of sexual dimorphism in features associated with upper body control. In 

addition to a sample drawn from individuals of modal lumbar vertebral number, two 

samples were included that represent variation in lumbar vertebral count as a means to 

further investigate the biomechanics of upper body load on longer and shorter lordotic 

columns. The former is particularly relevant to the question of early hominin adaptation 

as australopithecines appear to have had lumbar column length equal to the extra-modal 

variant in modern humans. Chapter 4 examines lumbopelvic traits in a broad comparative 

sample of nonhuman primates to determine whether sexual dimorphism differs according 

to positional orientation. The comparative analysis provides context in which to interpret 

human sexual dimorphism as consistent with that of other primates, particularly the 

orthograde taxa or alternatively as a unique phenomenon among primates. The 

concluding Chapter 5 is a synthesis of the kinematic and morphometric results and a 

discussion of the evolutionary implications of bipedal obstetric load.  

 

 

 

 

 

 

 

 

 



 13R

 References

Abitbol M. 1987. Obstetrics and posture in pelvic anatomy. J Hum Evol 16:243-256. 

Abitbol M. 1996a.  The shape of the female pelvis: contributing factors. J Rep Med  

   41:242-250. 

Abitbol M. 1996b. Birth and human evolution: anatomical and obstetrical mechanics in  

   primates. Westport, Conn: Bergin and Garvey. 

Adams MA, Hutton WC. 1983. The mechanical function of lumbar apophyseal  

   joints. Spine 8:327-330. 

Begun D, Walker A. 1993. The endocast. In: Walker A, Leakey R, editors. The  

   Nariokotome Homo erectus skeleton. Cambridge, MA:Harvard University Press. p  

   326-358. 

Berge C, Orban-Segebarth R, Schmid P. 1984. Obstetric interpretation of the  

   australopithecine pelvic cavity. J Hum Evol 13:573-587. 

Bogduk N. 1999. Clinical anatomy of the lumbar spine and sacrum. Churchill Livingston:  

   New York.  

Bornstein P, Peterson R. 1966.  Numerical variation of the presacral vertebral column in  

  three population groups in North America. Am J Phys Anthropol 25:139-146. 

Bullock J, Jull G, Bullock M.1987. The relationship of low back pain to postural changes  

    during pregnancy. Aust J Phys 33:10-17. 

Cunningham D. 1889.  The proportion of bone and cartilage in the lumbar section of the 

  vertebral column of the ape and several races of men.  J Anat 24:117-126. 

Danforth CH. 1930. Numerical variation and homologies in vertebrae. Am J Phys  

  Anthropol 14:463-481. 



 14

Davis PR. 1961. Human lower lumbar vertebrae: some mechanical and osteological  

   considerations. J Anat 95:337-344. 

DeBeer Kaufmann P. 1974.  Variation in the number of presacral vertebrae in Bantu- 

  speaking South African Negroes. Am J Phys Anthropol 40:369-374. 

Derry DE. 1912. The influence of sex on the position and composition of the human  

  sacrum. J Anat Physiol 46:184-192. 

Dumas GA, Reid JG, Griffin MP, McGrath MJ. 1995. Exercise, posture, and back pain  

    during pregnancy. Clin Biom 10(2):98-105. 

Foti T, Davids J, Bagley A. 2000. A biomechanical analysis of gait during pregnancy. J  

    Bone Joint Surg 82A:625-632.  

Franklin M, Conner-Kerr T. 1998. An analysis of posture and back pain in the first and  

    third trimesters of pregnancy. J Ortho Sports Phys Ther 28:133-138. 

Gilleard D, Brown W, Brown JM. 1996. Structure and function of the abdominal  

    muscles in primigravid subjects during pregnancy and the immediate postbirth period.  

    Phys Ther 76: 750-762. 

Haeusler, M., Martelli, S., Boeni, T., 2002. Vertebrae numbers of the early hominid  

   lumbar spine. J Hum Evol 43, 621-643. 

Hager LD. 1989. The evolution of sex differences in the hominid bony pelvis. Ph.D.  

  dissertation, University of California at Berkeley, Berkeley, California. 

Hager LD. 1996. Sex differences in the sciatic notch of great apes and modern humans.  

   Am J Phys Anthropol 99:287-300. 

Jensen R, Doucet S, Treitz T. 1996. Changes in segment mass and mass distribution  

    during pregnancy. J Bio 29:251-256. 



 15

Kappelman, J. 1996. The evolution of body mass and relative brain size in fossil  

   hominids.  J Hum Evol 30:243-276. 

Knussman R, Finke E. 1980. Studies on the sex-specificity of the human spinal  

   profile. J Hum Evol 9:615-620. 

Johnson SE, Shapiro LJ. 1998. Positional behavior and vertebral morphology in atelines  

   and cebines. Am J Phys Anthropol 105:333-354. 

Latimer B, Ward C. 1993. The thoracic and lumbar vertebrae.  In: Walker A, Leakey  

   REF, editors.  The Nariokotome Homo Erectus Skeleton. Cambridge: Harvard  

   University Press p 266-293.   

Louis R. 1985. Spinal stability as defined by the three-column spine concept. Anat Clin  

   7:33-42. 

Mittlemark R, Wiswell R, Drinkwater B. 1991. Exercise in pregnancy. Baltimore:  

    Williams and Wilkins. 

Moore K, Dumas GA, Reid, JG. 1990. Postural changes with pregnancy and their  

   relationship with low back pain. Clin Bio 5:169-174. 

Odgers P. 1933. The lumbar and lumbosacral diarthrodial joints. J Anat 67:301-317. 

Ortengren R, Andersson G. 1977. Electromyographic studies of trunk muscles with  

    special reference to the anatomy of the lumbar spine. Spine 2:44-52. 

Ostgaard HC, Andersson GBJ, Schultz AB, Miller JAA. 1993. Influence of some  

   biomechanical factors on low-back pain in pregnancy. Spine 18:61-65. 

Pal GP, Routal RV. 1986. A study of weight transmission through the cervical and upper  

   thoracic regions of the vertebral column in man. J Anat 148:245-261. 

 



 16

Pal GP, Routal RV. 1987. Transmission of weight through the lower thoracic and  

   lumbar regions of the vertebral column in man. J Anat 152:93-105. 

Pal GP, Routal RV. 1991. Relationship between the articular surface-area of a bone and  

   the magnitude of stress passing through it. Anat Rec 230:570-574. 

Phenice TW. 1969. A newly developed visual method of sexing in the Os pubis. Am J  

   Phys Anthropol 30:297-301. 

Rightmire GP. 1990. Variation in early Homo from eastern Africa. Am J Phys  

   Anthropol 81:286-286.  

Robinson J. 1972. Early Hominid Posture and Locomotion. Chicago: The University of  

   Chicago Press. 

Rose MD. 1975.  Functional proportions of primate lumbar vertebral bodies. J Hum Evol  

  4:21-38. 

Rosenberg KR. 1988.  The functional significance of Neanderthal pubic length. Cur  

  Anthropol 29: 595-607. 

Rosenberg KR. 1992. The evolution of modern human childbirth. Yrbk Phys Anthropol  

  35:89-124. 

Ruff CB. 1995. Biomechanics of the hip and birth in early Homo. Am J Phys Anthropol  

  98:527-574. 

Ruff CB, Trinkaus E, Holliday TW. 1997. Body mass and encephalization in Pleistocene  

   Homo. Nature 387:173-176. 

Sanders WJ. 1995.  Function, allometry, and evolution of the australopithecine lower  

  precaudal spine. PhD dissertation, New York University. 

 



 17

Sanders WJ. 1998.  Comparative morphometric study of the australopithecine vertebral  

  series Stw-H8/H41.  J Hum Evol 34:249-302. 

Sanders WJ, Bodenbender BE. 1994.  Morphometric analysis of lumbar vertebra UMP  

  67-28: Implications for spinal function and phylogeny of the Miocene Moroto  

  Hominoid. J Hum Evol 26:203-237. 

Shapiro LJ. 1993a. Evaluation of “unique” aspects of human vertebral bodies and  

   pedicles with a consideration of Australopithecus africanus. J Hum Evol 25:433-470. 

Shapiro LJ. 1993b. Functional morphology of the vertebral column on primates.   

   In: Gebo DL, editor. Postcranial Adaptation in Nonhuman Primates. DeKalb: Northern   

   Illinois University Press p 121-149.    

Shapiro LJ, Simons CVM. 2002. Functional aspects of strepsirrhine lumbar vertebral  

   bodies and spinous processes. J Hum Evol 42:753-783. 

Snijders C, Seroo J, Snijders J, Hoedt H. 1976. Changes in form of the spine as a  

   consequence of pregnancy. Digest of the 11th International Conference on Medical and  

   Biological Engineering 1:670-671. 

Stokes V, Andersson C, Forssberg H. 1989. Rotational and translational movement  

    features of the pelvis and thorax during adult human locomotion. J Biom 22:43-50. 

Stoller M. 1995. The obstetric pelvis and mechanism of labor in nonhuman primates.  

  PhD dissertation, University of Chicago, Chicago, Illinois. 

Tague RG. 1992.  Sexual dimorphism in the human bony pelvis with a consideration of  

  the Neanderthal pelvis from Kebara Cave, Israel. Am J Phys Anthropol 88:1-21. 

Tague RG, Lovejoy CO. 1986. The obstetric pelvis of AL 288-1 (Lucy). J Hum Evol  

  15:237-255. 



 18

Tobias, P.V., 1998. Ape-like Australopithecus after seventy years. Was it a hominid?  

   J. Roy. Anthropol. Inst. 4, 283-308. 

Trevathan W, Rosenberg K. 2001. The evolution of human birth. Sci Amer 285:72-77. 

Trinkaus E, Wolpoff M. 1992. Brain size in post-habiline archaic Homo. Am J  Phys  

   Anthropol Supp 14:163. 

Trotter M. 1929. The vertebral column in whites and in American negroes. Am J Phys  

    Anthropol 9(4):95-107. 

Ubelaker DH, Volk CG. 2002. A test of the Phenice method for the estimation of sex. J  

   Foren Sci 47:19-24. 

Walrath D, Glantz M. 1996. Sexual dimorphism in the pelvic midplane and its  

  relationship to Neandertal reproductive patterns. Am J Phys Anthropol 100:89-100. 

Ward CV. 1993. Torso morphology and locomotion in Proconsul nyanzae. Am J Phys  

   Anthropol 92:291-328. 

Washburn SL. 1948. Sex differences in the pubic bone. Am J Phys Anthropol 6:199-207. 

Whitcome KK. 1999. Sexual dimorphism of the human lumbar spine. Am J Phys  

   Anthropol 276-276 Suppl. 28. 

Whitcome KK. 2000. A functional examination of sexual dimorphism in human lumbar  

   vertebrae. Masters thesis. Southern Illinois University, Carbondale. 

White AA. 2006. Clinical biomechanics of the spine. Williams and Wilkins:  

Wood BA and Quinney PS. 1996. Assessing the pelvis of AL 288-1. J Hum Evol 31:563- 

   568. 

 

 



 19

Chapter 2:  Kinematics of Human Obstetric Spinal Loading 

INTRODUCTION 

The mature kinematic pattern of modern human locomotion is characterized in 

part by lumbar lordosis and sagittal pelvic tilt (Thurston and Harris, 1983; Crosbie et al., 

1997).  Lordosis and pelvic tilt are morphologically determined by skeletal shape and 

joint orientation on the one hand while kinematically defined by movement through a 

range of joint rotation on the other hand. The kinematic aspects of lordosis and pelvic tilt 

are largely constrained by morphology of the lumbar vertebrae and pelvis and the 

location of muscle attachments relative to the joints across which they act (i.e., 

Cunningham, 1886; von Lackam, 1924; Jenkins, 1974; Rose, 1975; Gilad and Nissan, 

1985; Bogduk, 1997).  The skeletal anatomy of the lumbar vertebral lordotic complex in 

early bipeds, to the extent that we know it from the hominin fossils A.L. 288-1, Sts 14 

and Stw 431 is broadly similar in modern humans and these early australopithecines 

(Robinson, 1972; Sanders, 1998; Haeusler, 2002; Toussaint et al., 2003). Lumbar lordosis 

and sagittal pelvic tilt appear to be basal adaptations in the evolution of hominin 

bipedality, as evidenced by an extensive suite of postcranial traits shared exclusively 

within the Hominini. Non musculo-skeletal determinants of positional behavior present in 

modern humans include ligamentous structure (Leong et al., 1987; Sanders, 1998), size 

and shape parameters of upper body segments (Jensen et al, 1996a; Whittle and Levine, 

1999) and relative positions of body segments with respect to one another (Levine and 

Whittle, 1996).  For example, load carrying is a context-specific condition in which 

individuals self-select biomechanically stable positions (Granata and Sanford, 2000; 

Wilson and Granata, 2003). Within the range of angular excursions that the collective 
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anatomical parameters allow, there is a conservative degree of self-selected positional 

arrangement possible.  

While spinal loading forces generated during bipedal locomotion are generally 

similar for all adults (Pal and Routal, 1987; Pal, 1989), the lengthy duration and recurrent 

nature of obstetric fetal load cleaves two distinct loading groups, one male and one 

female, based entirely in reproductive physiology. In spite of this obvious biological 

dichotomy and decades of locomotor study, we know relatively little about spinal loading 

during pregnancy or its skeletal correlates. Our lack of knowledge is all the more 

surprising considering the likelihood that obstetric locomotor biomechanics are 

influential in evolutionary reproductive success.  

As the fetus grows and its supporting tissues increase in mass, the maternal 

abdomen expands, undergoing incremental changes in shape and mass distribution.  In 

humans as in other orthograde primates, expansion of the abdomen occurs largely along 

its fore-aft dimension, resulting in anterior translation of segmental center of mass (e.g., 

Taves et al., 1982; Mittlemark et al., 1991; Abitbol, 1996).  Within bipeds, for whom the 

two-footed base of positional support is relatively small, bending moments at the hip are 

greatly increased under conditions of obstetric load because gravitational force draws the 

torso downward at a center of mass (COM) increasingly distant from the biacetabular 

axis. The fetus in its positional relationship to the maternal orthograde orientation reduces 

upper body stability when it induces a directional shift in the location of the maternal 

COM (Dumas et al., 1995; Jensen et al., 1996a; Jensen et al., 1996b).   

The relative location of the total body COM holds implications for the kinematics 

of pregnant posture and gait (Stokes et al., 1989).  In the absence of positional 

mechanistic adjustments, the temporal and biomechanical demands of human obstetric 

load would quickly fatigue the erector spinae muscle group, otherwise needed to resist 
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the obstetric rotational hip moments (Ortengren and Andersson, 1977).  Angular 

adjustments in maternal lumbar lordosis and sagittal pelvic tilt often characterize human 

pregnancy (Bullock et al., 1987; Franklin and Conner-Kerr, 1998; Foti et al., 2000).  In 

isolation or in tandem, these lumbopelvic adjustments are capable of repositioning the 

maternal COM in a biomechanically efficient position relative to the major joints of the 

lower body and the bipedal support base.  While these segmental shifts during pregnancy 

may be favorable for upper body control, through the redistribution of proportional 

loading within the vertebral column, they are likely to increase spinal loads along the 

bony structures that under nonparous conditions are less heavily loaded.   

Posture and gait in human pregnancy  

Pregnancy imposes considerable modifications in the structure and function of the 

female body to allow for development and parturition of the fetus.  Many of these 

changes, including weight gain (Thompson, 1995), ligamentous laxity (Block et al., 

1985) and shape alterations in body segments (Culver and Viano, 1990) contribute to the 

characteristic posture and gait associated with the pregnant human female. These 

changes, transient but cyclical, redefine biomechanics of the positional system. 

Analyses of the temporal and angular kinematics of pregnant gait have produced 

equivocal results.  While velocity, stride length and cadence appear unchanged with 

pregnancy (Taves et al., 1982; Foti et al., 2000), compensatory mechanisms may in effect 

normalize pregnant gait. For instance, a widened base of support is characteristic of near 

term pregnancy, as evidenced by increased inter ankle diameter (Bird et al., 1999; Foti et 

al., 2000; Lymbery and Gilleard, 2005).  So, while conventional parameters of bipedal 

locomotor performance suggest that pregnant gait is remarkably unchanged from non 

pregnant gait, minor mechanistic differences may underlie the similarities.   
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Normalcy in pregnant gait is not without question. Contrary to earlier results 

(Taves et al., 1982; Foti et al., 2000), Wu and colleagues (2004) report a significant 

reduction in comfortable walking velocity during pregnancy, realized only when subjects 

were asked to self-select a preferential walking speed.  Methodological differences then 

are likely to account for some discrepancy in documented gait parameters, and this 

presents some difficulty in assessing study of pregnant gait. Taves et al. (1982) 

potentially constrained subject performance by dictating three pre-determined treadmill 

speeds during which gait parameters were recorded. While Foti et al. (2000) found no 

change in gait velocity, stride length or cadence in their comparison of self-selected 

pregnant and postpartum gait, a significant difference occurred in support phase timing. 

Double-support phase contributed to a significantly larger percent of the gait cycle during 

pregnancy than after, and the hip abduction moment was significantly greater in the first 

peak of stance phase during pregnancy than in the period postpartum. The former result 

suggests a conservative locomotor strategy during parity by increased reliance on a more 

stable two-footed support. The latter result, in combination with a wide base of support 

(Dumas et al., 1995; Bird et al., 1999; Foti et al., 2000; Lymbery and Gilleard, 2005), 

suggests that additional recruitment of the hip abductors compensates for increased 

gravitational draw on the unsupported side of the body during single-support phase. 

These mechanisms of balance may be in response to a general increase in maternal body 

mass during pregnancy or a widening of pelvic dimensions (Foti et al., 2000) induced by 

joint laxity, perhaps both.  

If pelvic widening is a true gravid phenomenon, one might predict an increase in 

stride length during pregnant gait, due to increased angular excursion in the transverse 

plane. However, stride length is consistently unchanged in pregnancy (Taves et al., 1982; 

Foti et al., 2000). One explanation for this unexpected result may be the relatively smaller 
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amplitudes of pelvic rotation that characterize pregnant walking (Wu et al., 2004).  Pelvic 

rotation is coupled with thoracic rotation in normal human gait (Cappozzo, 1981; 

Gracovetsky, 1985; Crosbie et al., 1997; Lamoth et al., 2002) and may be constrained 

during pregnancy by the presence of the fetal body.  Alternatively, reduction of gravid 

pelvic rotation may be a response to increased moments of inertia imposed by maternal 

weight gain.  Segmental mass of the lower torso, which includes the maternal abdomen 

and fetal tissues, increases at a greater rate (from 21.6 kg at two months gestation to 28.4 

kg at nine months) than other body segments (for example, the upper trunk from 10.4kg 

to 11.7kg) (Jensen at al., 1996a).  

While a relationship between change in gravid center of mass and change in 

lumbopelvic kinematics during pregnancy is often invoked as an introductory premise in 

biomechanical and clinical studies (e.g., Rhodes, 1958; Ostgaard et al., 1993; Lou et al., 

2001; Noren et al., 2002), it has rarely been tested. Direct analysis of the relationship 

between the anatomical position of gravid center of mass and pregnant positional 

behavior has not been achieved and is the major focus of this study. 

Maternal center of mass 

The potential relationship between gravid center of mass and postural adjustment 

was initially and singularly investigated by Dumas et al., (1995) in a study on the 

effectiveness of exercise in mediating back pain during pregnancy.  Data were collected 

during self-selected postures, photographically from spinal landmarks and kinetically 

from torque platform recordings of the body’s line of gravity.  Two results relevant to the 

current investigation were obtained: 1) curvature of the lumbar region increased during 

pregnancy; and 2) position of the line of gravity during pregnancy remained unchanged, 

leading to the inference that pregnant women posturally adjust to achieve stable 

equilibrium. To some extent, the inference remains assumptive since data captured no 
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information on the position of center of mass in the absence of postural adjustments. The 

conclusion that segmental adjustments function to manage change in center of mass 

during pregnancy is explicitly unsupported; the study provided no evidence that gravid 

center of mass would otherwise translate toward postural instability.   

Statement of purpose 

The purpose of this study is to examine spinal loading patterns associated with 

human fetal load through kinetic identification of maternal center of mass and kinematic 

assessment of lumbar lordosis and pelvic tilt during pregnancy and a period postpartum.  

Once identified, obstetric loading patterns can be applied in functional analyses of 

human lumbopelvic sexual dimorphism (see Chapter 3).  The goal of the current study 

was achieved, in part by methodological design of a reference posture in which body 

angles were held constant. This ensured a means to identify the anatomical position of 

maternal center of mass in the absence of self-selected positional adjustments. These data 

were then compared with those collected in self-selected postures, to directly assess any 

relationship between adjustments in lumbar lordosis and pelvic tilt. Adjustments were of 

interest relative to the fore-aft location in maternal center of mass, as gauged by the 

position of the center of mass in the reference posture and in self-selected positional 

behaviors of natural stance. 

Hypotheses 

1. As fetal mass increases, the anteroposterior position of the maternal total 

body center of mass will shift anteriorly, when body segment angles are 

held constant. 
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2. Under natural conditions of increasing fetal load, the angle of lumbar 

lordosis will also increase, enhancing lordosis during natural stance and 

self-selected walking. 

3. Under natural conditions of increasing fetal load, the pelvis will rotate 

clockwise in the sagittal plane, increasing the angle of sagittal pelvic tilt 

during natural stance and self-selected walking. 

4. Postural and locomotor kinematic changes in lumbar lordosis and sagittal 

pelvic tilt will correlate with the anterior migration of the maternal total 

body center of mass. 

5. As fetal mass increases, the anteroposterior position of the maternal total 

body center of mass will remain unchanged, when body segment angles 

are self-selected during natural stance. 

Significance of study 

The goal of this research is to better understand biomechanical change in 

pregnancy, particularly, to identify the role that increasing fetal load plays in the position 

of maternal center of mass and to accurately characterize the context-specific spinal 

loading patterns of bipedal pregnancy. Ultimately, with these phenomena clearly 

understood, we gain mechanistic tools necessary to better reconstruct the evolution of 

lumbopelvic sexual dimorphism in modern humans and to further identify adaptations 

that enhance the reproductive success of females.   

Investigation of the biomechanical challenges presented by obstetric spinal load 

and the kinematic mechanisms of resolution will broaden the study of the evolution of 

hominin lumbopelvic morphology and further clarify the nature of shape sexual 

dimorphism in the lumbopelvic complex in humans, human ancestors and other primates.  
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MATERIALS AND METHODS 

Sample 

Twenty-five pregnant women, all healthy adults between the ages of 20 and 40 

years, were selected to participate in a longitudinal study spanning seven sessions, 

initiated at the commencement of the third month of pregnancy and concluded in the third 

month of post parity. 

Sample recruitment 

Participants were solicited from Austin, Texas reproductive clinics and health 

promoting organizations (Appendix A: Recruitment flyer 1; Appendix B: Recruitment 

flyer 2; Appendix C: Recruitment web site). Potential volunteers were excluded if they 

evidenced life histories characterized by joint illness/injury or previous pregnancy-related 

difficulties leading to medical treatment, restricted physical activity, or persistent 

discomfort (Appendix D: Screening Questionnaire).  

Actual sample size decreased from twenty-five to nineteen women due to various 

physiological and exogenous factors during the course of the study. One subject (10401) 

withdrew due to miscarriage in her 21st week of pregnancy. Three subjects (10403, 

110305, 120307) missed one mid partum session as a result of obstetric complications 

managed by physician prescribed bed rest. One subject (10412) experienced multiple 

bouts of premature contractions for which she was repeatedly hospitalized over an 

extended period, precluding completion of the final two pre partum sessions. One subject 

(10402) did not return for the concluding postpartum session. 

Six of the fully participatory nineteen subjects delivered two to three weeks 

earlier than their anticipated due dates and as a result missed Session 6, the final pre 

partum session. Since birth weights of these six “early” neonates were robust and within 
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the expectation of healthy American live birth weights as reported by Alexander et al. 

(1996), these subjects were not excluded, and variates collected at Session 5 were treated 

as their “term” data for the analysis.  

Maternal body weight was recorded each session and assessed by the Institute of 

Medicine standards (1990) which recommend an increase of 1.36 to 1.81 kilograms in the 

first three months and 1.36 to 1.81 kilograms per month in the later trimesters. Subjects 

whose prenatal weight gain exceeded 12.75 kilograms would have been excluded from 

the analyses, but none eclipsed the stated parameter.  

 Subject protection 

The study protocol received University of Texas at Austin IRB approval for 

human research (IRB Protocol # 2002-05-0067). Participants gave their written consent 

confirming willingness to participate in study trials and their comprehension of project 

protocols (Appendix E: Consent Form and Appendix F. Consent Form Amendment). 

Subjects were compensated for their time and commitment to the study in the amount of 

$200.00.  

Schedule of data collection 

In order to investigate the impact of fetal load on maternal center of mass, lumbar 

lordosis and pelvic tilt, longitudinal data were collected during pregnancy and a period 

postpartum. To ensure equity in sampling schedules so that comparisons across subjects 

matched as closely as possible their corresponding stages of fetal load, data collection 

sessions targeted parity windows. Two factors determined the timing.  

First, an incremental scale of increasing fetal load was chosen to standardize the 

contrasts according to predicted fetal growth. Intersession periods enveloped predicted 

20% increases in fetal load following Alexander et al., (1996) and are depicted in Figure 
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2.1. A complete series included data collected from periods of 0%, 20%, 40%, 60%, 80% 

and 100% fetal mass and a final session postpartum.  

Second, the onset of percentage progression in fetal mass was matched to dates of 

conception based on parturition “due” dates, provided by subjects in consultation with 

their obstetricians and other pregnancy care providers. Although as a predictor, the 

estimated day of delivery (EDD) given by clinicians is only a general approximation of 

parturition (Mongelli et al., 1996), the lack of preterm testing to identify the date of 

zygote generation made it the preferred source of estimation. Additionally, calendar 

prediction of parturition is not date specific and is better generalized by weeks, because 

gestation periods vary from individual to individual and from pregnancy to pregnancy 

(Mittendorf et al., 1993). Fewer than 5% of pregnancies reach delivery on the EDD 

(Baskett and Nagele, 2000). 

An alternate approach to scheduling was considered in which session partitioning 

was directed according to expected maternal weight gain. This design was rejected due to 

the greater likelihood of fluctuations and broader range of variation in maternal mass 

(Scholl et al., 1995) when compared to such likelihoods in fetal mass (Alexander et al., 

1996), the independent variable of interest in this study. Additionally, it was not possible 

to predict with a degree of acceptable certainty when an individual subject would reach a 

targeted weight, and therefore, the advance scheduling necessary in rigorous sampling 

protocol would be more vulnerable to error in the comparisons across subjects.  

By partitioning longitudinal data collection into relatively broad increments of 

20% predicted fetal mass change, inherent error in targeting exact dates due to imprecise 

predictions of both conception and delivery were minimized. Sampling parity at 20% 

increments tracked study variables through six successive stages of pregnancy and 

uniquely signifies one of the benefits of this study, for previous studies of pregnant 
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posture and gait sampled less specific time frames and therefore were less likely to fully 

characterize patterns of kinematic and kinetic change.   

The total load exerted on the gravid female extends beyond the aforementioned 

fetal mass (25%) to include such additional soft tissues as the placenta (5.5%), amniotic 

fluids (6.5%), uterus (8%), breasts (3%), increased blood volume (10%), increased water 

volume (14%) and maternal fat (28%), all of which introduce additional load during 

pregnancy (U.S. residents, American College of Obstetrics and Gynecology). Because 

these associated tissues increase proportionally with increases in the mass of the fetus, 

fetal mass provides the reference framework in tracking change in fetal load.  

Anthropometric Measurements  

Anthropometric variables were recorded for all subjects at each session, by a 

single observer (Table 2.1). A fiberglass measuring tape was used to quantify 

circumferences and stature to the nearest millimeter. Body mass was captured on the 

force plate. The vertical vector component of the ground reaction force, recorded in 

newtons, was adjusted for the baseline reading and then converted into kilograms for 

entry into the subjects’ databases. The body mass variable was needed to calculate total 

body COM and was a relevant measure in recruitment criteria, as well as in monitoring 

change in maternal body mass during pregnancy. Although stature was not expected to 

vary, it was collected for use in calculating the Body Mass Index. In the event angular 

adjustments in lumbar lordosis and pelvic tilt influenced stature, height was recorded 

each session. Skinfold was measured to the nearest millimeter using a Lange Skinfold 

Caliper (accurate to +/- 1mm), as an indicator of percent body fat. The segment 

circumferences were recorded for shape information. Mid abdominal circumference was 

selected as a target measure in the prediction of change in maternal center of mass during 

pregnancy. Landmark based measurements (e.g., acromial and ASIS circumferences) 
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were directed by palpation of bony structures through overlying skin and, in cases of 

some landmarks, additionally through thin, taut spandex clothing. Soft tissue defined 

measurements (e.g., areole and mid abdominal circumferences) were taken maximally. 

To more closely investigate shape change in the maternal abdomen throughout pregnancy 

a Girth-Mass Index was generated by dividing the maximum abdominal circumference 

by body mass: 

       Abdominal circumference (cm) x 100 

                  mass (kg) 

In order to test the study hypotheses, subject body proportions were required to 

remain within hypothetical limits of an early human female model (Ruff et al., 2005) and 

follow the pattern of anthropometric change characteristic of contemporary women in the 

U.S. (U.S. National Institutes of Health, 1998).  

Kinematic Procedure 

All data were collected in the Developmental Motor Control Laboratory at the 

University of Texas at Austin. A Vicon motion analysis system (Vicon Peak) was used to 

capture three-dimensional positional data (60 Hz sampling rate) of each subject during 

quiet stance and while walking freely though a two cubic meter viewing volume. Five 

infrared cameras recorded positional data and trajectories of noninvasive lightweight 

25mm reflective markers externally adhered by removable two-sided tape to thirty-three 

landmarks of the spine, innominates, and thirteen body segments (Table 2.2, Figure 2.2). 

The location of anatomical landmarks was identified by palpation. The time reference of 

heel strike and toe-off was identified by the onset and cessation of vertical force, 

respectively, as registered on a Bertec four axial transducing force plate (600 Hz 

sampling rate). Midstance reconstructed from 3D video was defined as occlusion of the 

support leg by the toe marker of the swing leg.  
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Prior to each data collection session the viewing volume was calibrated following 

static and dynamic protocols. Sensitivity of each of the five cameras was independently 

adjusted to maximize power of reflection. Camera sensitivity was then adjusted just 

below blooming effect of centroid distortion to prevent over sensitivity that would 

otherwise introduce noise into the data signals. Static calibration was achieved using a 

solid L-frame device; dynamic calibration was set using a 500mm wand. Residuals for all 

cameras were consistently within a range of 0.594 and 0.400mm, representing less than 

0.1% of the 2m3 viewing volume. The mean wand visibility approached 84.0%.  

Kinematic Measurements 

Vicon 3D data files were transferred to a personal computer where lordotic and 

sagittal pelvic tilt angles were algorithmically calculated from positional data derived 

from lumbar and pelvic markers, using BodyBuilder software (Vicon Peak) (Appendix G: 

Angle Model). Angles were exported as ASCI to Excel files for further analysis. 

Lumbar Lordosis (Figure 2.3) 

Three points defined by the vertebral markers L1, L4 and S2 allowed 

quantification of the lordotic angle between Segments 1 and 2 defined by markers L1-L4 

and L4-S2, respectively. Larger angle values indicated more acute lumbar lordosis.  

Sagittal Pelvic Tilt (Figure 2.4):  

A line extended through markers externally adhered to the right anterior and right 

posterior superior iliac spines (ASIS and PSIS) defined a parasagittal axis of the pelvis. 

Sagittal pelvic tilt was computed from the positional data, measuring the angle between 

the two lines defined by points PSIS and ASIS and PSIS and a global point sharing the 

PSIS x-coordinate. The degree of pelvic tilt in the sagittal plane impacts the radius of the 

lumbar curve. Larger angle values indicated more acute lumbar lordosis. 
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Kinetic Measurements 

Maternal Center of Mass: 

Kinematic and force plate analog data were captured to calculate the maternal 

total body center of mass in both the reference and self-selected postures. The static 

measure of COM taken in the consistent reference posture was needed to identify the 

translation of the resultant COM. Angular changes in lumbar lordosis and sagittal pelvic 

tilt were functionally assessed relative to the translation of this reference posture COM. 

To obtain as consistent a reference posture COM as possible, a portable plywood wall 3’ 

x 6’ was supported above the floor on a wheeled assembly spanning the Bertec Force 

Plate. Subjects stood with head, shoulders, and buttocks in contact with the vertical panel 

(Figure 2.5). Once a stable posture was attained, the portable wall was retracted. A 

second static measure of maternal COM was taken during natural stance to determine any 

self-selected kinematic repositioning of the COM. Reference posture center of mass was 

predicted to significantly change during pregnancy, as the segmental angles of lumbar 

lordosis and pelvic tilt were held constant from session to session through postural 

alignment with the reference panel. In contrast, the self-selected position of the maternal 

center of mass was expected to remain relatively constant throughout the study, its 

stability achieved through natural adjustments in lumbar lordosis and pelvic tilt.  

The fore-aft vectors of the ground reaction force and center of pressure from 

which center of mass values were calculated were recorded using a Bertec K70501 Type 

4550-08 force plate. The force plate was located in the center of an open laboratory space 

allowing subjects to achieve natural postures and steady state speeds of natural walking 

before striking the plate (Figure 2.6). This force plate measures applied forces using four 

tri-directional strain-gauged load transducers installed on a raised platform. When forces 

are applied to the plate, strain in the transducers changes resistances proportional to the 
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forces. Voltages from the force platform were amplified externally using an adjustable 

gain amplifier and scaled to adjust for amplification (with channel and scaling factors of 

1) -0.596484; 2) -0.588425; 3) -0.934066; 4) -288.9377; 5) -202.8327; 6) -138.8523). All 

collection trials were preceded by auto zeroing. The auto zero function of the external 

amplifier only approximates zero. True zero was attained by post-collection subtraction 

of baseline readings from the analog data averaged across five baseline trials. Maternal 

body mass was recorded from the force plate as the z force component adjusted for the 

plate’s baseline measure taken during the corresponding session.  

To obtain the maternal COM during both reference posture and natural stance, the 

horizontal position of the static center of gravity was calculated from vectors measured 

by the force plate following the zero-point-to-zero-point integration technique introduced 

by Zatsiorsky and King (1998) using the formula:   
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where, )(GLP tX is the horizontal position of the static center of gravity, nt = time (n),   stands for 
‘under the condition that”, Fx = horizontal ground reaction force, δ = incremental value, X&&  = acceleration, 
X& = velocity, XCOP = center of pressure location along the x-axis. 

 

The method is based on the postulation that the horizontal position of the total 

body line of gravity and the total body center of pressure on the force plate coincide when 

the horizontal ground reaction force, Fx, is zero. At this instant the torque about the 

intersection between the vertical axis through the ankles and the supporting substrate is 

either zero or negligible. The algorithm used to calculate the position of the center of 

mass was validated by Zatsiorsky and King (1998) with videography-based segment 

mass. There was no significant difference (at the 0.05 level) and coefficients of 



 34

correlation were high (0.79 – 0.96) (Zatsiorsky and King, 1998) (Appendix H: MatLab 

algorithm for calculating fore-aft position of COM).  

Position of the maternal center of mass in both the reference posture and in 

natural stance was determined relative to a point of reference. Global points provide no 

consistent reference due to the fact that subjects vary their stance position relative to 

global landmarks. While the positions of points in a global framework are permanent, the 

coordinates of the body with respect to those points vary whenever a subject re-enters the 

global space.  

By precluding a kinematic response to postural challenges associated with fetal 

load, the reference posture served to target a rigid anatomical reading of the position of 

the COM. The C7 marker was expected to be the most relevant and accurate body marker 

for calculation of reference posture COM position, as it is the marker least likely to 

directionally shift in anatomical position relative to the location of the COM (among the 

non dependent variable markers). Because the torso is a relatively solid segment, the C7 

marker, adhered to the external palpable spinous process of the seventh cervical vertebra, 

provided a consistent reference for determining the fore-aft position of the maternal 

center of mass in the experimental condition on the reference board. The Heel marker by 

virtue of its anatomical distance from the predicted COM was considered as an 

alternative to the C7 reference. However, the Heel marker defined a partial perimeter of 

the body’s base of postural support. Therefore, the distance calculated between the COM 

and Heel marker would be readily mitigated by any self-selected subject adjustment. In 

spite of rigorous postural constraints imposed by the reference panel, the brief period of 

time required to both retract the device and capture marker positional data introduced the 

possibility of unintentional subject adjustment. As subjects became increasingly loaded 

and less flexible in pregnancy, stationary retention of the reference posture required more 
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subject effort. The C7 marker was more likely to retain positional integrity with the true 

anatomical location of the COM in reference posture than was the Heel marker. 

Under conditions of natural stance in which subjects were free to self-adjust, the 

position of the COM was expected to remain unchanged, therefore stable relative to the 

supporting joints and postural base. In order to test this prediction, the location of COM 

was made relative to a supporting landmark. Markers of the hip, knee, ankle, heel and 

metatarsal I head represented either supporting joints or the postural base. Accuracy in 

external placement of markers over anatomical landmarks is best achieved at sites where 

bony structures are easily palpable (McKenzie and Taylor, 1997). Because the heel and 

metatarsal head reflect the actual base of support for the body and are relevant to the 

location of the COM in terms of postural stability, each were considered as the natural 

stance reference marker. Hormonal effects are potential confounding factors in the 

position of the metatarsal head during pregnancy. Ligamentous laxity in the longitudinal 

arch of the foot lengthens the forefoot of some women (Bird at al., 1999), making the 

metatarsal head a less reliable reference for determining the position of natural stance 

COM. The heel position is independent of the longitudinal arch. Utility of the C7 marker 

in determining the relative position of the COM in natural stance is negated by the largely 

fixed position of the seventh cervical vertebra on the thorax.  For instance, if a subject 

performs as predicted by dorsally repositioning her upper body, the C7 marker will 

translate along with the COM. In the context of determining the position of the COM in 

self-selected postures, the C7 and Metatarsal I Head markers are clearly less relevant than 

the Heel marker.  The experimental set-up for all data sessions is depicted in Figure 2.6, 

and subject placement (in natural stance) relative to the laboratory space is illustrated in 

Figure 2.7.  
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Accuracy of the kinematic data 

Accuracy of data is the degree to which a given measurement reflects the actual 

value it represents and its consideration is essential to a valid kinematic study (Sokal and 

Rohlf, 2004). In order to test the accuracy of the angular calculations made by the Vicon 

Peak Motion Capture System, a goniometer of calibrated linear and angular dimensions 

was recorded using the five motion capture cameras employed for data collection on 

study subjects. The goniometer was placed in the center of the viewing volume following 

protocol designed for subject quiet stance capture. The device was positioned to orient 

the ventrodorsal gape of the unit in the sagittal plane according to laboratory system 

coordinates. The free arm of the goniometer was then rotated within the transverse plane 

to create four excursions relating to different angular values. Three-dimensional data 

were collected and reconstructed in Vicon then processed in BodyBuilder. Angles 

derived from data capture, reconstruction and algorithm processing were then compared 

to the actual mechanical angles defined by the goniometer. Results of the protocol 

accuracy test are reported in Figure 2.8 and indicate good capture and reconstruction of 

the true measurement. Subsequently, all posture and gait trials were reconstructed from 

captured data. An example of gait reconstruction is shown in Figure 2.9. 

Data Analyses 

Group Design 

First, a multi-trial Group Design accommodated testing for mean differences 

across all subjects. Repeated measures analysis of variance (RM ANOVA time x 

condition) was used to assess whether maternal gait kinematics and maternal center of 

mass differed with incremental increases in fetal growth for Predictions 1.1-1.3. Both 

linear and nonlinear models were included because mass increase during pregnancy is 
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nonlinear (Jensen et al., 1996a). Repeated measures design is appropriate for longitudinal 

data of this type, by providing a more precise estimate of the experimental error. The 

technique identifies variability due to individual differences because the same subjects 

take part in each condition. Since the variance caused by differences between individuals 

is not helpful in deciding whether there is difference between occasions, the known 

individual differences can be isolated from the analysis by subtraction from the error 

variance. This step increases the power of the analysis. Repeated measures are also 

appropriate because it models correlation between the repeated measures, important since 

the longitudinal series violates assumptions of independence. To test for the presence of 

significant differences in dependent variables at early stage fetal load and at full term 

fetal load at the group level, the non parametric Wilcoxon rank sums test was applied. 

Statistical significance for the analyses was determined a priori at a level of P < 0.05 for 

the independent variable of fetal load and three dependent variables of maternal COM, 

maternal lumbar lordosis angle (LLA) and maternal pelvic tilt angle (PTA). Adjustments 

for repeated tests were made using the Bonferroni correction. Repeated measures 

ANOVA assessed the three measures (COM, LLA and PTA) over three activities 

(reference posture, self-selected posture and gait) sampled under the six conditions of 

proportionally increasing fetal load and a period postpartum. Pearson correlation tests 

were run to summarize the strength of the relationship between lumbar lordosis and 

pelvic tilt during pregnancy and between the position of the reference posture center of 

mass and the two kinematic variables. Pearson’s r was considered significant at the P < 

0.05 level.  

Single subject design 

In addition to the Group Design, a Single Subject Design was used to isolate 

patterns that occur as the result of postural and locomotor options subjects might choose 
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in controlling movements. These are idiosyncratic in nature and are expected to some 

degree in lumbar lordosis and pelvic tilt under conditions of fetal load. For example, 

within the pliability range of the musculoskeletal system, one subject may opt to control 

maternal COM by increasing the angle of lumbar lordosis alone, while another may 

manage COM by additionally increasing the angle of sagittal pelvic tilt. Such 

performance differences may reduce the statistical power of a Group Design and generate 

a Type II error, false support for the null hypothesis. Therefore, multi-trial Single Subject 

Design was used to assess change within subjects using both graphical analyses of 

variability, trend and slope across multiple data sessions, as well as the parametric C 

statistic (Tryon, 1982; Nourbakhsh and Ottenbacher, 1994; Crosbie, 1995). This 

statistical technique initially evaluates baseline data; if no significant trend is detected in 

the baseline set, baseline and subsequent condition influenced datasets are combined to 

determine if a significant change has occurred. In this study a moving baseline was 

computed in order to compare each subsequent conditional session with the preceding 

session, which was treated as the immediate baseline. In this approach trends across all 

conditional data points including natural withdrawal of the fetal load postpartum are 

detectable (Jones, 2003). In order to obtain a consistent number of C-statistic test trials 

across all subjects, eight of the fifteen trials collected per session were included in the C-

statistic analysis.  Appropriate statistical power for the test is established with eight 

variates (Tryon, 1982) and this minimum was applied to accommodate any incomplete 

trials, resulting from occlusion of positional markers during limb segment excursion.  If 

more than the statistical minimum number of trials were collected per session, the first 

eight of record were included in the C-statistic analysis.  
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RESULTS 

Reliability of variables associated with retesting 

As a follow-up to the reliability tests applied in the research design phase of this 

study for variables of COM, lumbar lordosis and pelvic tilt, a sample series of six trials 

from each of ten sessions was randomly drawn from study data to test reliability of the 

collected measurements. Consistency with retesting of postural and gait variables was 

good, supporting previous findings for trial-to-trial repeatability in postural and 

locomotor alignment (Hart and Rose, 1986; Bullock-Saxton, 1993; Whittle and Levine, 

1997). The ICC values between eight trials were equal to or greater than 0.994 

(P<0.0001) demonstrating strong agreement between the trials within a single session 

(Table 2.3).  

Body mass intake measures 

Intake measures of body mass, stature, body mass index, parity number, and week 

of gravidity were collected at subject orientation, in chronological occurrence with 

Session 1 (0% fetal load). Individual subject measurements and the mean and standard 

deviation of the study group are reported in Table 2.4. 

The mean gravidity week at intake was 14.5 (sd 2.5). At this early gestational age 

fetal mass is predicted to be 56.5 g or 1.6% of estimated fetal mass at term gestation. 

Gravidity week ranged from 11 to 19 weeks, corresponding to a span of 0% to 7% of 

estimated term mass. Ten participants entered the study at 0% fetal load, seven under 5%, 

and two at 7%.  

Since body mass alone is an inadequate indicator of body proportion, a Body 

Mass Index of maternal weight relative to stature served as an entry criterion, ranked 



 40

according to the U.S. National Institutes of Health (1998) (Table 2.5). Body Mass Index 

(BMI) is calculated by dividing weight (kg) by stature squared (m2). 

The group mean BMI of 23.2, sd 2.8, (Table 2.4) fell well within the adult normal 

weight classification. Two “over weight” subjects (120301, 120303) with intake BMIs of 

29.3 and 29.4 were further examined for body fat composition and relative muscle mass. 

Measurement by skin fold calipers quantified body fat at 22% and 24%, respectively, 

falling within the normal range of 15-25% for adult U.S. females (Department of Health 

and Human Services, 1983). Manual palpation of limb and hip musculature indicated a 

high percentage of muscle mass relative to body fat, further supporting inclusive status in 

the present study. 

Body mass during pregnancy  

According to the Institute of Medicine of the National Academies (1990), women 

whose pre pregnant BMI is below 19.8 are expected to gain between 12.5 and 18 kg 

during pregnancy; those whose BMI before pregnancy ranged from 19.8 to 26 should 

gain between 11.5 and 16 kg, and women whose pre pregnant BMI was greater than 26 

are expected to gain 7 to 11.5 kg. Group mean maternal body mass during pregnancy is 

reported in Table 2.6. Overall, the mean gain from baseline/Session 1 to term/Session 6 

was 11.2 kg.  

Mean maternal term body mass (Session 6) of the group was 74.5 kg with a 

standard deviation of 10.3 kg. The result accords well with Lindsay et al. (1997) who 

report late mean gestational body mass for twenty-seven non-obese women at 73.3 kg ± 

8.3, derived from data collected between 33-36 weeks. The slightly larger mean maternal 

mass of 74.5 kg reported in this study represents late gestational data collected between 

weeks 38 and 39 for participants whose pregnancies went to full term (defined as ≥ 39 

weeks) and between week 37 and 38 for subjects whose parturitional events occurred 
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before the expected due date. Within body mass gain parameters, the study group 

performed normally. Trajectories of change in body mass throughout pregnancy are 

plotted in Figure 2.10.  

Individually, cumulative weight gain for two of the participants was lower than 

expected (Table 2.6). Subject 110303 gained only 6.7 kg in the full term pregnancy, 

nearly 60% less than the recommended change. Percent body fat gauged by the triceps 

skin fold measurement recorded during Sessions 5 and 6 dropped below the intake 

baseline. During this period the participant reported loss of appetite and energy reserve 

and shortly after delivery was clinically treated for postpartum depression. Despite these 

adverse events, neonatal growth was unaffected; live birth weight at 40 weeks gestational 

age was 4.6 kg, a robust measure of body mass for a neonatal length of 55.9 cm (Koo et 

al., 2004). Therefore, maternal departures from normative values of BMI and percent 

body fat present in this participant were not omissive of the subject 110303 data.  

Weight gain in subject 30401 was also below expected values. Her weight 

plateaued through Sessions 2, 3 and 4, and in the final three weeks of pregnancy, she 

gained less than 0.7 kg, reaching a conservative peak of 3.4 kg above the intake measure. 

Concurrent with Session 3, she was physician directed to supplement her diet with high 

calorie liquids. The birth outcome was favorable, with normal delivery at gestational age 

37 weeks. The neonatal birth weight was 2.7 kg with a body length of 48 cm. Because 

birth weight diverged from the average of 3.0 kg by less than 10% and is considered 

average for its gestational age (Koo et al., 2004), data from the participant’s pregnancy 

was determined to be valid for inclusion in the analysis.  

In using obstetric load in modern humans as an operational model for the 

investigation of fetal loading in general for Hominini, the inclusion of subjects 110303 

and 30401 was appropriate, as both experienced reproductive successes within the events 
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under study, evidenced by delivery of healthy neonates. From an evolutionary 

perspective, early hominin females were as likely as or more so than modern American 

women to have experienced variability within successful reproductive outcomes, most 

likely as a result of environmental stresses that are presently mediated, at least to some 

degree, by contemporary cultural and technological factors.  

Gravid abdominal shape 

The midabdominal circumference is presented in Table 2.7. Group means for the 

measure increase across sequential sessions. The mean circumference at term peaks at 

107 cm, exceeding intake by 19.9 cm. This represents a 23% increase in abdominal girth 

through pregnancy. The mean value recorded postpartum closely approximates the intake 

measure; indicating a near complete return to baseline once the condition of fetal load 

was withdrawn.  

To further identify maternal shape change in pregnancy, the abdominal 

circumference was plotted against maternal body mass at intake and at term (Figures 2.11 

and 2.12. Dispersion of girth relative to body mass is similar at intake and at term, in that 

the same subjects represent the disparate extremes. Scatter reduced at term as each 

subject approached her maximum gravid expanse. 

The Girth-Mass Index (GMI) across all sessions is reported in Table 2.8. The 

Girth-Mass Index is reported from Session 1 (0% fetal load) through Session 6 (100% 

fetal load) for those subjects whose pregnancies reached due date, and from Session 1 to 

Session 5 (100%fetal load) for others whose pregnancies resolved one to two weeks prior 

to expected due date. Girth-Mass Indices of the group can be sorted into two groups 

(Table 2.9), contrasting four subjects with modest change in GMI, varying from slight 

decrease (10411: -1.6; 10416: -0.6) to slight increase (110303: +1.5; 10404: +1.7) to the 

remaining fifteen subjects with more substantial increases in GMI. Taken separately the 
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measures of abdominal girth and body mass from intake through term increase for all 

subjects, but the GMI does not. For subjects whose intake to term change in GMI was 

markedly high, change in abdominal size increased at a faster rate than did change in 

body mass.  

Maternal center of mass 

Reference Posture  

The static measure of COM taken in the consistent Reference Posture was needed 

to identify the translation of the resultant center of mass. The Reference Posture 

constrained subjects from self-positioning their postural segment alignment, and 

therefore, allowed tracking of the anatomical center of mass in the absence of postural 

adjustments.  

The group mean maternal COM recorded under conditions defined by the 

Reference Posture increased throughout the partum period, as predicted in Hypothesis 

H1.  By term, the mean fore-aft position of the maternal center of mass increased to 3.14 

cm. This represents a 25% anterior migration of the COM, roughly equivalent to the 

percent increase in abdominal girth. Only 3% of the overall translation in COM was 

recorded in the first trimester, while 22.6% of the translation occurred in the second 

trimester (Figure 2.13). The preponderance of change in fore-aft position of the 

Reference Posture COM, 74.3%, occurred in the third trimester.  

Figure 2.14 plots the mean translational distance of the fore-aft position of the 

maternal COM recorded in each of the six sessions, corresponding with the expected 

increasing 20% increments of term phase fetal load. Maternal COM in the first 

gestational week is estimated through substitution of the postpartum value. The group 

mean reference posture COM translated 3.14 cm from Session 1, 0% fetal load to Session 
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6, 100% fetal load. The mean fore-aft position of COM at 0% fetal load was 10.92 cm ± 

1.70, relative to the position of seventh cervical marker. The mean had shifted anteriorly 

to 14.00 cm ± 1.50 at 100% fetal load (Table 2.10). The Wilcoxon rank sums test of 

matched pairs was significant with a p value less than 0.0001 at an alpha level of 0.05 

(Figure 2.15). 

Results for the repeated measures ANOVA test of time effect on center of mass in 

the reference posture were significant (F ratio 28.81; F = 0.000; alpha 0.05 adjusted for 

multiple comparisons using Bonferroni correction) (Table 2.11). The level of significance 

was adjusted for multiple comparisons using the Bonferroni correction. Sessions 3, 4, 5 

and 6 differ significantly from the baseline Session 1, demonstrating that fetal load at 

40%, 60%, 80% and 100% of its expected term mass had a significant effect on maternal 

COM (in the reference posture). The postpartum Session 7 comparison differed 

significantly from Sessions 3, 4, 5, and 6 and did not differ from either Session 1 or 

Session 2, indicating that maternal center of mass returned to near baseline value once the 

condition of fetal load was withdrawn. 

Individual participant values for Session 1 and Session 6 are plotted in Figure 

2.16 and reported in Table 2.9. All participants experienced an anterior migration of 

reference posture COM from Session 1 to Session 6, although the increase in COM 

translation ranged from 1.0cm to 4.9cm. 

Participants whose change in reference posture COM from intake to term was 

high also showed a high rate of increase in abdominal girth relative to body mass, as 

indicated by their GMI (Table 2.9). Those subjects whose GMI fell below zero during 

pregnancy experienced the smallest increase in COM change during pregnancy. Gravid 

change in GMI as a function of the translation in Reference Posture COM is plotted in 

Figure 2.17. The two subjects with negative change in gravid GMI experienced the most 
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conservative anterior migration in COM (Figure 2.17, a). Two additional subjects 

experienced only modest increase in GMI and relatively small translational change in 

COM (Figure 2.17, b). Among the most GMI robust subjects, the group mean for 

translation of COM was 3.4 cm (Figure 2.17, c). Included within the majority Group c are 

four participants whose COM migrations did not surpass those of Group b. Three of these 

subjects (120301, 120303, 120305) began the study with large body masses (Table 2.6). 

Mass gain and abdominal expansion directly associated with the fetal body of these 

subjects represented a relatively smaller percentage of maternal starting values than did 

those of participants of lighter body weight. The fourth subject in this quartet had the 

smallest intake body mass (20401). Participant 20401 experienced a 2.5 cm migration of 

center of mass, less than that of many other members of Group c, and this reflected her 

diminutive stature and body size. A raw increase of 2.5 cm is proportionate for a woman 

of her small stature and slender proportions. 

Lumbar lordosis and sagittal pelvic tilt  

The angles of lumbar lordosis and sagittal pelvic tilt were computed to investigate 

positional adjustments of the upper body during gravid natural stance and gait.  

Hypotheses H2 and H3 were supported in that both kinematic angles increased during 

pregnancy. 

Self- selected natural stance 

There was a 56% group mean increase (18°) in lumbar lordosis from Session 1, 

0% fetal load, at 32.10° ± 12 degrees to Session 6, 100% fetal load, at 50.05° ± 12 

degrees (Figure 2.18). The inferential t-test of matched pairs produced a t stat of 6.6047, 

with the significant probability of p < 0.0001 (at alpha = 0.05). The 1st trimester results of 

this study are consistent with those of Franklin and Conner-Kerr (1998) who report a 
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gravid lumbar lordosis, quantified by metricom digitizer in quiet stance, of 31.9° ± 9 in 

the 1st trimester and 37.8° ± 10 in the 3rd trimester. The larger term angle of lumbar 

lordosis reported in this study (50.05°) likely reflects the fact that results were derived 

from data collected within two advance weeks of parturition, corresponding to 100% 

fetal, while the Franklin and Conner-Kerr 3rd trimester angle (37.8°) was calculated from 

data sampled randomly across a broader time range beginning earlier in pregnancy and 

corresponding to a span of 40% to 100% fetal load.  Franklin and Conner-Kerr (1998) do 

not report which anatomical landmarks of the lumbar spine were selected to define the 

angle of lordosis, so methodological agreement in angular measures employed in their 

study and this analysis is uncertain. However, overall changes in angle of lordosis 

determined by the two studies concur.   

Individual comparisons of lumbar lordosis in natural stance at 0% and 100% fetal 

load are presented in Figure 2.19. Eighteen of the nineteen participants experienced an 

increase in lumbar lordosis. The angular excursion in one of those subjects was 

conservative at 1.7°. By the term session, lordosis in the remaining participant had 

decreased by -0.8°. 

Results for the repeated measures ANOVA test of effect on lumbar lordosis were 

significant (F ratio 5.91; F = 0.007; alpha 0.05 adjusted for multiple comparisons using 

Bonferroni correction). Table 2.12 presents the pairwise comparisons of the time effect of 

increasing fetal load on the angular values of maternal lumbar lordosis. Fetal load exerted 

a significant effect on lumbar lordosis at Session 3 (40% fetal load), Session 4 (60% fetal 

load), Session 5 (80% fetal load) and Session 6 (100% fetal load) relative to the baseline 

value recorded at 0% fetal load. While lordosis at Session 7 (postpartum) differed 

significantly from the baseline angle taken at Session 1 and that recorded at Session 2 

(20% fetal load), it did not differ significantly from later gestational angles taken at 
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Sessions 3, 4, and 5. The angle of lumbar lordosis decreased postpartum from its peak at 

term, falling just shy of Bonferroni significance with a value of 0.05. 

There was a 61% mean increase (5.6°) in pelvic tilt from Session 1, 0% fetal load, 

at 9.25° to Session 6, 100% fetal load, at 14.87° (Figure 2.20). Sixteen of the nineteen 

subjects experienced increased sagittal tilt (Figure 2.21). The inferential t-test of matched 

pairs produced a t stat of 5.3732, with the significant probability of p < 0.0001. The 1st 

trimester results of this study (9.25°) are similar to those derived by Franklin and Conner-

Kerr (1998) at 7.0° ± 7. Again, as in the case of lumbar lordosis the term angle reported 

here for sagittal pelvic tilt (14.87°) exceeds that of Franklin and Conner-Kerr at 11.2° ± 

8, and may be due to the temporal differences from which the data derive. 

Results for the repeated measures ANOVA test of effect on sagittal pelvic tilt 

were significant (F ratio 4.61; F = 0.043; alpha 0.05 adjusted for multiple comparisons 

using Bonferroni correction). Table 2.13 presents the pairwise comparisons of the time 

effect of increasing fetal load on the angular values of maternal pelvic tilt. Fetal load 

exerted a significant effect on pelvic tilt at Session 4 (60% fetal load), Session 5 (80% 

fetal load) and Session 6 (100% fetal load) relative to the baseline value recorded at 0% 

fetal load. The mean angle of pelvic tilt (8.7°) at Session 7 (postpartum) differed 

significantly from the term peak angle (14.8°), and was not significantly different from 

the mean angle at Session 1. The postpartum angle of pelvic tilt returned to the baseline 

value once the condition of fetal load was withdrawn. 

Fetal load had a significant effect on both lumbar lordosis and sagittal pelvic tilt. 

In fact, the segment angles changed similarly under conditions of increasing fetal load 

(Figure 2.22). Each increased incrementally throughout pregnancy and each reached a 

peak increase at term, representing 100% fetal load. Upon natural withdrawal of the fetal 

load condition, both postpartum angles decreased.  
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Self-selected walking  

Lumbar lordosis and sagittal pelvic tilt also increased during gait throughout 

pregnancy. Figure 2.23 plots the mean values at midstance for the two variables at each 

session. Both angles increased incrementally through pregnancy and reached their peak 

values at Session 6, the term session, corresponding to 100% fetal load. The angles are 

tightly correlated across Sessions 1, 2, 3, 4, 5 and 6 (r = 0.97, p = 0.0012). However, the 

postpartum values for the two angles differed. Pelvic tilt reduced markedly once fetal 

load was withdrawn, and while lumbar lordosis decreased, it did so conservatively. These 

postpartum patterns of lumbar lordosis and pelvic tilt during self-selected walking are 

consistent with those in natural stance.  

Figures 2.24 and 2.25 show the single subject design visual pattern across 

sessions, using data collected from subject 120301, as illustration of the most prevalent 

subject pattern. The angle of lumbar lordosis during midstance of natural gait (Figure 

2.23) remained relatively unchanged across Sessions 1 and 2 (0% - 20% fetal load). 

Significant increases in lumbar lordosis occurred across Sessions 3, 4, 5 and 6, 

corresponding to 40%, 60%, 80% and 100% of term fetal load. Data acquired in the 

multiple trials that comprise the first, second and third session units were consistently 

close in angular value, producing a flat plot pattern in each session. At 60% fetal load the 

intertrial data within sessions became more variable (generating scatter in the plotted 

points). There was a significant decrease in the angle of lumbar lordosis postpartum. The 

time series pattern of change in the angle of sagittal pelvic tilt during pregnancy closely 

followed that of lumbar lordosis (Figure 2.25). Again, a significant increase occurred at 

40% fetal load with mean increases sequentially following through term (100% fetal 

load). The decrease in angle of pelvic tilt postpartum for subject 120301 was also 
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consistent with the mean result for the study group in its significant drop compared to 

intake levels.   

The C-statistic tests for session trends in lumbar lordosis and sagittal pelvic tilt 

during gait were run for each of the nineteen participants. Results for subject 10407 are 

presented in Tables 2.14 and 2.15, as a general representation of the group findings. 

Table 2.14 shows the C-statistic, z score and p value for eight trials within each of the 

seven fetal load defined sessions. Within-session trials for subject 10407, as for the mean 

group, were horizontally stable, indicating that there was no significant variation in 

angles of lumbar lordosis or pelvic tilt across trials within any of the seven sessions. 

There was consistency in results across trials at any one fetal loading phase of pregnancy. 

Table 2.15 reports the trends across sessions. While the group means for angles of lumbar 

lordosis and pelvic tilt increased through successive stages of fetal load, some of the 

idiosyncrasies present in the individual participant data files are apparent. Overall, 

through pregnancy there was increase in the segment angles for subject 10407, she 

experienced decreases in lumbar lordosis between Sessions 1-2 and Sessions 6-7. The 

Sessions 1-2 decrease was not predicted. The decrease that occurred between Sessions 6 

and 7 supports the prediction that the angle of lumbar lordosis would decrease once 

obstetric load was withdrawn. During the period defined between 60%-80% fetal load, 

the participant values for lumbar lordosis neither significantly increased nor decreased. 

Significant increase in the angle of sagittal pelvic tilt did not occur in subject 10407 until 

pregnancy reached 40% of expected fetal load; this result precedes the significant 

landmark of 60% fetal load for the group. Subject 10407 experienced a significant 

decrease in the angle of pelvic tilt once fetal load was withdrawn, consistent with the 

group results. Additional periods of angular stability across sessions for subject 10407 

occurred at 80-100% fetal load (unlike the group mean) and in the period defined 
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postpartum (0% fetal load to post partum), the latter result also represents the group 

performance in that the angle of pelvic tilt postpartum returned to the intake (0% fetal 

load) value.  

Effects of fetal load 

Table 2.16 presents the combined results of the repeated measures ANOVA test 

with a subject factor of percent fetal load. Time was defined as seven sequential sessions, 

scheduled to correspond to 20% incremental increases in expected term fetal load and the 

single postpartum period. Fetal load exerted significant effects on reference posture 

COM, natural stance lordosis and natural stance pelvic tilt. The Greenhouse-Geisser and 

Huynh-Feldt corrections were used to reduce the likelihood of a Type 1 error because the 

assumption of sphericity did not hold across all time levels. The sphericity violation was 

expected since measures close in time (e.g., 20% and 40% fetal load sessions) were likely 

to be more highly correlated with one another than with measures more distant in time. 

 Predicted relationships between variables quantified during pregnancy and the 

postpartum period were supported by the analytical results. The fore-aft position of 

maternal COM in the reference posture and the angle of lumbar lordosis in natural stance 

were highly correlated (r = 0.9732, p = 0.0011). Similarly, a strong correlation between 

the position of maternal COM in reference posture and the angle of sagittal pelvic tilt in 

natural stance was identified (r = 0.9755, p = 0.0009). The two kinematic variables of 

lumbar lordosis and pelvic tilt as predicted were also highly correlated (r = 0.9337, p = 

0.0064). 
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Maternal center of mass 

Self-selected posture  

When postural data were collected from subjects directed to stand comfortably in 

a self-selected posture, different results were attained from those identified in the 

reference posture. Whereas position of COM significantly translated from session to 

session when subjects assumed the reference posture, their COM in natural, self-selected 

stance remained entirely stationary. The mean fore-aft position of COM in natural stance 

at intake Session 1 (0% fetal load) was 10.44 cm, and the mean term position recorded at 

Session 6 (100% fetal load) was 10.24 cm (Figure 2.26). The -0.2 cm translational 

distance between to the two positions was nonsignificant (p = 0.5695, at alpha 0.05). In 

fact, no significant mean differences were found in any one of the six periods of 

increasing fetal load, or in the period postpartum.  

Individual results show that sixteen of the nineteen participants experienced either 

a posterior retraction (-0.9 to -1.5 cm) of COM through pregnancy or near fixity in 

position (-0.4 to +0.1 cm) (Figure 2.27). In contrast, the natural stance center of mass for 

the three remaining subjects migrated anteriorly (+0.5 to +0.9). In each of these atypical 

cases, the COM translation was less than 1.0 cm, a substantially shorter translational 

distance than the group mean identified in the reference posture (3.2 cm).  

When positions of maternal center of mass in natural stance and in reference 

posture are contrasted (Table 2.17), the conservative nature of fore-aft position of COM 

in the self-selected posture is clearly evident. Overall, the total translation of natural 

stance COM during human pregnancy is -0.28 cm, posteriorly directed. Although 

maternal shape changed dramatically along with fetal growth, and abdominal 

circumference increased significantly (Table 2.6), the mean position of maternal COM 

recorded in natural stance remained statistically stationary. Examined at the incremental 
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phases of increasing fetal load that give, in part, this study its explanatory power over 

previous work (Dumas et al., 1995), the relevance of angular adjustment in gravid posture 

to the positioning of maternal center of mass is clarified. In early pregnancy, bridging the 

first and second trimesters (0% - 20% fetal load), maternal COM migrated anteriorly by 

0.45 cm (Table 2.17). When positional adjustments were activated in self-selected 

posture, position of COM retracted posteriorly 0.79 cm. A substantial anterior translation 

in reference posture COM occurred as the fetus approached 40% of its expected term 

mass (1.36 cm), yet when subjects self-selected their posture, the position of COM 

modestly translated 0.31 cm. Throughout the third trimester, defined by periods of 

substantial fetal growth from 40% - 100%, the fore-aft position of COM in the reference 

posture continued to advance anteriorly by 1.39 cm. Yet, in self-selected posture, the 

third trimester change in maternal COM was a conservative 0.20 cm. Under conditions of 

obstetric load, the study group in natural stance maintained a relatively consistent 

position in maternal center of mass, restricting translation of the fore-aft location of COM 

to less than 0.3 cm.  

General findings of the hypotheses testing are summarized in Figures 2.28 and 

2.29. As obstetric load increased, mean reference posture COM translated anteriorly. 

When positional constraints were released, both mean lumbar lordosis and mean sagittal 

pelvic tilt increased. In the resulting natural stance, position of the COM remained stable 

throughout pregnancy. Upon withdrawal of obstetric load, reference posture center of 

mass and the lumbar and pelvic angles reversed trajectories. The angular kinematics of 

natural gait followed those of natural stance, both during pregnancy and in the period 

post partum. 
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DISCUSSION 

Results from this study indicate that under conditions of increasing fetal load, 

human females positionally adjust their lower back and pelvic segments in association 

with anterior translation of maternal center of mass. In so doing, the effective fore-aft 

position of maternal center of mass is biomechanically recovered and its displacement 

throughout pregnancy restricted within a narrow window of efficiency relative to the 

supporting joints of the lower body. These positional mechanisms of lumbar lordosis and 

pelvic tilt occur in both quiet stance and natural gait, signaling a consistent biomechanical 

strategy in the bipedal behavior of gravid human females.  

The power of this analysis to identify any relationship between fetal load and 

angles of lumbar lordosis and pelvic tilt was strengthened by frequent and consistent 

sampling of the independent and dependent variables throughout pregnancy, at the 

gestational landmarks of 0%, 20%, 40%, 60%, 80% and 100% fetal load.  

During human pregnancy females are able to maintain postural and locomotor 

stability in spite of the challenging dynamic of gravitational force on the orthograde 

body. Positional adjustments in lumbar lordosis and sagittal pelvic tilt were triggered by 

accumulation of 40% fetal load. As pregnancy progressed through 40%, 60%, 80% and 

100% fetal load, lumbar lordosis and sagittal pelvic tilt increased significantly and the 

changes in segment angles were tightly correlated. The angular values for these variables 

continued to increase in tandem with the growth of the fetus, attaining peak change at the 

recorded term event of 37 weeks gestation. In the absence of self-selected postural 

adjustments, externally imposed by the reference posture apparatus, the maternal center 

of mass underwent 3.2 cm of anterior translation in the period defined between the end of 

the first trimester and the close of the third. While the absolute distance of migration in 

center of mass (COM) may seem small in linear terms, the effective change in fore-aft 
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location of COM relative to the biacetabular axis can exert a marked effect. The obstetric 

load-induced position of maternal COM shifted anterior to all of the major supporting 

joints and their respective axes, including not only the hips (inferred from positional 

constraint against the reference panel), but also the knees and ankles. Thus, shifts in 

COM position relative to the lower body imposed by fetal load introduced substantial 

change in the biomechanical mechanisms of balance and stability during bipedal posture 

and locomotion. Increased intertrial variability in the angle of lumbar lordosis recorded 

within sequential sessions of the third trimester suggests that some instability and 

perturbation characterize human gait during advanced pregnancy.  

While the data reported here were drawn only from humans and not from other 

orthograde primates that similarly maintain habitual upright postures and also utilize 

vertical locomotion, comparative inferences are appropriate because the nature of human 

erect positional behavior is biomechanically distinct from others by the absence of upper 

body support in achieving balance and stability. In effect, the upper body of the human 

biped is an unwieldy cylinder stabilized only at its base by articulation with the sacrum 

and tethering via muscles and ligament to the pelvis. The sway and pitch of the bipedal 

upper body is controlled by skeletal alignment of uniquely wedged lumbar vertebrae. 

Bipedalism is unlike the vertical clinging and leaping postures and locomotion of many 

other orthograde primates in which forelimbs provide anchor on the vertical substrates 

across which the animals travel. In aerial phase locomotion, vertical clingers and leapers 

are less challenged by upper body control because the hindlimbs, although held vertically 

below the torso, do not oscillate during travel as do the hindlimbs of bipeds. In addition, 

the start phase and end phase of the leaping stride are often assisted by forelimb action 

(Preuschoft et al., 1979; Demes et al., 1996). Although forelimb suspensory primates 

often assume erect postures, the torso loading regimes in forelimb suspension are 
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predominantly tensile in nature not compressive, so positional challenges differ (Ruff and 

Runestead, 1992; Llorens et al., 2001), and in suspension the fore-aft position of maternal 

center of mass relative to the support limbs presents less of a stability issue. Therefore, it 

is reasonable to conclude that bipedalism is more markedly challenged under conditions 

of obstetric load than are other orthograde positional behaviors. Inclusive studies 

however are needed to comparatively test hypotheses that postural and locomotor 

kinematics differ under conditions of obstetric load in bipedal, suspensory and vertical 

clinging and leaping primates.  

This study clearly demonstrates that significant angular increases in female 

lumbar lordosis and sagittal pelvic tilt co-occur during human pregnancy. Both positional 

mechanisms are activated near the same fetal growth landmark, suggesting they share the 

same center of mass trigger point and function similarly to resolve instability induced by 

increasing fetal load. Quantification of these angular excursions and the spatial 

translation of maternal COM provide detailed parameters for an obstetric spinal loading 

model in modern humans, a model that exclusively characterizes female spinal loading. 

While obesity is prevalent in both sexes of many modern human populations and 

influences the position of COM, the weight gain associated with increased body fat due 

to excessive caloric intake is distributed differently than the weight acquired during 

pregnancy (Bjorntorp, 1996). More importantly, obesity is a relatively recent human 

phenomenon and therefore not relevant to the deep history of modern human evolution.  

The routine duration of human fetal load is a uniquely female experience. The 

obstetric loading forces induced by pregnancy and the associated adjustment in upper 

body position achieved to resist the migration of maternal COM introduce a pattern of 

dorsal shifting in compressive and shearing stress onto the vertebral laminae and 

zygapophyses that otherwise experience relatively little of the spinal load (Adams and 
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Hutton, 1980, 1983). Results of this study support all five hypotheses (1.1 – 1.5, p 25-26). 

When maternal body angles were held constant in the reference posture throughout 

pregnancy, there was a significant anteroposterior translation in total body COM. In self-

selected postures and natural gait, pregnant females increased the angles of lumbar 

lordosis and sagittal pelvic tilt as the fetal load became greater. These angular changes 

correlated significantly with the translation of maternal COM taken in reference posture. 

The position of maternal COM captured in self-selected postures throughout pregnancy 

did not vary, did not significantly translate. The COM remained stationary indicating that 

the angular adjustments in lordosis and pelvic tilt, at least partially, constrained 

displacement of the COM, in spite of the increasing anterior load of fetal mass.  

The functional role of increasing lordosis and pelvic tilt in managing the position 

of obstetric COM is further supported by the near full return to pre-pregnant angular 

values once fetal load was withdrawn. In fact, the postpartum position of the reference 

posture center of mass and the postpartum angle of pelvic tilt so closely approximated 

their respective intake values that no significant differences between postpartum and 0% 

fetal load were identified. While the angle of lumbar lordosis significantly decreased 

from the full term value at 100% fetal load to the postpartum value at fetal load 

withdrawal, the postpartum angle of lordosis did not fully revert to its initial 0% fetal 

load value.  

One might predict that measures of maternal body mass and shape would differ 

postpartum from those attained at intake, in part, due to lactation load; nearly all of the 

study participants were breast feeding at the time of the final data collection session. In 

fact, the mean upper torso anthropometrics of acromion, areole and xiphoid 

circumferences were slightly higher postpartum than at intake. If the postpartum 

anthropometrics impacted lumbar lordosis under the same biomechanical parameters as 
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the gravid anthropometrics, one would expect to find persistent reference posture COM 

displacement. However, the fore-aft mean position of maternal COM postpartum had 

fully reverted to the intake value, suggesting that lactation load did not influence 

postpartum lordosis. An alternative explanation for the relatively acute postpartum 

lumbar lordosis might be an effect of lingering compromise in abdominal muscle 

leverage due to shape change in the gravid abdomen (Gilleard et al., 1996), at least 

temporarily. Support for this explanation is modestly evidenced in the dispersion of 

angular values for lumbar lordosis in the postpartum scatter. Angular values were higher 

in those participants who returned soon after parturition, within eight to twelve weeks of 

delivery, while the angle of lumbar lordosis was lower, and more closely approximated 

the intake values for those participants whose postpartum session occurred more than 

twelve weeks after delivery. This suggests there is a recovery period after pregnancy in 

which the abdominal muscles regain their antagonistic role relative to the erector spinae 

group.  

SUMMARY 

Increase in the angles of lumbar lordosis and sagittal pelvic tilt during human 

pregnancy provides a biomechanical solution to the problem of anterior translation in the 

position of maternal COM, imposed by increasing obstetric load. Effective balance of the 

bipedal upper body over the supporting lower body is achieved, at least in part, by mere 

shifting of the upper body into greater extension at the lower back and lumbosacral 

regions. In this manner, pregnant females avoid both the fatigue and energy cost of 

muscle recruitment that would otherwise be needed to stabilize the torso against the force 

of gravity acting anterior to the hips on the translated center of mass. Sustained 

recruitment of muscle effort throughout the second and third trimesters of human 

pregnancy would further inflate the risks of back and hip injury to women. In this sense, 
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effective management of the stability issues of bipedal pregnancy contributes to the 

reproductive success of human females. 

In summary, as human fetal load approached half of its expected term mass, 

gravid women began to alter their posture and gait by significantly increasing lumbar 

lordosis (mean increase of 18°) and anterior pelvic tilt (mean increase of 5.6°), 

repositioning their anteriorly translating center of mass over supporting joints of the 

lower limbs. As pregnancy reached term, lordosis and pelvic tilt peaked, shifting spinal 

loads onto the delicate and complex bony features of the vertebral arch. The postural 

constraint imposed by the experimental reference posture revealed a 3.2 cm mean 

anterior translation in center of mass during pregnancy. Yet, when gravid women self-

positioned in natural stance, they maintained a relatively consistent center of mass, 

restricting translation of its fore-aft location to less than 0.3 cm. The gravid adjustments 

in maternal lumbar lordosis and pelvic tilt appear to mediate the biomechanical instability 

of the fetal load-induced position of the COM by shifting it posteriorly into vertical 

realignment with the supporting joints and the body base. 

The functional implications of obstetric spinal loading in the evolution of the 

vertebrae and pelves of modern humans are investigated in Chapter 3, where the adult 

lumbopelvic morphology of human males and females is quantified and contrasted.  
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Table 3.1 Anthropometric variables defined

Anthropometric variables Measurements defined Conditions

Height (cm) floor to crown
body aligned in stance with dorsal surfaces of buttocks, 
thorax and head in contact with vertical wall

Body mass (kg) vertical ground reaction force captured by force place in newtons, adjusted for force 
plate baseline and converted to kg

Acromial circumference (cm) planar circumference relative to horizontal floor and 
landmarked by lateral margins of left and right acromia natural stance

Areole circumference (cm) planar circumference relative to horizontal floor and 
landmarked by left and right areole apices natural stance

Xiphoid circumference (cm) planar circumference relative to horizontal floor and 
landmarked by xiphoid process natural stance

Midabdominal circumference 
(cm)

planar circumference relative to horizontal floor and 
landmarked by maximum anterior reach of the abdomen natural stance

Lower lumbar circumference 
(cm)

planar circumference relative to horizontal floor and 
landmarked by the midcraniocaudal height of the L4 
spinouis process

natural stance

Anterior superior iliac spine 
circumference (cm)

planar circumference relative to horizontal floor and 
landmarked by the anteriormost process of the left and 
right anterior superior iliac spines

natural stance

Gluteal circumference (cm) planar circumference relative to horizontal floor and 
landmarked by maximum posterior reach of the buttocks natural stance

% body fat (mm) skini fold thickness of the triceps region of the upper arm natural stance  
 
 

Table 2.1 
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Table 2.2. Reflective marker identity and placement for kinematic data collection

Marker # of markers Position Description
glabella 1 sagittal midline most anterior point of the forehead in sagittal midline at the level of the supraorbital ridges
mastoid 2 left and right bony protuberance of the inferior temporal bone, behind and below the ear 
acromion 2 left and right bony process on the lateral reach of the scapula, cranial and lateral surface of the shoulder
upper arm 2 left and right midway between the elbow and shoulder, laterally along the brachialis-deltoid junction
elbow 2 left and right bony expansion of the lateral epicondyle of the humerus
radius 2 left and right styloid process of the radius
ulna 2 left and right styloid process of the ulna
ASIS 2 left and right anterior superior iliac spine
PSIS 2 left and right posterior superior iliac spine
sacrum 1 sagittal midline spinous process of the second sacral vertebra
thigh 2 left and right midway between the knee and hip, laterally along vastus lateralis
knee 2 left and right bony expansion of the lateral condyle of the femur
tibia 2 left and right midway between the ankle and knee, laterally along peroneus longus
ankle 2 left and right lateral malleous of the fibula
heel 2 left and right bony calcaneal tuberosity
toe 2 left and right head of the second metatarsal
cervical 1 sagittal midline spinous process of the seventh cervical vertebra
xiphoid 1 sagittal midline caudal base of the xiphoid process
lumbar (1) 1 sagittal midline spinous process of the first lumbar vertebra
lumbar (2) 1 sagittal midline spinous process of the fourth lumbar vertebra  
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Table 2.3. Intraclass correlation coefficients for angles of lumbar lordosis and sagittal pelvic tilt
in Natural Stance and Gait for test-retest reliability in eight replicate determinations of full series
data for six randomly selected subjects

ICC (2,1)                  95% C I
Event Measurment Single measures Lower bound Upper bound Significance
Natural stance

Lumbar lordosis (degrees) 0.974 0.947 0.991 p < 0.0001
Sagittal pelvic tilt (degrees) 0.977 0.950 0.993 p < 0.0001

Gait (midstance)
Lumbar lordosis (degrees) 0.960 0.897 0.992 p < 0.0001
Sagittal pelvic tilt (degrees) 0.989 0.977 0.996 p < 0.0001  
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Table 2.4. Intake variables of active study participants 

Subject 
#

Body mass 
(kg) Height (m)

BMI  
(kg/m2)

Pregnancy 
#

Gravidity 
week

Sessions 
completed

10411 52.7 1.68 18.7 1 14 1, 2, 3, 4, 5, 6, 7
20401 50.1 1.59 19.8 1 12 1, 2, 3, 4, 5, 6, 7
10404 58.1 1.65 21.3 1 15 1, 2, 3, 4, 5, 6, 7
30402 56.2 1.62 21.4 2 12 1, 2, 3, 4, 5, 6, 7
110301 57.6 1.63 21.7 1 17 1, 2, 3, 4, 5, 6, 7
10413 56.7 1.61 21.9 2 19 1, 2, 3, 4, 5, 6, 7
120302 59.9 1.63 22.5 2 14 1, 2, 3, 4, 5, 6, 7
110302 65.3 1.70 22.6 1 12 1, 2, 3, 4, 5, 6, 7
110303 69.9 1.73 23.4 1 11 1, 2, 3, 4, 5, 6, 7
10407 68.2 1.68 24.2 2 13 1, 2, 3, 4, 5, 6, 7
120305 73.8 1.67 26.5 1 17 1, 2, 3, 4, 5, 6, 7
120301 77.8 1.63 29.3 1 15 1, 2, 3, 4, 5, 6, 7
120303 83.0 1.68 29.4 1 13 1, 2, 3, 4, 5, 6, 7
10416 53.7 1.60 21.0 1 17 1, 2, 3, 4, 5,    7
10405 58.8 1.63 22.1 1 13 1, 2, 3, 4, 5,    7
20403 68.3 1.73 22.8 1 19 1, 2, 3, 4, 5,    7
10414 59.0 1.60 23.0 2 16 1, 2, 3, 4, 5,    7
120306 66.1 1.68 23.4 1 11 1, 2, 3, 4, 5,    7
30401 67.3 1.63 25.3 2 15 1, 2, 3, 4, 5,    7

Mean 63.3 1.65 23.2 1.3 14.5
Std Dev 8.9 0.04 2.8 0.48 2.5  
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Table 3.4.  Body weight classifications
by Body Mass Index for adults a

Weight Status BMI (kg/m2)
Under weight > 18.5
Normal weight 18.5 - 25.9
Over weight 26 - 29.9
Obese > 30

    a National Institutes of Health (1998)

Table 2.5
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Table 2.6.  Body mass (kg) during pregnancy

Subject Session 1 Session 2 Session 3 Session 4 Session 5 Session 6
0% fetal load 20% fetal load 40% fetal load 60% fetal load 80% fetal load 100% fetal load

110301 57.6 58.3 63.2 64.4 67.2 68.1
110302 65.3 72.3 74.7 74.5 78.0 78.9
110303 69.9 71.3 72.9 73.5 75.0 76.6
120301 77.8 79.2 82.6 83.9 87.2 87.9
120302 59.9 62.5 64.7 66.8 68.0 69.7
120303 83.0 86.8 90.9 92.8 94.8 95.4
120305 73.8 78.1 80.9 81.5 82.7 83.9
10404 58.1 63.2 65.4 68.0 70.3 70.3
10407 68.2 71.7 74.2 75.9 77.6 78.2
10411 52.7 57.6 60.0 61.2 62.7 62.3
10413 56.7 59.8 59.8 65.0 66.3 67.5
20401 50.1 56.0 56.2 57.0 58.6 59.3
30402 56.2 62.2 65.3 66.0 68.0 70.4
10414 59.0 63.6 64.0 68.0 69.0 -
120306 66.1 69.8 72.3 74.9 78.6 -
10405 58.8 62.3 63.8 66.9 67.7 -
10416 53.7 58.7 60.2 62.7 64.0 -
20403 68.3 70.4 72.7 76.3 77.5 -
30401 67.3 69.1 69.4 69.4 71.1 -

 
mean 63.3 67 69.1 71 72.9 74.5
st dev 8.9 8.4 9.0 8.7 9.0 10.3

change  3.7 2.1 1.9 1.9 1.6  
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Table 2.7. Midabdominal circumference (cm)
  
Subject Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7

0% fetal load 20% fetal load 40% fetal load 60% fetal load 80% fetal load 100% fetal load post partum
110301 82.5 87.5 95.7 99.0 103.3 104.0 80.7
110302 80.5 96.0 99.5 104.5 105.0 110.8 99.5
110303 93.0 93.8 94.0 98.0 102.0 103.0 88.0
120301 93.0 97.0 101.5 106.5 107.8 110.5 91.0
120302 81.0 90.8 97.0 100.5 102.5 104.0 84.0
120303 106.0 117.3 122.0 122.3 130.3 129.5 108.5
120305 95.0 101.5 104.8 109.8 108.0 112.0 109.0
10404 92.0 95.5 99.5 104.5 107.0 112.5 -
10407 86.0 98.0 96.5 108.5 106.0 105.5 82.8
10411 81.5 90.0 87.0 91.0 94.0 95.3 83.0
10413 83.0 92.0 94.2 103.3 104.8 106.0 75.0
20401 73.8 83.3 85.5 85.0 89.5 92.8 74.5
30402 74.5 93.8 99.5 106.0 106.5 105.8 87.0
10414 80.3 91.6 95.3 104.5 105.0 - 89.0
120306 77.0 91.0 96.0 102.5 106.0 - 79.5
10405 79.8 89.3 95.8 97.8 100.8 - 79.0
10416 80.0 87.5 86.5 94.0 95.0 - 78.3
20403 85.0 95.5 98.3 103.0 110.0 - 95.0
30401 99.0 101.0 103.5 104.5 108.0 - 96.0
mean 87.1 94.3 97.8 102.1 104.6 107.0 87.6
std dev 8.7 7.5 8.4 7.8 8.2 9.0 10.4
mean change 7.2 3.5 4.3 2.5 2.4 -19.4
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Table 2.8. Maternal GMI1during pregnancy and post partum

Subject Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7
0% fetal load 20% fetal load 40% fetal load 60% fetal load 80% fetal load 100% fetal load post partum

110301 143.2 150.1 151.4 153.7 153.7 152.7 140.6
110302 123.3 132.8 133.2 140.3 134.6 140.4 143.8
110303 133.0 131.5 128.9 133.3 136.0 134.5 149.2
120301 119.5 122.5 122.9 126.9 123.6 125.7 124.0
120302 135.2 145.3 149.9 150.4 150.7 149.2 145.1
120303 127.7 135.1 134.2 131.7 137.4 135.7 137.0
120305 128.7 130.0 129.5 134.7 130.6 133.5 147.3
10404 158.3 151.1 152.1 153.7 152.2 160.0 158.3
10407 126.1 136.7 130.1 143.0 136.6 134.9 124.1
10411 154.6 156.3 145.0 148.7 149.9 153.0 162.4
10413 146.4 153.8 157.5 158.8 158.1 157.0 121.2
20401 147.2 148.7 152.1 149.1 152.7 156.4 146.4
30402 132.6 150.7 152.4 160.6 156.6 150.2 145.7
10414 146.6 144.0 148.8 153.7 152.2  155.9
120306 116.5 130.4 132.8 136.8 134.9  125.4
10405 135.6 143.3 150.1 146.1 148.8  143.1
10416 149.0 149.1 143.7 149.9 148.4  146.8
20403 124.5 135.7 135.1 135.0 141.9  139.1
30401 147.1 146.2 149.1 150.6 151.9  142.0

mean 136.6 141.5 141.8 145.1 144.8 144.9 142.0
sd 12.4 9.4 10.3 9.2 9.6 11.1 11.6
         1 abdominal circumference (cm) / body mass (kg) *100  
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Table 2.9.Total gestational change in GMI1

Subject Intake Term Change
0% fetal load 100% fetal load

10411 154.6 153.0 -1.7
10416 149.0 148.4 -0.5
110303 133.0 134.5 1.4
10404 158.3 160.0 1.7
120305 128.7 133.5 4.8
30401 147.1 151.9 4.8
10414 146.6 152.2 5.6
120301 119.5 125.7 6.2
120303 127.7 135.7 8.0
10407 126.1 134.9 8.8
20401 147.2 156.4 9.2
110301 143.2 152.7 9.5
10413 146.4 157.0 10.7
10405 135.6 148.8 13.2
120302 135.2 149.2 14.0
110302 123.3 140.4 17.1
20403 124.5 141.9 17.4
30402 132.6 150.2 17.6
120306 116.5 134.9 18.4

    1 abdominal circumference (cm) / body mass (kg) *100  
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Table 3.9. Fore-aft position of the COM in Reference Posture relative to C7 marker 

Subject session 1 session 2 session 3 session 4 session 5 session 6 session 7

0% fetal load 20% fetal load 40% fetal load 60% fetal load 80% fetal load 100% fetal load post partum
30402 10.0 10.9 11.7 10.1 12.2 12.4 5.5

110302 10.2 11.7 14.0 14.8 15.3 15.5 13.4
120306 11.6 13.9 14.2 15.6 15.6 15.6 10.7
120303 14.2 15.1 15.5 16.9 17.1 16.1 12.2
10404 10.7 11.1 13.8 13.5 12.8 13.4 11.1
10413 10.8 10.9 13.5 15.5 13.0 15.0 11.4

110301 9.0 11.5 11.7 12.1 12.7 13.0 10.4
10416 9.5 10.4 10.6 10.9 10.7 10.7 9.1
10414 10.3 12.5 12.9 12.5 13.3 13.3 10.8

120301 12.6 12.7 14.7 14.4 14.3 14.7 13.2
120305 13.1 12.7 13.2 13.1 15.6 15.8 13.1
120302 9.5 11.2 12.7 12.2 13.5 14.0 8.2
10407 12.4 13.8 15.6 15.1 15.6 15.6 12.0
20401 10.8 12.3 12.7 13.3 12.3 12.7 9.7
10411 9.9 8.6 10.9 12.7 12.8 13.1 10.3
10405 8.7 8.4 11.1 12.6 12.6 12.6 11.0
20403 8.9 13.7 13.8 13.2 13.1 13.7 9.7

110303 10.1 10.3 10.3 10.7 12.3 12.6 10.7
30401 13.6 13.8 14.8 14.9 16.0 16.0 13.5

Mean 10.92 11.90 13.00 13.40 13.80 14.00 10.80
Std Dev 1.70 1.80 1.60 1.80 1.70 1.50 2.00

Table 2.10 
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Table 3.10.  Pairwise comparisons of repeated measures ANOVA for center of mass in reference posture

95% confidence Interval for Difference a

(x) time (y) time
mean 

difference 
(x-y)

Std Error Significance a Lower Bound Upper Bound

(1) 0% fetal load 2 -1.076 0.352 0.159 -2.346 0.193
3 -2.212 0.355 0.000 -3.491 -0.932
4 -2.832 0.402 0.000 -4.283 -1.382
5 -3.124 0.239 0.000 -3.985 -2.262
6 -3.329 0.254 0.000 -4.245 -2.413
7 0.218 0.500 1.000 -1.583 2.018

(2) 20% fetal load 1 1.076 0.352 0.159 -0.193 2.346
3 -1.135 0.286 0.023 -2.164 -0.106
4 -1.756 0.368 0.004 -3.081 -0.403
5 -2.047 0.366 0.001 -3.365 -0.729
6 -2.253 0.380 0.000 -3.623 -0.883
7 1.294 0.585 0.878 -0.814 3.402

(3) 40% fetal load 1 2.212 0.355 0.000 0.932 3.491
2 1.135 0.286 0.023 0.106 2.164
4 -0.621 0.207 0.180 -1.368 0.126
5 -0.912 0.229 0.022 -1.736 -0.087
6 -1.118 0.250 0.008 -2.018 -0.217
7 2.429 0.472 0.002 0.730 4.129

(4) 60% fetal load 1 2.832 0.402 0.000 1.382 4.283
2 1.756 0.368 0.004 0.430 3.081
3 0.621 0.207 0.180 -0.126 1.368
5 -0.291 0.270 1.000 -1.265 0.683
6 -0.497 0.291 1.000 -1.545 0.551
7 3.05 0.491 0.000 1.281 4.819

(5) 80% fetal load 1 3.124 0.239 0.000 2.262 3.985
2 2.047 0.366 0.001 0.729 3.365
3 0.912 0.299 0.022 0.087 1.736
4 0.291 0.279 1.000 -0.683 1.265
6 -0.206 0.087 0.642 -0.519 0.107
7 3.341 0.464 0.000 1.671 5.012

(6) 100% fetal load 1 3.329 0.254 0.000 2.413 4.245
term session 2 2.253 0.380 0.000 0.883 3.623

3 1.118 0.250 0.008 0.217 2.018
4 0.497 0.291 1.000 -0.551 1.545
5 0.206 0.087 0.642 -0.107 0.519
7 3.547 0.505 0.000 1.728 5.366

(7) post partum 1 -0.218 0.500 1.000 -2.018 1.583
2 -1.294 0.585 0.878 -3.402 0.814
3 -2.429 0.472 0.002 -4.129 -0.730
4 -3.05 0.491 0.000 -4.819 -1.281
5 -3.342 0.464 0.000 -5.012 -1.671
6 -3.547 0.505 0.000 -5.366 -1.728

      bold-faced values are significant of the 0.05 level
     significance reports p values and is adjuested for multiple comparisons: Bonferroni  
 
 
 

Table 2.11 
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Table 3.11. Pairwise comparisons of repeated measures ANOVA for lumbar lordosis in natural stance

95% confidence Interval for Difference a

(x) time (y) time
mean 

difference 
(x-y)

Std Error Significance a Lower Bound Upper Bound

(1) 0% fetal load 2 -1.606 2.054 0.466 -5.984 2.772
3 -11.444 2.546 0.000 -16.871 -6.017
4 -12.325 2.687 0.000 -18.052 -6.598
5 -13.625 3.523 0.002 -21.133 -6.117
6 -15.913 2.727 0.000 -21.724 -10.101
7 -10.756 2.538 0.001 -16.165 -5.347

(2) 20% fetal load 1 1.606 2.054 0.446 -2.772 5.984
3 -9.838 2.798 0.003 -15.801 -3.874
4 -10.719 2.996 0.003 -17.105 -4.333
5 -12.019 3.255 0.002 -18.957 -5.08
6 -14.306 2.820 0.000 -20.317 -8.296
7 -9.15 2.087 0.001 -13.598 -4.702

(3) 40% fetal load 1 11.444 2.546 0.000 6.017 16.871
2 9.838 2.798 0.003 3.874 15.801
4 -0.881 3.308 0.795 -7.932 6.169
5 -2.181 3.629 0.557 -9.916 5.554
6 -4.469 3.421 0.211 -11.761 2.824
7 0.688 2.445 0.782 -4.524 5.899

(4) 60% fetal load 1 12.325 2.687 0.000 6.598 18.052
2 10.719 2.996 0.003 4.333 17.105
3 0.881 3.308 0.794 -6.169 7.932
5 -1.3 2.955 0.666 -7.599 4.999
6 -3.588 2.428 0.160 -8.763 1.588
7 1.569 2.241 0.495 -3.208 6.346

(5) 80% fetal load 1 13.625 3.523 0.002 6.177 21.113
2 12.019 3.255 0.002 5.08 18.957
3 2.181 3.629 0.557 -5.554 9.916
4 1.3 2.955 0.666 -4.999 7.599
6 -2.288 2.865 0.437 -8.394 3.819
7 2.869 3.124 0.373 -3.79 9.527

(6) 100% fetal load 1 15.913 2.727 0.000 10.101 21.724
term session 2 14.306 2.820 0.000 8.296 20.317

3 4.469 3.421 0.211 -2.824 11.761
4 3.588 2.428 0.160 -1.588 8.763
5 2.288 2.865 0.437 -3.819 8.394
7 5.156 2.423 0.050 -0.009 10.321

(7) post partum 1 10.756 2.538 0.001 5.347 16.165
2 9.15 2.087 0.001 4.702 13.598
3 -0.688 2.445 0.782 -5.899 4.524
4 -1.569 2.241 0.495 -6.346 3.208
5 -2.869 3.124 0.373 -9.527 3.79
6 -5.156 2.423 0.050 -10.321 0.009

      bold-faced values are significant of the 0.05 level
     significance reports p values and is adjuested for multiple comparisons: Bonferroni  
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Table 3.12. Pairwise comparisons of repeated measures ANOVA for pelvic tilt in natural stance

95% confidence Interval for Difference a

(x) time (y) time
mean 

difference 
(x-y)

Std Error Significance a Lower Bound Upper Bound

(1) 0% fetal load 2 -2.158 1.554 1.000 -8.255 3.938
3 -3.475 0.913 0.061 -7.058 0.108
4 -4.642 1.111 0.032 -8.999 -0.285
5 -6.617 1.163 0.003 -11.179 -2.054
6 -6.692 1.316 0.007 -11.853 -1.530
7 -0.567 1.661 1.000 -7.083 5.950

(2) 20% fetal load 1 2.158 1.554 1.000 -3.938 8.255
3 -1.317 1.162 1.000 -5.877 3.244
4 -2.483 1.359 1.000 -7.814 2.848
5 -4.458 1.562 0.329 -10.586 1.670
6 -4.533 1.852 0.680 -11.800 2.733
7 1.592 1.808 1.000 -5.500 8.683

(3) 40% fetal load 1 3.475 0.913 0.061 -0.108 7.058
2 1.317 1.162 1.000 -3.244 5.877
4 -1.167 0.878 1.000 -4.612 2.279
5 -3.142 0.800 0.500 -6.279 -0.005
6 -3.217 1.290 0.627 -8.277 1.844
7 2.908 1.697 1.000 -3.749 9.566

(4) 60% fetal load 1 4.642 1.111 0.032 0.285 8.999
2 2.483 1.359 1.000 -2.848 7.814
3 1.167 0.878 1.000 -2.279 4.612
5 -1.975 0.867 0.919 -5.377 1.427
6 -2.050 1.135 1.000 -6.502 2.402
7 4.075 1.660 0.672 -2.437 10.587

(5) 80% fetal load 1 6.617 1.163 0.003 2.054 11.179
2 4.458 1.562 0.329 -1.670 10.586
3 3.142 0.800 0.050 0.005 6.279
4 1.975 0.867 0.919 -1.427 5.377
6 -0.075 0.623 1.000 -2.518 2.368
7 6.050 1.401 0.026 0.555 11.545

(6) 100% fetal load 1 6.692 1.316 0.007 1.530 11.853
term session 2 4.533 1.852 0.680 -2.733 11.800

3 3.217 1.290 0.627 -1.844 8.277
4 2.050 1.135 1.000 -2.402 6.502
5 0.075 0.623 1.000 -2.368 2.518
7 6.125 1.362 0.019 0.783 11.467

(7) post partum 1 0.567 1.661 1.000 -5.950 7.083
2 -1.592 1.808 1.000 -8.683 5.500
3 -2.908 1.697 1.000 -9.566 3.749
4 -4.075 1.660 0.672 -10.587 2.437
5 -6.050 1.401 0.026 -11.545 -0.555
6 -6.125 1.362 0.019 -11.467 -0.783

      bold-faced values are significant of the 0.05 level
     significance reports p values and is adjuested for multiple comparisons: Bonferroni  
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Table 2.14.  Within session trends: midstance of natural gait1 for Subject 10407

          Lordosis          Pelvic Tilt
Session C-Statistic z score p trend C-Statistic z score p trend

1, 0% fetal load 0.354 1.098 0.136 horizontal stability 0.222 0.689 0.245 horizontal stability
2, 20% fetal load -0.002 -0.006 0.502 horizontal stability -0.582 -1.805 0.964 horizontal stability
3, 40% fetal load 0.473 1.465 0.071 horizontal stability -0.307 -0.869 0.807 horizontal stability
4, 60% fetal load 0.071 0.221 0.412 horizontal stability 0.473 1.467 0.071 horizontal stability
5, 80% fetal load -0.392 -1.215 0.887 horizontal stability 0.392 1.217 0.111 horizontal stability
6, 100% fetal load -0.260 -0.805 0.789 horizontal stability 0.012 0.036 0.485 horizontal stability
7, post partum 0.081 0.251 0.400 horizontal stability -0.465 -1.441 0.925 horizontal stability

        1 n = 8 trials per session

Table 2.15.  Across session trends : midstance of natural gait1 for Subject 10407    

            Lordosis             Pelvic Tilt
Sessions C-Statistic z score p trend C-Statistic z score p trend

1 and 2, 0% to 20% fetal load 0.870 3.509 0.001 non random decrease -0.050 -0.202 0.580 horizontal stability
2 and 3, 20% to 40% fetal load 0.580 2.338 0.009 non random increase 0.734 2.776 0.002 non random increase
3 and 4, 40% to 60% fetal load 0.736 2.970 0.001 non random increase 0.812 3.073 0.001 non random increase
4 and 5, 60% to 80% fetal load 0.387 1.560 0.059 horizontal stability 0.525 2.116 0.017 non random increase
5 and 6, 80% to 100% fetal load 0.645 2.601 0.004 non random increase 0.090 0.035 0.362 horizontal stability
6 and 7, 100% fetal load to post partum 0.613 2.471 0.006 non random decrease 0.769 3.007 0.001 non random decrease
1 and 7, 0% fetal load to post partum 0.806 3.251 0.001 non random increase -0.420 -1.693 0.954 horizontal stability

 

        1 n = 8 trials per session  
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TABLE 3.15.  Within subjects design time effects, with time defined by seven stages of fetal load: 
 0%, 20%, 40%, 60%, 80%, 100%, and a period post partum

  p value
Maternal variables F-ratio 1 F Greenhouse-Geisser Huynh-Feldt

COM reference posture 28.81 < 0.0001 < 0.0001 < 0.0001
Lordosis natural stance 5.91 0.007 < 0.0001 < 0.0001
Pelvic tilt natural stance 4.61 0.043 < 0.0001 < 0.0001

                1  Repeated Measures ANOVA
               Values in bold-face are statistically significant at alpha 0.05 (Bonferroni corrected)  
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Table 3.16. Center of mass translation (cm) in reference posture and in
 natural stance, presented as group means 1

Reference Posture 2 

COM change
Natural Stance 3 

COM change

0% - 20% fetal load 0.45 -0.79
20% - 40% fetal load 1.36 0.31
40% - 60% fetal load 0.51 -0.19
60% - 80% fetal load 0.29 -0.01
80% - 100% fetal load 0.59 0.40
 
0% through 100% fetal load 3.20 -0.28

1 Positive values indicate anterior translation. Negative values indicate
posterior translation. COM change is the linear difference in fore-aft
position during the period defined by the % transition of fetal load
2 The reference posture was secured by body alignment to a retractable
wall by which segmental angles of lumbar lordosis and pelvic tilt were
were held constant across all session
3 The natural stance allowed subjects to self-select a comfortable posture  
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Human Fetal Mass by Gestational Age
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Figure 2.1. Fetal mass is negligible in the first twelve weeks of pregnancy (less than  
14g, 4% of full term mass). At the end of the following twelve weeks, the fetus  
attains 20% of its term weight, typically at week twenty-four. Fetal growth accelerates 
after the twenty-fourth week, increasing 20% in each of the four successive and 
increasingly shorter periods, comprised of four, three, two and two week spans, 
respectively (modified from Alexander et al., 1996). 
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Figure 2.2. Marker positions for kinematic data collection, modified from Eames

 et al., 1999. 
 
 
 

 

 

 

 

 

Figure 1.
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Fig 2.3. Kinematic angular method of calculating lumbar lordosis from marker  
positions. L1 = first lumbar vertebra, L4 = fourth lumbar vertebra. S2 = second  
sacral vertebra. Markers were adhered externally over palpated spinous processes.  
XZ plane refers to sagittal plane of the body and is spatially defined in Figure 2.6.  
 

 
 
 

 
 

   
 

Figure 2.4. Kinematic angular method of calculating sagittal pelvic tilt from marker 
positions. ASIS = anterior superior iliac spine, PSIS = posterior superior iliac spine. 
Markers were adhered externally over bony processes. XZ plane refers to sagittal plane of 
the body and is spatially defined in Figure 2.6.  
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  Figure 2.5. Portable reference posture apparatus. Left, frontal view of apparatus with labeled  
  components. Right, lateral view of apparatus indicating subject position. 
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  Figure 2.6. Experimental lab set-up. Objects numbered 1-5 are cameras of the Vicon 250  
  data acquisition system and were used for kinematic data collection. The object labeled FP is  
  the Bertec 4550-08 force platform used for kinetic data collection. The calibrated space and  
  lab coordinate system is also indicated. The distance from camera 3 to the force platform is  
  3 m. Subjects stood facing the positive x direction and walked in a forward trajectory along  
  the positive x.  
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a)   b)  
 

 
       Figure 2.7. Subject and marker placement during data acquisition in natural stance. Subject  
       110302. Left, Session 1, 0% fetal load. Right, Session 6, 100% fetal load. 
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  Figure 2.8. Measured vs. reconstructed angle using a calibrated goniometer for  
  direct measurement and 3D positional capture of goniometer markers from which   
  angular values were reconstructed. The line represents least-squared regression  
  (r = 0.969, slope (95% CI) = 1.04).  
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a)   b)  
 
 
  Figure 2.9. Vicon 3D gait trial reconstruction in right lateral view, a) Session 1,  

 0% fetal load; b) Session 6, 100% fetal load. 
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    Figure 2.10. Participant body mass (kg) plotted by session (intake  
  Session 1 through term Session 6). Trajectories truncated at  
  Session 5 derive from subjects who reached term neonate  
  delivery during the time lapse between completion of Session 5  
  and the scheduled Session 6.  
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Figure 2.11. Abdominal circumference (lg) plotted against body  
mass (lg) at intake (Session 1). The solid line represents the best 
fit. The dotted lines represent 95% confidence limits. 
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Figure 2.12. Abdominal circumference (lg) plotted against body  
mass (lg) at term (Session 6). The solid line represents the best 
fit. The dotted lines represent 95% confidence limits. 
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Trimester Change in COM Reference Posture (cm)

tri 2
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tri 1
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tri 3
2.10  

 Figure 2.13. Total mean translation of maternal center of mass in  
              the fore-aft direction during pregnancy (3.2 cm), reported by trimester.  

 
 
 
 
 
 
 
 
 
 
 

Mean fore-aft position of COM Reference Posture during pregnancy 
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Figure 2.14. Mean fore-aft position of the maternal center of mass relative to position of the C7 
marker. Solid circles denote six consecutive sessions corresponding to 0%, 20%, 40%, 60%, 80% 
and 100% of expected term fetal load. The open circle is estimated. The partitioned triplet 
represents the three gravid trimesters.  
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Figure 2.15. Change in the mean fore-aft position of the maternal  
center of mass relative to position of the C7 marker in the Reference  
Posture during pregnancy. Squares represent mean points; vertical  
lines represent standard deviation. The alpha level was set at 0.05. 
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Figure 2.16. Change in individual subject’s fore-aft positions of  
the maternal center of mass relative to position of the C7 marker in  
the Reference Posture during pregnancy. Dashed lines indicate COM  
translation less than 1.5 cm, dotted lines greater than 1.4 and  
less than or equal to 3.0 cm; and solid lines indicate translation greater  
than 3.1 cm. 
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Change in GMI and COM Reference Posture during pregnancy
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Figure 2.17. Gravid change in Girth-Mass Index plotted against fore-aft translation of  
maternal center of mass in the reference posture.  
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   Figure 2.18. Angle of lumbar lordosis compared at 0% fetal load  
   and 100% fetal load. Squares represent group means; vertical lines  
   represent standard deviation. Mean differences are significant at alpha  
   0.05, p < 0.0001.  
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 Figure 2.19. Angle of lumbar lordosis compared at 0% fetal load and 100% fetal  
 load for each study participant. Solid lines represent increases in lumbar lordosis.     
 Dashed line represents decrease in lumbar lordosis.  
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Sagittal Pelvic Tilt in Natural Stance
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  Figure 2.20. Angle of sagittal pelvic tilt compared at 0% fetal load  
  and 100% fetal load. Squares represent group means; vertical lines  
  represent standard deviation. Mean differences are significant at alpha  
  0.05, p < 0.0001.  
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  Figure 2.21. Angle of sagittal pelvic tilt compared at 0% fetal load  
  and 100% fetal load for each study participant. Solid lines represent 
  increases in pelvic tilt. Dashed line represents decrease in pelvic tilt.  
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  Figure2.22. Angles of lumbar lordosis and sagittal pelvic tilt in Natural Stance 
  throughout pregnancy (Sessions 1-6) and a period postpartum (Session 7).  
  Points represent mean values for study group (n=19). 
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Lumbar Lordosis and Sagittal Pelvic Tilt: Pregnant Gait
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  Figure 2.23. Angles of lumbar lordosis and sagittal pelvic tilt in  
 midstance of natural gait throughout pregnancy (Sessions 1-6) and  
 a period postpartum (Session 7). Points represent mean values for  
 study group (n=19). 
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 Figure 2.24. Time series chart of the angle of lumbar lordosis for subject 120301in midstance  
 phase of natural gait plotted by session trials. Each partitioned series of points represents a  
 different data collection stage. Stages are shown in sequence as: Sessions 1, 2, 3, 4, 5, 6, and 7.  
 Each session is labeled according to the relevant obstetric phase. The baseline series was 
 recorded at intake Session 1. Percentage labels refer to expected percentage of term fetal mass.  
 The postpartum series was recorded at the final session and was defined by withdraw of the  
 fetal load condition.  
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Figure 2.25. Time series chart of the angle of sagittal pelvic tilt for subject 120301 during 
midstance phase of natural gait plotted by session trials. Each partitioned series of points 
represents a different data collection stage. Stages are shown in sequence as: Sessions 1, 2, 3, 4, 
5, 6, and 7. Each session is labeled according to the relevant obstetric phase. The baseline series 
was recorded at intake Session 1. Percentage labels refer to expected percentage of term fetal 
mass. The postpartum series was recorded at the final session and was defined by withdraw of the 
fetal load condition.  
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  Figure 2.26. Mean fore-aft position of maternal center of mass at intake Session 1,  
  0% fetal load, and at term Session 6, 100% fetal load, plotted with group standard   
  deviation. Means do not significantly differ (at alpha 0.05, p = 0.5695).  
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  Figure 2.27. Mean fore-aft position of maternal center of mass at intake 
  Session 1 (0% fetal load) and at term Session 6 (100% fetal load) plotted  
  for each subject. Solid lines represent near fixity of position or posterior 
  retraction. Dashed lines represent anterior translation.  
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  Figure 2.28. Mean angle of lumbar lordosis in natural stance across all  
  sessions with mean position of center of mass in reference posture and  
  natural stance (self-selected posture).  
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  Figure 2.29. Mean angle of sagittal pelvic tilt in natural stance across all  
  sessions with mean position of center of mass in reference posture and natural  
  stance (self-selected posture).  
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Chapter 3:  Human Lumbopelvic Sexual Dimorphism 

INTRODUCTION 
Arguably, one of the most distinct features of the human lumbopelvic complex is 

its lumbar curve. Positioned between the sacrum and the thorax, the lumbar curve opens 

dorsally and recedes ventrally, its arc referred to as a lordosis. Structurally, lumbar 

lordosis is comprised of wedge-shaped vertebral bodies and intervertebral discs. 

Functionally, lumbar lordosis translates the human vertebral column anteriorly so 

that it overlies the hip joints in bipedal stance (Latimer and Ward, 1993). This marked 

and novel orientation facilitates balance and stability in the largely unsupported upper 

body. When the upper body center of mass aligns vertically above the biacetabular axis 

of the supporting hip joints, it concomitantly aligns well over the body support base. The 

overall alignment of center of mass achieved through inherent lordosis minimizes torque 

that would otherwise require counter balance by sustained muscle effort. In this way, 

lordosis provides an energy efficient solution to a biped challenge.  

Lordosis is so fundamental to bipedal posture and locomotion that it appears early 

in hominin evolution (Robinson, 1972; Latimer and Ward, 1993; Sanders, 1995, 1998). 

Although the extent of behavioral commitment to bipedality in early hominins is debated 

(Leakey and Hay, 1979; Lovejoy, 1979, 1980; Day and Wickens, 1980; Stern and 

Susman, 1983; Susman et al., 1984; Latimer and Lovejoy, 1990; Stern, 2000), 

morphological adaptations to bipedal locomotion are clearly evident in the fossil record 

as early as 7 million years ago, in the anterior position of the foramen magnum and the 

thin compact architecture of the superior femoral neck of Sahelanthropus tchadensis 

(Zollikofer et al., 2005) and Orrorin tugenensis (Galik et al., 2004), respectively.  Direct 

evidence of lumbar lordosis in early hominins is present in the australopithecine 
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specimens AL 288-1 (Australopithecus afarensis) and Sts14 (Australopithecus africanus) 

whose lumbar vertebral bodies though degraded are morphologically consistent with the 

modern bipedal mechanism of lumbar lordosis (Sanders, 1995, 1998).  

The bony contribution to lordosis derives, in part, from vertebral body and disc 

shape, and is determined by relative differential length in the ventral and dorsal aspects of 

the centrum. The cranial portion of the lordotic arc is formed by vertebrae whose bodies 

are ventrally wedged (Figure 3.2). Ventrally wedged vertebral bodies predominate in the 

thoracic spinal region cranially adjacent to the lumbar spine. Thoracic vertebrae in the 

approximate lumbar region sequentially decrease in the degree of ventral wedging, 

flattening out to some extent the kyphotic arc of the thoracic spine. Within the lumbar 

region vertebral body wedging transitions from the kyphotic ventrally-wedged state to a 

lordotic dorsally-wedged state. Collectively along the lumbar spine, the sequential 

decrease in kyphotic wedging and increase in lordotic wedging give the human lumbar 

spine its distinctive structural lordosis.  

The lumbar vertebrae of nonhuman primates are typically kyphotic, their ventral 

length reduced relative to their dorsal length (i.e., Cunningham, 1933; Schultz, 1961; 

Rose, 1975; Latimer and Ward, 1993; Sanders, 1995). Kyphotic wedging accumulates 

along the column and produces an anterior concavity which is continuous with the 

thoracic curve, generating large loads on the vertebral bodies. 

The distinct human lumbar curve, achieved predominantly by dorsal lordotic 

wedging of the vertebral body, further complicates the loading regime of the human 

vertebral column. The human commitment to bipedality amplifies compression, torsion, 

and shearing forces directed through the lumbar vertebrae (Adams and Hutton, 1980, 
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1983; Davis, 1961; Latimer and Ward, 1993; Louis, 1985, Pal and Routal, 1987, 1988; 

Sanders, 1995; Shapiro, 1991, 1993a, 1993b, 1995).  

Lordosis, particularly the long arc of human lumbar lordosis, directs a portion of 

the spinal load from the vertebral bodies to the zygapophyses, articular processes less 

well adapted to manage complex loads. In accordance, human prezygapophyseal facets 

are relatively large compared to those of other primates (i.e., Cunningham, 1933; Schultz, 

1961; Rose, 1975; Latimer and Ward, 1993; Shapiro, 1993b; Sanders, 1995).   

Human spinal loading model 

Human spinal loading then is particularly complex due to the presence of lumbar 

lordosis. Pal and Routal’s (1986, 1987) load transfer model defines two pillars through 

which spinal loads travel, a ventral pillar comprised of vertebral centra and intervertebral 

discs and a dorsal pillar formed by the neural arch components of pedicles, laminae and 

zygapophyses (Figure 3.1). Proportional loading shifts between the two pillars as a result 

of both static morphology, particularly centrum wedging in the lumbar region (Figure 

3.2), and movements initiated along the vertebral column. The load bearing capacity of 

the ventral pillar is relatively high as a result of centrum endplate size and transverse 

orientation (Pal and Routal, 1987, 1991). Nonetheless, human lumbar lordosis increases 

the magnitude of load through the dorsal pillar’s zygapophyses (Davis, 1961; Louis, 

1985), and nearly 25% of static lower lumbar load is transferred through the laminae 

(Adams and Hutton, 1980).  

Obstetric Spinal Loading 

While spinal loading forces generated during bipedal locomotion are generally 

similar for all adults (Pal and Routal, 1987; Pal, 1989), the lengthy duration and recurrent 
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nature of obstetric fetal load cleaves two distinct loading groups, one male and one 

female, based entirely in reproductive physiology. In spite of this obvious biological 

dichotomy and decades of locomotor and vertebral study, we know relatively little about 

the skeletal correlates of intraspecific spinal loading.  

Because pregnancy exerts marked, recurrent biomechanical stress on the postural 

and locomotor skeleton, obstetric load is likely to have influenced the evolution of human 

lumbopelvic morphology, particularly given the unique spinal loading patterns associated 

with bipedal lumbar lordosis. Because the lumbar and sacral vertebrae provide the main 

load bearing capacity of the axial skeleton, adaptations in the female skeleton to the 

stresses of obstetric load are likely to be evident among them.  

Three obstetric factors are of relevance to spinal loading. First, the growing fetus 

and its attendant soft tissues, localized in the upper body, incrementally increase 

compressive load on the maternal axial skeleton. Second, because maternal shape and 

mass distribution change as abdominal muscles stretch and separate to accommodate fetal 

growth (Abitbol, 1996; Gilleard et al., 1996), the obstetric load is applied tangentially to 

the axial spine, compounding bending stress on the vertebral column. Finally, related to 

the location of the obstetric load, the more ventrally positioned maternal center of mass 

inherent in pregnancy generates strong moments about the hip (Dumas et al., 1995; 

Jensen et al., 1996).  So while the added tangential load in and of itself exacerbates stress 

on the vertebral column, any positional adjustments in lumbar lordosis and anterior 

sagittal pelvic tilt selected by the gravid female to alleviate the need for muscle counter 

balance of a translating center of mass would direct a greater proportion of spinal load 

through the dorsal pillar zygapophyses.  

The hypotheses tested in this study propose that loading bearing structures of the 

human lumbopelvic complex are sexually dimorphic in that human females express 

lumbar and sacral morphologies consistent with a greater proportion of spinal load 



 112

directed through the dorsal pillar. The hypothesis is part of a broader collection of 

hypotheses that attempt to explain aspects of human lumbopelvic sexual dimorphism as 

female adaptations to resist the structural risks associated with bipedal obstetric load.  

Although pregnancy is intermittent, the duration and recurrence of fetal load exert 

marked stress on the postural and locomotor skeleton, holding implications not only for 

modern humans, but also for earlier hominins, whose vertebral column evidenced a 

common biomechanical theme of lumbar lordosis. 

Two explicit predictions were investigated: 

1) The lumbar and sacral vertebrae of human adult females will present larger 

dorsal pillar structures relative to overall vertebral size than those of human adult 

males. 

2) Lumbar and sacral vertebrae of human adult males will present relatively larger 

ventral pillar structures relative to overall vertebral size than those of human adult 

females.  

MATERIALS AND METHODS 

Sample 

The sample population chosen to test the study hypothesis was drawn from two 

well studied 20th Century osteological archives of known age and sex: the Hamann-Todd 

collection curated at the Cleveland Museum of Natural History; and the Terry Collection 

housed at the National Museum of Natural History in Washington DC. Each collection is 

supported by morgue records that provide general biological profiles for specimens, 

including sex, age, stature and gross pathologies. Ancestry-related differences within the 

sample population (morgue identified and morgue parlanced as black or white) were 

tested for ethnicity effect using ANOVA cross (sex and ethnicity). No significant 

ethnicity response by sex was obtained.  Specimens were selected to represent each of the 

three polymorphisms in human lumbar vertebral number: a modal group comprised of 
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individuals with five lumbar vertebrae; an extra-modal group of individuals with six 

lumbar vertebrae, referred to herein as the L6 variant; and an alternate nonmodal group 

comprised of individuals with four lumbar vertebrae, referred to as the L4 variant. The L6 

variant is particularly relevant to the question of early hominin bipedal adaptation as 

australopithecines appear to have had lumbar column length equal to the extra-modal 

variant in modern humans (Robinson, 1972; Sanders, 1998; Tobias, 1998, but see 

Haeusler et al., 2002). 

Sample size 

The modal group consisted of 59 males and 54 females. Nonmodal variants occur 

with less frequency than the modal type, between 5% and 8% (Bornstein and Peterson, 

1966; de Beer Kaufman, 1974; Ward and Latimer, 1993), making it difficult to obtain 

robust sample sizes for both variants. Their infrequent representation in skeletal 

collections limited sample sizes for the variants to: 20 males and 12 females in the L6 

Variant group; and 7 males and 8 females in the L4 Variant group.  

Sex determination 

Museum records were initially consulted to identify specimen sex. In addition to 

reported sex, morgue photos were examined whenever available. To further ensure 

correct sexing, specimens were assessed according to the modified Phenice method 

(Phenice, 1969; Ubelaker and Volk, 2002). Individuals whose sex was ambiguous 

according to either collection records or observer assessment were excluded. 

Age determination 

Specimens were selected within an adult age range of 20 to 40 years. This 

criterion targeted individuals whose skeletal development had reached maturity but 

whose aging effects had not yet eclipsed osteophytic deposition, typical in synovial and 

symphyseal joint margins with aging, e.g. spondylosis deformans (Latimer and Ward, 
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1993). Chronological age was obtained through morgue records and further evaluated by 

visual confirmation of postcranial epiphyseal fusion. If skeletal age was found to fall 

outside the inclusion range the specimen was omitted from the study. Pathological 

specimens, whether determined by collection records or gross observation by the study 

author were not analyzed. Specimens included in the analysis are listed in Table 3.1 along 

with sex, vertebral number and the institutions from which they derive. 

Lumbar vertebral identification 

Lumbar vertebrae were defined according to their zygapophyseal orientation 

(Washburn and Buettner-Janusch, 1952; Shapiro, 1993a).  This facet-based designation 

differs from the widely used non rib-bearing alternative (Schultz, 1930) in its functional 

emphasis on the range of motion between vertebral elements; type and range of 

movement in the lumbar column are largely influenced by facet direction.  The medial 

and lateral orientation of lumbar superior and inferior facets, respectively, guide sagittal 

flexion and extension while resisting both rotation (Rockwell et al., 1938) and ventral 

displacement (Latimer and Ward, 1993; Bogduk and Twomey, 1997).   

Lumbopelvic Osteological Measurements 

 Predictions of lumbopelvic sexual dimorphism were tested on fourteen vertebral 

variables at each lumbar vertebral level, four sacral variables and two innominate 

measures, chosen to define the relative size and shape of the lumbar vertebrae and pelvis. 

The structures quantified receive and transfer postural and locomotor forces generated 

within the lumbopelvic complex, and are therefore subject to biomechanical stresses 

introduced by fetal load. Variables are illustrated and anatomically defined in Figure 3.3. 

Surface area and cross-sectional area were constructed from linear variables. One areal 

measurement was digitally derived from scaled photographs. Each variable captured a 

dimension of structural function in load resistance, range of motion and/or muscle 

leverage, and was therefore potentially relevant to biomechanical stresses that would be 
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introduced by obstetric load. Each variable is defined anatomically and functionally 

below.  

Linear measurements were collected with a Mitutoyo 500-171 needle point digital 

caliper and were recorded to the nearest 0.01mm.  Angular measurements were collected 

with an SPI 0-180 degree protractor.  Auricular surface area was photographed with a 

Nikon CoolPix 10x camera. ImageJ digitizing software, version 1.34n (Rasband 

WS.,U.S. National Institutes of Health, USA, 1997-2006) was used to measure surface 

area of the sacral auricular facet.  

Lumbar Vertebrae (Figure 3.3a): 

Vertebral Body: The vertebral body (centrum) is the primary load bearing 

structure of the vertebral column (Bogduk, 2005), and its joint surfaces are generally 

proportional to the magnitude of forces they transmit (Pal and Routal, 1986, 1987; Pal, 

1989). Following the hypotheses presented in this study, it was predicted that males 

would present relatively larger centrum areas than females in accordance their reliance on 

ventral pillar load resistance. Lumbar body area was calculated from the cranial centrum 

endplate dimensions, based on the area of an ellipse as follows: (CMD/2) x (CAD/2) x 

3.1416.  Sacral body area was similarly derived as: (SMD/2) x (SAD/2) x 3.1416. 

Vertebral wedging, the bony contribution to lumbar lordosis occurs when ventral and 

dorsal body lengths differ. To more effectively dissipate compressive load and shearing 

forces associated with obstetric load, females were expected to present a longer lordotic 

curve (either a greater number of more dorsally wedged vertebral bodies or an equal 

number of dorsally wedged lumbar vertebrae but with a greater degree of dorsal 

wedging) than were males. Linear measurements were analyzed separately then used to 

calculate an angular variable of vertebral body wedging following Digiovanni et al., 

(1989):  

                     Wedging angle = 2 arctangent (((CDH-CVH)/2)/CAD) 
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Positive angles were kyphotic while negative angles were lordotic. A vertebra was 

determined to be neutral, neither kyphotic nor lordotic, when its value fell within the 

range 0.5 to -0.5 degrees. Graphic representation and mathematical calculation of the 

bony lordotic curve was obtained in MATLAB script written for this analysis in 

consultation with Dr. Tim Eakin (University of Texas at Austin, ITS, Senior Systems 

Analyst). See Appendix H for MATLAB script.   

Pedicle: The vertebral pedicle provides structural continuity between the two pillars of 

the spine and is subject to increased bending stress when loads are transferred between 

them (Davis, 1961; Adams and Hutton, 1980, 1983). Since human females were 

predicted to carry a greater proportion of spinal load along the dorsal pillar structures 

than males, the pedicle cross-sectional area was expected to be relatively larger in human 

females than in males.  Pedicle cross-sectional area was calculated as PW x PL, length 

times width. 

Transverse Process: Transverse processes provide attachment sites for many of the 

erector spinal muscles that act to extend of the back.  Females were expected to present 

larger and more dorsally oriented processes relative to body size than were males for 

effective leverage under conditions of obstetric inertia.  These expectations were 

measured by transverse process length (TPL) and obliquity of the transverse process 

(ATP).  

Zygapophyses: Zygapophyses are secondary load bearing structures. These synovial 

joints guide intervertebral movements and support a proportionately greater load under 

conditions of acute lumbar lordosis (Adams and Hutton, 1980; Pal and Routal, 1987). It 

was therefore predicted that females would present relatively large prezygapophyseal 

facets to manage increased load. The following formula defined prezygapophyseal area:  
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[(SCC/2 + SOM/2)/2] x [(SML/2) + (SOC/2)/2] x 3.1416  

 

The angle of prezygapophyseal obliquity (POB) was taken to investigate potential range 

of motion in spinal rotation and flexion/extension as well as resistance to ventral shear 

stress. Obliquity is exemplified in humans in that the crainiocaudally sequential lumbar 

vertebrae bear prezygapophyses that are increasingly more coronal in their facet 

orientation (Odgers, 1933; Shapiro, 1991; Latimer and Ward, 1993). To increase 

resistance to shear force inherent between dorsally wedged vertebral bodies, female 

zygapophyses were expected to be more obliquely oriented than those of males. 

Sacrum (Figure 3.3b): 

Sacral Body: The vertebral body and the paired prezygapophyses of the first 

sacral vertebra function similarly to those of the lumbar vertebrae. The medio-lateral 

expanse of the sacral body provides, in part, attachment sites for muscles controlling the 

upper body. Where extensive erector spinae muscles benefit torso stability, a relatively 

broad sacrum is predicted. Females were predicted to have relatively broader sacra than 

males to better resist hip moments exacerbated by fetal load. The auricular area across 

which upper body-hindlimb load transfers, was also expected to be larger in females than 

in males, as a reflection of female obstetric load. The sacrum performs a dual role as the 

axial load bearing base of the spine and the dorsal bony continuum of the pelvic girdle, 

the latter role relevant to spatial dimensions at parturition. The parsing of functional roles 

in a multi-functional element is often problematic. Should sacral breadth differ by sex, 

identification of significant sex differences in auricular area would lend support for an 

obstetric leverage function. Sacral auricular area was calculated digitally from scaled 

photographs using JImage areal software (version 1.34n, NIH, USA).  
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Innominate (Figure 3.3c): 

Ilium: The ilium provides attachment of the lesser gluteal muscles that function as 

abductors in humans stabilizing the upper body in bipedal locomotion, particularly, 

during single support phase. Additionally, the posterior reach of the iliac crest augments 

the lever advantage of the erector spinae group in stabilizing the upper body over the 

pelvis. Females are expected to present relatively long and broad innominates in 

accordance with fetal load.   

Statistical Analyses 

The null hypothesis in all comparisons was no difference in lumbopelvic shape 

parameters in males and females. JMP 5.0.1.2 (SAS Institute, 2003) and SPSS 12.0 

(SPSS, Inc, 2003) software packages were used for statistical analyses. MATLAB 7, 

release 14 (The MathWorks) was used for mathematical and graphical analyses.   

Size standardization    

Without adjusting for body size variation within the sample population, any 

significant differences identified by contrasting males and females might reflect little 

more than stochastic distribution of body size differences within the samples.  To test for 

the presence of shape sexual dimorphism, data were size-adjusted. The effectiveness of 

various methods for the study of size and shape have been well studied (for a recent 

review, see Klingenberg, 1996). For the purpose of this study, the representative measure 

of gross size used to remove the general isometric phenomenon (Jungers, 1984a, 1984b; 

Corruccini, 1987, 1995; Falsetti et al., 1993; Jungers et al., 1995) was the scale free 

geometric mean (Mosimann, 1970; Darroch and Mosimann, 1985) derived from the 

forty-eight linear variables of the lumbar vertebrae, twelve from each of the first, second, 

penultimate and last lumbar levels (see linear measures in Figure 3.3a).  Mosimann’s 

method (1970) removes the effects of size for each variable on an individual basis using a 

directly measured index of individual size. Variates obtained for each individual were 



 119

standardized by dividing the raw values by the geometric mean of the relevant specimen 

(the 48th root of the product of the variables). The overall size of the lumbar vertebrae as 

defined here by many and varied measures of the dorsal and ventral pillar structures 

represents the relative upper body load in both males and females, and therefore captures 

the specific target of obstetric mass.     

Principal Component Analysis 

Principal component analyses (PCA) investigate the dependence structure in a 

suite of observations. The first linear combination of the analysis maximizes the variance 

of resulting scores. Successive linear combinations maximize variance of resulting scores 

subject to the condition that they are uncorrelated with the previous linear combination.  

In order to assess whether the human modal and variant groups share similar 

patterns of association among the study’s linear variables (Figures 3.3a, 3.3b, 3.3 c, linear 

variables only), a Q-mode Principal Component Analysis was performed on a correlation 

matrix. This matrix is preferred over a co-variance matrix due to differing units of 

measurement among the variables (Blackith and Reyment, 1971). In Q-Mode analysis, 

rows are variables, and columns are cases; the inverse factor analysis from the common 

R-Mode.   

Because total number of lumbar vertebral levels differed among the three 

morphotypes, it was not possible to perform a complete level-by-level comparison. As an 

alternative, principal component analyses included the L1, L2, Penultimate and Last 

lumbar levels of each group. The anatomical levels that comprise the comparative 

categories for each of the three morphotypes are presented in Table 3.2. The resultant 

omission of vertebral level L3 from the modal group and levels L3 and L4 from the L6 

variant introduces the possibility of functional discontinuity for inferences drawn from 

the analyses. Although the inferential value of the comparisons is somewhat restricted by 

this selective vertebral level comparison, it nonetheless provides an initial examination of 
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intergroup relationships within the data. The tests of sexual dimorphism that follow the 

principal component analyses were performed on complete lumbar series for each group 

(i.e., lumbar levels L1, L2, L3, L4 and L5 for the modal group).   

Since many of the lumbopelvic variables were not independent, a multivariate R-

Mode analysis served to identify the percentage contribution to lumbopelvic shape 

variation separating the modal and variant groups and isolate similarities within human 

lumbar vertebral columns, regardless of vertebral number. Variables that are functionally 

or developmentally related were expected to share high coefficients within a factor.   

Subsequent sex partitioned analyses were conducted on complete lumbar series 

within each morphotype to obtain initial pattern information on the relationship of 

variables both within the morphotype and according to sex.  

Inferential test of sexual dimorphism in lumbopelvic variables  

In accordance with the biomechanical principles outlined in the two-pillar model 

of spinal force transmission (Pal and Routal, 1987, 1988), the variables tested in this 

portion of the analysis represent the major load-bearing and load-resistant structures 

operating under conditions of bipedal obstetric load. The variables tested include: 

centrum wedging, surface area, medio-lateral breadth; transverse process angle and 

length; pedicle cross-sectional area; prezygapophyseal surface area and angle; interfacet 

breadth; sacral body breadth; and auricular area. Variables were tested for normality 

using the single sample Shapiro-Wilk W test. A between-sex test for homoscedasticity 

was performed as a two-tailed Fmax test with a 0.05 alpha. Because distribution 

assumptions of normality and homoscedasticity were not met for many of the variates, 

tests of significance in comparing male and female specimens were obtained using the 

Wilcoxon Rank Sums test using a multiple comparisons adjustment to limit Type I errors 

(Sokal and Rholf, 1995) following Jaccard and Wan (1996), who advocate a modified 

Bonferroni procedure. The Wilcoxon Rank Sums test is a nonparametric test of the null 
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hypothesis that both male and female samples for each variable derive from the same 

distribution.  Means, standard deviations, z-values and probabilities were reported for all 

comparisons. The null hypothesis in all comparisons was no sex difference in the 

lumbopelvic structures within each species level sample population.  

Association between centrum wedging and spinal load resistance 

 To investigate the relationship between vertebral body wedging and shift of 

loading forces as indicated by articular surface area, Spearman’s rank order correlation 

coefficient was calculated between the angle of vertebral wedging and the size adjusted 

centrum surface area, pedicle cross-sectional area and prezygapophyseal area, at each 

vertebral level. A comparison of centrum articular area and prezygapophyseal area was 

also performed.  

RESULTS 

Pooled morphotypes: Q-mode principal component analysis 

Figure 3.4 presents the Q-Mode PCA for the correlation matrix of pooled 

morphotypes: modal; L6 variant; and L4 variant. Principal Component 1 is heavily 

loaded with 99.2% of the variance partitioned. All cases (cases are individuals in Q-mode 

analyses) are equal in eigenvector score, indicating that the association of variables is 

homogenous across all column types. Separation on PC1 is driven by relative size, as all 

variates were geomean size-adjusted prior to the analysis. For example, linear dimensions 

of the vertebrae are inherently smaller in scale than are the linear dimensions of the ilia. 

Variables projected to the right of the axis are large (iliac and sacrum breadth and iliac 

height) relative to the variables plotted to the left (lumbar vertebral pedicles and 

zygapophyses). The remaining variance differentiated on subsequent axes is less than 1% 

of the total. Principal Component 2 captures 0.2% of the overall variance. While this axis 

contrasts increasing interfacet breadth with pedicle dimensions of the second lumbar 

vertebra, the small percentage of variance it represents is not likely to be of biological 
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relevance in this study. Each of the remaining axes captures less than 0.10% of the 

pooled sample variance. In general, Q-mode PCA indicates that variables are largely 

distinguished from one another according to size. The size sorting of variables is 

consistent across all three morphotypes and their inclusive cases/individuals. Therefore, 

while each morphotype is distinct in terms of the number of lumbar vertebrae that 

comprise its total length, the structural relationship of the variables chosen to describe the 

shape of the lumbopelvic elements in this study do not differ across morphotypes.   

Pooled morphotypes: R-mode principal component analysis 

Principal Components 1 and 2 of the R-mode PCA are shown in Figure 3.5.  

Scatter of cases within each morphotype overlap indicating homogeneity of the sample 

groups. PC1 accounts for 49.2% of the variance and contrasts pelvic breadth and height, 

with positive loadings, against prezygapophyseal diameters, with negative loadings. 

Individuals plotted to the right have relatively large pelves with small vertebral 

dimensions. PC2 isolates 12.9% of the variance in contrasting centrum mediolateral 

diameters and sacral body breadth. Individuals near the positive loading pole have large 

lumbar vertebral centra and relatively narrow sacra (Figure 3.6). The wide dispersion of 

specimens and lack of morphotype separation shown on PC1 and PC2 also characterizes 

PC3. This third axis isolates 7.5% of the total variance and contrasts variables of the 

pelvis (3.6). Positive loadings emphasize sacral body breadth in contrast to negative 

loadings that feature sacral centrum breadth and iliac height and breadth. However, the 

axis is calibrated across a narrow range of values, so the dispersion within the combined 

groups is limited.  

Overall, this R-Mode PCA shows that the modal and L4 and L6 variants are not 

distinguishable from one another in pooled morphospace.  Rather, the groups under study 

are homogeneous in expression of all variables, when pooled. 
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Modal human group: Principal component analysis and tests of sexual dimorphism 

Principal Component Analysis 

Figure 3.7 shows the first and second principal component scores for the human 

modal sample. The first three PC scores account for 66.5% of the total shape variance, 

PC1 47%, PC2 13%, and PC3 6.5%. The right pole of PC1 is occupied by individuals 

with relatively large pelves (sacral breadth, iliac breadth and height) and small pedicles 

and zygapophyses.  Because variates used in the analyses were geomean adjusted for raw 

size differences among individuals prior to analysis, the contrast of pelvic and vertebral 

variables that is captured on PC1 is not driven by “absolute size”. Instead the variance 

loading pattern is due to the presence of individuals who have large pelves (high loading) 

as well as individuals who have small pelves (low loading), relative to respective 

“absolute size”. Specimen 2923 in the bottom right corner of Figure 3.7 is characterized 

by a raw sacral breadth of 118.8mm, a value not among the broadest of the group. 

However, her size-adjusted sacral breadth value of 7.22 is among the most extreme of the 

large sacral values, indicating that the pelvis of individual 2923 is large relative to body 

size.  In contrast, specimen 2120 falls to the far left of the plot.  Raw sacral breadth for 

this individual is 113.7mm and is not among the narrowest. Yet the size-adjusted value 

for 2120 is 5.39, and this value is very low within the group, indicating the individual has 

a small pelvis relative to body size. 

The information on PC2 best separates individuals by sex. Figure 3.8 presents 

PC3 on PC2. In the PC2 domain of 13% variance, the larger scores derive from males 

while the smaller scores derive from females. While there is considerable overlap of 

sexes along PC2, the disparate ends of the axis are dominated by only one sex. The high 

loadings on PC2 derive from increasing centrum breadth along the entire lumbar column 

and contrast with increasing pelvic breadth in the low loading region to the left. 

Individuals, mostly male, who plot to the far right of PC2, specimen 3052 for example, 
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have relatively broad lumbar centra yet relatively narrow sacral bodies. The morphospace 

domain at the left pole of the PC2 axis is predominantly occupied by females, specimen 

1289 for example. Individuals, mostly female, who plot in this region present relatively 

broad sacral bodies and relatively small lumbar vertebral centra. This typical female 

pattern is expressed by a few males, 2941 for example. The mid morphospace of the PC2 

axis captures numerous males and females sharing the same relative proportions in 

centrum breadth and sacral breadth.  

Tests of sexual dimorphism 

Results for the tests of sexual dimorphism in the modal group are presented in 

Table 3.3. Relative to body size, modal human males have significantly larger vertebral 

centra and pedicle cross-sectional area than do modal females at lumbar levels L1-L4 and 

L1-L3, respectively. The wedging angle of lumbar vertebrae differs in males and females 

through four of the five lumbar levels leading to the last lumbar vertebra where wedging 

in the sexes does not differ significantly. The differences in wedging patterns of males 

and females are further examined later in this chapter. Female prezygapophyseal angle 

significantly exceeds that of males along the entire lumbar column, L1-L5. Also, relative 

to body size, females have both a broader sacrum and ilium than found in males. 

Nonmodal variants: Principal component analysis and tests of sexual dimorphism 

L6 variant: Principal component analysis 

Figure 3.9 shows the first and second principal component scores for the L6 

variant group. Results are similar in many respects to those obtained for the modal human 

sample. While PC1 of the L6 variant analysis captures only 26.4% of the variance, the 

major contrast on the axis is between sacral breadth which increases to the right, and 

dorsal column structures, all of which increase to the left. Individuals who plot to the 

right have relatively broad pelves compared to their zygapophyses and pedicles. 
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Individuals on the left express the opposite proportional relationship, narrow pelves with 

relatively large zygapophyses and pedicles. There is no separation by sex on PC1. 

Figure 3.10 shows the PC2 and PC3 results with 17.2% and 13.9% of the total 

variance, respectively. While males on the second principal component axis are widely 

scattered, females plot almost entirely to the left of the midpoint.  Only one female falls 

in the right side morphospace, otherwise dominated by males. The PC2 axis contrasts 

medio-lateral and antero-posterior diameters of the vertebral centra, which increase to the 

right, with the interfacet breadth, which increases to the left. With respect to the 

relationship between the variables contrasted on PC2, females are less variable. They 

don’t attain the expansive centrum breadth of males and their interfacet breadths remain 

wide relative to the vertebral centra. Fourteen percent of the variance is isolated on PC3. 

On this axis, interfacet breadth increases in the positive direction in contrast to 

prezygapophyseal diameters increasing toward the negative pole. Although females 

cluster to the left of the PC 2 axis, males are widely dispersed along the expanse, 

indicating that little separation among the sexes in the principal component analysis.  

L6 variant: Tests of sexual dimorphism 

Results of the tests of sexual dimorphism for the L6 variant are presented in Table 

3.4. With respect to lumbar vertebral wedging, differences between males and females 

are significant at vertebral levels L1 and L2. Sex differences in centrum surface area are 

significant at level L1, where the male mean is larger than the female mean. No signal of 

sexual dimorphism occurs in the transverse process angle. Relative length of the 

transverse process differs significantly at L2 and L3 where male mean length exceeds 

that of females. The cross-sectional area of the pedicles significantly differs in much of 

the cranial end of the lumbar column where male means exceed those of females at 

lumbar levels L2, L3, L4 and L6. Male pedicular cross sectional area exceeds that of 
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females at L5, but the means do not statistically differ. Area of the prezygapophyses does 

not reach statistical significance at any level along the column.  

In many respects the results obtained for the L6 variant are similar to those of the 

modal group. In both morphotypes females express significantly more oblique angles of 

the zygapophyses at all five lumbar levels, orienting the prezygapophyseal articular 

surfaces in a more coronal plane along the entire lumbar column. Sacral breadth and iliac 

breadth in females are larger than those of males. Males of both morphotypes are 

characterized by broad lumbar centra at each level along the lumbar column.  

 To some extent the L6 variant is less sexually dimorphic than the modal group. 

Significant sex differences in both lumbar vertebral body wedging and centrum surface 

area in the L6 variant are limited to the most cranial reach of the lumbar column, L1-L2 

and L1, respectively. By comparison sexual dimorphism in these vertebral traits extends 

more caudally in the modal group to encompass all but the last lumbar level. Although 

the degree of sexual dimorphism in the mid and lower lumbar regions of the L6 variant 

do not reach statistical significance, male values exceed female values as they do in the 

modal group. It should be noted that sample size in the L6 variant is relatively small and 

may be a factor in the absence of statistically significant results for this morphotype.  

L4 variant: Principal component analysis 

Results of the principal component analysis of the L4 variant are presented in 

Figures 3.11 and 3.12. The first three principal components account for 70.5% of the total 

shape variance, PC1 for 45.5%, PC2 for 15.8% and PC3 for 9.1%. On PC1 the positive 

scores plotted to the right emphasize broad pelvic breadth while the negative scores to the 

left reflect increasing prezygapophyseal diameters. The contrast sorts individuals whose 

pelves are relatively large for their body size. The variables featured on this axis are 

consistent with those of the modal and L6 variant PCA. The second PC contrasts the 

breadth of the sacral body with positive scores and the breadth of the sacral centrum with 



 127

negative scores. Individuals who have relatively broad sacra yet narrow sacral centra plot 

within the positive pole. Males fall to the negative side of the axis. More females fall to 

the positive pole, and the positive domain is entirely occupied by females.   

Sexes separate more clearly on PC3. The majority of points in the negative pole 

of PC3 are female while the preponderance of points in the positive domain are male. The 

third PC contrasts broad interfacet distances with iliac breadth. Most males in this group 

have broadly spaced facets yet relatively narrow pelves compared to females, although 

there is no distinct sex separation.  

L4 variant: Tests of sexual dimorphism 

Table 3.5 reports results of the statistical tests for sexual dimorphism in the L4 

variant. Sample sizes for each sex in this morphotype are small and results from these 

tests are more likely to reflect crude differences rather than fine differences that are 

possible with more robust sampling as in the modal group (Sokal and Rohlf, 1995). 

Results of this portion of the analysis must be considered preliminary at best and require 

subsequent testing when larger sample sizes are obtained. Because the L4 variant is the 

least prevalent morphotype, its low frequency in skeletal collections currently limits its 

utility for study of human lumbopelvic sexual dimorphism. Nonetheless, a few significant 

results were obtained, all of which are consistent with the more robust results of the 

modal and L6 variant analyses. As in the other groups, sexual dimorphism is present in 

the cranialmost region of the lumbar column where male lumbar vertebral centra are 

relatively large compared to those of females. 

Wedging angle: All morphotypes 

Wedging of the vertebral bodies is the result of the dimensional relationship of 

body length in both the ventral and dorsal margins and the antero-posterior diameters. 

While each of these linear dimensions differs significantly by sex at one or more 

vertebral levels and are larger in males than in females, the structural effect of these 



 128

significant differences is not simply that the male lumbar vertebral centra exceed the 

relative size of the female centra. The relationship of the variables influences the specific 

shape of each vertebral body, and a closer examination of their cumulative effect on 

vertebral shape reveals important distinctions in the lumbar wedging sequence of males 

and females.  

Lumbar vertebral wedging angles are reported in Table 3.6. Regardless of modal, 

L4 variant or L6 variant membership, the entire sequence of dorsal wedging in males 

spans the penultimate and last lumbar vertebrae, at the two caudalmost lumbar levels.  

The female wedging pattern is also consistent across the morphotypes but differs entirely 

from the male pattern in respect to the total number of lumbar levels that are dorsally 

wedged. The dorsal wedging sequence in the female lumbar column expands over three 

lumbar levels, to include the pre penultimate, penultimate and last lumbar levels. The 

modal morphotype is distinguished by the occurrence of statistically significant sex 

differences in four sequential lumbar levels (L1-L4), contrasted with the two (L1-L2) and 

one (L1) lumbar levels that characterize the L6 variant and the L4 variant, respectively.     

The kyphotic pattern of body wedging characterizes both sexes at the cranial end of the 

lumbar column and in turn the caudal end of the lumbar region is comprised of vertebral 

bodies shaped in the lordotic pattern. However, the sexes are distinguished from one 

another at the transitional level where kyphotic wedging gives way to lordotic wedging. 

The wedging angles enclosed by boxes in Table 3.6 demonstrate that female lumbar 

lordosis is initiated more cranially in the lumbar region than is the lordosis of males, 

regardless of numeric morphotype. The consistency of this sex-related pattern across all 

three morphotypes suggests an inherent pervasiveness of morphological distinction in the 

bony lordosis of modern humans. Females present a longer series of dorsally wedged 

lumbar vertebrae and in the common modal morphotype sexes differ markedly in the 

degree of wedging that characterizes all the pre terminal lumbar vertebrae. The effects of 
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lumbar vertebral body wedging on the curvature of the human vertebral column are 

mathematically and graphically represented as the radius of curvature in Figures 3.13 

through 3.18.   

Radius of lumbar lordotic curve: All morphotypes 

Lumbar vertebral curves are reported and plotted in Figures 3.13 – 3.18.  For the 

purpose of explicitly isolating the bony contribution to the lordotic curve, the vertebral 

level of neutral body wedging served as the starting position of the lordotic arc and the 

caudalmost vertebral level of dorsal body wedging served as the end position. 

Cumulative wedging across these vertebral levels produced a measurable radius of 

lordotic curvature. A different approach was employed in examination of lordotic 

curvature within the L4 variant column due to the fact that neither sex presented a distinct 

neutrally wedged vertebral level. In this case, all four lumbar vertebral levels were 

included in the calculation for each sex within the L4 group.  

The radius of curvature in the modal group is presented in Figures 3.13 and 3.14. 

Patterns of sexual dimorphism in the modal lordotic curve can be compared across 

figures. The obvious difference between male and female lordosis is the number of 

vertebral bodies that contribute to the curve: three levels in the modal male and four 

levels in the modal female. The mean radius of curvature in modal males is 114.22mm 

while that of modal females is 111.01mm, a difference of 3.21mm. A smaller radius of 

curvature indicates a tighter curve.  

As in the modal group, the L6 variant males have a shorter lordotic sequence than 

do females (Figures 3.15 and 3.16). However, there is almost no difference in the radius 

of curvature between the sexes. The male mean is 111.94mm and the female mean is 

112.26mm. The difference is 0.30mm. This result is consistent with the fact that wedging 

angles differ significantly only at the L1 and L2 levels in the L6 group (see Table 3.6).  
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Results are presented for the L4 variant in Figures 3.17 and 3.18. Again, because 

the L4 variant does not express a distinct neutral/transitional level of wedging in the 

lumbar region, all four vertebral levels of the lumbar column are plotted in the radius of 

curvature graphical analysis for each sex. Recall that the pattern of wedging in the L4 

variant is consistent with that of both the modal and L6 variant in that females have a 

series of three dorsally wedged lumbar vertebrae while males have shorter series of two 

dorsally wedged lumbar vertebrae.  When the radius of curvature is computed for the L4 

variant sexes, a slight difference in radius is detected. The male mean is 112.69mm while 

the female mean is 111.63mm, a difference of 1.06mm. As in the modal group, females 

express a tighter radius of curvature along the lumbar column. 

In general and relative to males, females present a smaller and tighter radius of 

lumbar curvature, derived across a longer sequence of dorsally wedged lumbar vertebrae. 

Association between centrum wedging and spinal load resistance: All morphotypes 

Spearman’s rank order correlation coefficient was used to test for a relationship 

between centrum surface area and pedicle cross-sectional area and between vertebral 

body wedging and loading signals in the areal measures. Table 3.7 presents the 

Spearman’s correlation coefficient (rs) between surface areas relative to body size and 

body wedging in the modal group, according to sex. The results show that the 

correlations are significant between centrum surface area and pedicle cross-sectional 

area. The correlations are strong for both males and females at lumbar vertebral levels 

L2-L5. The female contrast is also significant at the first lumbar level. While pedicles are 

typically included among the dorsal pillar structures and viewed functionally as struts 

subject to bending forces due to differential loading of the ventral and the dorsal pillars 

(Bogduk, 1999), they are intermediary connectors between the two pillars, in so far as 

loads transfer to and from the centra and zygapophyses. The functional resultant site of 

force application to the pedicle is uncertain. Therefore, it may not be surprising if 
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increased centrum loading impacts pedicle loading, regardless of whether or not load is 

actively transferred between the centrum and zygapophyses. The similar correlation 

patterns between centrum surface area and pedicle cross-sectional area in males and 

females indicate a lack of sex-based differentiation in the functional relationship. The 

remaining contrasts of vertebral body wedging and areas of the centrum, pedicle and 

prezygapophyses by sex are non significant, with the exception of the modal female L1 

pedicle area. 

Auricular Area 

A reduced major axis regression of auricular area on the geometric mean of the 

modal group is presented in Figure 3.19. The slope of the regression line (2.106) 

approximates the expected isometric slope of 2.0 for area (squared) on geomean (linear). 

The correlation is low (0.31). While seventy-five percent of the female dispersion falls 

above the regression line, male dispersion is broadly cast both above and below the line.  

Table 3.8 shows the geomean-adjusted values for the three morphotypes grouped by sex. 

Results of the significance test for sex differences are presented in Figure 3.20. For their 

size, modal females have a significantly larger auricular area than do modal males, p < 

0.0017.   

DISCUSSION 

Results of this study demonstrate that the lumbopelvic complex of human males 

and females differs significantly in fundamental features related to upper body control 

and spinal loading. Most importantly, the sex-specific vertebral body wedging sequences 

and their resultant radii of curvature suggest that the crucial bipedal mechanism of 

lumbar lordosis is differentially constructed in males and females.  

Table 3.9 summarizes the significant findings of the analysis for the modal human 

group and offers a regional perspective on the patterns of sex difference along the lumbar 

column. While all vertebral levels are sexually dimorphic, the least dimorphic is the last, 
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lumbar level L5.  This result is somewhat surprising given its proximity to the pelvis. The 

pelvis is arguably the most sexually dimorphic structure in the human skeleton. For 

instance, sexual dimorphism in the pelvic canal is well documented and its functional role 

in parturition incontrovertible (e.g., Berge et al., 1984; Tague and Lovejoy, 1986; 

Abitbol, 1987, 1996; Rosenberg, 1988, 1992; Hager, 1989, 1996; Ruff, 1995; Walrath 

and Glantz, 1996; Trevathan and Rosenberg, 2001). One might argue that the last lumbar 

vertebra in its articulation with the sacral platform would be expected to reflect some 

element of shape sexual dimorphism due to pelvic proximity. To the contrary, the near 

lack of shape sexual dimorphism in the last lumbar vertebra suggests that sex differences 

in the more cranial levels of the lumbar spine are less influenced by pelvic parturitional 

demands than postural and locomotor pressures.  

The most prevalent expression of lumbar sexual dimorphism occurs in the mid 

lumbar region, levels L2 and L3.  This area is the transitional zone of vertebral body 

wedging where kyphotic vertebral bodies reach their caudal limit. Lumbar level two is 

the neutral or transitional level in females while lumbar level three is the level of wedge 

transition in males. Wedging properties when viewed cranio-caudally in the lumbar 

region are either less kyphotic or more lordotic in females than in males. Female 

vertebral bodies therefore are less heavily loaded, proportionally, than those of males at 

any one level in the lumbar region. The relatively large centrum surface areas in males 

from L1 through L4 and S1 also indicate that males bear more of their axial load along 

the ventral pillar centra. The greater obliquity of the prezygapophyses in the female 

lumbar spine is functionally consistent with a more dorsally directed spinal loading 

pattern, as resistance to an increase in shear stress with dorsal wedging. While these 

results generally support the hypotheses that dorsal pillar loading is greater in females 

than in males, the nature of transverse process sexual dimorphism is unexpected. In fact, 

females were expected to present longer and more dorsally oriented transverse processes 
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relative to body size than were males as effective leverage under conditions of obstetric 

inertia, but male processes were relatively longer.  

Pedicles were found to be more robust relative to body size in males than in 

females. This result was also unexpected. While speculative, it is worth mentioning that a 

functional relationship between transverse process length and pedicle robusticity may be 

a component of ventral and dorsal pillar loading regimes. Why males have relatively 

longer transverse processes than females at the L2 and L3 lumbar levels is not 

immediately clear. Nonetheless, the presence of relatively long transverse processes 

would increase bending stress on the pedicles during unilateral flexion as well as during 

sagittal extension. Therefore, the mutual relationship in relative size of the transverse 

processes and pedicles is apparent. It is worth noting that while vertebral body shape is 

similar in males and females at the cranialmost and caudalmost reaches of the lumbar 

region (kyphotic at L1 and lordotic at both L4 and L5), vertebral shape differs by sex at 

lumbar levels L2 and L3. The male L2 vertebra is kyphotic while the female element is 

non-wedged, and the male L3 vertebra is non-wedged while the female vertebral body is 

lordotic. Spinal loading along the L2-L3 levels of the lumbar spine are likely to be 

different in males and females as this is the critical region of shape change in the 

vertebral bodies. 

The smaller radius of curvature expressed in females produces a tighter curve 

relative to males. Although female lumbar lordosis is more acute than that of males, it is 

distributed across a greater number of vertebrae. By distributing the proportionally larger 

dorsal pillar load across a longer expanse of vertebrae, the female lumbar spine may 

confer additional structural safety to a column that must resist obstetric load.  

 While the degree of sexual dimorphism in both the L6 variant and L4 variant is 

less than that expressed in the modal group, some common features further clarify the 
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nature of sex differences in the human lumbar column. In all three groups, males present 

relatively large centrum surface areas in the more cranial margin of the lumbar spine.  

A greater number of similarities characterize the modal and L6 variant groups. The most 

important of which is the prezygapophyseal obliquity of the female lumbar spine. Female 

prezygapophyses are more oblique than males at every level of the lumbar spine. In the 

modal group, obliquity is correlated with vertebral body wedging. However, the 

pervasiveness of female obliquity in the L6 variant is not paralleled by the same pattern 

of female wedging characteristic of the modal group. While lumbar prezygapophyseal 

orientation is functionally relevant to shear resistance, and the greater obliquity of the 

female vertebrae confers increased resistance compared to that of males, orientation of 

the prezygapophyses is also a relevant factor in the range of motion permissible between 

lumbar vertebrae. Greater obliquity limits sagittal flexion and extension and allows 

greater axial rotation. However the potential relevance of these factors in the context of 

obstetric load is not readily apparent.  

SUMMARY 

In conclusion, the lumbar and sacral vertebrae of human females differ 

significantly from those of human males in aspects of their relative size and shape. 

Female vertebrae are dorsally wedged, contributing to the bony lordosis at lumbar levels 

L3, L4 and L5. At these lordotic levels, female vertebrae bear markedly oblique 

prezygapophyses. Conversely, lordotic wedging in human males is less extensive along 

the lumbar column, occurring at the lumbar levels L4 and L5. Human female vertebral 

morphology is consistent with the spinal loading patterns of the kinematic analyses (see 

Chapter 2), indicating that female vertebrae are adapted to resist structural risks of 

bipedal lordosis, which shift a larger proportion of compressive load from the vertebral 

bodies to the dorsally located zygapophyses.  
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Table 3.1. List of specimens included in the study, number of vertebrae in lumbar region, sex, and collection

Specimen Lumbar 
Vertebrae Sex Collection Specimen Lumbar 

Vertebrae Sex Collection

HTH1062 L5 Modal Male CMNH NMNH 755 L5 Modal Male NMNH
HTH1080 L5 Modal Male CMNH NMNH 802 L5 Modal Male NMNH
HTH1100 L5 Modal Male CMNH NMNH 876 L5 Modal Male NMNH
HTH1139 L5 Modal Male CMNH HTH1119 L5 Modal Female CMNH
HTH1146 L5 Modal Male CMNH HTH1157 L5 Modal Female CMNH
HTH1201 L5 Modal Male CMNH HTH1213 L5 Modal Female CMNH
HTH1241 L5 Modal Male CMNH HTH1214 L5 Modal Female CMNH
HTH1261 L5 Modal Male CMNH HTH1215 L5 Modal Female CMNH
HTH1281 L5 Modal Male CMNH HTH1277 L5 Modal Female CMNH
HTH1327 L5 Modal Male CMNH HTH1345 L5 Modal Female CMNH
HTH1373 L5 Modal Male CMNH HTH1350 L5 Modal Female CMNH
HTH1393 L5 Modal Male CMNH HTH1427 L5 Modal Female CMNH
HTH1410 L5 Modal Male CMNH HTH1489 L5 Modal Female CMNH
HTH1474 L5 Modal Male CMNH HTH1515 L5 Modal Female CMNH
HTH2193 L5 Modal Male CMNH HTH1539 L5 Modal Female CMNH
HTH2401 L5 Modal Male CMNH HTH1554 L5 Modal Female CMNH
HTH2451 L5 Modal Male CMNH HTH1558 L5 Modal Female CMNH
HTH2474 L5 Modal Male CMNH HTH1600 L5 Modal Female CMNH
HTH2584 L5 Modal Male CMNH HTH1747 L5 Modal Female CMNH
HTH2602 L5 Modal Male CMNH HTH1785 L5 Modal Female CMNH
HTH2763 L5 Modal Male CMNH HTH1900 L5 Modal Female CMNH
HTH2831 L5 Modal Male CMNH HTH1924 L5 Modal Female CMNH
HTH2846 L5 Modal Male CMNH HTH1973 L5 Modal Female CMNH
HTH2852 L5 Modal Male CMNH HTH1978 L5 Modal Female CMNH
HTH2941 L5 Modal Male CMNH HTH2041 L5 Modal Female CMNH
HTH3052 L5 Modal Male CMNH HTH2086 L5 Modal Female CMNH
HTHHTH3077 L5 Modal Male CMNH HTH2116 L5 Modal Female CMNH
HTH3097 L5 Modal Male CMNH HTH2120 L5 Modal Female CMNH
HTH3265 L5 Modal Male CMNH HTH2125 L5 Modal Female CMNH
NMNH 1352 L5 Modal Male NMNH HTH2363 L5 Modal Female CMNH
NMNH 1388 L5 Modal Male NMNH HTH2848 L5 Modal Female CMNH
NMNH 1415R L5 Modal Male NMNH HTH2857 L5 Modal Female CMNH
NMNH 1470 L5 Modal Male NMNH HTH2923 L5 Modal Female CMNH
NMNH 14R L5 Modal Male NMNH NMNH 1010 L5 Modal Female NMNH
NMNH 1564 L5 Modal Male NMNH NMNH 1287 L5 Modal Female NMNH
NMNH 1569 L5 Modal Male NMNH NMNH 1289R L5 Modal Female NMNH
NMNH 1598 L5 Modal Male NMNH NMNH 12R L5 Modal Female NMNH
NMNH 1607 L5 Modal Male NMNH NMNH 1311 L5 Modal Female NMNH
NMNH 187R L5 Modal Male NMNH NMNH 1333 L5 Modal Female NMNH
NMNH 196 L5 Modal Male NMNH NMNH 1354 L5 Modal Female NMNH
NMNH 235 L5 Modal Male NMNH NMNH 135R L5 Modal Female NMNH
NMNH 269 L5 Modal Male NMNH NMNH 1396 L5 Modal Female NMNH
NMNH 301R L5 Modal Male NMNH NMNH 1402 L5 Modal Female NMNH
NMNH 302R L5 Modal Male NMNH NMNH 1417R L5 Modal Female NMNH
NMNH 30R L5 Modal Male NMNH NMNH 146R L5 Modal Female NMNH
NMNH 331 L5 Modal Male NMNH NMNH 1482R L5 Modal Female NMNH
NMNH 424 L5 Modal Male NMNH NMNH 1563 L5 Modal Female NMNH
NMNH 465 L5 Modal Male NMNH NMNH 1599 L5 Modal Female NMNH
NMNH 477 L5 Modal Male NMNH NMNH 1617 L5 Modal Female NMNH
NMNH 509 L5 Modal Male NMNH NMNH 162R L5 Modal Female NMNH
NMNH 594 L5 Modal Male NMNH NMNH 330 L5 Modal Female NMNH
NMNH 595 L5 Modal Male NMNH NMNH 41R L5 Modal Female NMNH
NMNH 606 L5 Modal Male NMNH NMNH 568 L5 Modal Female NMNH
NMNH 62RR L5 Modal Male NMNH NMNH 627R L5 Modal Female NMNH
NMNH 675 L5 Modal Male NMNH NMNH 657R L5 Modal Female NMNH
NMNH 719 L5 Modal Male NMNH NMNH 729R L5 Modal Female NMNH

NMNH 847 L5 Modal Female NMNH  
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Table 3.1 continued . List of specimens in the study, number of vertebrae in lumbar region, sex, and collection

Specimen Lumbar 
Vertebrae Sex Collection Specimen Lumbar 

Vertebrae Sex Collection

HTH 0445 L6 Variant Male CMNH HTH 562 L4 Variant Male CMNH
HTH 1075 L6 Variant Male CMNH HTH 65 L4 Variant Male CMNH
HTH 1389 L6 Variant Male CMNH HTH 799 L4 Variant Male CMNH
HTH 1392 L6 Variant Male CMNH NMNH551 L4 Variant Male NMNH
HTH 1501 L6 Variant Male CMNH NMNH555 L4 Variant Male NMNH
HTH 2192 L6 Variant Male CMNH NMNH1529 L4 Variant Male NMNH
HTH 2409 L6 Variant Male CMNH HTH 1117 L4 Variant Male CMNH
HTH 2863 L6 Variant Male CMNH HTH 2298 L4 Variant Female CMNH
HTH 3230 L6 Variant Male CMNH HTH 886 L4 Variant Female CMNH
NMNH591 L6 Variant Male NMNH NMNH996 L4 Variant Female NMNH
NMNH608 L6 Variant Male NMNH NMNH1122 L4 Variant Female NMNH
NMNH619 L6 Variant Male NMNH NMNH1413 L4 Variant Female NMNH
NMNH645 L6 Variant Male NMNH NMNH1553 L4 Variant Female NMNH
NMNH654 L6 Variant Male NMNH NMNH151R L4 Variant Female NMNH
NMNH707 L6 Variant Male NMNH NMNH554R L4 Variant Female NMNH
NMNH971 L6 Variant Male NMNH
NMNH999 L6 Variant Male NMNH
NMNH1131 L6 Variant Male NMNH
NMNH111R L6 Variant Male NMNH
NMNH311R L6 Variant Male NMNH
HTH 1622 L6 Variant Female CMNH
NMNH455 L6 Variant Female NMNH
NMNH610 L6 Variant Female NMNH
NMNH880 L6 Variant Female NMNH
NMNH921 L6 Variant Female NMNH
NMNH970 L6 Variant Female NMNH
NMNH1119 L6 Variant Female NMNH
NMNH1120 L6 Variant Female NMNH
NMNH1222 L6 Variant Female NMNH
NMNH1523 L6 Variant Female NMNH
NMNH1594 L6 Variant Female NMNH
NMNH405R L6 Variant Female NMNH
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Table 3.2. Lumbar vertebral levels used in the Q-Mode
Principal Component Analysis
  Comparative                  Anatomical Level

Level Modal L4 Variant L6 Variant
L1 L1 L1 L1
L2 L2 L2 L2
Penultimate L4 L3 L5
Last L5 L4 L6  
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Table 3.3. Sexual dimorphism in Human Modal type lumbopelvic variables: magnitude and results of Wilcoxon Rank Sums test 1

Magnitude of sexual dimorphism (probability)
(n) Lumbar Level Sacrum

Variable (M,F) 1 2 3 4 5
Centrum wedging (59,54) - 5.245**** - 4.521**** - 2.664** - 3.498***  1.753 (ns)  
Centrum surface area (59,53) - 4.953**** - 4.272**** - 3.392*** - 2.279* - 0.962 (ns) - 2.823**
Centrum medio-lateral breadth (59,51) - 5.044**** - 4.506**** - 4.105**** - 3.484*** - 1.788 (ns) - 3.165**
Transverse process angle2 (55,45) - 0.383 (ns) - 0.489 (ns) - 1.004 (ns)  0.093 (ns) 0.882 (ns)
Transverse process length (55,45) - 1.219 (ns) - 3.303** - 2.800** - 0.795 (ns) 1.219 (ns)
Pedicle cross-sectional area (59,50) - 3.773*** - 3.773*** - 2.386** - 1.379 (ns) 0.318 (ns)
Prezygapophyseal surface area (59,53)   1.415 (ns)  1.673 (ns)  1.451 (ns)  0.670 (ns) 0.927 (ns) - 0.599 (ns)
Prezygapophyseal angle 2 (59,52) 2.080* 2.779** 4.088**** 2.134* 2.121* 2.053*
Interfacet breadth (59,51)  1.858 (ns)  1.253 (ns)  1.636 (ns)  0.384 (ns)  0.132 (ns)  -
Sacral body breadth (59,51)  -  -  -  -  -  4.771****

1 Two-tailed test of significance used. M, male; F, female; ns, P > 0.05. Some of these data were presented in Whitcome (1999). 
2 Raw variate 
Positive scores indicate that female mean exceeds male mean
Negative scores indicate that male mean exceeds female mean
* P  = 0.05.
** P  = 0.01.
*** P  = 0.001.
**** P  = 0.0001.  
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Table 3.4. Sexual dimorphism in Human L6 Variant type lumbopelvic variables: magnitude and results of Wilcoxon Rank Sums test 1

Magnitude of sexual dimorphism (probability)
(n) Lumbar Level Sacrum

Variable (M,F) 1 2 3 4 5 6
Centrum wedging (20,12) - 2.083* - 2.044* - 1.440 (ns) - 1.460 (ns) - 0.214 (ns) - 0.078 (ns)
Centrum surface area (20,12) - 2.199* - 1.888 (ns) - 1.538 (ns) - 1.285 (ns) - 0.623 (ns) - 0.136 (ns) 0.227 (ns)
Centrum medio-lateral breadth (20,12) - 5.044**** - 4.506**** - 4.105**** - 3.484*** - 1.788* - 1.788* 0.640 (ns)
Transverse process angle2 (20,12)   - 0.331 (ns)  0.249 (ns)  0.090 (ns) 0.641 (ns) 0.766 (ns)
Transverse process length (20,12)  - 2.261* - 1.926 (ns) - 0.472(ns) 0.391 (ns) - 0.237 (ns)
Pedicle cross-sectional area (20,12) 0.156 (ns) - 2.396** - 2.496** - 2.415** - 1.156 (ns) - 2.126*
Prezygapophyseal surface area (20,12)  - 0.876 (ns)  0.487 (ns)  1.109 (ns)  0.642 (ns) - 0.176 (ns) - 0.176 (ns) 3.056**
Prezygapophyseal angle 2 (20,12) 2.080* 2.779** 4.088**** 2.134* 2.121* 2.121*
Interfacet breadth (20,12) 2.086* 0.434 (ns) 0.000 (ns) -1.343 (ns) -1.384 (ns) -0.950 (ns)
Sacral body breadth (20,12) -  - -   - - - 3.311***

1 Two-tailed test of significance used. M, male; F, female; ns, P > 0.05. Some of these data were presented in Whitcome (1999). 
Positive scores indicate that female mean exceeds male mean
Negative scores indicate that male mean exceeds female mean
* P  = 0.05.
** P  = 0.01.
*** P  = 0.001.
**** P  = 0.0001.  
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Table 3.5. Sexual dimorphism in Human L4 Variant type lumbopelvic variables: magnitude and results of Wilcoxon Rank Sums test 1

Magnitude of sexual dimorphism (probability)
(n) Lumbar Level Sacrum

Variable (M,F) 1 2 3 4
Centrum wedging (7,8) - 2.488** - 1.794 (ns) - 0.984 (ns) - 1.678 (ns)  
Centrum surface area (7,8) - 2.604** - 2.141* - 1.562 (ns) - 0.637 (ns)  2.269*
Centrum medio-lateral breadth (7,8) - 2.951** - 2.488** - 2.141* - 1.215 (ns) - 1.976 (ns)
Transverse process angle2 (7,8) 0.943 (ns) 0.641 (ns) 0.517 (ns) 0.575 (ns)
Transverse process length (7,8)
Pedicle cross-sectional area (7,8) - 1.794 (ns) - 2.257* - 1.794 (ns) - 0.405 (ns)
Prezygapophyseal surface area (7,8)  - 0.794 (ns)  0.405 (ns)  0.752 (ns) - 1.794 (ns) 1.872 (ns)
Prezygapophyseal angle 2 (7,8) - 0.523 (ns) - 0.870 (ns) - 0.195 (ns) 0.649 (ns) - 0.000 (ns)
Interfacet breadth (7,8) 0.868 (ns) - 0.174 (ns) - 0.058 (ns) - 0.058 (ns)
Sacral body breadth (7,8) - - - - - 1.537 (ns)

1 Two-tailed test of significance used. M, male; F, female; ns, P > 0.05. 
Positive scores indicate that female mean exceeds male mean
Negative scores indicate that male mean exceeds female mean
* P  = 0.05.
** P  = 0.01.
*** P  = 0.001.
**** P  = 0.0001.
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Table 3.6. Lumbar vertebral wedging angle in degrees for human Modal, L4 variant and 
L6 variant by sex, means reported with (standard deviation).

Female Male  
Vertebral L6 Variant Modal L4 Variant L6 Variant Modal L4 Variant
Level  1 n = 12 n = 59 n = 8 n = 20 n = 59 n = 7

a 3.55 * 5.57  
(2.07) (2.73)

b 1.89 * 2.21 *** 3.54 4.26
(2.62) (1.83) (1.66) (1.86)

c -0.33 0.09 *** 1.2 * 1.1 2.42 3.32
(2.18) (2.46) (1.54) (2.90) (2.30) (1.50)

d -2.25 -1.17 * -0.77 -0.46 0.15 1.87
(2.81) (2.46) (2.22) (2.48) (2.47) (2.48)

e -2.81 -3.17 ** -2.5 -2.56 -1.60 -1.25
(2.48) (2.19) (2.21) (2.04) (2.42) (2.78)

f -7.56 -5.54 -7.15 -7.39 -6.65 -3.41
(2.75) (2.96) (1.24) (2.35) (2.88) (1.32)

 
   Vertebral Level1: levels are listed in order from cranialmost to caudalmost position.
   Boldface indicates significant result. Wilcoxon Rank Sums Test, Bonferroni adjusted.
  * indicates P < 0.01, ** indicates P < 0.001, *** indicates P < 0.0001.
   Positive angles are kyphotic. Negative angles are lordotic. Vertebrae are transitional, 
   neither kyphotic not lordotic, when -0.5° > angle < 0.5°.
   Lordotic vetebral series enclosed by boxes.



 142

Table 3.7a. Spearman's correlation coefficients (rs) between lumbar
centrum articular area and pedicle cross-sectional area 1 in human
modal, reported by sex

 Male Female
Vertebral Level rs (probability) rs (probability)

L1  0.1652 (P  = 0.2111)  0.3112 (P  = 0.0278)
L2  0.3033 (P  = 0.0195)  0.3145 (P  = 0.0261)
L3  0.3411 (P  = 0.0076)  0.4974 (P  = 0.0002)
L4  0.3489 (P  = 0.0068)  0.3019 (P  = 0.0313)
L5  0.2413 (P  = 0.0656)  0.3512 (P  = 0.0115)

    1 Two-tailed test of significance used, pairwise correlation

Table 3.7b. Spearman's correlation coefficients (rs) between lumbar
vertebral wedging and centrum surface area 1 in human modal, 
reported by sex

 Male Female
Vertebral Level rs (probability) rs (probability)

L1  0.0859 (P  = 0.5179)  0.2299 (P  = 0.0977)
L2 -0.0686 (P  = 0.6056)  0.0969 (P  = 0.4899)
L3  0.1863 (P  = 0.1578)  0.1505 (P  = 0.2822)
L4  0.0936 (P  = 0.4809)  0.0094 (P  = 0.9470)
L5  -0.1463 (P  = 0.2687)  0.0638 (P  = 0.6500)

    1 Two-tailed test of significance used, pairwise correlation

Table 3.7c. Spearman's correlation coefficients (rs) between lumbar
vertebral weding and pedicle cross-sectional area 1 in human modal,
reported by sex

 Male Female
Vertebral Level rs (probability) rs (probability)

L1  0.0171 (P  = 0.5894)  0.3578 (P  = 0.0107)
L2  -0.0940 (P  = 0.4878)  0.1398 (P  = 0.3330)
L3  0.1214 (P  = 0.3597)  0.1897 (P  = 0.2044)
L4 - 0.0807 (P  = 0.5437)  0.1547 (P  = 0.2785)
L5  0.0433(P  = 0.7390)  0.1874 (P  = 0.1878)

    1 Two-tailed test of significance used, pairwise correlation

Table 3.7d. Spearman's correlation coefficients (rs) between lumbar
vertebral wedging and prezygapophyseal area 1 in human modal,
reported by sex

 Male Female
Vertebral Level rs (probability) rs (probability)

L1  0.1234 (P  = 0.3518) 0.3301 (P = 0.0169)
L2  0.1560 (P  = 0.2382)  -0.1600 (P  = 0.2479)
L3  0.0273 (P  = 0.8372)  -0.0608 (P  = 0.6653)
L4  0.0183 (P  = 0.8907)  0.1545 (P  = 0.2647)
L5 -0.0726 (P  = 0.5845)  -0.0244 (P  = 0.8611)

    1 Two-tailed test of significance used, pairwise correlation
 



 143

 

 

 

 

 

Table 3.8. Sacral auricular area, mean and (standard deviation) by sex, raw area and size-adjusted
geomean area 1 in the three human lumbar vertebral number morphotypes

 Modal L6 Variant L4 Variant
Auricular variable mean area (std dev) mean area (std dev) mean area (std dev)

Raw area 2 male  1282.53   (222.2)  1269.90   (134.9)  1269.53   (264.4)
 female  1256.58   (196.7)  1201.87   (197.2)  1194.75   (258.0)

Size-adjusted area 3 male     1.872   (0.162)     1.680   (0.141)     1.830   (0.299)
female     1.999   (0.182)     1.741   (0.109)     1.882   (0.208)

 p value < 0.0017 = 0.2005 = 0.5309

    1 Two-tailed test of significance used, pairwise correlation
   2  Raw area reported in mm2

   3  Size-adjusted area unitless,                 /geomean
     Modal n: male = 53, female = 49. L6 variant n: male = 20, female = 12. L4 variant n: male = 5, female = 5

2 aurarea
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Table 3.9. Significant variables by their respective vertebral levels and relevant sex in the modal sample 1

Female Male 

Sacrum 
Aricular 
Area

Sacrum 
Breadth

Prezygapophyseal 
Obliquity

Vertebral 
Wedging

Vertebral level Centrum 
Surface Area

Pedicle Cross-
Sectional Area

Transverse 
Process Length

L1

L2

L3

L4

L5

Sacrum

1  Arrows indicate significant results and denote which sex presents the larger value. Arrow span includes vertebral levels
for which significant results were obtained.  
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Two-Pillar Spine Model

(Pal and Routal 1986, 1987)            

• Dorsal pillar
zygapophyses

• Ventral pillar
vertebral bodies

 
                         Figure 3.1.  Pair of adjacent lumbar vertebrae, dorsolateral view  

              from right, in anatomical position. Arrows indicate directionality  
              of the two biomechanical pillars. Arrow 1: ventral pillar comprised  

 of vertebral bodies. Arrow 2: dorsal pillar comprised of laminar  
 structures and zygapophyses.   
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Vertebral Wedging
ventral wedging

dorsal wedging

kyphosis

lordosis

 
 

   Figure 3.2. Vertebral body wedging results from differing heights of  
the ventral and dorsal margins of the centrum. Ventral wedging results  
from reduced ventral length relative to dorsal length and characterizes  
the thoracic spinal region, generating kyphosis. Dorsal wedging results  
from increased ventral length relative to dorsal length and characterizes  
the lordotic region of the spine, generating lumbar lordosis. Proportional  
loading shifts between the two pillars as a result of both bony  
morphology and movements initiated along the vertebral column. 
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CAD

CVHCDH wedging angle

wedging angle = 2  arc tan ([(CDH-CVH)/2]/APL)

PL

IFD

CMD
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Figure 3.3.  Morphometric measurements. a.) Lumbar vertebra. Vertebral body: CAD - 
Anteroposterior length of centrum cranial surface at midline; CMD - Maximum 
mediolateral width of centrum cranial surface; CVH - Craniocaudal height of centrum at 
ventral midline; CDH - Craniocaudal height of centrum at dorsal midline. Pedicle: PL - 
Minimum craniocaudal length of pedicle; PW - Minimum mediolateral length of pedicle. 
Transverse process: TPL - Dorsal distance from base of transverse process to process tip; 
ATP - Angle of transverse process taken from centrum midline to process tip. 
Zygapophyses: IFD - Linear distance between the most lateral reach of paired 
prezygapophyses; POB - Angle of prezygapophysis from centrum midline to lateral reach 
of facet; SCC -  Craniocaudal diameter of prezygapophyseal facet; SML - Mediolateral 
diameter of prezygapophyseal facet; SOC - Oblique craniocaudal diameter of 
prezygapophyseal facet; SOM - Oblique mediolateral diameter of prezygapophyseal 
facet. b.) Sacrum: SAD -  Anteroposterior length of centrum cranial surface at midline; 
SMD - Maximum mediolateral width of centrum cranial surface; SB - Maximum 
mediolateral width on ventral surface; SAO - Angle of sacral prezygapophysis from 
centrum midline to lateral reach of facet; AA - Area of the auricular surface computed 
digitally. c.) Innominate: IL –Maximum craniocaudal length of the ilium; IB - Maximum 
mediolateral breadth of the ilium; ICB - Maximum curvilinear length of the mediolateral 
margin of the iliac crest.  

 

 

 

a.  

b.  

c. 

AA 
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Figure 3.4. Plot of first two principal components from the Q-Mode Principal 
Component Analysis of the variables.   
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                                    Figure 3.5. Plot of PC1 and PC2 of R-mode principal component                 
                                       analysis of three human groups: modal, L4 variant and L6 variant.  
                                       ∗ L6 variant, □ L4 variant, ● modal.  
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                               Figure 3.6. Plot of PC2 and PC3 of R-mode principal component 
       analysis of three human groups: modal. L4 variant and L6 variant.   

                   ∗ L6 variant, □ L4 variant, ● modal.  



 150

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 .5 1 1.5 2 2.5

residual size:  large pelvis relative to vertebral size

2923

PC1
47% variance – no sex separation

2120

P
C

2
13

%
 v

ar
ia

nc
e

 

Figure 3.7. Plot of PC1 and PC2 for human modal group. □ female, ● male. 
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Figure 3.8. Plot of PC 2 and PC3 human modal group. □ female, ● male.
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Figure 3.9. PC1 and PC2 human L6 variant group. □ female, ● male. 
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Figure 3.10. PC 2 and PC3 human L6 variant group. □ female, ● male. 
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Figure 3.11. PC 1 and PC2 human L4 variant group. □ female, ● male. 
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Figure 3.12. PC2 and PC3 human L4 variant group. □ female, ● male. 
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      Figure 3.13. Radius of lumbar curvature in human modal males (n = 59),  
      derived from mean values of vertebral dorsal height, ventral height  
      and antero-posterior diameter. 
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    Figure 3.14. Radius of lumbar curvature in human modal females (n = 59),  
    derived from  mean values of vertebral dorsal height, ventral height and  
    antero-posterior diameter. 
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      Figure 3.15. Radius of lumbar curvature in L6 variant males (n = 20),  
      derived from mean values of vertebral dorsal height, ventral height        
      and antero-posterior diameter. 
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      Figure 3.16. Radius of lumbar curvature in L6 variant females (n = 12),  
      derived from mean values of vertebral dorsal height, ventral height  
      and antero-posterior diameter. 
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      Figure 3.17. Radius of lumbar curvature in L4 variant males (n = 7),  
      derived from mean values of vertebral dorsal height, ventral height        
      and antero-posterior diameter. 
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          Figure 3.18. Radius of lumbar curvature in L4 variant females (n = 8),  
          derived from mean values of vertebral dorsal height, ventral height        
          and antero-posterior diameter. 
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Figure 3.19. Reduced major axis regression of modal human auricular  
area on geomean with 95% confidence ellipse. Slope of isometry is 2.0.  
Slope of the regression line is 2.106, approximating isometry. The confidence   
intervals for the slope do include true isometry. ■ female, ● male. 
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Figure 3.20. Distribution and mean comparisons of modal human  
auricular area, geomean adjusted for overall body size difference  
between males and females.  Diamonds represent mean (center line)  
and 95% confidence intervals (apices).  Box midline is total response 
sample mean. Short lines in data point columns represent one  
standard deviation.  
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Chapter 4: Comparative Lumbopelvic Sexual Dimorphism 

INTRODUCTION  

A readily apparent yet unexplored factor in spinal loading derives from a 

dichotomy in reproductive physiology, one that cleaves two distinct loading groups 

within all primate species. Females grow a fetus, incrementally over time, incrementally 

gram by gram. In many primate species, female reproductive success requires a relatively 

long period of gestation (Ardito, 1976; Kiltie, 1982; Little, 1989). This physiological 

phenomenon holds implications for the biomechanics of posture and locomotion that are 

unique to females. During the protracted period of primate gestation, the fetus and its 

supporting soft tissues increase maternal body mass and alter maternal mass distribution, 

concentrating load in the abdominal cavity (Abitbol, 1996; Gilleard et al., 1996). In both 

pronograde and orthograde primates, those that are quadrupedal and those that frequently 

maintain an upright position, respectively, the ventrodorsal dimension of the maternal 

abdomen offers the greatest potential for expansion in accommodation of increasing fetal 

mass. However, the functional relevance of the abdominal wall differs obstetrically in 

pronogrady and orthogrady. With respect to the former, the abdominal wall and rectus 

muscles provide the major support for fetal load (Abitbol, 1993, 1996), and the vertical 

force generated by fetal load transfers to and is largely constrained by abdominal wall 

integrity. And although the maternal center of mass shifts ventrally as a result of 

ventrodorsal abdominal expansion, it is not assumed in pronograde contexts to translate 

in a fore-aft direction beyond the usual line of gravity.  

In contrast, obstetric load in orthograde postures and locomotion is resisted not 

only by the maternal abdominal wall but also by the musculoskeletal structure of the 

pelvic floor (Elftman, 1932; Abitbol, 1993, 1996; Gillard et al., 1996). The vertical force 

generated by orthograde obstetric load increases compression through the axial skeleton, 

particularly the vertebrae and pelvis. Furthermore, while the maternal center of mass 
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translates ventrally, its progression is anterior to the supporting structures, and therefore 

increases bending stress on the lumbopelvic complex. In light of the reproductive-based 

loading exerted on the female skeleton, functionally related differences in primate male 

and female lumbopelvic morphology are expected. Because the magnitude of loading 

forces through the vertebrae and pelvis are likely to be greater in orthograde contexts than 

in pronograde contexts, primates species that engage in a preponderance of upright 

positional behaviors are expected to express a greater degree of lumbopelvic sexual 

dimorphism in features related to load resistance than those of pronograde habits.  

All primate species express some degree of sexual dimorphism in one or more 

dimension of the pelvis (Straus, 1927; Washburn, 1948; Schultz, 1949; Black, 1970; 

Gingerich, 1972; Leutenegger, 1973, 1987; Zuckerman et al., 1973; Steudel, 1981a, 

1981b; Berge, 1984; Trinkaus, 1984; Tague and Lovejoy, 186; Rosenberg, 1986, 1988, 

1992; Trevathan, 1987, 1988; Tague, 1989, 1990, 1991, 1993, 1995; Berge, 1990; 

Pissinatti and Dasilva, 1992; LaVelle, 1995; Ruff, 1995; Stoller, 1995; Hager, 1996, 

1996; Walrath and Glantz, 1996) (but see Leutenegger, 1973 for Perodicticus potto). The 

most extensive pelvic research has been conducted on the pelvic canal, or true pelvis, as 

considerable attention has been afforded to parturitional events as the fundamental 

selection pressure on female pelvic morphology (i.e., Leutenegger, 1974; Lindberg, 1982; 

Tague, 1986; Abitbol, 1987a; Trevathan, 1988, 1996; Rosenberg, 1992; Stoller, 1995, 

Rosenberg and Trevathan, 1996). Failure of the fetus to navigate the birth canal 

terminates pregnancy in primates (Stoller, 1995), and without effective intervention, 

induces death of the fetus and mother. Therefore, the relationship between fetal body and 

maternal pelvic dimensions is critical to female reproductive success.  

However, it is important to note that the obstetric events of female reproductive 

success are not limited to parturition. Regardless of how definitive parturitional success is 

to fitness, the reproductive events preceding parturition must execute properly to advance 

pregnancy to successful term. While traditionally we have not acknowledged the 
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biomechanical challenges of reproductive load on the posture and locomotion of females, 

our broad and detailed understanding of vertebral and pelvic functional morphology 

provides a foundation on which to investigate a potential relationship between 

lumbopelvic sexual dimorphism and obstetric load.  

Primates as an order present a diverse range of positional behaviors. Among them, 

arboreal and terrestrial quadrupedalism are performed with the long axis of the body held 

horizontally, in a positional alignment referred to as pronograde. Other primate positional 

behaviors such as vertical clinging and leaping and below branch suspension typically 

place the body’s long axis in a vertical orientation, along the line of gravity. Positional 

behaviors performed in a vertical context are known as orthograde. Even among those 

primate species that travel exclusively in a pronograde quadrupedal manner, feeding and 

resting behaviors are often performed in an orthograde or semi-orthograde posture (i.e., 

Wrangham, 1980; Gebo and Chapman, 1995; Hunt, 1996; Walker and Ayres, 1996; 

Youlatos, 1999; Stanford, 2006). Therefore, all primates engage in some degree of 

orthogrady (Slijper, 1946; Rose, 1975). Those committed to it, such as tarsiers (Niemitz, 

1984; Dagosto et al., 2001), indrids (Dagosto, 1995), gibbons (Vereecke et al., 2005) and 

humans, display a wide range of body sizes, locomotor modes and body proportions.  

The concepts of orthogrady and pronogrady underscore the varied biomechanical 

challenges different axial orientations impose. Erect postures characterizing orthogrady 

generate vectors with strong vertical components (Preuschoft et al., 1979). In large part, 

these force vectors are received and transferred from the upper body to the lower body 

along the vertebrae of the flexible spine and the fused sacrum (Kapjandji, 1982; Pal and 

Routal, 1986, 1987; Pal, 1989; Shapiro, 1991). Many researchers have noted that 

variation in vertebral size and shape reflects differences in function of the lumbosacral 

spine and positional behaviors (Rockwell et al., 1938; Schultz, 1953; Ankel, 1972; Rose, 

1975; Halpert et al., 1987; Shapiro, 1991, 1993a, 1993b, 1995, 2002; Sanders, 1995, 

1998; Johnson and Shapiro, 1998; Shapiro and Simons, 2002; Chen et al., 2005). Primate 
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species that engage in orthograde positional behaviors present a suite of vertebral 

characteristics that differ from those of habitually pronograde primates. Their vertebral 

bodies are relatively short, as is lumbar regional length overall (Rose, 1975; Shapiro, 

1991, 1995; Sanders, 1995; Johnson and Shapiro 1998; Shapiro and Simons, 2002), and 

the processes to which spinal muscles attach, both transverse and spinous, are oriented 

more dorsally (Shapiro, 1991, 1995; Johnson and Shapiro 1998; Shapiro and Simons, 

2002). For example, distinctions in relative proportions of lumbar vertebral bodies 

between cercopithecoids and apes, between lorids and cheirogaleids, and between 

generalized lemurs and indrids, correspond with the importance of orthograde postures 

(Schultz, 1953; Ankel, 1967, 1972; Rose, 1975; Shapiro, 1993a, 1995; Sanders and 

Bodenbender, 1994; Sanders, 1995; Johnson and Shapiro, 1998; Shapiro and Simons, 

2002). For instance, although the gibbon, a slightly built diminutive ape is as small as 

some cercopithecines, the vertebrae of the gibbon are relatively wider and shorter than 

those of the baboon, a large-bodied cercopithecine monkey (Rose, 1975; Sanders, 1995). 

By comparison the baboon, a terrestrial quadruped, has relatively larger vertebral 

dimensions than the domestic greyhound, a similarly sized nonprimate terrestrial 

quadruped (Chen, 2005). The behavioral inference from such comparison is that the 

baboon like all primates engages in a greater proportion of orthograde or semi-orthograde 

climbing and feeding behaviors than do many other mammals (Slijper, 1946; Rose, 

1975).  

The size and orientation of muscle attachment sites on the vertebrae of orthograde 

primates provide efficient leverage to counter large bending moments inherent in an erect 

upper body (Slijper, 1946; Benton, 1967, 1974). Reduction in vertebral length resists 

bending forces that are further exacerbated by angular excursions of the upper body over 

the sacral support base (Slijper, 1946; Badoux, 1974; Rose, 1975). 

This morphometric analysis aims to identify sexual dimorphism in load bearing 

structures of the lumbopelvic complex and to test the hypothesis that sexual dimorphism, 
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at least in part, represents female adaptations to the biomechanical risks associated with 

orthograde fetal load. Specifically, the prediction in this analysis is: The degree of 

lumbopelvic sexual dimorphism will be relatively greater in orthograde primate taxa than 

in pronograde primate taxa. 

MATERIALS AND METHODS 

Sample 

The primate sample is comprised of 141 individuals from 9 species (Table 4.1). A 

similar analysis was performed exclusively on humans (see Chapter 3). To identify to the 

presence of lumbopelvic sexual dimorphism in nonhuman primates that differ in 

preferred trunk orientation, lumbar and sacral vertebrae were contrasted by sex within 

three orthograde, four semi-orthograde, and two pronograde species (Table 4.2). The 

taxonomic sampling is diverse, representing varied locomotor behaviors, diverse 

phylogenetic groups and a range of adult body sizes. The importance of targeting 

geographically and taxonomically coherent samples in studies of sexual dimorphism has 

been emphasized by several authors (e.g., Leutenegger and Larson, 1985; Plavcan and 

van Schaik, 1997, Lague, 2003), who note extensive interpopulational variation in the 

degree of body mass dimorphism within some species. When possible, samples in this 

study were restricted to geographically local conspecifics. The Ateles, Propithecus and 

Indri sample groups were not locally constrained due to the small number of available 

sex-certain specimens. For all taxa, only wild collected specimens were included. 

Behavioral bases for positional groupings 

Hylobates lar is a specialized brachiator of the dense tropical forest of SE Asia 

where it employs a variety of locomotor modes including leaping, bipedal walking, 

running, and scrambling (Carpenter, 1964; Ellefson, 1967; Fleagle, 1976; Gittins, 1983; 

Hollihn, 1984; Cannon and Leighton, 1994; Satie and Alfred, 2002, Vereecke et al., 

2005). The majority of these behaviors are performed with the torso inclined vertically, 
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10-12% of which derive from arboreal bipedal walking (Vereecke et al., 2005). 

Therefore, Hylobates lar was considered orthograde in this study. 

Indrids are Malagasy vertical clingers and leapers of relatively large body size 

(Gebo, 1987; Dagosto, 1995; Warren & Crompton, 1997). They utilize ricochetal tree-to-

tree leaping in which one leap is rapidly followed by another (Petter, 1962; Oxnard et al., 

1990), and they travel terrestrially via large hindlimb-powered bounds (Petter, 1962; 

Walker, 1979; Gebo, 1987; Terranova, 1995, 1996; Demes et al., 1999).  Like all vertical 

clinging and leaping primates, Indri indri and Propithecus verreauxi maintain vertical 

trunk positions in the majority of their postural and locomotor behaviors, and were 

therefore included among the orthograde taxa in the analyses. 

The great apes present a suite of positional adaptations that facilitate efficient 

terrestrial and arboreal behaviors. Orangutans are the most arboreal of the great apes 

(Knott, 1999), and as much as 80% of their travel modes are performed in forelimb 

suspension, typically with the torso held vertically below the supporting forelimbs (Cant, 

1987).  Whether traveling arboreally or terrestrially, both chimpanzees and gorillas 

remain anti-pronograde while climbing, suspending or knuckle-walking (see Stern, 1975 

for term “anti-pronograde”; Remis, 1995; Isler, 2005). Gorilla gorilla gaueri and Pan 

troglodytes schweinfurthii are included in this study, along with Pongo pygmaeus, as 

semi-orthograde primates.  

Ateles, a large-bodied suspensory platyrrhine, is known to move rapidly through 

the forest by arm-swinging, climbing and leaping (Fleagle and Mittermeier, 1976; 

Mittermeier, 1978; Cant, 1986; Fontaine, 1990; Johnson and Shapiro, 1998). Members of 

this genus spend nearly one third of their feeding time in forelimb suspension (Bergeson, 

1996; Johnson and Shapiro, 1998; Cant et al., 2001). When traveling, Ateles geoffroyi 

frequently utilizes arboreal quadrupedalism. Mittermeier (1979) reported just 25% 

quadrupedalism in A. geoffroyi (Barro, Panama) locomotor bouts. Fontaine (1970) 

observed 50% locomotor quadrupedalism studying a population geographically 
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approximate to the group recorded by Mittermeier (1979), also in Barro, Panama. Cant 

(1986) reported that 52% of Ateles geoffroyi (Tikal, Guatemala) were quadrupedal. Based 

on the substantial frequency of quadrupedal locomotion in the positional repertoire of 

Ateles geoffroyi, the species was treated as a semi-orthograde primate in the analyses, 

along with the great apes. 

Alouatta seniculus travels predominantly in an arboreal quadrupedal mode 

(Altmann, 1959; Richard, 1970; Cant, 1986). Nearly 80% of this platyrrhine’s arboreal 

travel is performed in slow quadrupedal progression (Fleagle and Mittermeier, 1980). 

Macaca fascicularis is a highly arboreal quadrupedal cercopithecoid (Rodman, 1979; 

Cant, 1988). These two species represent the pronograde positional mode in the analyses. 

Sample Size 

Sample size by sex varied across taxa from as many as sixteen individuals to as 

few as two (Table 4.1). Robust samples were planned for all taxa according to available 

collection records. Once pulled, many of the designated specimens proved to be 

incomplete, immature, and/or of questionable sex assignment. Generally, within primate 

osteological collections, Propithecus verreauxi and Indri indri are relatively under-

represented. Among them, many specimens include only craniodental material. Where 

postcranial elements are present, long bones predominate and vertebrae and pelves are 

scarce. Often where vertebrae are available, regional elements of the vertebral column are 

missing, and lumbar regions are incomplete.  

Sex Determination 

Only specimens of curation-recorded sex were included in the study. Specimen 

tags and field records were reviewed for corroboration of sex assignment when available. 

No attempt was made to identify sex from either comparative body size or canine size 

alone. Where museum records failed to indicate sex or where multiple records differed, 

specimens were precluded from the analyses.  
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Skeletal age 

Samples were comprised of adult specimens. Collection records initially 

determined skeletal maturity. Specimens noted as infant, juvenile or subadult were 

excluded. In some cases, researcher-observed skeletal maturation contradicted reported 

developmental status. Purported adults presenting any unfused epiphyses were omitted. 

Scoliotic individuals were rejected, as were those with visible skeletal trauma 

(other than lead shot clearly associated with the field acquisition event), osteophytic 

deposition or visible bone remodeling.  

Lumbar vertebral identification 

 As with the human specimens reported in Chapter 3, the lumbar vertebrae of 

nonhuman primates were defined according to their zygapophyseal orientation 

(Washburn and Buettner-Janusch, 1952; Shapiro, 1993a). This facet-based designation 

differs from the widely used non rib-bearing alternative (Schultz, 1930) in its functional 

emphasis on the range of motion between vertebral elements; type and range of 

movement in the lumbar column are largely influenced by facet direction. The dorso-

medial and ventro-lateral orientations of lumbar superior and inferior facets, respectively, 

guide sagittal flexion and extension while resisting both rotation (Rockwell et al., 1938) 

and ventral displacement (Latimer and Ward, 1993; Bogduk, 2005).   

Spinal loading model 

Functional implications of lumbopelvic sexual dimorphism were explored in the 

context of a two-pillar spine human model conceptualized by Pal and Routal (1986, 

1987). According to the model, direction and magnitude of spinal loads are channeled 

through two pillars, a ventral pillar comprised of vertebral centra and intervertebral disks 

and a dorsal pillar formed by laminae and zygapophyses (Figure 4.4). Pedicles function 

in the model system as conduits of force distribution between the two pillars. 

Proportional loading shifts between the two pillars as a result of both static morphology, 
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particularly centrum wedging (Figure 4.5), and movements initiated along the vertebral 

column. The model is predicated on a functional relationship between structural size and 

loading capacity. The ventrally located vertebral centra form the major load bearing pillar 

while the neural arch structures of the dorsal pillar resist forces applied by epaxial 

muscles and additionally bear load directed dorsally through static configuration and 

segmental movement.   

While the model presents a biomechanical explanation of force distribution in the 

human sinusoidal column, its utility extends to weight bearing properties in all primates 

(Shapiro, 1993a; Sanders, 1995, 1998; Sanders and Bodenbender, 1994), and has been 

applied to the study of orthograde mammals (Chen et al., 2005).  

Lumbopelvic Osteological Measurements 

 Predictions of lumbopelvic sexual dimorphism in nonhuman primates were tested 

on fourteen vertebral variables at each lumbar vertebral level and four sacral variables, 

chosen to define the relative size and shape of the lumbar vertebrae and pelvis. The 

structures quantified receive and transfer postural and locomotor forces generated within 

the lumbopelvic complex, and are therefore subject to biomechanical stresses introduced 

by fetal load. Variables are illustrated and anatomically defined in Figure 4.1. Data 

collection followed the protocol established for human specimens as reported in Chapter 

3. 

Lumbar Vertebrae (Figure 4.1a):  

Vertebral Body: The vertebral body (centrum) is the primary load bearing structure of the 

vertebral column (Bogduk, 2005). Vertebral joint surfaces are generally proportional to 

the forces they transmit (Pal and Routal, 1986, 1987; Pal, 1989). If sexes differ in the 

proportion of load transmitted along the lumbar vertebra and sacrum, endplate 

dimensions relative to body size are expected to be larger in the more heavily loaded sex. 

Among the orthograde taxa females are predicted to have relatively larger vertebral 

surface areas than those of males, in accordance with vertical obstetric load. Lumbar 



  

 176

surface area was calculated from the cranial centrum endplate dimensions as follows: 

(CMD/2) x (CAD/2) x 3.1416.  Sacral surface area was similarly derived as: (SMD/2) x 

(SAD/2) x 3.1416, based on the formula for area of an ellipse. 

Vertebral wedging contributes to the bony curvature of the lumbar spine. 

Cunningham (1886) and Schultz (1961) suggested that humans might not be alone in the 

presence of a marked lumbar curve. In a comparative anthropoid sample Rose (1975) 

found significant lordotic wedging in gorillas and humans, although the gorilla lordosis 

occurred only at the last lumbar level. Sanders (1995) found a similar gorilla trend, 

although the result was not statistically significant. As wedging relates directly to the 

orientation of the trunk and positional behaviors (Cunningham, 1886; Rose, 1975; 

Clauser, 1980; Sanders, 1995), orthograde females were predicted to present relatively 

greater ventral wedging than were males. Linear measurements were analyzed separately 

then used to calculate an angular variable of vertebral body wedging following 

Digiovanni et al., (1989):  

 

Wedging angle = 2 arctangent (((CDH-CVH)/2)/CAD) 

 

Positive angles were kyphotic while negative angles were lordotic. A vertebra was 

determined to be neutral, neither kyphotic nor lordotic, when its value fell within the 

range 0.5 to -0.5 degrees.  

Pedicle: The vertebral pedicle provides structural continuity between the centrum 

and the neural arch and is subject to varying magnitudes of bending stress under different 

spinal loading regimes (Davis, 1961; Pal and Routal, 1986, 1987; Sanders, 1995, 1998; 

Shapiro, 1991, 1993a, 1995). Pedicular sexual dimorphism is characteristic of humans 

(Chapter 3). Male pedicles present significantly greater relative cross-sectional area at the 

first, second and third lumbar levels than do females. Differences are not significant at 

lumbar levels four and five.  The change along the human vertebral column most likely 
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accords with the more kyphotic vertebral body wedging in males at the three cranialmost 

lumbar vertebrae. Bogduk (2005) emphasizes the role of pedicles in resistance to bending 

forces exerted by spinal muscles attached to dorsal elements. More muscle effort may be 

required to generate extension of the lumbar spine in the region of the kyphotic vertebrae 

than in the lordotic vertebrae.  Since the human male lumbar region is more kyphotic than 

that of human females at lumbar levels L1-L3, their relatively large pedicles may reflect 

this resistance to muscle action. While lumbar lordosis is a bipedal positional mechanism 

and not expected to characterize the comparative taxa in this analysis, any significant 

difference in vertebral wedging was expected to impact pedicle morphology. Since 

females experience obstetric spinal loading and males do not, greater pedicle robusticity 

in the form of cross-sectional area was predicted in females, as resistance to stronger 

loading forces that would shift between the spinal pillars during flexion and extension.  

Pedicle cross-sectional area was calculated as PL x PW. 

Transverse Process: Transverse processes provide attachment sites for many of the spinal 

muscles that contribute to extension of the back.  Females of the orthograde taxa are 

expected to present larger and more dorsally oriented processes to facilitate upper body 

stability under conditions of obstetric load.   

Zygapophyses: Zygapophyses are secondary load bearing structures.  These synovial 

joints guide intervertebral movements and support a proportionately greater load under 

conditions of acute lumbar lordosis (Adams and Hutton, 1980; Pal and Routal, 1987).  

Orientation of the zygapophyseal facets plays a role in resistance to vertebral 

shear stress and are expected to be relatively larger for load bearing and more oblique in 

females, as added resistance to shear stress that would be produced by fetal load. Loading 

comparisons between sexes were performed on zygapophyseal area according to the 

formula: [(SCC/2 + SOM/2)/2] x [(SML/2) + (SOC/2)/2] x 3.1416 

The angle of prezygapophyseal obliquity (POB) was taken to investigate potential 

range of motion in spinal rotation and flexion/extension as well as resistance to ventral 
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shear stress.  The latter is exemplified in humans whose sequential lumbar vertebrae bear 

prezygapophyses increasingly more coronal in their facet orientation (Odgers, 1933; 

Shapiro, 1991; Latimer and Ward, 1993). 

Sacrum (Figure 4.1b): 

 Sacral Body: The vertebral body and prezygapophyses of the first sacral vertebra 

function similarly to those of the lumbar vertebrae. The medio-lateral expanse of the 

sacral body provides, in part, attachment sites for muscles controlling the trunk. Where 

extensive erector spinae muscles benefit torso stability, a relatively broad sacrum is 

predicted. Therefore, orthograde females are predicted to have relatively broader sacra 

than males. The sacrum in its dual role as the axial load bearing base of the spine and the 

dorsal bony continuum of the pelvic girdle is expected to have greater relative breadth in 

females than in males. The latter functional role is relevant to primate taxa in which the 

fetal body dimensions closely approximate the maternal pelvic canal. For instance, the 

female macaque pelvis is proportional to relative neonate size while the maternal pelvis is 

roomy relative to fetal size in each of the great apes (Schultz, 1949). Greater relative 

breadth is predicted in the female macaque rather than the male due to shape selection 

pressure for successful delivery of the neonate, while in the great apes, a relatively broad 

female sacrum would not be predicted as an accommodation to fetal size, since great apes 

give birth to relatively small neonates (Schultz, 1949). Rather, female great ape sacra are 

predicted to be relatively wider than male sacra due to the increased magnitude of spinal 

forces in semi-orthograde obstetric load. Further, the obstetric load functional prediction 

extends to the auricular area across which torso-hindlimb loads transfer. Sacral auricular 

area was calculated digitally from scaled photographs using JImage areal software 

(version 1.34n, NIH, USA).   

Size standardization  

Geometric mean:  Many of the sampled species are sexually dimorphic in body 

size. Without size standardization of the variates, tests of lumbopelvic sexual dimorphism 
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might identify nothing more than gross size differences or fail to identify shape 

difference because they are masked by body size. For instance, if the prezygapophyses of 

females are larger relative to body size than are those of conspecific males and the 

species in question is sexually dimorphic in body size such that males are markedly larger 

than females, the analyses of raw variates may confound the two factors and generate a 

result that dilutes or exacerbates the phenomena.  Size standardization of the data was 

achieved through division of the raw linear variates by the scale-free geometric mean of 

linear variables for each specimen drawn from four lumbar levels: the first (L1), the 

second (L2), the penultimate (PL) and the last (LL) (Mosimann, 1970; Darroch and 

Mosimann, 1985).  In this analysis, the geometric mean was constructed as the 48th root 

of the product of the linear measures of the lumbar vertebrae (see linear variables in 

Figure 4.1a) 

Validity of geometric mean: To assess the validity of the geometric mean as a 

specimen-specific proxy for gross size, reduced major axis regression of the species’ 

geomean on reported species’ body mass (Smith and Jungers, 1997) is shown in Figure 

4.2. The 0.3 slope of the regression line is isometric, as predicted for a regression of 

linear dimension on cubic volume. Among the sampled taxa, there is good agreement 

between the geometric mean of lumbar vertebral variables and published body mass.  

Therefore, results of this study are easily referenced to other studies drawn from mean 

body mass reported in Smith and Jungers (1997). A single mean point representing male 

Gorilla gorilla gaueri in the regression plots outside the lower bound of the 95% 

confidence limit. The geometric mean falls below the predicted value based on mean 

body mass reported in Jungers and Sussman (1984), whose n=4 generated a mean of 

175.2 kg, a body mass 2.5 times larger than the stated female mass (71.0 kg). Lower 

means for male G. g. gaueri have been reported (Meder, 1993), demonstrating 

differences among sample populations from which body mass values have been derived. 

The incongruency between the geometric mean and referenced body mass of G. g. gaueri 
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may result from error in one or both of the contrasted means. The differences in means 

reported in the literature suggest the Smith and Jungers (1997) may overstate the true 

parent population mean. On the other hand, the formula of calculation for the geometric 

mean (nth root of linear variates’ product) in this study may have skewed the proxy as a 

result of geometric mean formulation in the gorilla. The geomeans of all other taxa in the 

analysis were drawn from the 48th root of variates among vertebrae L1, L2, PL and LL, 

while the gorilla mean was drawn as the 36th root from L1, PL and LL. A lumbar column 

of just three vertebrae characterized each gorilla specimen in the analysis. 

Data Analyses 

Linear Regression: Linear regressions were run on the full comparative sample for areal 

measures, as a means to assess any consistent sexual dimorphism in spinal loading 

patterns within the positional groups. The lumbar levels included in the full comparative 

regressions were: L1, L2, PL and LL. Model II, Reduced Major Axis (RMA) regression 

was used for the comparison since the x axis traits were not assumed to have less inherent 

error variance than the y axis traits. RMA fits lines that adjust for variability in X as well 

as Y (Figure 4.3). Where linear variates were plotted on the geometric mean (essentially a 

linear measure), the expected isometric slope was 1.0. In the case of areal measures 

plotted against the geometric mean, the expected slope of isometry was 2.0. Confidence 

limits were calculated as described in Tan and Inglewicz (1999).  

Tests of sexual dimorphism: Tests of sexual dimorphism were run independently on each 

primate species to identify statistically significant sex differences. Variables were tested 

for normality using the single sample Shapiro-Wilk W test. A between-sex test for 

homoscedasticity was performed as a two-tailed Fmax test with a 0.05 alpha.  To test 

hypotheses of lumbopelvic sexual dimorphism, the inferential two-tailed Student’s 

unpaired t-test was performed on each species. The Student’s t-test is sensitive to 

nonnormal distribution. Therefore, where the assumptions of normality and 

homoscedasticity were violated, the Welch’s approximate t-test was performed. As 
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multiple tests inflate the likelihood of Type I error, the sequential Bonferroni procedure, 

although conservative in precluding Type I error, was applied.  Means, standard 

deviations, t-values and probabilities are reported for all comparisons. The null 

hypothesis in all comparisons was no sex difference in the lumbopelvic structures within 

each species level sample population. 

Variables tested in the analysis of sexual dimorphism included: the centrum 

wedging angle, mediolateral breadth and surface area of the centrum; transverse process 

angle and length; pedicle cross-sectional area; prezygapophyseal angle and surface area; 

interfacet breadth; and sacral body breadth. These intraspecific tests of sexual 

dimorphism included all lumbar levels, as enumerated in each species modal number.  

RESULTS  

Linear Regression 

Sacral breadth 

Results of the RMA linear regression of sacral breadth (ln) against the geomean 

(ln) are presented in Figure 4.6 and Table 4.3. All taxa fall within the 95% confidence 

limits of the regression line, and the slope approximates isometry (1.06). The male mean 

of Pan troglodytes (Pt) lies along the margin of the lower confidence band. It plots close 

to the mean sacral breadth value of females and is lower than predicted based on its larger 

geomean measure. While Macaca fascicularis (Mf) lies in the lower pole of the 

regression space and its sexes plot higher relative to the regression line, the dispersion of 

space between the male and female means and their positions relative to one another is 

similar to that of the male and female Pan troglodytes. The taxa in the pronograde and 

semi-orthograde positional categories otherwise plot close to the regression line in 

accordance with their geometric mean differences. Among the orthograde taxa, Hylobates 

lar, Indri indri and Propithecus verreauxi, females plot above the conspecific males in 

space at positions greater than predicted by the regression line. In other words, the 
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hypothetical lines formed between the male and female means of each orthograde taxon 

exceed the slope of the regression. Although Ateles geoffroyi (Ag) and Alouatta seniculus 

(As) are close phylogenetic taxa (Givnish and Sytsma, 1997; Horowitz et al., 1998; 

Canavez, 1999; Ruiz-Garcia and Alvarez, 2003; Steiper and Ruvolo, 2003; Collins, 2004) 

and both share specialized tail prehensility, they differ in the regression space.  Both male 

and female means of Alouatta seniculus fall close to the regression line while those of 

Ateles geoffroyi plot above the line. Although both taxa occupy regression space within 

the 95% confidence limits, Ateles plots well above Alouatta.  Sexes plot differently in the 

two platyrrhines; within pronograde Alouatta male sacral breadth plots above female 

breadth, while the opposite holds for semi-orthograde Ateles.  Although Ateles geoffroyi 

is considered a semi-orthograde species in the overall analysis, its sexes follow the 

orthograde pattern in the sacral breadth-geomean comparison. Mean points for Homo 

sapiens (drawn from Chapter 3) were introduced to the plot after the regression analysis 

to allow comparison of human orthograde sexes with those of the nonhuman taxa. The 

human female mean plots above the nonhuman regression line, within the 95% 

confidence limit. The human male mean plots close to the nonhuman regression line, 

demonstrating a narrow sacrum relative to geomean measure, in comparison to female 

sacral breadth, a contrast that mirrors the dispersion of sexes in Pan troglodytes. 

Centrum surface area 

All nonhuman taxa fall within the 95% confidence bands of the centrum surface 

area regression on the geometric mean (Figure 4.7 and Table 4.3). The regression slopes 

at each vertebral and sacral level exceed the slope of isometry (2.0). There is a positive 

allometric effect to centrum surface area in these diverse primate species. Most sexes lie 

close to the regression line (r = 0.99 at all levels except L2 where r = 0.98). The 

exception occurs in Hylobates lar whose male mean straddles the upper confidence band 

and female mean lies close to the perimeter. For their respective geomean measures, each 

plots slightly higher than predicted by the regression line. Plotting positions between 
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conspecific sexes are consistent across all vertebrae and the sacrum. No differences are 

observed between sexes in comparing the different positional orientations of orthogrady, 

semi-orthogrady and pronogrady.  

Prezygapophyseal surface area 

Results of linear regressions of prezygapophyseal surface area (PSA) on the 

geometric mean are presented in Figure 4.8 and Table 4.4. In all comparisons, L1 through 

S1, the regression slopes approximate the slope of isometry (2.0) and fall within 95% 

confidence limits. Male and female means of all comparative taxa plot within the 

confidence bands.  Human males and females were plotted onto the nonhuman regression 

space after analysis and fall above the upper confidence limit at levels L2, LL and S1, 

indicating that humans have relatively large PSAs for their size compared to all other 

primates in the sample.  

Pedicle cross-sectional area 

Linear regressions of pedicle cross-sectional area (PedXS) against the geometric 

mean are presented in Figure 4.9 and Table 4.5. All levels, L1, L2, PL and LL present 

positive allometric slopes, exceeding the isometric slope of 2.0. Dispersion of the taxa 

around the regressions lines is similar at each lumbar level. All comparative taxa fall 

within or on the 95% confidence ellipse. Human data points were superimposed onto the 

regression space after analysis and fall below the lower confidence limit at lumbar levels 

L1 and L2. Cross-sectional area of the human pedicle is less than predicted by the 

comparative taxa regression. For their geometric size, humans have small pedicles at the 

cranial levels when compared to the other primate sampled in the analysis. Plotting points 

of sexes within species generally follow the regression slope. Relative to their geometric 

mean, pedicle cross-sectional area for females exceeds that of conspecific males, at all 

lumbar levels.   
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Auricular area   

Log transformed auricular area is plotted against log geomean in Figure 4.10. The 

comparison is not strongly correlated (r = 0.84), and the regression slope (1.84) is 

negatively allometric (p = 0.05). Within the orthograde taxa (Ii, Pv, Hl), female means 

tend to exceed male means. This is also the case for the two prehensile-tailed taxa, Ag 

(semi-orthograde) and As (pronograde). Raw and size-adjusted means and standard 

deviations for auricular area are shown in Table 4.6, 4.7 and 4.8. P values are included, 

demonstrating that there were no significant differences between sexes of any species in 

any of the positional groups, including the orthograde primates. 

Tests of Sexual Dimorphism 

Orthograde primates 

Tests of sexual dimorphism were performed on geomean adjusted variates of the 

sacrum and for all lumbar levels included in the modal number of lumbar vertebrae for 

each taxon. Results for the orthograde species Hylobates lar are reported in Table 4.9. 

Significant sex differences were identified in the lumbar centra, including relative 

centrum surface area, centrum medio-lateral breadth and pedicle cross-sectional area. 

Relative area of the centrum differed significantly by sex at the last lumbar level L5. 

Breadth of the centrum differed significantly at three lumbar levels, L1, L2, and L4. Sex 

differences in pedicle cross-sectional area reached significance by sex at lumbar level L2. 

Interfacet breadth differed at the last lumbar level. In all occurrences of lumbar sexual 

dimorphism in Hylobates lar, the male mean exceeded the female mean. No significant 

sex differences were identified in the sacral variables of Hylobates lar.  Tests of sexual 

dimorphism performed on the other orthograde species, Indri indri and Propithecus 

verreauxi produced no significant results (Tables 4.10 and 4.11). 
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Semi-orthograde primates 

Results of sexual dimorphism tests for Gorilla gorilla gaueri are presented in 

Table 4.12. Significant differences for this semi-orthograde primate were identified in the 

two of the three lumbar levels and in the sacrum. Centrum surface area significantly 

differed between males and females at lumbar levels L1 and L2. Medio-lateral centrum 

breadth also differed significantly at lumbar levels L1 and L2 and additionally at the 

sacral level. Male means exceeded female means in all significant results. Results for 

Pongo pygmaeus are presented in Table 4.13. Differences in male and female means did 

not reach Bonferroni significance for any variable, with the exception of sacral body 

breadth in which females are relatively larger than males. Table 4.14 reports tests of 

sexual dimorphism for Pan troglodytes. The male mean significantly exceeded the female 

mean for interfacet breadth at lumbar level L1 and centrum surface area at L3. Nearly 

results for semi-orthograde Ateles geoffroyi were nonsignificant (Table 4.15). At the last 

lumbar level, female transverse processes are more oblique and relatively longer than 

male processes.   

Pronograde primates 

Results for Macaca fascicularis are shown in Table 4.16. Male means 

significantly exceeded female means in centrum surface area at the first and last lumbar 

vertebral levels, L1 and L9. Test results for Alouatta seniculus are presented in Table 

4.17. Two significant results were obtained. Centrum wedging at L4 and 

prezygapophyseal angle at L3.  

Overall, a small number of variables reached significance in the comparative 

sampling, although no clear pattern of sex-related differences in size-adjusted variables 

was identified within the orthograde, semi-orthograde, or pronograde groups. The 

greatest number of significant results were identified in dimensions of the vertebral 

centra, and in all comparisons, male values exceeded female values. Hylobates lar was 
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distinguished among the positional samples by its large number of significant results, at 

four it its five lumbar levels.  

Vertebral Wedging 

This formulated variable takes into account the cranio-caudal dimension of the 

ventral and dorsal walls of the vertebral body as well as the antero-posterior diameter of 

the body. Where ventral and dorsal heights differ, the shape of the vertebral body departs 

from geometric blocking. Wedging may be absent or neutral (zero angle value), kyphotic 

(positive angle value) in which case spinal loading is increased ventrally, lordotic 

(negative angle value) in which case a greater proportion of spinal load is shifted 

dorsally. The lumbar vertebrae of humans are kyphotic cranially and lordotic caudally 

(Whitcome, 1999, 2000 and see Chapter 3). Human male and female wedging differs 

significantly at all lumbar pre terminal levels. Females attain a transition from kyphotic to 

lordotic wedging at L2 while males reach transition at L3. Means, standard deviations 

and significance testing results for lumbar vertebral wedging in the comparative taxa are 

presented in Tables 4.18 – 4.20.  

Orthograde primates 

Wedging angles for the orthograde taxa are presented in Table 4.18.  The lumbar 

vertebrae of both hylobatid sexes were kyphotic at all five lumbar levels, decreasing 

sequentially down the column. At all lumbar levels, female vertebrae were less kyphotic 

than male vertebrae, although the difference reached statistical significance only at the 

second and last lumbar levels. Sexes of Indri indri and Propithecus verreauxi were also 

kyphotic along the lumbar column. Female Indri were more kyphotic at all lumbar levels 

than were male Indri, but not significantly so. No significant differences were identified 

for Propithecus verreauxi. 
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Semi-orthograde primates 

Wedging angles for the semi-orthograde species are presented in Table 4.19.  The 

pattern of decreasing kyphosis in Pan troglodytes was similar in males and females. No 

significant differences were detected. The wedging angles in both sexes of Pongo 

pygmaeus decreased along the lumbar column. The male mean transitioned to lordotic 

wedging at the last lumbar level while the female mean remained slightly kyphotic. 

Differences in male and female wedging angles did not reach statistical significance at 

any lumbar levels. Wedging angles also decreased along the lumbar column in Gorilla 

gorilla gaueri. Both males and females transitioned from kyphosis to lordosis. No 

significant differences were identified. In contrast to the last lumbar level pattern in the 

great ape taxa, wedging at the last lumbar level in Ateles was strongly kyphotic. None of 

the male-female differences reach statistical significance.  

Pronograde primates 

Wedging angles of the pronograde taxa are shown in Table 4.20. All lumbar 

vertebrae of Alouatta and Macaca were kyphotic. Generally, vertebrae became less 

kyphotic toward the caudal margin of the lumbar column. No significant sex differences 

were present in the macaque lumbar column. Significant differences were identified in 

the mid lumbar levels of male and female Alouatta (L3 and L4), where female means 

were less kyphotic than male means.  At all lumbar levels, females were either less 

kyphotic or equally kyphotic to males. Where standard deviations in the angle of wedging 

for both sexes were relatively small, statistically significant differences were noted.  

Mean Comparisons 

Sample sizes of some taxa were small, reducing power of the statistical testing. 

Simple bar charts of male and female means provide visual examination and 

comparison of overall patterns of lumbar vertebral wedging by species sex. Means for 

each sex are graphically represented by taxon in Figures 4.11 through 4.19. Even in the 
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absence of statistical significance, consistent intraspecies pattern in male and female 

proportions may reflect true anatomical variance of important biological meaning. For 

instance, Figure 4.11 presents lumbar vertebral wedging means for Hylobates lar. Male 

kyphosis exceeded female kyphosis at each of the five lumbar levels. Female kyphosis 

dropped markedly at the last lumbar level, and this change in progression differed 

significantly from the corresponding male kyphosis. In contrast, as Figure 4.12 

demonstrates, Indri indri, another orthograde primate, is characterized by a contrasting 

pattern. Female kyphosis exceeded male kyphosis at seven consecutive vertebral levels, 

beginning with lumbar level L3. Cranially, female means matched male means at levels 

L1 and L2. While no statistical differences were noted, and the sample size is small 

(female n = 7, male n = 2), the consistent proportional difference between male and 

female lumbar wedging indicates that for this sample comparison, females were more 

kyphotic than males, and further demonstrates the importance of expanding the sample 

size for adequate statistical testing. Results for the third orthograde taxon, Propithecus 

verreauxi, show apparent randomness in the wedging sequences of both males and 

females (Figure 4.13). There were no consistent patterns either within or between the 

sexes. While these results may be indicative of parent population morphology, the sample 

size for this species (female n = 2, male n = 4) may simply fail to capture the true 

variation of the species and its sexes. The graphical comparison of the Pan troglodytes 

sample shows that the trends for male and female wedging were similar (Figure 4.14). 

While mean female kyphosis in Pongo pygmaeus decreased incrementally from the first 

lumbar vertebra to the last, males show an increase in kyphosis from L1 to L2 and a 

transition from kyphosis to lordosis at the last lumbar level (Figure 4.15).  Again, small 

sample sizes severely limit inference beyond the sample of study. However, male and 

female means for Gorilla gorilla gaueri presented similar transitional steps leading from 

kyphosis at the first lumbar level to lordosis at the last. Sexes differed at the intermediate 

level where mean female wedging became modestly less kyphotic while mean male 
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wedging became lordotic (Figure 4.16). A more robust sample is required to either 

confirm or dismiss the kyphosis- lordosis split in sexes at the L2 level. All lumbar 

vertebrae for Ateles geoffroyi are kyphotic (Figure 4.17). The mean male angle is 

relatively constant from the first to the penultimate vertebra. Female means are more 

varied with a decrease marked decrease in kyphosis at the penultimate level. Both sexes 

show increased kyphosis at the last lumbar level. The two pronograde taxa present 

different proportional patterns in their respective male and female comparisons. While 

male and female means follow the same trend within species, female Macaca fascicularis 

means are generally more kyphotic than male means (Figure 4.18), while the opposite 

holds for Alouatta seniculus (Figure 4.19); male means typically exceed those of females. 

The two pronograde species are similar in that kyphosis increases slightly at the cranial 

margin of the lumbar column followed by a long series of kyphotic reduction toward the 

caudal margin.    

DISCUSSION 

In light of the fact that humans express significant lumbopelvic sexual 

dimorphism (Whitcome, 2000, 2001, and see Chapter 3 of this dissertation) and given the 

loading biomechanics and functional morphology of orthograde primates (Shapiro, 1991, 

1995), this study predicted the degree of lumbopelvic sexual dimorphism would be 

relatively greater in orthograde primate taxa than in pronograde primate taxa.  

Most species sampled in this comparative study, whether orthograde, semi-

orthograde, or pronograde, do not substantially differ by sex in the relative size and shape 

of lumbar and sacral vertebrae. Among those that do, Hylobates lar and Gorilla gorilla 

gaueri exhibit more sexual dimorphism than the rest, although not in the predicted 

direction, as males are relatively larger than females. These two taxa differ markedly 

from one another in overall body size, body size dimorphism, and positional behaviors. 

Hylobates lar exemplifies primate arboreal orthogrady while Gorilla gorilla gaueri is 

predominantly terrestrial and semi-orthograde in its positional behaviors. The two share a 
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relatively close phylogenetic history having diverged from a common hominoid ancestor 

from which other great apes and humans descended. If the levels of lumbopelvic sexual 

dimorphism evidenced by Hylobates and Gorilla in this study shared evolved de novo in 

the last common ancestor of the hominoids, Pongo pygmaeus and Pan troglodytes would 

also express a similar degree of dimorphism, assuming parsimony principle. That 

expectation, unrealized here, is the consequence of phylogenetic reconstruction based on 

multiple lines of evidence that the orangutan lineage diverged sometime after that of the 

hylobatids and before that of the gorillas (i.e., Ruvolo, 1997; Rae and Koppe, 2000). 

While similarities in shape sexual dimorphism in the lumbar vertebral centra of 

Hylobates lar and Gorilla gorilla gaueri may be functionally related in terms of adaptive 

resistance to spinal loading, the selection factors that underlie the their respective sex 

differences are not necessarily one and the same. A discussion of each follows. 

While not predicted in this analysis, the presence of significant sex differences in 

the lumbar and sacral vertebrae of Gorilla gorilla gaueri is less surprising than that of 

Hylobates lar.  There is no functional basis on which to hypothesize that obstetric load 

would significantly impact the evolutionary loading structure of the female eastern 

lowland gorilla to the extent it morphologically differs from the male, but the extreme 

body size dimorphism of the large great ape species may exert a positive allometric effect 

on males. Previous analysis of gorilla vertebral morphology in Gorilla gorilla gorilla 

(western lowland gorilla) (Whitcome, 2000) showed no expression of lumbar shape 

sexual dimorphism. Reports of mean body mass by Smith and Jungers (1997) suggest the 

eastern and western lowland subspecies share similar body size dimorphism by sex, the 

western taxon with 170.4 kg and 71.5 kg for males and females respectively and 175.2 kg 

and 71.0 kg for the eastern taxon. Male and female mean body mass for the mountain 

gorilla (Gorilla gorilla berengei) was given at 162.5 and 97.5 kg. According to these 

data, the male eastern lowland gorilla attains the largest mass among all living primates. 

In contrast to males and females of the western subspecies, the thorax of both male and 
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female eastern gorillas is relatively broad (Harcourt, 1985), suggesting that the difference 

in subspecies body mass may be concentrated in the upper body rather than equally 

distributed throughout.  The pronounced body size dimorphism of lowland gorillas and 

particularly the likely preponderance of relatively large upper body mass in the eastern 

subspecies may be a factor in the significant sexual dimorphism in the lumbar centra of 

Gorilla gorilla gaueri, as identified in this analysis. The eastern and western lowland 

gorilla subspecies also differ in modal number of lumbar vertebrae; four vertebrae are 

characteristic of the western group while three vertebrae are common in the eastern 

gorilla (per obs). Reduced numbers of lumbar vertebrae are functionally related to 

orthograde load bearing and limited mobility of the spine (Fowler, 1885; Slijper, 1946; 

Benton, 1967; Rose, 1975). It is relatively easy to see that from a biomechanical 

standpoint, disparate adult body sizes, such as those present in the eastern lowland great 

ape Gorilla gorilla gaueri may drive shape change in conspecific sexes. Within primates 

in general, centrum surface area correlates closely with body size (Shapiro, 1991; 

Sanders, 1995; Johnson and Shapiro, 1998). While the results of this study support the 

correlation, the geometric prediction of isometry in centrum surface area was not realized 

in this analysis (i.e., contra to Sanders, 1995; Johnson and Shapiro, 1998). In contrast, the 

results reported here indicate a significant allometric relationship within the sample 

populations. This study-specific departure from isometry may derive to some extent from 

the geometric mean size “proxy” applied in the analyses. Vertebral linear measures taken 

from L1, L2, PL and LL were used to calculate the geomean, and while the study-specific 

geomean itself proved isometric in relation to reported body mass (Smith and Jungers, 

1997), its inherent vertebral constitution provides a slightly different comparison in the 

case of centrum surface area. It is possible that primate centrum surface area does not 

vary proportionally to overall body size yet varies proportionally in reference to overall 

vertebral size. If centrum surface area is more size “responsive” to increasing spinal load 

than are the other structural features of vertebrae, the more direct comparison afforded by 
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application of the vertebral geomean may detect that signal whereas comparison by gross 

body mass may not. Regression slopes of CSA on geomean for L1, L2, PL, LL and S1 in 

this study range from 2.42 to 2.94, well above the slope of isometry. That the largest of 

all living primates expresses further intraspecific allometry (sexual dimorphism) with 

respect to large male vertebral body size is not necessarily surprising. 

Both male and female hylobatids have, for their respective geomean sizes, larger 

centrum surface areas at all vertebral levels than predicted by comparative regression. 

Sexes significantly differ in mediolateral breadth of the centrum at three of the five 

lumbar levels (Bonferroni sequential procedure), where mean male values exceed those 

of females. This phenomenon is not allometric as Hylobates lar is monomorphic in 

overall body size. Nor is it phylogenetic, for although the positive sexual dimorphism of 

the gibbon also characterizes humans (see Tables 3.3, 3.4, and 3.5, Chapter 3), it is not 

characteristics of all the hominoid taxa investigated here. Furthermore, gibbon 

lumbopelvic sexual dimorphism, while predicted in this study, appears functionally 

unrelated to obstetric load, as none of the sex differences indicate increased resistance to 

load-bearing stress among females, only among males.  

What then accounts for the gibbon’s preponderance of lumbopelvic sexual 

dimorphism among the primates in this comparative analysis? The first explanatory 

consideration lies in the sample constituents. Sample sizes for Hylobates lar males and 

females are relatively robust. So, while in comparison to the other primate taxa within the 

analysis, Hylobates is distinguished by its degree of sexual dimorphism, parent 

populations of the comparative taxa may be more sexually dimorphic than the study 

suggests. This point is particularly relevant to the other orthograde species, Indri indri 

and Propithecus verreauxi whose sample sizes were among the smallest. However, Pan 

troglodytes, a semi-orthograde species is represented by male and female samples of 

similar size to Hylobates. Tests of sexual dimorphism identified but one Bonferroni 

significant result for Pan. 
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In the absence of functional differences in male and female vertebral morphology, 

body size monomorphism should be equally reflected in similar vertebral size and shape 

within the sexes. The fact that medio-lateral breadth differs significantly in gibbon males 

and females along three of the five lumbar levels, indicates some degree of spinal loading 

differential between the sexes. Although the other features that significantly differ in 

gibbons, centrum surface area, pedicle cross-sectional area and interfacet breadth, are not 

as pervasive throughout the lumbar column, they do suggest a possible explanation for 

the large relative breadth of male centra related to spinal loading. 

Behavioral data from field studies demonstrate that gibbon locomotor behaviors 

differ by sex, and given the ballistic ricochetal nature of gibbon suspensory travel, the 

spinal loading forces associated with brachiation may explain, to some degree, the 

robusticity in male centra identified in this analysis. Reichard and Sommer (1997) 

reported that among eleven groups of Thailand Hylobates lar 61% of observed 

encounters between groups involved chases during which all adult and subadult males 

actively participated. These chase-encounters were almost exclusively male-centered, as 

male-male interactions constituted 90% of all inter-group chases. Bartlett (2003) recently 

reported that 56% of intergroup encounters between Hylobates lar groups were agonistic 

involving rapid chases, principally between adult males.  

The relatively large mediolateral breadth of Hylobates lar sexes may be 

functionally related to locomotor specialization. During gibbon brachiation, unilateral 

contraction of the iliocostalis muscle directs the orthograde torso toward the supporting 

forelimb via lateral flexion (Shapiro, 1991). As a determinant of gibbon gait, lateral 

spinal flexion routinely loads the vertebral body at its lateral margins. Mediolateral 

elongation of the vertebral body in Hylobates lar may be an adaptation to resist bending 

stress generated by gibbon forelimb suspensory locomotion. If the energetic intergroup 

agonistic behaviors, whether territory or mate defense in nature, so characteristic of 

Hylobates lar are exclusively male behaviors, selection pressures related to spinal loading 
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biomechanics may be a factor in gibbon lumbopelvic sexual dimorphism and explain why 

male centra are even more robust than those of females. Centrum loading during 

explosive ricochetal brachiation would exacerbate bending stress on the lateral margins 

of the lumbar vertebral body. In this manner a functional element of gibbon social 

behavior may be a selection factor in anatomical adaptation. Testing of a formal 

hypothesis relating sex-specific spinal loading patterns to male defense behaviors in 

Hylobates lar would be possible through field application of sonomicrometry, which 

measures strain, length, area, thickness, volume, and geometry in muscle function. 

Recently modified for portability in the study of dynamic behavior in horses (Hoyt et al., 

2005), further refinement of sonometric technology into smaller units holds promise for 

primate locomotor field study and may soon provide a method to directly quantify 

relationships between musculoskeletal function and positional behavior. 

CONCLUSIONS AND SUMMARY 

This study investigated the hypothesis that the degree of sexual dimorphism in 

load bearing features of the lumbar and sacral vertebrae would be relatively greater in 

orthograde primates than in pronograde primates. The prediction derives from a larger set 

of hypotheses that attempt to explain aspects of human lumbopelvic sexual dimorphism 

as adaptations to obstetric load. An important question in the larger investigation is 

whether human obstetric load dimorphism is a functional consequence of general 

orthogrady in primates or is a more positional specific phenomenon.  In this analysis 

then, it was predicted that obstetric load in orthograde contexts impacts the functional 

morphology of lumbar and sacral vertebrae. In humans, male and female spinal loading 

patterns differ, with females carrying a greater proportion of the upper body load along 

the spine’s dorsal pillar.  

In this comparative primate sample no significant differences in dorsal pillar 

loading was evidenced in relative size and shape of vertebrae by sex. Obstetric load borne 

by nonhuman primates, orthograde, semi-orthograde and pronograde alike, does not 
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appear to generate load distribution or load resistance in any identifiable pattern in the 

lumbopelvic complex of nonhuman primates. This comparative morphometric study of 

nonhuman primates places the analysis of human lumbopelvic sexual dimorphism into a 

broader phylogenetic and evolutionary context. In contrast to nonhuman primates, shape 

sexual dimorphism predominates the human lumbopelvic complex (Chapter 3). Females 

present a longer series of dorsally wedged lumbar vertebrae accompanied by greater 

prezygapophyseal obliquity. These features along with postural and locomotor 

adjustments in lumbar lordosis and pelvic tilt during pregnancy (Chapter 2) demonstrate a 

close functional relationship between the human female pattern of lumbar lordosis and 

obstetric loading. Although humans are not unique in their habitual use of orthograde 

postures and locomotion, they are distinct among all primates in their degree of 

lumbopelvic sexual dimorphism in features related to upper body load.  

Sex differences are present in few taxa, the semi-orthograde eastern lowland 

gorilla (Gorilla gorilla gaueri) and the orthograde white-handed gibbon (Hylobates lar) 

whose males present relatively large centra surface areas, the major load bearing 

structures of the vertebral column. Because there are no anatomical or functional signals 

that the female lumbopelvic complex is adapted to manage obstetric load in the 

comparative species, traits unique to males are interpreted to be 1) in Gorilla gorilla 

gaueri a positive allometric effect of overall body size dimorphism on the relative size 

and shape of vertebral centra, and 2) in Hylobates lar a possible correlate to 

disproportionately high levels of male-male chase behavior, during which relatively 

strong bending force is applied through segmental alignment and iliocostalis contractive 

load stress on the vertebral body, particularly in lateral flexion during ricochetal 

brachiation. No pattern of orthograde spinal loading by sex is identified in the analysis.  

 

 

 



  

 196

 

 
 
Table 4.1. Sampled taxa

Sample taxa Species 
abbreviation CMNH MCZ NMNH AMNH MHNP NNML AIM RMCA MNB Total

Hylobates lar lar Hl 16/15 16/15
Indri indri Ii 1/1 6/1 7/2
Propithecus verreauxi Pv 0/1  1/1 3/0 4/2
Pan troglodytes schweinfurthii Pt 8/6 3/0 3/4 14/10
Pongo pygmaeus Pp 0/1 2/2 3/3 1/1 1/2  1/0 8/9
Gorilla gorilla graueri Gg  7/6 7/6
Ateles geoffroyi Ag 1/2 2/2 0/1 3/5
Alouatta seniculus As 3/5 1/0 4/5
Macaca fascicularis Mf 10/10 1/3  11/13

 9/9 28/28 3/3 4/1 1/1 4/6 5/7 10/11 10/1 74/67

   CMNH = Cleveland Museum of Natural History; MCZ = The Museum of Comparative Zoology, Harvard; NMNH = National Museum 
   of Natural History, Washington DC; AMNH = American Museum of Natural History, NY; MHNP = Muséum d'Histoire Naturelle, 
   Paris; NNML = National Natuurhisorisch Meseum Leiden, Leiden; AIM = Anthropologisches Institut und Museum, Zurich; RMCA = 
   Royal Museum for Central Africa, Tervuren, Belgium' MNB = Museum National, Berlin
   Sample sizes are reported as males/females  
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Table 4.2. Positional category and body mass of comparative taxa

Positional  Body  mass (kg)
category Species Male Female

orthograde Hylobates lar 5.90 5.34
orthograde Indri indri 5.83 6.84
orthograde Propithecus verreauxi 3.70 4.28

semi-orthograde Pan trog. schwein. 42.70 33.70
semi-orthograde Pongo pygmaeus 78.50 35.80
semi-orthograde Gorilla gorilla graueri 175.20 71.00
semi-orthograde Ateles geoffroyi 9.11 8.44

pronograde Aloutta seniculus 6.69 5.21
pronograde Macaca fascicularis 5.36 3.59

Body mass from Smith and Jungers (1997).  
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Table 4.3. Results of linear regressions on natural logarithm transformed data 1

y variable Geomean Sacral Breadth CSA 2 L1 CSA L2 CSA PL CSA LL CSA Sacrum
x variable Body Mass Geomean Geomean Geomean Geomean Geomean Geomean

Correlation ( r ) 0.981 0.970 0.985 0.982 0.990 0.990 0.990
Observations 18 18 18 16 18 18 18
P  value < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000
Intercept 1.524 1.502 -1.432 -0.952 -0.390 -0.310 -0.011
Slope ( k ) 0.302 1.064 2.940 2.775 2.603 2.581 2.420
k lower 95% 0.272 0.932 2.679 2.485 2.417 2.395 2.247
k  upper 95% 0.336 1.215 3.226 3.099 2.803 2.782 2.606
Mean ( y ) 2.522 3.936 5.289 5.195 5.560 5.591 5.521
Standard deviation ( y  ) 1.225 0.394 1.089 0.905 0.964 0.956 0.896
Mean ( x ) 2.286 2.286 2.286 2.215 2.286 2.286 2.286
Standard deviation ( x  ) 0.370 0.370 0.370 0.326 0.370 0.370 0.370
1 Regressions include all comparative taxa except those drawn from Lumbar Level 2, which lacks Gorilla gorilla gaueri.  Its three lumbar levels 
were designated as L1, PL and LL.
2 CSA indicates centrum surface area

Table 4.4. Results of linear regressions on natural logarithm transformed data 1

y variable PSA 2 L1 PSA L2 PSA PL PSA LL PSA Sacrum
x variable Geomean Geomean Geomean Geomean Geomean

Correlation ( r ) 0.982 0.980 0.977 0.974 0.963
Observations 18 16 18 18 18
P  value < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000
Intercept -1.067 -1.015 -0.481 -0.321 -0.559
Slope ( k ) 2.055 2.097 1.888 1.803 1.855
k lower 95% 1.854 1.868 1.681 1.594 1.599
k  upper 95% 2.277 2.354 2.121 2.039 2.153
Mean ( y ) 3.631 3.629 3.835 3.801 3.682
Standard deviation ( y  ) 0.761 0.684 0.699 0.668 0.687
Mean ( x ) 2.286 2.215 2.286 2.286 2.286
Standard deviation ( x  ) 0.370 0.326 0.370 0.370 0.370
1 Regressions include all comparative taxa except those drawn from Lumbar Level 2, which lacks 
Gorilla gorilla gaueri.  Its three lumbar levels were designated as L1, PL and LL.
2 PSA indicates prezygapophyseal surface area

Table 4.5. Results of linear regressions on natural logarithm transformed data 1

y variable PedXS 2 L1 PedXs L2 PedXS PL PedXS LL
x variable Geomean Geomean Geomean Geomean

Correlation ( r ) 0.987 0.979 0.987 0.988
Observations 18 16 18 18
P  value < 0.0000 < 0.0000 < 0.0000 < 0.0000
Intercept -1.881 -2.089 -1.802 -2.010
Slope ( k ) 2.491 2.598 2.526 2.649
k lower 95% 2.287 2.303 2.314 2.435
k  upper 95% 2.712 2.930 2.758 2.882
Mean ( y ) 3.813 3.665 3.973 4.045
Standard deviation ( y  ) 0.922 0.847 0.936 0.981
Mean ( x ) 2.286 2.215 2.286 2.286
Standard deviation ( x  ) 0.370 0.326 0.370 0.370
1 Regressions include all comparative taxa except those drawn from Lumbar Level 2, which 
lacks Gorilla gorilla gaueri . Its three lumbar levels were designated as L1, PL and LL.
2 PedXS indicates pedicle cross-sectional area  
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Table 4.6. Sacral auricular area, mean and (standard deviation) by sex, raw area and size-adjusted
geomean area 1 in the orthograde primates

 Hylobates lar lar Indri indri Propithecus verreauxi
Auricular variable mean area (std dev) mean area (std dev) mean area (std dev)
Raw area 2 male 145.76 (17.15) 159.36 (9.23) 128.19 (28.24)
 female 143.02 (16.79) 167.93 (na) 197.15 (0.381)

Size-adjusted area 3 male 0.88 (0.072) 0.99 (0.065) 0.96 (0.065)
female 0.87 (0.075) 0.93 1.03 (0.142)

 p value = 0.9212 = 0.8026 = 0.7728
    1 Two-tailed test of significance used, pairwise correlation
   2  Raw area reported in mm2

   3  Size-adjusted area unitless,  auricular area1/2/geomean

Table 4.7. Sacral auricular area, mean and (standard deviation) by sex, raw area and size-adjusted
geomean area 1 in the semi-orthograde primates

 Pan troglodytes Pongo pygmaeus Gorilla gorilla Ateles geoffroyi
Auricular variable mean area (std dev) mean area (std dev) mean area (std dev) mean area (std dev)
Raw area 2 male 843.14 (15.93) 901.32 (112.61) 807.54 501.84 (69.76)
 female 548.38 (22.89) 532.77 (117.95) 704.15 (53.3) 657.57 (69.81)

 
Size-adjusted area 3 male 1.72 (0.22) 1.68 (0.17) 1.52 2.98 (0.47)

female 1.46 (0.22) 1.55 (0.11) 1.52 (0.11) 2.94 (2.88)
 p value = 0.2159 = 0.5637 = 0.6547 = 0.6985

    1 Two-tailed test of significance used, pairwise correlation
   2  Raw area reported in mm2

   3  Size-adjusted area unitless,  auricular area1/2/geomean

Table 4.8. Sacral auricular area, mean and (standard deviation) by sex, raw area and 
size-adjusted geomean area 1 in the pronograde primates

 Alouatta seniculus Macaca fascicularis
Auricular variable mean area (std dev) mean area (std dev)
Raw area 2 male 312.64 (27.63) 318.26 ( - )
 female 355.20 (82.94) 290.48 (22.20)

 
Size-adjusted area 3 male 2.15 (0.52) 1.87 ( - )

female 2.29 (0.34) 1.88 (0.15)
 p value = 0.3865 = 0.5403

    1 Two-tailed test of significance used, pairwise correlation
   2  Raw area reported in mm2

   3  Size-adjusted area unitless,  auricular area1/2/geomean  



  

 200

 
 

Table 4.9. Hylobates lar lar  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates
Magnitude of sexual dimorphism (probability)

(n) Lumbar Level Lumbar vertebrea Sacrum
Variable (M,F) 1 2 3 4 5  

Centrum wedging (16,15) - 0.217 (ns) - 2.223 - 1.403 (ns) - 1.374 (ns) - 2.634  -
Centrum surface area (16,15) - 1.640 (ns) - 2.075 - 1.798 (ns) - 1.996 - 1.950*  1.237 (ns)
Centrum medio-lateral breadth (16,15) - 2.908* - 2.495* - 2.593 - 2.763* - 1.805 (ns) - 1.613 (ns)
Transverse process angle (16,15) - 0.223 (ns) - 0.219 (ns) - 0.852 (ns) - 1.763 (ns) - 1.158 (ns)  -
Transverse process length (16,15) - 1.362 (ns) - 1.362 (ns)  0.217 (ns) - 0.296 (ns) - 0.731 (ns)  -
Pedicle cross-sectional area (16,15) - 1.542 (ns) - 3.380* - 2.668 - 1.552 (ns) 0.507 (ns)  -
Prezygapophyseal surface area (16,15)  1.541 (ns) 0.455 (ns) 0.376 (ns) - 0.178 (ns) - 0.913 (ns) - 1.013 (ns)
Prezygapophyseal angle (16,15) 0.198 (ns) 1.170 (ns) - 0.644 (ns) 1.121 (ns) - 0.229 (ns) - 0.243 (ns)
Interfacet breadth (16,15) - 1.231 (ns) - 1.030 (ns) - 1.068 (ns) - 0.989 (ns) - 2.752*  1.231 (ns)
Sacral body breadth (16,15) - - - - - 1.843 (ns)

1 Two-tailed test of significance. M, male; F, female; 
Negative scores indicate male mean > female mean.
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.10. Indri indri  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates
Magnitude of sexual dimorphism (probability) Magnitude of sexual dimorphism (probability)

(n) Lumbar Level Lumbar vertebrea Lumbar Level Lumbar vertebrea Sacrum
Variable (M,F) 1 2 3 4 5 6 7 8 9

Centrum wedging (7,2)  1.464 (ns)  1.464 (ns) - 1.025 (ns) - 1.903 (ns) - 0.439 (ns) - 1.318 (ns) - 0.439 (ns) - 0.439 (ns) - 1.317 (ns) -
Centrum surface area (7,2) - 0.439 (ns)  1.318 (ns)  1.025 (ns) - 0.732 (ns)  0.146 (ns)  0.146 (ns) 0.732 (ns)  1.025 (ns)  0.439 (ns)  0.242 (ns)
Centrum medio-lateral breadth (7,2) - 1.610 (ns)  0.739 (ns)  0.146 (ns) - 1.610 (ns) - 1.025 (ns) - 1.317 (ns) - 0.732 (ns)  0.146 (ns) - 0.146 (ns)  0.732 (ns)
Transverse process angle (7,2) 0.272 (ns) - 0.441 (ns) 0.769 (ns) 0.376 (ns) 0.135 (ns) 0.180 (ns) - 0.441 (ns) - 0.441 (ns) 0.146 (ns) -
Transverse process length (7,2) - 0.663 (ns) - 0.732 (ns) - 1.023 (ns) - 1.317 (ns) - 0.732 (ns) 0.146 (ns) 0.439 (ns) 1.025 (ns) -
Pedicle cross-sectional area (7,2) - 1.025 (ns) - 1.620 (ns) - 0.732 (ns)  0.146 (ns)  0.439 (ns)  0.146 (ns)  0.146 (ns)  0.439 (ns)  1.317 (ns) -
Prezygapophyseal surface area (7,2) - 1.317 (ns) - 0.732 (ns) 1.146 (ns)  1.317 (ns)  0.732 (ns)  0.732 (ns)  0.439 (ns)  0.146 (ns) - 0.146 (ns) 1.903 (ns)
Prezygapophyseal angle (7,2) - 1.317 (ns) - 0.732 (ns) - 0.146 (ns)  1.317 (ns)  0.732 (ns)  0.732 (ns)  0.439 (ns) 0.146 (ns) - 0.146 (ns)  -
Interfacet breadth (7,2) - 1.317 (ns) - 0.732 (ns) - 0.146 (ns) - 0.146 (ns) - 0.146 (ns) - 0.146 (ns)  0.146 (ns)  0.146 (ns)   1.317 (ns)  -
Sacral body breadth (7,2)  - - - - -  - - - -  0.732 (ns)
1 Two-tailed test of significance. M, male; F, female; ns, P > 0.05.
Negative scores indicate male mean > female mean
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.11. Propithecus verreauxi  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates
Magnitude of sexual dimorphism (probability) Magnitude of sexual dimorphism (probability)

(n) Lumbar Level Lumbar vertebrea Lumbar Level Lumbar vertebrea Sacrum
Variable (M,F) 1 2 3 4 5 6 7 8 9

Centrum wedging (5,2)  0.694 (ns) - 0.581 (ns)  1.253 (ns)  0.092 (ns) - 0.959 (ns) - 1.812 (ns) - 1.386 (ns)  1.039 (ns) - 1.187 (ns) -
Centrum surface area (5,2)  0.231 (ns)  0.194 (ns) - 1.462 (ns) - 1.004 (ns) - 0.959 (ns)  0.107 (ns)  0.107 (ns)  0.095 (ns) - 0.274 (ns) , 0.959 (ns)
medio-lateral breadth (5,2) - 0.000 (ns) - 1.173 (ns) - 1.187 (ns) - 0.325 (ns) - 0.162 (ns) - 0.325 (ns) - 0.000 (ns) - 0.325 (ns)  0.162 (ns) , 1.137 (ns)
Transverse process angle (5,2) -  - - 1.315 (ns) - 0.000 (ns) - 0.000 (ns) 0.959 (ns) 0.320 (ns) - 0.475 (ns) 0.387 (ns) -
Transverse process length (5,2) -  - 0.276 (ns) 0.456 (ns) 0.081 (ns) 0.081 (ns) - 0.407 (ns) - 0.162 (ns) - 0.491 (ns) -
Pedicle cross-sectional area (5,2)  0.232 (ns)  0.581 (ns) - 0.367 (ns)  1.004 (ns) - 0.107 (ns) - 0.107 (ns) - 0.533 (ns)  1.039 (ns)  1.173 (ns) -
Prezygapophyseal surface area (5,2) - 0.232 (ns)  1.743 (ns) - 0.122 (ns) - 0.857 (ns) - 0.107 (ns) - 0.107 (ns) - 0.107 (ns) - 0.320 (ns) - 0.107 (ns) 0.367 (ns)
Prezygapophyseal angle (5,2) - 0.354 (ns) - 0.171 (ns) - 0.496 (ns) - 0.375 (ns)  0.146 (ns) - 0.886 (ns)  0.550 (ns) - 0.644 (ns) - 0.300 (ns)  -
Interfacet breadth (5,2)  0.091 (ns)  0.000 (ns) - 1.624 (ns) - 0.456 (ns) - 0.650 (ns) - 0.162 (ns) - 0.974 (ns) - 1.137 (ns)  0.162 (ns)  -
Sacral body breadth (5,2)  - - - - -  - - - -  1.790 (ns)

1 Two-tailed test of significance. M, male; F, female; ns, P > 0.05.
Negative scores indicate male mean > female mean
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.12. Gorilla gorilla gaueri  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates
Magnitude of sexual dimorphism (probability)

(n) Lumbar vertebrea Sacrum
Variable (M,F) 1 2 3

Centrum wedging (7,6) - 0.357 (ns) - 0.929 (ns) - 0.080 (ns)  -
Centrum surface area (7,6) - 2.786** - 2.643** - 2.322 - 2.100*
Centrum medio-lateral breadth (7,6) - 2.786** - 2.643** - 2.214 - 0.400 (ns)
Transverse process angle (7,6)  0.530 (ns) - 2.206 - 0.185 (ns)  -
Transverse process length (7,6) - 1.274 (ns) - 2.648  1.004 (ns)  -
Pedicle cross-sectional area (7,6) - 1.500 (ns) - 1.357 (ns) - 1.500 (ns) -
Prezygapophyseal surface area (7,6)   0.071 (ns)  0.929 (ns)  1.786 (ns) - 0.320 (ns)
Prezygapophyseal angle (7,6) 1.362 (ns) 1.462 (ns)  0.741 (ns) - 0.861 (ns)
Interfacet breadth (7,6) - 1.200 (ns) - 0.500 (ns)  0.786 (ns)  -
Sacral body breadth (7,6) - -  -  0.487 (ns)

1 Two-tailed test of significance. M, male; F, female; ns, P > 0.05.
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.13. Pongo pygmaeus  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates
Magnitude of sexual dimorphism (probability)

(n) Lumbar vertebrea Sacrum
Variable (M,F) 1 2 3 4

Centrum wedging (8,9) - 1.101 (ns) - 0.433 (ns) - 1.017 (ns) - 0.722 (ns) -
Centrum surface area (8,9) - 1.684 (ns) - 1.491 (ns) - 1.203 (ns) - 1.203 (ns)  0.625 (ns)
Centrum medio-lateral breadth (8,9)  1.876 (ns) - 0.722 (ns) - 0.722 (ns) - 1.876 (ns)  0.433 (ns)
Transverse process angle (8,9) - 0.097 (ns)  0.482 (ns)  0.097 (ns)  0.048 (ns) -
Transverse process length (8,9) 1.491 (ns) 0.529 (ns) 0.626 (ns) 1.010 (ns) -
Pedicle cross-sectional area (8,9) - 1.010 (ns) 0.048 (ns) 2.069  0.914 (ns) -
Prezygapophyseal surface area (8,9)   0.144 (ns) - 1.876 (ns) - 0.144 (ns) - 1.684 (ns) - 1.300 (ns)
Prezygapophyseal angle (8,9) - 0.877 (ns) 0.194 (ns)  1.256 (ns) 0.289 (ns) - 0.097 (ns)
Interfacet breadth (8,9) - 0.529 (ns)  1.300 (ns)  0.433 (ns) - 0.144 (ns)  -
Sacral body breadth (8,9)  -  -   -   - - 1.972*

1 Two-tailed test of significance. M, male; F, female; ns, P > 0.05.
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.14. Pan troglodytes schweinfurthii  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates
Magnitude of sexual dimorphism (probability)

(n) Lumbar vertebrea Sacrum
Variable (M,F) 1 2 3 4

Centrum wedging (14,10) - 0.381 (ns) - 0.746 (ns)  0.797 (ns) - 1.054 (ns) -
Centrum surface area (14,10) - 1.142 (ns) - 1.672 (ns) - 2.032* - 0.489 (ns) - 0.077 (ns)
Centrum medio-lateral breadth (14,10) - 1.260 (ns) - 1.105 (ns)  0.180 (ns) - 0.540 (ns) - 0.231 (ns)
Transverse process angle (14,10)  0.249 (ns) - 0.550 (ns)  0.900 (ns)  1.281 (ns) -
Transverse process length (14,10) - 1.191 (ns) - 1.068 (ns)  1.605 (ns) - 0.299 (ns) -
Pedicle cross-sectional area (14,10) - 0.263 (ns) 0.900 (ns) - 0.746 (ns) - 0.694 (ns) -
Prezygapophyseal surface area (14,10)  - 0.439 (ns) - 1.363 (ns) - 0.232 (ns) - 0.694 (ns) - 0.849 (ns)
Prezygapophyseal angle (14,10) - 0.792 (ns) - 0.026 (ns) - 1.775 (ns) 0.180 (ns) - 0.097 (ns)
Interfacet breadth (14,10) - 2.898* - 0.849 (ns)  0.695 (ns) - 0.437 (ns)  -
Sacral body breadth (14,10) - -  -   -  0.129 (ns)

1 Two-tailed test of significance. M, male; F, female; ns, P > 0.05.
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.15. Ateles geoffroyi  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates

Magnitude of sexual dimorphism (probability)
(n) Lumbar vertebrea Sacrum

Variable (M,F) 1 2 3 4 5
Centrum wedging (3,5) - 0.596 (ns) - 0.894 (ns) - 1.410 (ns) - 0.596 (ns) - 0.596 (ns) -
Centrum surface area (3,5)  0.000 (ns)  0.298 (ns)  0.298 (ns) - 0.298 (ns)  0.298 (ns) - 0.000 (ns)
Centrum medio-lateral breadth (3,5) 1.193 (ns) 0.597 (ns) 0.298 (ns)  0.597 (ns) 0.298 (ns) 1.193 (ns)
Transverse process angle (3,5) rib bearing 1.746 (ns) 0.151 (ns) - 0.596 (ns) - 1.950* -
Transverse process length (3,5) rib bearing 1.107 (ns) - 0.750 (ns) - 1.050 (ns) - 1.950* -
Pedicle cross-sectional area (3,5) - 0.000 (ns)  0.298 (ns)  0.298 (ns) - 1.491 (ns) - 1.789 (ns) -
Prezygapophyseal surface area (3,5)   1.193 (ns) 0.000 (ns) - 0.597 (ns) - 0.298 (ns) - 0.000 (ns) 0.000 (ns)
Prezygapophyseal angle (3,5) 1.193 (ns)  1.789 (ns)  1.500 (ns)  0.611 (ns)  0.894 (ns) -
Interfacet breadth (3,5) 1.193 (ns) 0.596 (ns) 0.298 (ns)  0.596 (ns) 0.298 (ns)  -
Sacral body breadth (3,5) - -  -   - - 0.298 (ns)

1 Two-tailed test of significance. M, male; F, female; ns, P > 0.05.
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.16. Macaca fascicularis  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates
Magnitude of sexual dimorphism (probability)

(n) Lumbar Level Lumbar vertebrea Lumbar Level Lumbar vertebrea Sacrum
Variable (M,F) 1 2 3 4 5 6 7 8 9

Centrum wedging (11,13) - 1.275 (ns) - 1.448 (ns) - 0.579 (ns) - 0.753 (ns)  0.000 (ns) - 1.738 (ns) - 1.564 (ns) - 0.116 (ns) - 0.522 (ns) -
Centrum surface area (11,13)  2.995** 1.159 (ns) 2.202  2.375 1.506 (ns)  1.506 (ns) 1.043 (ns)  1.448 (ns) 2.028* 1.159 (ns)
Centrum medio-lateral breadth (11,13)  1.479 (ns) - 0.058 (ns)  0.640 (ns)  0.871 (ns) - 0.872 (ns) - 0.464 (ns) - 0.726 (ns) - 0.842 (ns) - 0.435 (ns) - 0.029 (ns)
Transverse process angle (11,13) rib bearing rib bearing - 1.106 (ns) - 0.031 (ns) 2.238 0.125 (ns) - 0.929 (ns) - 0.808 (ns) - 1.089 (ns) -
Transverse process length (11,13) rib bearing rib bearing - 0.151 (ns) 0.609 (ns) 0.435 (ns) - 0.261 (ns) - 0.898 (ns) - 1.594 (ns) - 2.115 -
Pedicle cross-sectional area (11,13) - 1.043 (ns)  0.058 (ns)  1.072 (ns) - 1.623 (ns) - 1.159 (ns) - 1.680 (ns) - 0.058 (ns)  0.232 (ns) - 0.232 (ns) -
Prezygapophyseal surface area (11,13) - 0.523 (ns) - 0.339 (ns) - 0.523 (ns) - 0.729 (ns) - 0.954 (ns) - 0.954 (ns)  1.877 (ns) 1.166 (ns) - 0.892 (ns) -
Prezygapophyseal angle (11,13) - 0.058 (ns) - 0.986 (ns) - 0.290 (ns) - 0.987 (ns) - 1.654 (ns) - 0.031 (ns) - 1.103 (ns) - 0.639 (ns) - 1.336 (ns) - 0.524 (ns)
Interfacet breadth (11,13) - 1.366 (ns) - 0.985 (ns) - 1.102 (ns) - 1.798 (ns) - 1.770 (ns) - 0.962 (ns)  0.029 (ns)  0.058 (ns) - 1.394 (ns)  -
Sacral body breadth (11,13) -  -  - -  -  -  -  -  - - 2.464

1 Two-tailed test of significance. M, male; F, female; ns, P > 0.05.
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.17. Alouatta seniculus  lumbopelvic sexual dimorphism: magnitude and results of Wilcoxon Rank Sums test 1 on size adjusted variates
Magnitude of sexual dimorphism (probability)

(n) Lumbar Level Lumbar vertebrea Lumbar Level Sacrum
Variable (M,F) 1 2 3 4 5 6 7

Centrum wedging (4,5) 1.022 (ns)  1.022 (ns) 2.307 2.307*  1.225 (ns)  1.225 (ns) 0.612 (ns) -
Centrum surface area (4,5)  1.347 (ns)  1.225 (ns) - 0.612 (ns)  0.857 (ns)  1.022 (ns)  1.347 (ns)  1.225 (ns)  0.857 (ns)
Centrum medio-lateral breadth (4,5) 1.347 (ns) - 0.122 (ns)  0.367 (ns)  0.857 (ns)  1.023 (ns)  0.122 (ns)  0.122 (ns) - 0.492 (ns)
Transverse process angle (4,5) rib bearing rib bearing - 0.261 (ns) - 1.476 (ns) - 0.246 (ns) 0.371 (ns) - 0.615 (ns) -
Transverse process length (4,5) rib bearing rib bearing 1.443 (ns) - 1.620 (ns) 1.491 (ns) 1.591 (ns) 0.000 (ns) -
Pedicle cross-sectional area (4,5)  0.123 (ns)  0.612 (ns)  0.857 (ns)  0.612 (ns) - 0.367 (ns) - 1.225 (ns) - 1.225 (ns)  -
Prezygapophyseal surface area (4,5)  0.123 (ns) - 0.367 (ns) 1.102 (ns) - 0.857 (ns) - 0.159 (ns) - 0.159 (ns) - 0.367 (ns)  -
Prezygapophyseal angle (4,5) - 2.327 - 2.337 - 2.233* - 0.992 (ns) - 0.988 (ns) - 0.372 (ns) - 0.620 (ns) 1.102 (ns)
Interfacet breadth (4,5) - 1.347 (ns) - 1.837 (ns) - 1.347(ns) - 0.367(ns) - 0.122 (ns) - 0.612 (ns) - 0.612 (ns)  -
Sacral body breadth (4,5) - - - -  - - - 0.612 (ns)

1 Two-tailed test of significance. M, male; F, female; ns, P > 0.05.
Bold faced type indicates original significance of P  < 0.05. Asterisks indicate significance reached sequential Bonferroni adjustment.
ns = non significance  
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Table 4.18. Lumbar vertebral wedging by sex for orthograde species: Hylobates lar, Indri indri and Propithecus verreauxi. Means reported 
with (standard deviation) in degrees.

Female Male  
Vertebral Hylobates lar Indri indri P. verreauxi Hylobates lar Indri indri P. verreauxi
Level  1 n = 15 n = 7 n = 2 n = 16 n = 2 n = 4

a  4.56 4.73  4.61 3.49
 (1.35) (0.03)  (1.11) (1.07)

b 4.54 0.12 4.58 4.83
(1.84) (6.33) (1.05) (2.83)

c 4.88 5.35 3.2 3.77
(1.87) (1.52) (2.97) (1.76)

d 6.19 6.25 2.44 5.01
(2.54) (4.93) (0.46) (2.55)

e 7.51 4.55 1.81 7.9 3.65 4.49
(2.80) (3.39) (2.62) (3.25) (0.72) (1.81)

f 6.38* 4.27 1.65 9.13 2.79 4.59
(2.68) (1.34) (2.65) (3.47) (1.36) (1.42)

g 7.47 5.33 0.95 8.89 3.77 5.88
(3.02) (3.54) (4.19) (3.36) (1.36) (3.96)

h 5.69 4.26 5.10 7.59 3.57 3.36
(2.54) (1.64) (1.76) (5.19) (1.77) (2.17)

i 0.97** 4.09 1.18 4.95 2.28 3.77
(4.57) (2.87) (3.58) (3.04) (0.23) (2.32)

 
   Vertebral Level1: levels are listed in order from cranialmost to caudalmost position.
   Boldface indicates significant result. Wilcoxon Rank Sums Test, Bonferroni adjusted for multiple tests within taxon.
  * indicates P < 0.05, ** indicates P < 0.01.
   Positive angles are kyphotic.  
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Table 4.19. Lumbar vertebral wedging angle by sex for semi-orthograde species: Pan troglodytes, Pongo pygmaeus  and Gorilla gorilla  and Ateles geoffroyi. Means reported
with (standard deviation) in degrees.

Female Male   
Vertebral Pan troglodytes Pongo pygmaeus Gorilla gorilla Ateles geoffroyi Pan troglodytes Pongo pygmaeus Gorilla gorilla Ateles geoffroyi
Level  1 n = 15 n = 9 n = 6 n = 5 n = 16 n = 8 n = 7 n = 3

a 5.04 3.72
(2.41) (1.93)

b 5.24 5.80 4.60 5.33 3.37 3.13
(2.13) (3.44)  (3.08) (2.99) (4.01)  (3.16)

c 3.91 5.39 1.63 5.62 4.52 5.39 2.20 3.06
(2.02) (2.26) (2.97) (1.75) (2.23) (4.46) (1.63) (1.11)

d 0.26 4.61 0.88 2.09 0.23 2.81 -1.02 3.03
(0.14) (2.45) (0.93) (2.66) (0.12) (4.46) (2.58) (2.09)

e -0.48 1.28 -1.78 7.45 0.24 -1.03 -1.82 4.45
(2.08) (4.59) (3.81) (3.57) (1.79) (3.77) (1.20) (0.75)

  
   Vertebral Level1: levels are listed in order from cranialmost to caudalmost position.
   Boldface indicates significant result. Wilcoxon Rank Sums Test, Bonferroni adjusted for multiple tests within taxon.
  * indicates P < 0.01
   Positive angles are kyphotic. Negative angles are lordotic. Vertebrae are transitional, neither kyphotic not lordotic, when -0.5° > angle < 0.5°.  
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Table 4.20. Lumbar vertebral wedging angle by sex for pronograde species: Alouatta seniculus and 
Macaca fascicularis. M eans reported with (standard deviation) in degrees.

                                     Female                                      Male
Vertebral Macaca fascicularis Alouatta seniculus Macaca fascicularis Alouatta seniculus
Level  1 n = 13 n = 5 n = 11 n = 4

a 11.76 9.28
(4.04) (5.18)

b 12.26 9.65
(4.54) (4.08)

c 12.67 5.97 14.20 8.32
(3.62) (2.14) (4.26) (2.27)

d 13.97 7.98 12.30 10.21
(2.45) (1.38) (3.98) (2.76)

e 11.36 6.26* 11.45 8.77
(6.43) (0.92) (2.75) (0.55)

f 12.99 4.39* 9.96 7.19
(3.23) (0.87) (2.70) (1.02)

g 7.07 4.17 8.92 5.14
(3.41) (1.17) (3.34) (2.14)

h 6.31 4.13 5.94 4.10
(3.55) (1.84) (3.37) (2.14)

i 3.21 3.25 2.76 3.83
(2.85) (1.99) (3.86) (2.38)

 
   Vertebral Level1: levels are listed in order from cranialmost to caudalmost position.
   Boldface indicates significant result. Wilcoxon Rank Sums Test, Bonferroni adjusted for multiple tests.
  * indicates P < 0.01.
   Positive angles are kyphotic. 



  

 212

 

CAD

CVHCDH wedging angle

wedging angle = 2  arc tan ([(CDH-CVH)/2]/APL)

PL

IFD

CMD

PW

ATP

TPL

POB

1
2

3

4

SML

SCC
SOM

SOC

 

                                    

SB

SAO

SMD
SAD

                    
 
Figure 4.1.  Morphometric measurements. a.) Lumbar vertebra. Vertebral body: CAD - 
Anteroposterior length of centrum cranial surface at midline; CMD - Maximum 
mediolateral width of centrum cranial surface; CDH - Craniocaudal height of centrum at 
dorsal midline; CVH - Craniocaudal height of centrum at ventral midline. Pedicle: PL - 
Minimum craniocaudal length of pedicle; PW - Minimum mediolateral length of pedicle. 
Transverse process: TPL - Dorsal distance from base of transverse process to process tip; 
ATP - Angle of transverse process taken from centrum midline to process tip. 
Zygapophyses: IFD - Linear distance between the most lateral reach of paired 
prezygapophyses; POB - Angle of prezygapophysis from centrum midline to lateral reach 
of facet; SCC - Craniocaudal diameter of prezygapophyseal facet; SML - Mediolateral 
diameter of prezygapophyseal facet; SOC - Oblique craniocaudal diameter of 
prezygapophyseal facet; SOM - Oblique mediolateral diameter of prezygapophyseal 
facet. b.) Sacrum: SAD - Anteroposterior length of centrum cranial surface at midline; 
SMD - Maximum mediolateral width of centrum cranial surface; SB - Maximum 
mediolateral width on ventral surface; SAO - Angle of sacral prezygapophysis from 
centrum midline to lateral reach of facet; AA - Area of the auricular surface computed 
digitally.   
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Figure 4.2. Reduced major axis regression of the natural log geometric mean of 
study species against body mass reported in literature (Smith and Jungers, 1997), 
transformed to natural log. The regression slope equals isometry (0.30). Density 
ellipse represents 95% confidence limit. Solid circles female; open squares male.  
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Figure 4.3. Visual representation of Reduced Major Axis (RMA) 
regression used in the analysis of lumbopelvic variables on  
the geometric mean as proxy for individual body size.  In this case 
both x and y are assumed to be vulnerable to measurement error.  
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Two-Pillar Spine Model

(Pal and Routal 1986, 1987)            

• Dorsal pillar
zygapophyses

• Ventral pillar
vertebral bodies

 
                         Figure 4.4.  Pair of adjacent lumbar vertebrae, dorsolateral view  

              from right, in anatomical position. Arrows indicate directionality  
              of the two biomechanical pillars. Arrow 1: ventral pillar comprised  

 of vertebral bodies and discs. Arrow 2: dorsal pillar comprised of  
 laminar structures and zygapophyses.   
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Vertebral Wedging
ventral wedging

dorsal wedging

kyphosis

lordosis

 
 

   Figure 4.5. Vertebral body wedging results from differing heights of  
the ventral and dorsal margins of the centrum. Ventral wedging results  
from reduced ventral length relative to dorsal length and characterizes  
the thoracic spinal region, generating kyphosis. Dorsal wedging results  
from increased ventral length relative to dorsal length and characterizes  
the lordotic region of the spine, generating lumbar lordosis. Proportional  
loading shifts between the two pillars as a result of both bony  
morphology and movements initiated along the vertebral column. 
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Figure 4.6. Reduced major axis regression of sacral breadth (natural log of raw 
mean variate) against geomean (natural log). The slope approximates isometry 
(1.0). Solid line is slope of regression. Dotted line is slope of isometry. Density 
ellipse represents 95% confidence limit. The slope of isometry lies within the 
lower (0.932) and upper (1.22) confidence limits of the regression slope. Solid 
circles female; open squares male. Human values not included in regression; 
points plotted for comparison. Species labels are defined in Table 4.1.  
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Figure 4.7. Reduced major axis regression of CSA (centrum surface area) against 
geomean for lumbar vertebral levels L1, L2, PL, LL and sacral vertebra S1. Gorilla 
gorilla levels include L1, PL and LL. Means derived from raw variates and natural log 
transformed.  Slope of isometry = 2.0. The slope of isometry lies below the lower 95% 
confidence limit of the regression slope at each lumbar and sacral level. Human points 
plotted after regression, not included in the analysis. Solid circles female; open squares 
male. Species labels are defined in Table 4.1. 
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Figure 4.8. Reduced major axis regression of PSA (prezygapophyseal surface area) 
against geomean for lumbar vertebral levels L1, L2, PL, LL and sacral vertebra S1. 
Gorilla gorilla levels include L1, PL and LL. Means derived from raw variates and 
natural log transformed.  Slope of isometry = 2.0. The slope of isometry lies within the 
lower and upper 95% confidence limits of the regression slope at each lumbar and sacral 
level. Human points plotted after regression; not included in the analysis. Solid circles 
female; open squares male. Species labels are defined in Table 4.1. 
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Figure 4.9. Reduced major axis regression of PedXS (pedicle cross-sectional area) 
against geomean for lumbar vertebral levels L1, L2, PL and LL. Gorilla gorilla levels 
include L1, PL and LL. Points for male and female Homo sapiens not included in the 
regression and were subsequently plotted onto the regression space. Means derived from 
raw variates and natural log transformed.  Slope of isometry = 2.0. Regression slopes at 
all lumbar levels exhibit significant positive allometry (p < 0.0000) as the slope of 
isometry < lower confidence limits of regression. Solid circles female; open squares 
male. Species labels are defined in Table 4.1. 
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Figure 4.10. Reduced major axis regression of AA (auricular area) against geomean. 
Means derived from raw variates and natural log transformed.  Regression slope (1.84) is 
negatively allometric (p = 0.05). The correlation for auricular area on overall size 
measure of geomean is not strongly correlated (r = 0.84). Points for male and female 
Homo sapiens not included in the regression and were subsequently plotted onto the 
regression space. WithinPropithecus (Pv), female mean exceeds male mean. This is also 
the case for the two prehensile-tailed taxa, Ag (semi-orthograde) and As (pronograde). 
Solid circles female; open squares male.Species labels are defined in Table 4.1. 
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       Figure 4.11. Male and female means for lumbar vertebral wedging angle in orthograde  
       Hylobates lar. See Table 4.9 for significance test. Female n = 15; male n = 16. 
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                     Figure 4.12. Male and female means for lumbar vertebral wedging angle in orthograde      

       Indri indri. See Table 4.10 for significance test. Female n = 7; male n = 2. 
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      Figure 4.13. Male and female means for lumbar vertebral wedging angle in orthograde 
       Propithecus verreauxi. See Table 4.11 for significance test. Female n = 2; male n = 4.                  
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           Figure 4.14. Male and female means for lumbar vertebral wedging angle in semi-orthograde 
             Pan troglodytes. See Table 4.14 for significance test. Female n = 10; male n = 14. 
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          Figure 4.15. Male and female means for lumbar vertebral wedging angle in semi-orthograde 
            Pongo pygmaeus. See Table 4.13 for significance test. Female n = 9; male n = 8. 
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                               Figure 4.16. Male and female means for lumbar vertebral wedging angle  
                               in semi-orthograde Gorilla gorilla. See Table 4.12 for significance test.  
                               Female n = 6; male n = 7. 
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         Figure 4.17. Male and female means for lumbar vertebral wedging angle in 
                              semi-orthograde Ateles geoffroyi. See Table 4.15 for significance test. Female  
                               n = 5; male n = 3. 
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             Figure 4.18. Male and female means for lumbar vertebral wedging angle in pronograde  
                Macaca fascicularis. See Table 4.16 for significance test. Female n = 13; male n = 11. 
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                Figure 4.19. Male and female means for lumbar vertebral wedging angle in pronograde   
               Alouatta seniculus. See Table 4.17 for significance test. Female n = 5; male n = 4. 
 
 



  

 226

REFERENCES

Abitbol M. 1987. Obstetrics and posture in pelvic anatomy. J Hum Evol 16:243-256. 

Abitbol MM. 1993. Growth of the fetus in the abdominal cavity. Am J Phys Anthropol  

   91:367-378. 

Abitbol M. 1996. Birth and human evolution: anatomical and obstetrical mechanics in  

   primates. Westport, Conn: Bergin and Garvey. 

Altmann SA. 1959. Field observations on a howling monkey society. J Mammal 40:317- 

   330. 

Ankel F. 1972. Vertebral morphology of fossil and extant primates. In: Tuttle R, editor.  

   The Functional and Evolutionary Biology of Primates. Chicago: Aldine Atherton  

   pp 223-240. 

Ardito G. 1976. Checklist of data on gestation length of primates. J Hum Evol 5:213-222. 

Badoux DM. 1974. An introduction to biomechanical principles in primate locomotion  

   and structure. In Jenkins Jr FA (ed). Primate Locomotion. New York, Academic Press.  

   pp 1-44. 

Bartlett TQ. 2003. Intragroup and intergroup social interactions in white-handed gibbons. 

   Int J Primatol 24:239-259. 

Benton R. 1967. Structural patterns in the Pongidae and Cercopithecidae.  Yrbk Phys  

   Anthropol 18:65-88. 

Berge C. 1984. Multivariate analysis of the pelvis for hominids and other extant   

   primates: Implications for the locomotion and systematics of the different species of  

   australopithecines. J Hum Evol 13:555-562. 

 



  

 227

Berge C. 1990. Size and locomotion-related aspects of hominid and anthropoid pelves: an  

  osteometrical multivariate analysis. In: FK Jouffroy, MH Stack, C Niemitz, editors. 

Bergeson D. 1996. The positional behavior and prehensile tail use of Alouatta palliata,  

   Ateles geoffroyi, and Cebus capucinus. PhD dissertation, Washington University, St.  

   Louis. 

Black E. 1970. Sexual dimorphism of the ischium and pubis of three species of South   

   American monkeys. J Mammal 51:794-796.  

Bogduk N. 2005. Clinical anatomy of the lumbar spine and sacrum. 3rd edition. New  

    York:Churchill Livingstone. 

Canavez FC, Moreira MAM, Ladasky JJ, Pissinatti A, Parham P, Seuanez HN. 1999. 

   Molecular phylogeny of New World primates (Platyrrini) based on beta(s)- 

   microglobulin DNA sequences. Mol Phylo Evol 12:74-82.    

Cannon CH, Leighton M. 1994. Comparative locomotor ecology of gibbons and  

   macaques: selection of canopy elements for crossing gaps. Am J Phys Anthropol  

   93:505-524. 

Cant JGH. 1986. Locomotion and feeding postures of spider and howling monkeys: Field  

   study and evolutionary interpretation. Fol Primatol 46:1-14. 

Cant JGH. 1987. Positional behavior of female Bornean orangutans (Pongo pygmaeus).  

   Am J Primatol 12:71-90. 

Cant JGH. 1988. Positional behavior of long-tailed macaques (Macaca fascicularis) in  

   Northern Sumatra. Am J Phys Anthropol 76:29-37. 

 

 



  

 228

Cant JGH, Youlatos D, Rose MD. 2001. Locomotor behavior of Lagothrix lagothricha  

   and Ateles belzebuth in Yasuni National Park, Ecuador: General patterns and  

   nonsuspensory modes. J Hum Evol. 41:141-166. 

Carpenter CR. 1964. A field study in Siam of the behavior and social relations of the  

   gibbon (Hylobates lar). In Naturalistic Behavior of Nonhuman Primates (ed. Carpenter  

   CR), pp. 145–271. University Park: The Pennsylvania State University Press. 

Chen XM, Milne N, O'Higgins P. 2005. Morphological variation of the thoracolumbar  

   vertebrae in Macropodidae and its functional relevance. J Morph 266:167-181. 

Clauser DA. 1980. Functional and comparative anatomy of the primate spinal column:  

   Some locomotor and postural adaptations. PhD dissertation. The University of  

   Wisconsin, Milwaukee. 

Collins AC. 2004. Atelinae phylogenetic relationships: The trichotomy revived? Amer J  

   Phys Anthropol 124:285-296. 

Connour JR, Glandel K, Vincent F. 2000. Postcranial adaptations for leaping in primates  

   J Zool 251: 79-103. 

Dagosto M. 1995. Seasonal variation in positional behavior of Malagasy lemurs. Int J  

   Primatol 16:807-833. 

Darroch J, Mosimman J. 1985. Canonical and principal components of shape.  

   Biometrika 72:241-252. 

Davis PR. 1961. Human lower lumbar vertebrae: some mechanical and osteological  

   considerations. J Anat 95:337-344. 

Demes B, Fleagle JG, Jungers WL .1999. Takeoff and landing forces of leaping  

   strepsirhine primates. J Hum Evol 37:279-292. 



  

 229

Demes B, Franz TM, Carlson KJ. 2005. External forces on the limbs of jumping lemurs  

   at takeoff and landing. Am J Phys Anthropol 128:348-358. 

Digiovanni B, Scoles P, Latimer B. 1989. Anterior extension of the thoracic vertebral  

   bodies in Scheuermann’s kyphosis: an anatomic study. Spine 14(7): 712-716. 

Doran DM. 1992. Comparison of instantaneous and locomotor bout sampling methods: A  

   case study of adult male chimpanzee locomotor behavior and substrate use. Am J Phys  

   Anthropol 89:85-99. 

Doran DM. 1993. Comparative locomotor behavior of chimpanzees and bonobos: The  

   influence of morphology on locomotion. Am J Phys Anthropol 91: 83–98. 

Doran DM, Hunt KD. 1994. Comparative locomotor behavior of chimpanzees and  

   bonobos: species and habitat differences. In Chimpanzee Cultures (eds Wrangham RW, 

   McGrew WC, de Waal FBM, et al.), pp. 93–108. Cambridge:Harvard University Press. 

Ellefson JO. 1967. A natural history of gibbons in the Malay Peninsula. PhD thesis,  

   University of California, Berkeley. 

Elftman HO. 1932. The evolution of the pelvic floor of primates. J Anat 51:307-346. 

Fleagle JG. 1976. Locomotion and posture of the Malayan siamang and implications for  

   hominid evolution. Folia Primatol 26:245–269. 

Fleagle JG, Mittermeier RA. 1980. Locomotor behavior, body size, and comparative  

   ecology of seven Surinam monkeys. Am J Phys Anthropol 52:301-314. 

Flower WH. 1885. An introduction to the osteology of Mammalia. London:MacMillon  

   and Co. 

Fontaine R. 1990. Positional behavior in Saimiri boliviensis and Ateles geoffroyi. Am J  

   Phys Anthropol 82: 485-508. 



  

 230

Gebo DL. 1987. Locomotor diversity in prosimian primates. Am J Primatol 13:271-281. 

Gebo DL, Chapman CA. 1995. Positional behavior in 5 sympatric Old-World monkeys.  

   Am J Phys Anthropol 97:49-76. 

Gilleard D, Brown W, Brown JM. 1996. Structure and function of the abdominal  

    muscles in primigravid subjects during pregnancy and the immediate postbirth period.  

    Phys Ther 76: 750-762. 

Gingerich PD. 1972. The development of sexual dimorphism in the bony pelvis of the  

  squirrel monkey. Anat Rec 172:589-595. 

Gittins PS. 1983. Use of forest canopy by the agile gibbon. Fol Primatol 40: 134–144.  

Givnish TJ, Sytsma KJ. 1997. Homoplasy in molecular vs. morphological data: The  

   likelihood of correct phylogenetic inference. In Givnish TJ, Sytsam KJ (eds.),  

   Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge.  

   pp 55-101. 

Hager LD. 1996. Sex differences in the sciatic notch of great apes and modern humans.  

   Am J Phys Anthropol 99:287-300. 

Halpert A, Jenkins F, and Franks H. 1987. Structure and scaling of the lumbar vertebrae  

   in African bovids (Mammalia and Artiodactyla). J Zool Lond 211:239-258. 

Harcourt AH. 1985. Gorilla. In: MacDonald D (ed), Primates. Torstar Books: New York.  

   pp 136-143. 

Hollihn U. 1984. Bimanual suspensory behavior: morphology, selective advantages and  

   phylogeny. In: The lesser apes: evolutionary and behavioral biology. Preuschoft H,  

   Chivers DJ, Brockelman WY, Creel N (eds). Edinburgh: Edinburgh University Press.  

   pp 85-95. 



  

 231

Horovitz I, Zardoya R, Meyer A. 1998. Platyrrhine systematics: A simultaneous analysis  

   of molecular and morphological data. Am J Phys Anthropol 106: 261-281.  

Hoyt DF, Wickler SJ, Biewener AA, Cogger EA, DeLa Paz KL. 2005.  In vivo muscle  

   function vs speed I. Muscle strain in relation to length change of the muscle-tendon  

   unit. J Exp Biol 208:1175-1190. 

Hunt KD. 1996. The postural feeding hypothesis: An ecological model for the evolution  

   of bipedalism. S Af J Sci 92:127-151. 

Isler K. 2005. 3D-kinematics of vertical climbing in hominoids. Am J Phys  

   Anthropol 126: 66-81. 

Johnson SE, Shapiro LJ.1998. Positional behavior and vertebral morphology in atelines  

   and cebines. Am J Phys Anthropol 105:333-354. 

Jungers WL, Susman RL. 1984. Body size and skeleton allometry in African apes. In (R.  

   L. Susman, ed.) The Pygmy Chimpanzee. New York: Plenum Press. pp131–177. 

Kapandji IA. 1982. Physiology of the joints: The trunk and the vertebral column.  

   Edinburg: Churchill Livingstone.  

Kiltie RA. 1982. Intraspecific variation in the mammalian gestation period. J Mammal  

   63: 646-652. 

Knott CJ. 1999. Orangutan behavior and ecology. In Dolhinow P and FuentesA (eds.)  

   The nonhuman primates. Mayfield Press, Mountain View CA pp 50-57.   

Lague MR. 2003. Patterns of joint size dimorphism in the elbow and knee of catarrhine  

   primates. Am J Phys Anthropol 120:278-297. 

 

 



  

 232

Latimer B, Ward C. 1993. The thoracic and lumbar vertebrae.  In: Walker A, Leakey  

   REF, editors.  The Nariokotome Homo Erectus Skeleton. Cambridge: Harvard  

   University Press p 266-293.   

LaVelle M. 1995. Natural selection and developmental sexual variation in the human  

  pelvis. Am J Phys Anthropol 98:39-72. 

Leutenegger W. 1973. Sexual dimorphism in the pelves of African lorises. Am J Phys  

  Anthropol 38:251-254. 

Leutenegger W. 1974. Functional aspects of pelvic morphology in simian primates. J  

  Hum Evol 3:207-222. 

Leutenegger W. 1987.  Neonatal brain size and neural cranial dimensions on Pliocene  

  hominids: implications for obstetrics. J Hum Evol 16:291-296. 

Leutenegger W, Larson S. 1985. Sexual dimorphism in the postcranial skeleton of New  

   World primates. Folia Primatol 44:82–95. 

Little BB. 1989. Gestation length, metabolic-rate, and body and brain weights in  

   primates: epigenetic effects. Am J Phys Anthropol 80: 213-218.   

Lindberg D. 1982. Primate obstetrics: The biology of birth. Am J Primatol Supp 1:93-99. 

Meder, A. 1993. Gorillas. Okologie und Verhalten. Heidelberg: Springer.  

Mittermeier RA. 1978. Locomotion and posture in Ateles geoffroyi and Ateles paniscus.  

   Fol Primatol 30:161-193. 

Mittermeier RA, Fleagle JG. 1976. Locomotor and postural repertoires of Ateles geoffroyi  

   and Colobus guereza and a re-evaluation of locomotor category semibrachiation. Am J  

   Phys Anthropol 45:235-255.  

 



  

 233

Mosimann J. 1970. Size allometry: Size and shape variables with characterizations of the  

   log normal and gamma distributions. J Am Stat Assoc 56:930-945. 

Odgers P. 1933. The lumbar and lumbosacral diarthrodial joints. J Anat 67:301-317. 

Pal GP. 1989. Weight transmission through the sacrum in man. J Anat 162:9-17.   

Pal GP, Routal RV. 1986. A study of weight transmission through the cervical and upper  

   thoracic regions of the vertebral column in man. J Anat 148:245-261. 

Pal GP, Routal RV. 1987. Transmission of weight through the lower thoracic and  

   lumbar regions of the vertebral column in man. J Anat 152:93-105. 

Petter JJ. 1962. Recherches sur l'ecologie et l'ethologie des lemuriens Malgaches.  

   Paris: Editions du Museum. 

Pissinatti A, DaSilva EC, Coimbra AF, Bertolazzo W, DaCruz JB. 1992. Sexual  

   dimorphism of the pelvis in Leontopithecus (Lesson, 1840). Fol Primatol 58:204-209. 

Plavcan J, van Schaik C. 1997. Intrasexual competition and body weight dimorphism in  

   anthropoid primates. Am J Phys Anthropol 103:37–68. 

Preuschoft H, Fritz M, Niemitz C. 1979. Biomechanics of the trunk in primates and  

  problems of leaping in Tarsius. In: M Morbeck, H Preuschoft, N Gomberg, editors.  

  Environment, behavior and morphology: dynamic interactions in primates. New York:  

  Gustov Fischer. p 327-345. 

Rae TC, Koppe T. 2000. Isometric scaling of maxillary sinus volume in hominoids. J  

   Hum Evol 38:411-423. 

Reichard U, Sommer V. 2005. Group encounters in wild gibbons (Hylobates lar):  

   Agonism, affiliation, and the concept of infanticide. Behav 134: 1135-1174. Part 15-16. 

 



  

 234

Remis M. 1995. Effects of body size on social context on the arboreal activities of  

   lowland gorillas in the Central African Republic. Am J Phys Anthropol 97:413-433.  

Richard A.1970. A comparative study of the activity patterns and behavior of Alouatta  

   villosa and Ateles geoffroyi. Fol Primatol 12:241-263. 

Rockwell H, Gaynor Evans F, Pheasant H. 1938. The comparative morphology of  

   the vertebrate spinal column: its form as related to function. J Morphol 63:87-117. 

Rodman PS. 1979. Individual activity patterns and the solitary nature of orangutans. In  

   Perspectives On Human Evolution: The Great Apes. Hamburg DA, McCown ER (eds).  

   Menlo Park, CA:Benjamin/Cummings Publishing Co. pp 235-255. 

Rose MD. 1975.  Functional proportions of primate lumbar vertebral bodies. J Hum Evol  

  4:21-38. 

Rosenberg KR. 1988.  The functional significance of Neanderthal pubic length. Cur  

  Anthropol 29: 595-607. 

Rosenberg KR. 1992. The evolution of modern human childbirth. Yrbk Phys Anthropol  

  35:89-124. 

Rosenberg KR, Trevathan W. 1996. Bipedalism and human birth: the obstetrical dilemma  

  revisited. Evol Anthropol 4:161-168. 

Rosenberg KR, Trevathan W. 2002. Birth, obstetrics and human evolution. BJOG –  

   Internat J Obstet Gynecol 109: 1199-1206. 

Ruff CB. 1995. Biomechanics of the hip and birth in early Homo. Am J Phys Anthropol  

  98:527-574. 

Ruiz-Garcia M, Alvarez D. 2003. RFLP analysis of mtDNA from six platyrrhine genera:  

   Phylogenetic inferences. Fol Primatol 74:59-70. 



  

 235

Ruvolo M. 1997. Molecular phylogeny of the hominoids: Inferences from multiple  

   independent DNA sequence data sets. Mol Bio Evol 14:248-265.  

Sanders WJ. 1995.  Function, allometry, and evolution of the australopithecine lower  

  precaudal spine. PhD dissertation, New York University. 

Sanders WJ. 1998.  Comparative morphometric study of the australopithecine vertebral  

  series Stw-H8/H41.  J Hum Evol 34:249-302. 

Sanders WJ, Bodenbender BE. 1994.  Morphometric analysis of lumbar vertebra UMP  

  67-28: Implications for spinal function and phylogeny of the Miocene Moroto  

  Hominoid. J Hum Evol 26:203-237. 

Satie JP, Alfred JRB. 2002. Locomotion and posture in Hoolock gibbon. Ann. For. 10,  

   298–306. 

Schultz AH. 1930. The skeleton of the trunk and limbs of higher primates. Hum Biol  

  2:303-409. 

Schultz AH. 1949. Sex differences in the pelves of primates. Am J Phys Anthropol  

  7:401-423. 

Schultz AH. 1953. The relative thickness of the long bones and the vertebrae in primates.  

   Am J Phys Anthropol 11:277-311. 

Shapiro LJ. 1991. Functional morphology of the primate spine with special reference to  

   orthograde posture and bipedal locomotion. PhD Dissertation. State University of New  

   York at Stony Brook. 

Shapiro LJ. 1993a. Evaluation of “unique” aspects of human vertebral bodies and  

   pedicles with a consideration of Australopithecus africanus. J Hum Evol 25:433-470. 

 



  

 236

Shapiro LJ. 1993b. Functional morphology of the vertebral column on primates.   

   In: Gebo DL, editor. Postcranial Adaptation in Nonhuman Primates. DeKalb: Northern   

   Illinois University Press p 121-149.    

Shapiro LJ. 1995. Functional morphology of indrid lumbar vertebrae. Am J Phys  

   Anthropol 98:323-342. 

Shapiro LJ, Simons VM. 2002. Functional aspects of strepsirrhine lumbar vertebral  

   bodies and spinous processes. J Hum Evol 42:753-783. 

Slijper EJ. 1946. Comparative biologic-anatomical investigations of the vertebral column  

   and spinal musculature in mammals. Amsterdam: Verhandelingen der Koninklijke  

   Nederlandsche Akadamie van Wetenschappen, Tweedie Sectie 42 (5):1-128. 

Smith RJ, Jungers WL. 1997. Body mass in comparative primatology. J Hum Evol  

   32:523-529. 

Stanford CB.2006. Arboreal bipedalism in wild chimpanzees: Implications for the  

   evolution of hominid posture and locomotion. Am J Phys Anthropol 129:225-231. 

Steiper ME, Ruvolo M. 2003. New World monkey phylogeny based on X-linked G6PD  

   DNA sequences. Mol Phyl Evol 27:121-130. 

Stern JT Jr. 1975. Before bipedality. Yrbk Phys Anthropol 19:59-68. 

Steudel K. 1981a. Sexual dimorphism and allometry in primate os coxae. Am J Phys  

   Anthropol 55:209-215.  

Steudel K.  1981b.  Functional aspects of primate pelvic structure: a multivariate  

   approach. Am J Phys Anthropol 55:399-410. 

Stoller M. 1995. The obstetric pelvis and mechanism of labor in nonhuman primates.  

  PhD dissertation, University of Chicago, Chicago, Illinois. 



  

 237

Straus WL. 1927. The human ilium: Sex and stock. Am J Phys Anthropol 11:1-28. 

Tague RG. 1986. Obstetric adaptations of the human bony pelvis. PhD dissertation,  

  Kent State University. 

Tague RG. 1989. Variation in pelvic size between males and females. Am J Phys  

   Anthropol 80:59-71. 

Tague RG. 1990. Morphology of the pubis and preauricular area in relation to parity and  

  age at death in Macaca mulatta. Am J Phys Anthropol 82:517-525. 

Tague RG. 1991. Commonalities in dimorphism and variability in the anthropoid pelvis,  

   with implications for the fossil record. J Hum Evol 21:153-176. 

Tague RG. 1993. Pubis symphyseal synostosis and sexual dimorphism of the pelvis in  

  Presbytis cristata and Presbytis rubicunda. Int J Primatol 14:637-654. 

Tague RG. 1995. Variation in pelvic size between males and females in nonhuman  

   anthropoids. Am J Phys Anthropol 97:213-233. 

Tague RG, Lovejoy CO. 1986. The obstetric pelvis of A.L. 288-1 (Lucy). J Hum  

   Evol 15:237-255. 

Tan CY, Inglewicz B. 1999. Measurement methods comparisons and linear statistical  

   relationship. Technometrics 41:192-201. 

Terranova CJ. 1995. Leaping behaviors and the functional morphology of strepsirhine  

   primate long bones. Fol Primatol 65:181-201. 

Terranova CJ. 1996. Variation in the leaping of lemurs. Am J Primatol 40: 145-165. 

Tobias PV. 1998. Ape-like Australopithecus after seventy years. Was it a hominid? Roy   

   Anthropol Inst 4:283-308. 

 



  

 238

Trevathan WR. 1987. Human Birth: An Evolutionary Perspective. New York: Aldine de  

  Gruyter. 

Trevathan W. 1988. Fetal emergence patterns in evolutionary perspective. Am Anthropol  

  90:19-26. 

Trevathan W. 1996. The evolution of bipedalism and assisted birth. Med Anthropol Q  

  10:287-290. 

Trinkaus E. 1984.  Neandertal pubic morphology and gestation length. Cur Anthropol  

  25:509-514. 

Vereecke EE, D’Août, K, Payne R, Aerts P. 2005. Functional analysis of the foot and  

   ankle myology of gibbons and bonobos. J Anat 206:453–476. 

Walker A.1979. Prosimian locomotor behavior. In: The study of prosimian behavior.  

   Doyle GA, Martin RD (eds). Academic Press: New York. 

Walker SE, Ayres JM. 1996. Positional behavior of the white uakari (Cacajao calvus  

   calvus). Am J Phys Anthropol 101:161-172. 

Walrath D, Glantz M. 1996. Sexual dimorphism in the pelvic midplane and its  

  relationship to Neandertal reproductive patterns. Am J Phys Anthropol 100:89-100. 

Warren RD, Crompton RH. 1997. Locomotor ecology of Lepilemur edwardsi and Avahi  

   occidentalis. Am J Phys Anthropol 104:471-486. 

Washburn SL. 1948. Sex differences in the pubic bone. Am J Phys Anthropol  

   6:199-207. 

Washburn SL, Buettner-Janusch J. 1952. The definition of thoracic and lumbar  

   vertebrae. Am J Phys Anthropol 10:251. 

 



  

 239

Whitcome KK. 1999. Sexual dimorphism of the human lumbar spine. Am J Phys  

   Anthropol 276-276 Suppl. 28. 

Whitcome KK. 2000. Functional morphology of human lumbar vertebral sexual  

   dimorphism. Masters Thesis. Southern Illinois University. 

Whitcome KK. 2001. Postural adaptations and sexual dimorphism in the primate pelvis. 

   Am J Phys Anthropol 164. Supp 32.  

Wrangham RW. 1980. Bipedal locomotion as feeding adaptation in gelada baboons and  

   its implications for hominid evolution. J Hum Evol 9:329-331.  

Youlatos D. 1999. Positional behavior of Cebuella pygmaea in Yasuni National Park,  

   Ecuador. Primates 40: 543-550. 

Zuckerman S, Ashton EH, Flinn RM, Oxnard CE, Spence TF. 1973.  Some locomotor  

  features of the pelvic girdle in primates. Symp Zool Soc Lond 33:71-165. 

 

 

 

 

 

 

 

 

 

 

 



  

 240

Chapter 5: Summary and Conclusions 

SUMMARY 

This study presents the first hypothesis to quantitatively test the prediction that 

human lumbopelvic sexual dimorphism results in part from obstetric adaptation to 

structural risks associated with bipedality. Earlier chapters explored two independent 

lines of inquiry related to the major hypothesis. Chapter 2 investigated the biomechanical 

link between human fetal load and female positional behavior. The analysis confirmed 

adult spinal loading patterns associated with fetal growth and maternal shape change, 

supporting the principal hypothesis. Results provided an obstetric biomechanical context 

in which the morphological components of human lumbopelvic sexual dimorphism were 

subsequently examined. Chapters 3 and 4 investigated the osteological evidence for 

human lumbopelvic sexual dimorphism and placed it in a comparative evolutionary 

framework for broader evaluation within primates. Unique characteristics of human 

lumbopelvic sexual dimorphism were thereby identified and further examined for 

functional relevance to habitual bipedalism, in accordance with the spinal loading 

patterns identified in Chapter 2. The specific questions addressed in preceding chapters 

are now considered in culmination.   

1) To what extent does sexual dimorphism of the lumbopelvic complex in 

humans differ from that of other extant primates?  

Human lumbopelvic sexual dimorphism is distinct among primates. This human 

form of shape sexual dimorphism (independent of vertebral size) is related to lumbar 

lordosis, a key adaptation to bipedalism. Human female vertebrae are dorsally wedged, 
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contributing to the bony lordosis at lumbar levels L3, L4 and L5. At these lordotic levels, 

female vertebrae bear markedly oblique prezygapophyses. Conversely, lordotic wedging 

in human males is less extensive along the lumbar column, occurring at the lumbar levels 

L4 and L5. Female vertebral bodies are less heavily loaded, proportionally, than those of 

males at any one level in the lumbar region. The greater obliquity of the prezygapophyses 

in the female lumbar spine is functionally consistent with a more dorsally directed spinal 

loading pattern, as resistance to an increase in shear stress with dorsal wedging. 

Furthermore, the relatively large centrum surface areas in males from L1 through L4 and 

S1 suggest that males bear more of their axial load along the ventral pillar centra than do 

females.  

Where sexual dimorphism of the lumbopelvic variables was identified in the 

nonhuman primates, the relatively larger values of measure characterized males.  There is 

no pattern of pillar-specific loading by sex, either along the lumbar levels or within them 

for any of the nonhuman primate species examined. The positional grouping of taxa as 

orthograde, semi-orthograde and pronograde did not reveal any pattern of shared sexual 

dimorphism. Although humans and other orthograde primates compressively load their 

vertebral columns more often than do non-orthograde primates, there appears to be no 

loading difference between sexes, consistent with positional behavior. 

2) Do kinematic adjustments in lumbar lordosis and sagittal pelvic tilt during 

human pregnancy mediate risk associated with obstetric spinal loading?  

Results of the kinematic analyses indicate that under conditions of increasing fetal 

load, human females positionally adjust their lower back and pelvic segments in 

association with anterior translation of maternal center of mass. In doing so, the effective 
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fore-aft position of maternal center of mass is biomechanically recovered and its 

displacement throughout pregnancy restricted within a narrow window of efficiency 

relative to the supporting joints of the lower body. These positional mechanisms of 

lumbar lordosis and pelvic tilt occur in both quiet stance and natural gait, signaling a 

consistent biomechanical strategy in the bipedal behavior of gravid human females.  

While the introduction of a reference posture served to constrain body segment 

alignment to target center of mass resulting from segmental mass change, an alternative 

posture of natural stance allowed subjects to self-select the positional alignment of body 

segments. It was in natural stance that the balance mechanisms of lordosis and pelvic tilt 

were expected to realign the center of mass into a more favorable biomechanical position. 

When translation in center of mass was contrasted between conditions, stable positioning 

in natural stance was evident. The positional rigidity imposed by the reference posture 

revealed a 3.2 cm anterior translation of center of mass. Yet, when subjects self-

positioned in natural stance, center of mass during pregnancy changed just -0.3 cm. 

Although the absolute distance of a 3.2 cm migration in reference posture center of mass 

may seem minor in linear terms, the effective change in fore-aft location of center of 

mass relative to the biacetabular axis asserts marked biomechanic effect. The obstetric 

load-induced position of maternal center of mass shifted anterior to all of the major 

supporting joints, not only the hips (hip position was held constant by the reference 

posture), but also the knees and ankles, triggering the postural mechanisms of lumbar 

lordosis and pelvic tilt. In this manner, pregnant females avoid both the fatigue and 

energy cost of muscle recruitment that would otherwise be needed to stabilize the torso 

against the force of gravity acting anterior to the hips. Sustained recruitment of muscle 
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effort throughout the second and third trimesters of human pregnancy would further 

inflate the risks of back and hip injury to women. 

While changes in lumbar lordosis and pelvic tilt during pregnancy have been 

previously recorded, the results presented in this work clearly demonstrate a 

biomechanical relationship between maternal center of mass and positional adjustments.   

3) Which aspects of human lumbopelvic sexual dimorphism are associated 

with fetal load?  

With an obstetric spinal loading regime identified, the most immediate question is 

whether lumbopelvic characteristics present in females and absent in males are 

functionally related to fetal load.  

The most prevalent expression of human lumbar sexual dimorphism occurs in the 

mid lumbar region, levels L2 and L3.  This area is the transitional zone of vertebral body 

wedging where kyphotic vertebral bodies reach their caudal limit. Lumbar level two is 

the neutral or transitional level in females while lumbar level three is the level of wedge 

transition in males. Vertebral body wedging in the lumbar region is both less kyphotic 

cranially and more lordotic caudally in females than in males. Female vertebral bodies 

therefore are less heavily loaded, proportionally, than those of males at any one level in 

the lumbar region. The large centrum surface areas, relative to vertebral size, in males 

from L1 through L4 and S1 also indicate that males bear more of their axial load along 

the ventral pillar centra. The greater obliquity of the prezygapophyses in the female 

lumbar spine is functionally consistent with a more dorsally directed spinal loading 

pattern, enhancing resistance to an increase in shear stress augmented by dorsal wedging. 

The smaller radius of curvature expressed in females produces a tighter curve relative to 
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males. Although female lumbar lordosis is more acute than that of males, it is distributed 

across a greater number of vertebrae. By distributing the proportionally larger dorsal 

pillar load across a longer expanse of vertebrae, the female lumbar spine gains additional 

structural safety within a vertebral column subjected to obstetric load.  

4) To what extent is sexual dimorphism in the human lumbopelvic complex 

an evolutionary solution to the bipedal challenge of hominin fetal load?   

Results of these analyses suggest that the challenge of bipedal obstetric load was 

cast once early hominins committed to bipedalism and effectively stabilized the upper 

body via lumbar lordosis. Regardless of the relative size of the early neonate or the 

gestation time it required, fetal body mass borne anteriorly to the bipedal maternal body 

increased spinal load and joint torque. Whether early hominin females enacted the 

positional coping mechanisms of modern human females or recruited sustained muscle 

effort to counter the instability of obstetric load is uncertain. The evolution of 

lumbopelvic specialization in the modern human female suggests that early hominins 

were at minimum subject to selection pressure for vertebral resistance to reproductive 

load.  

The obstetric spinal loading patterns newly identified for human females provide 

a model that can be applied to the fossil record. This novel tool for interpretation of the 

hominin fossil record is not simply relevant to the functional role of fossil vertebrae and 

pelves but to the broader context in which reproductive selection pressures operate. 

Regardless of the single or myriad as yet undetermined selection pressures favoring 

hominin bipedality, anatomical commitment to bipedal locomotion constrains other 

functions. Physical anthropologists have long known that human pelvic shape is a 
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compromise solution to the challenges of bipedal locomotion and pelvic parturition (e.g., 

Berge et al., 1984; Tague and Lovejoy, 1986; Rosenberg, 1988, 1992; Ruff, 1995). We 

now add to that complexity of selection pressures the biomechanics of stable bipedal 

postures and locomotion during pregnancy. 

Of the ten comparative primate species examined here, only humans (Homo 

sapiens) are characterized by true lordotic curvature in the lumbar region. Within modal 

humans, individuals with five lumbar vertebrae, lordosis typically begins at either the L3 

or L4 level. The cranialmost region of the lumbar spine is kyphotic, either at the L1 level 

alone or along two levels inclusive of L1 and L2. The kyphotic span is followed by a 

neutral, non-wedged level, either L2 or L3, depending on the number of kyphotic 

vertebrae preceding. Ultimately the lordotic region is terminated by a caudally lordotic 

series of two or three dorsally wedged vertebrae. The mean cumulative angle of dorsal 

wedging in females is 9.88◦. In contrast, the mean cumulative lordosis in males is less, 

8.25◦. Notably, the sexes differ not only in total angular lordosis, but also in the 

distribution by vertebral level of the angular change. In males bony lordosis extends 

across just two lumbar vertebral levels, while in females vertebral lordosis extends across 

a greater length of the lumbar column, three lumbar vertebral levels.  

Similarly, results of the analysis demonstrate that within the non modal groups, 

both the L6 variant and the L4 variant, the lordotic sequence of dorsally wedged lumbar 

vertebrae in females exceeds by one vertebral level the sequence in males. Regardless of 

the overall number of vertebrae within the lumbar region, four, five or six, the female 

sequence of dorsally wedged lumbar vertebrae tends to be longer than that of males, 

within type.  The fact that this pattern of sexual dimorphism holds across human numeric 



  

 246

types indicates it is a species-wide phenomenon, independent of variation in lumbar 

vertebral number.  

Unlike the human groups investigated here, the nine nonhuman primate species in 

the analysis express no lumbar lordotic curvature, at least not in the human sense. Not 

only are the initial cranial levels in the lumbar region of nonhuman primates kyphotic (as 

in humans), the more caudal levels are kyphotic as well (unlike humans). No transitional 

level of neutral, non-wedging occurs. In seven of the nine comparative taxa, (exceptions 

includes Ateles and Alouatta, prehensile-tailed genera), the final caudal level is 

infrequently lordotic, dorsally wedged. However, the only primate to demonstrate a mean 

dorsal angle of the last lumbar vertebra is the gorilla. In all others, the mean remains 

kyphotic. This nonhuman ventrally wedged pattern is not specific to any one positional 

group, whether pronograde, semi-orthograde or orthograde, and there are no meaningful 

patterns of sex difference among them.   

IMPLICATIONS FOR EARLY HOMININ EVOLUTION 

At what point in the evolution of the human lineage did obstetric load adaptation 

emerge? As the findings of this study demonstrate, sexual dimorphism of this nature does 

not occur among other extant primates. In particular, the lack of sex differences in Pan 

suggests that the evolution of human obstetric load sexual dimorphism arose after 

divergence from the last common ancestor of Pan and Homo.  

Was this a basal adaptation of the hominins or a later adaptation coincident with 

hominins of modern human limb proportion and pelvic dimension? Although not directly 
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testable given the current hominin fossil record, three indirect lines of evidence point to 

an early emergence of obstetric load adaptation. 

First, bony lumbar lordosis is a key hominin mechanism for upper body stability 

over a bipedal support base. Early hominins as evidenced by Australopithecus specimens 

A.L. 288-1 and Sts-14 had both large lumbar zygapophyses and massive sacral superior 

facets relative to vertebral body dimensions (Sanders, 1998), suggesting increased 

resistance to dorsal pillar loading. Dorsal pillar load was most likely generated by 

lordotic wedging of the vertebral bodies. Morphological evidence of early homimin 

vertebral body shape is preserved in the presumed second lumbar and first sacral 

vertebrae of A.L. 288-1 (Australopithecus afarensis). Wide inter-prezygapophyseal 

distance between the two preserved vertebral elements is inferred to indicate dorsal 

wedging of the lumbar of the lumbar spine (Ward and Latimer, 1991; Ward, 2002).  

Further support of basal lumbar lordosis is evidenced in the complete lumbar series of 

Sts-14 (Australopithecus africanus) evidencing a series of four dorsally wedged lumbar 

vertebrae at levels L3-L6 (Robinson, 1972; Sanders, 1995, 1998).  

Given behavioral bipedalism (Leakey and Hay, 1979; Feibel et al., 1996) and 

morphological lumbar lordosis (e.g., Robinson, 1972; Ward and Latimer, 1991; Sanders, 

1995, 1998) in australopithecines, the resultant orthograde compartment of fetal load 

would have challenged early hominins in ostensibly the exact biomechanical context as 

modern humans. If the A.L. 288-1 and Sts-14 individuals were female, as is generally 

inferred from body size and pelvic dimensions (Tague and Lovejoy, 1986; McHenry, 

1992; Wood and Quinney, 1996), their robust dorsal pillar facets exemplify a basal sex-

specific morphology related to obstetric load. This interpretation will ultimately gain 
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support or correction through the acquisition of additional fossil evidence, namely a 

range of male and female specimens. The expectation of obstetric load sexual 

dimorphism is independent of the uncertain modal number of lumbar vertebrae in early 

hominins, as the modern human pattern demonstrated in this analysis is consistent across 

modal number and variant groups.  

Another relevant point is that to otherwise resist torque generated by the anterior 

load of the fetus during maternal bipedal posture and locomotion, sustained extensor 

muscle recruitment would be required. Muscles and the joints they cross are vulnerable to 

injury when fatigued by sustained effort. Fatigue alone is a sufficient stressor to 

compromise individual mobility. For early hominins erector spinae fatigue could easily 

have limited foraging efficiency and predator avoidance, leaving the gravid female 

vulnerable to nutritional stress and injury or death. These negative consequences hold a 

high potential to reduce reproductive success. In this sense, postural and locomotor 

adaptation to obstetric load would be under relatively strong selection pressure in bipeds.  

Finally, the complex obstetric role of the pelvis is fundamental to both delivery of 

the fetus at parturition (e.g., Abitbol, 1987, 1996a, 1996b; Rosenberg, 1992; Hager, 1996; 

Trevathan and Rosenberg, 2001), and as findings of this study indicate, during gestational 

growth. Clearly, cephalopelvic proportions of fetus and adult, respectively, are critical for 

successful fetal descent through the birth canal. Now evident from this analysis, adult 

female lumbopelvic proportions are important in the sacral transfer of load between the 

upper body and lower support base. In contrast to that of males, the first sacral centrum of 

females is small relative to vertebral size and its prezygapophyses relatively large (L6 

variant), suggesting that at the lumbosacral junction, females continue to carry more of 
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their vertebral load in the dorsal pillar. The auricular area that is the sacrum’s 

contribution to the articulation of the sacroiliac joint is larger relative to vertebral size in 

females than in males. Earlier studies report that male auricular area (raw size) exceeds 

female area (Solonen, 1957; Vleeming et al., 1990a). Vleeming et al. (1990b) suggest the 

functional role of increased male auricular size is resistance to greater torque related to a 

more anterior position of upper body center or mass in males (Bellamy et al., 1983). 

Importantly, once male-female comparison is made using relative size, as in this analysis, 

female auricular area (relative to vertebral size) exceeds that of male area. Current 

findings suggest that the functional significance of relatively large female auricular area 

may be related to the anterior translation of maternal center of mass under conditions of 

obstetric load and the torque it asserts on pelvic joints. 

Considered in sum, these factors strongly indicate that obstetric load was a 

significant selection factor in the evolution of lumbopelvic sexual dimorphism and the 

evidence points to an early, basal emergence of obstetric load adaptation in hominins. 

CONCLUSION 

The goal of this research was to better understand biomechanical change in 

human pregnancy, particularly, to identify the role that increasing obstetric load plays in 

the position of maternal center of mass and to accurately characterize the context-specific 

spinal loading patterns of bipedal pregnancy. Ultimately, with these phenomena clearly 

understood, we gain mechanistic tools necessary to better reconstruct the evolution of 

lumbopelvic sexual dimorphism in modern humans and to further identify an adaptive 

suite of traits that enhance the reproductive success of females.   



  

 250

Human lumbopelvic sexual dimorphism as identified in this study is 

morphologically distinct compared to a broad range of primate taxa with varying 

positional behaviors and is functionally tied to bipedal lumbar lordosis. The 

morphometric portions of the analysis revealed unique vertebral morphology in human 

females that is well adapted to resist obstetric spinal loading. Evidence of the stabilization 

mechanisms restricting displacement of the maternal center of mass under conditions of 

fetal load was provided by kinematic increase in lumbar lordosis and pelvic tilt, 

adjustments that exacerbate dorsal pillar loading in females. In conclusion, reproductive 

factors other than the immediate mechanisms of birth, namely bipedal obstetric load, 

played a role in the evolution of the lumbopelvic complex in modern humans and earlier 

hominins.   
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Appendices    

APPENDIX A: SUBJECT RECRUITMENT FLIER 1 
 

 
 

• Among the many changes a pregnant woman experiences are an increase and 
redistribution of body mass as her baby develops and grows. Mechanisms for 
balance of the torso are challenged as the orientation and mass of the baby 
change with advancing pregnancy. Women manage very well through successive 
trimesters via subtle adjustments in their posture and walking gait.   

• The purpose of this study is twofold: to document changes in the standing 
posture and walking behavior of women through the parous period and to apply a 
biomechanical model the observations generate to investigate the unique size 
and shape of the lower back and pelvis of women in contrast to those of men.  

• Your participation in the study will involve six brief sessions held in a Gait Lab 
at the University of Texas at Austin. Volunteers perform two routine activities, 
natural standing and comfortable walking. Compensation for study participation 
is given in the amount of $200 and on-site no fee parking is provided. 

• If you are interested in volunteering and you are 24 weeks pregnant or less, 
please contact us directly or complete and mail this questionnaire. Your privacy 
is important. This information will only be used in conjunction with participating 
in this study at the University of Texas at Austin. Your information will not be 
shared with anyone for any other reason. Responding to this questionnaire in no 
way obligates you. If you wish to join the study or would like further 
information, please call Katherine Whitcome, project coordinator, at (512) 471-
4206, email kwhitcome@mail.utexas.edu or return flier by mail. Thanks! 

 
First and Last Name 
_______________________________________________________ 
Daytime Telephone 
________________________________________________________ 
Evening Telephone 
_________________________________________________________ 
Email Address 
____________________________________________________________ 

IInntteerreesstteedd  iinn  ttrraacckkiinngg  yyoouurr  ppoossttuurree  aanndd  ggaaiitt  cchhaannggeess  
dduurriinngg  pprreeggnnaannccyy??  
 

JJooiinn  uuss  iinn  aa  rreesseeaarrcchh  ssttuuddyy..    YYoouurr  ccoonnttrriibbuuttiioonn  wwiillll  aaddvvaannccee  oouurr  
uunnddeerrssttaannddiinngg  ooff  tthhee  iimmppaacctt  tthhee  pprree--nnaattaall  bbaabbyy  hhaass  oonn  aa  mmootthheerr’’ss  
nnaattuurraall  ssttaannccee  aanndd  wwaallkkiinngg  ssttrriiddee..      
$$220000  ccoommppeennssaattiioonn  pprroovviiddeedd  ttoo  vvoolluunntteeeerrss..  
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Maternal Posture
As pregnancy advances, the 
balance mechanisms of the 
torso become challenged by 
changes in maternal mass

Women manage well through 
successive trimesters via 
subtle adjustments in their 
posture and walking gait

 
 
 
 
 

(fold here) 
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TO:   KATHERINE WHITCOME 

        DOCTORAL CANDIDATE 

Department of Anthropology 

        UNIVERSITY OF TEXAS AT AUSTIN 
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APPENDIX B: SUBJECT RECRUITMENT FLIER 2   
 
 
 

 
 

• Among the many changes a pregnant woman experiences are an increase and 
redistribution of body mass as her baby develops and grows. Mechanisms for 
balance of the torso are challenged as the orientation and mass of the baby 
change with advancing pregnancy. Women manage very well through successive 
trimesters via subtle adjustments in their posture and walking gait.   

 
• The purpose of this study is twofold: to document changes in the standing 

posture and walking behavior of women through the parous period and to apply a 
biomechanical model the observations generate to investigate the unique size 
and shape of the lower back and pelvis of women in contrast to those of men.  

 
• Your participation in the study will involve brief sessions held in a Gait Lab at 

the University of Texas at Austin. Volunteers perform two routine activities, 
natural standing and comfortable walking. Compensation for study participation 
is given in the amount of $200 and on-site no fee parking is provided. 

 
• If you are interested in volunteering and you are 24 weeks pregnant or less, 

please contact us. Your privacy is important. Information will only be used in 
conjunction with participating in this study at the University of Texas at Austin, 
and your information will not be shared with anyone for any other reason. 
Responding in no way obligates you.  

 
• If you wish to join the study or would like further information, please call 

Katherine Whitcome, project coordinator at (512) 471-4206, email 
kwhitcome@mail.utexas.edu, or visit our study web site: 

 
 

http://webspace.utexas.edu/whitcome/www/ppgstudy 

IInntteerreesstteedd  iinn  ttrraacckkiinngg  yyoouurr  ppoossttuurree  aanndd  ggaaiitt  cchhaannggeess  
dduurriinngg  pprreeggnnaannccyy?? 
JJooiinn  uuss  iinn  aa  rreesseeaarrcchh  ssttuuddyy..    YYoouurr  ccoonnttrriibbuuttiioonn  wwiillll  aaddvvaannccee  oouurr  
uunnddeerrssttaannddiinngg  ooff  tthhee  iimmppaacctt  tthhee  pprree--nnaattaall  bbaabbyy  hhaass  oonn  aa  mmootthheerr’’ss  
nnaattuurraall  ssttaannccee  aanndd  wwaallkkiinngg  ssttrriiddee..      
$$220000  ccoommppeennssaattiioonn  pprroovviiddeedd  ttoo  vvoolluunntteeeerrss..  
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Posture and Gait Changes in Pregnancy 
 

• One of the ways you can help improve our understanding of the reproductive 
experiences of women is by volunteering for a research study at the 
University of Texas at Austin.  

 
• A posture and gait study of pregnant women is presently recruiting 

participants.  
 

• For their generosity of interest and time, participants are given financial 
compensation. 

 
•  Any information you provide is strictly confidential and will not be used for 

any purpose other than contacting you in regard to the study.    
 
  

If you wish to join the study or would like further information 
  please call Katherine Whitcome, project coordinator at  

(512) 471-4206, email kwhitcome@mail.utexas.edu,  
or visit our study web site: 

 
 

http://webspace.utexas.edu/whitcome/www/ppgstudy 
 

  
RReepprroodduuccttiivvee  EExxppeerriieenncceess  ooff  WWoommeenn  
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APPENDIX C: SUBJECT RECRUITMENT WEB SITE     
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APPENDIX D: SCREENING QUESTIONNAIRE    
 
 
Participant Telephone Screening Questionnaire             Name________________________________ 

 
Contact Number________________________ 

 
Date ________________________ 

 
When is your baby due?    ____________________________________ 
 
How many weeks pregnant are you?   ____________________________________ 
 
Are you expecting a single birth?  ____________________________________ 
 
What is your general state of health?  ____________________________________ 
 
What is your age?    ____________________________________ 
 
 What is your approximate height?  ____________________________________ 
 
                      approximate weight?  ____________________________________ 
 
Do you have any current medical conditions? ______________________________
 
 __________________________________________________________________ 
 
 Have you ever injured your back, hip, leg, foot? ______________________________ 
 

__________________________________________________________________ 
 
Have you been pregnant before?  ____________________________________ 
 
Did you carry the pregnancy to term?  ____________________________________ 
 
Did you experience any physical discomfort? ______________________________ 
 
 __________________________________________________________________ 
 
Did you experience any restriction in your physical activity? __________________ 
 
 __________________________________________________________________ 
 
 



 

 266

 
Are you able to participate one day each month over a ten-month period from December  
    2003 to August 2004?  
    

__________________________________________________________________ 
Are you able to travel to the University of Texas at Austin for each session? 
 
 __________________________________________________________________ 
 
Will you be able to continue the study in the final months of your pregnancy? 

 
__________________________________________________________________ 

   
 
Will you be able to continue the study in the three months following the birth of your  
     baby?     
 __________________________________________________________________ 
 
How did you hear about our study?     _________________________________________ 
 
 Do you have any questions?   ____________________________________ 
 
 __________________________________________________________________ 
 
 __________________________________________________________________ 
 
 __________________________________________________________________ 
 
 
 
Your participation requires formal consent. When we meet I will request you read and 
sign a voluntary consent form. If you have additional questions we can discuss them at 
that meeting.  In the meantime, you may reach me by phone at 512-232-3905 or email at 
kwhitcome@mail.utexas.edu 
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APPENDIX E:  CONSENT FORM    

 
IRB#  2002050067  
 

Informed Consent to Participate in Research 
 

The University of Texas at Austin 
 

You are being asked to participate in a research study.  This form provides you with information about the study. 
The Principal Investigator (the person in charge of this research) or his/her representative will also describe this 
study to you and answer all of your questions. Please read the information below and ask questions about anything 
you don’t understand before deciding whether or not to take part. Your participation is entirely voluntary and you 

can refuse to participate without penalty or loss of benefits to which you are otherwise entitled.   
 

Title of Research Study: Posture and Gait Changes in Pregnancy, in 
association with the study: Bipedal Obstetric Load and the Evolution of 

Human Lumbopelvic Sexual Dimorphism 

 
Principal Investigator(s) (include faculty sponsor), UT affiliation, and Telephone 
Number(s):   
 
Katherine K Whitcome, MA, Principal Investigator, University of Texas at Austin, 512-
232-3905 
Liza Shapiro, PhD, Faculty Sponsor, University of Texas at Austin, 512-471-7533 
 
Funding source: 
 
Current Funding provided by:   The Leakey Foundation 
Funding pending:    National Science Foundation  (notification expected 

by February 2004) 
 
What is the purpose of this study?  
Among the many changes a pregnant woman experiences are an increase and 
redistribution of body mass as her baby develops and grows.  Mechanisms for balance of 
the torso are challenged as the orientation and mass of the baby change with advancing 
pregnancy. Women manage very well through successive trimesters via subtle 
adjustments in their posture and walking gait.   
The purpose of this study is twofold: to document changes in the standing posture and 
walking behavior of women through the parous period and to apply a biomechanical 
model the observations generate to investigate the unique size and shape of the lower 
back and pelvis of women in contrast to those of men.  
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What will be done if you take part in this research study? 
Participants will perform natural postural and locomotor activities in one-hour sessions at 
the University of Texas at Austin Motor Development Lab. The protocol for each of the 
six data sessions will proceed in the following manner. Volunteers will simply stand and 
walk comfortably providing positional data via small reflective markers recorded by a 
motional analysis system. Participants will be asked to wear a spandex gait suit during 
each session. Suit design is similar to popular exercise attire and will ensure comfort 
through all stages of pregnancy. In the first few minutes of each data session, preliminary 
information will be recorded, including weight, height, and torso circumference. An 
additional ten minutes of preparation will follow while the reflective markers are placed 
on major joints of the body. 
Over a twenty to thirty minute period, participants will routinely stand and walk about the 
laboratory during which time the position of the makers will be identified by their 
reflective properties. The data session will conclude at the end of the scheduled hour. The 
changing and restroom facility is conveniently located adjacent to the lab, and 
participants are free to request a session intermission at any time.  
 
What are the possible discomforts and risks? 
Small lightweight markers will be gently applied by removable double-sided tape to the 
torso, arms, and legs. Participants will be asked to stand comfortably and walk at normal 
speed within the lab.  No discomfort or injury is anticipated as all activities are routine 
and performed with ease.  Proper placement of markers on the body will require painless 
palpation of body joints.  
 
What are the possible benefits to you or to others? 
Participants are expected to gain modest intellectual and financial benefit from the study.  
Increased awareness of physical changes associated with pregnant biomechanical load 
may serve to alleviate possible concerns women have as a result of postural and 
locomotor adjustments during pregnancy.  Monetary compensation in the amount of $20 
per data session will provide participants with a total financial reward of $200. 
 
If you choose to take part in this study, will it cost you anything? 
No costs will be incurred by participants. Complementary campus parking will be 
provided.  
 
Will you receive compensation for your participation in this study? 
Monetary compensation in the amount of $20 per data session will provide participants 
with a total financial reward of $200. 
 
What if you are injured because of the study?   
Injury is unlikely as a result of this study. Should a participant require medical attention 
during a study session, no medical treatment will be provided, and the affected 
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participant will be directed to consult a medical provider. No payment can be issued in 
the event of a medical problem. 
 

If you do not want to take part in this study, what other options are available to 
you? 

 
Participation in this study is entirely voluntary. You are free to refuse to be in the 
study, and your refusal will not influence current or future relationships with The 
University of Texas at Austin. 
 
How can you withdraw from this research study? 
If you wish to end your participation in this research study for any reason, you should 
contact: Katherine Whitcome at (512) 232-3905.   You are free to withdraw your consent 
and stop participation in this research study at any time without penalty or loss of benefits 
for which you may be entitled. Throughout the study, the researchers will notify you of 
new information that may become available and that might affect your decision to remain 
in the study.  
 
In addition, if you have questions about your rights as a research participant, please 
contact Clarke A. Burnham, Ph.D., Chair, The University of Texas at Austin Institutional 
Review Board for the Protection of Human Subjects, 512/232-4383. 
 

How will your privacy and the confidentiality of your research records be protected? 
Authorized persons from The University of Texas at Austin and the Institutional Review 
Board have the legal right to review your research records and will protect the 
confidentiality of those records to the extent permitted by law.  If the research project is 
sponsored then the sponsor also has the legal right to review your research records. 
Otherwise, your research records will not be released without your consent unless 
required by law or a court order. 
 
If the results of this research are published or presented at scientific meetings, your 
identity will not be disclosed. 
 
Will the researchers benefit from your participation in this study beyond publishing 
or presenting the results? 
No 
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IRB#  2002050067  
 
Signatures: 
 
As a representative of this study, I have explained the purpose, the procedures, the 
benefits, and the risks that are involved in this research study: 
 
 
 
_____________________________________ ___       
Signature and printed name of person obtaining consent         

 Date 
 
You have been informed about this study’s purpose, procedures, possible benefits 
and risks, and you have received a copy of this Form. You have been given the 
opportunity to ask questions before you sign, and you have been told that you can 
ask other questions at any time. You voluntarily agree to participate in this study.  
By signing this form, you are not waiving any of your legal rights. 
 
 
 
___________________________________________________________________ 
Printed Name of Subject                  Date 
 
 
 
___________________________________________________________________ 
Signature of Subject                   Date 
 
 
 
___________________________________________________________________ 
Signature of Principal Investigator                 Date 
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Sessions will be videotaped in accordance with the lab protocol to provide time frame 
information for gait events. The cassettes will be coded so that no personally identifying 
information is visible. They will be kept in a secure locked file cabinet in the 
investigator’s office. They will be heard or viewed only for research purposes by the 
investigator and his or her associates.  

 
 We may wish to present some of the tapes from this study at scientific conferences or as 
demonstrations in classrooms. Please sign below if you are willing to allow us to do so 
with the tape of your performance. 
 
 
I hereby give permission for the video tape made for this research study to be also 
used for educational purposes 
 
Signatures: 
 
As a representative of this study, I have explained the purpose, the procedures, the 
benefits, and the risks that are involved in this research study: 
 
 
 
_____________________________________ ___       
Signature and printed name of person obtaining consent         

 Date 
 
You have been informed about this study’s purpose, procedures, possible benefits 
and risks, and you have received a copy of this Form. You have been given the 
opportunity to ask questions before you sign, and you have been told that you can 
ask other questions at any time. You voluntarily agree to participate in this study.  
By signing this form, you are not waiving any of your legal rights. 
 
 
 
___________________________________________________________________ 
Printed Name of Subject                  Date 
 
 
 
___________________________________________________________________ 
Signature of Subject                   Date 
 
 
 
___________________________________________________________________ 
Signature of Principal Investigator                 Date 
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APPENDIX F: CONSENT FORM AMENDMENT 
 
IRB#  2002050067  
The University of Texas at Austin 
 

Informed Consent to Participate in Research 
Consent Amendment 

 

Title of Research Study: 

Posture and Gait Changes in Pregnancy, in association with the study: 
Bipedal Obstetric Load and the Evolution of Human Lumbopelvic 

Sexual Dimorphism 

 
Principal Investigators: 

Katherine K Whitcome, MA, Principal Investigator, University of Texas at Austin, 512-
232-3905 

Liza Shapiro, PhD, Faculty Sponsor, University of Texas at Austin, 512-471-7533 
 

 
In order that we may track the changes in maternal posture and gait associated 

with the growth of your baby, we schedule six sessions during your pregnancy. Each 
session is timed to correspond with average patterns of fetal growth and is therefore 
planned by the calendar according to your weeks of pregnancy. At the close of each 
session we confer with you to confirm a date for the subsequent meeting.  
 

Please feel free to contact us to reschedule a planned session at your discretion. 
Each stage of your baby’s fetal growth is framed by a two week window of time during 
which we hope to see you. Should you wish to reschedule an appointment, we will gladly 
identify an alternate date and time. 
  

While pregnancy is a natural life experience and most women feel well and 
remain active, the prolonged period from early pregnancy to full delivery may find a 
woman with occasional discomforts either related to or independent of her pregnancy. 
Your health and well-being are a priority to us and we understand that pregnancy is a 
busy and demanding time. Should a scheduled session appear inconvenient for you, we 
can easily reschedule. 
 

If illness or injury, no matter how minor it may seem, results in a need to either 
reschedule or cancel a session, we ask your permission to follow-up on your condition 
with a phone call in the days immediately following the schedule change.  
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Participation in this study is entirely voluntary. If you wish to end your 

participation in this research study for any reason, you should contact: Katherine 
Whitcome at (512) 232-3905.   You are free to withdraw your consent and stop 
participation in this research study at any time without penalty or loss of benefits 
for which you may be entitled.  In addition, if you have questions about your rights 
as a research participant, please contact Clarke A. Burnham, Ph.D., Chair, The 
University of Texas at Austin Institutional Review Board for the Protection of 
Human Subjects, 512/232-4383. 
 

IRB#  2002050067 
 
Signatures: 
 
As a representative of this study, I have explained the purpose, the procedures, the 
benefits, and the risks that are involved in this research study: 
 
 
 
_____________________________________ ___       
Signature and printed name of person obtaining consent         

 Date 
 

 
By signing this form, you are not waiving any of your legal rights. 

 
 
 
___________________________________________________________________ 
Printed Name of Subject                  Date 
 
 
 
___________________________________________________________________ 
Signature of Subject                   Date 
 
 
 
___________________________________________________________________ 
Signature of Principal Investigator                 Date 
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APPENDIX G: ANGLE MODEL      
 

{*VICON BodyLanguage*} 
 
{*copyright Oxford Metrics 1997*} 
 
 
{*FETALLOAD.MOD, for use with FETALLOAD.MP parameter file*} 
 
 
{* Angle Outputs *} 
{* ============= *} 
 
 
Pelvis = [SACR, LUML-SACR, LUMF-LUML, zyx] 
Lumbar = [LUML, LUMF-LUML, SACR-LUML, zyx] 
Lumbarangle = <Pelvis, Lumbar> 
Pelvicsegment = [RPSI, (RASI-RPSI), (SACR-RPSI), 1] 
pelvicangle = <pelvicsegment, 1>  
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APPENDIX H: MATLAB SCRIPT FOR CENTER OF MASS POSITION      
 
function Tfxzero=FindFxZero(startIndex,Fx) 
 
n=length(Fx); 
Tfxzero=-1; 
if (Fx(startIndex)>0) 
       sign=1; 
   else 
       sign=-1; 
   end 
for i=startIndex+1:n 
    if (Fx(i)>0) 
       sign1=1; 
   else 
       sign1=-1; 
   end 
   if sign1~=sign 
       Tfxzero=i; 
       break; 
   end 
end 
Tfxzero; 
 
function Xglp_t1=zpz(Fx,m, T,Xcop_t0, Xcop_t1) 
 
%T is the time vector from tn to tnplus1 
%Fx is the Fx(t) vector from tn to tnplus1 
F=(0.1*Fx)/(0.1*m); 
part1=trapz(T,F); 
%assume xdeta_0=0 
part2=0; 
Xglp_t1=part1+part2+Xcop_t0; 
%step 3 
t0=T(1); 
t1=T(length(T)); 
Xdelta_t0=(Xglp_t1-Xcop_t1)/(t1-t0); 
part2=Xdelta_t0*(t1-t0); 
%Repeat step 2 
Xglp_t1=part1+part2+Xcop_t0 
 
data=xlsread('testdata1.xls'); 
m=10; 
T=data(:,1)'; 
Xcop=data(:,2)'; 



 

 276

F=data(:,3)'; 
 
Xglp(1)=Xcop(1); 
k=2; 
startIndex=FindFxZero(1, F); 
endIndex=FindFxZero(startIndex, F); 
while(endIndex>startIndex) 
    Fx=F(startIndex:endIndex); 
    Tx=T(startIndex:endIndex); 
    Xcop_t0=Xcop(startIndex); 
    Xcop_t1=Xcop(endIndex); 
    Xglp(k)=zpz(Fx,m, Tx,Xcop_t0, Xcop_t1); 
    k=k+1; 
    startIndex=endIndex; 
    endIndex=FindFxZero(startIndex, F); 
    
end 
Xglp 
average_Xglp=mean(Xglp) 
 
 
 
 
 
 
COM method following Zatsiorsky and King (1998).  
MatLab scripts written in consultation with Dr. Tim Eakin and Shu Wang,  
UT ITS Research Consultants. 
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APPENDIX I: MATLAB PROGRAM FOR RADIUS OF CURVATURE 
 
% determine radius of curvature for fused quadrilateral polygons 
(vertebrae) 
% test script for just two bones 
% assign dorsal lengths, ventral lengths, and width for each polygon 
% d = dorsal length, v = ventral length, w = width 
d(1) = 26.8; % supply the mean dorsal length of first vertebra 
d(2) = 27.0; % supply the mean dorsal length of second vertebra 
d(3) = 26.2; % etc. 
d(4) = 24.6; 
v(1) = 26.7; 
v(2) = 27.7; 
v(3) = 28.0; 
v(4) = 27.7; 
w(1) = 30.7; 
w(2) = 31.8; 
w(3) = 32.3; 
w(4) = 32.2; 
  
%bones = length(d); % determines how many vertebrae are being 
considered 
% prototype with only 2 bones 
bones = length(d); 
  
% determine wedge angles 
% assume line of symmetry, same wedge angle at bottom as at top 
for i = 1:bones 
    theta(i) = atan(((v(i) - d(i))/2)/w(i)); 
end; 
  
% determine vertex and midpoints of all bone polygons 
    % c1 = top left vertex, c2 = top right vertex 
    % c3 = bottom right vertex, c4 = bottom left vertex 
    % m1 = midpoint of top line, m2 = midpoint of ventral line 
    % m3 = midpoint of bottom line, m4 = midpoint of dorsal line 
for i = 1:bones 
    c1(i,1) = 0;% arbitrarily choose top left vertex horizontal 
position at 0 
    c1(i,2) = 0; % arbitrarily choose top left vertex vertical position 
at 0 
    c2(i,1) = c1(i,1) + w(i); 
    c2(i,2) = (v(i)-d(i))/2; 
    c3(i,2) = -d(i) - (v(i)-d(i))/2; 
    c3(i,1) = c2(i,1); 
    c4(i,1) = 0; 
    c4(i,2) = -d(i); 
end; 
for i = 1:bones 
    for j = 1:2 
        m1(i,j) = (c1(i,j)+c2(i,j))/2; 
        m2(i,j) = (c2(i,j)+c3(i,j))/2; 
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        m3(i,j) = (c3(i,j)+c4(i,j))/2; 
        m4(i,j) = (c4(i,j)+c1(i,j))/2; 
    end; 
end; 
  
for i = 1:bones 
    cx(i,:) = [c1(i,1) c2(i,1) c3(i,1) c4(i,1) c1(i,1)]; 
    cy(i,:) = [c1(i,2) c2(i,2) c3(i,2) c4(i,2) c1(i,2)]; 
    mx(i,:) = [m1(i,1) m2(i,1) m3(i,1) m4(i,1)]; 
    my(i,:) = [m1(i,2) m2(i,2) m3(i,2) m4(i,2)]; 
end; 
  
% fuse the bones together with a common graph origin 
% bottom side of bone i flush with top side of bone i+1 
% midpoint of a bone's bottom side coincides with midpoint of adjacent 
top side 
  
% first rotate the bones by the needed angle (sum current and previous 
thetas) 
for i = 1:bones 
    rot(i) = 0; 
    for j = 1:i 
        for k = 1:j 
            rot(i) = rot(i) - (theta(k)); 
        end; 
    end; 
    rotmatrix = [cos(rot(i)) -sin(rot(i)); sin(rot(i)) cos(rot(i))]; 
    rotc1(i,1:2) = (rotmatrix*[c1(i,1);c1(i,2)])'; 
    rotc2(i,1:2) = (rotmatrix*[c2(i,1);c2(i,2)])'; 
    rotc3(i,1:2) = (rotmatrix*[c3(i,1);c3(i,2)])'; 
    rotc4(i,1:2) = (rotmatrix*[c4(i,1);c4(i,2)])'; 
    rotm1(i,1:2) = (rotmatrix*[m1(i,1);m1(i,2)])'; 
    rotm2(i,1:2) = (rotmatrix*[m2(i,1);m2(i,2)])'; 
    rotm3(i,1:2) = (rotmatrix*[m3(i,1);m3(i,2)])'; 
    rotm4(i,1:2) = (rotmatrix*[m4(i,1);m4(i,2)])'; 
end; 
  
for i = 1:bones 
    rcx(i,:) = [rotc1(i,1) rotc2(i,1) rotc3(i,1) rotc4(i,1) 
rotc1(i,1)]; 
    rcy(i,:) = [rotc1(i,2) rotc2(i,2) rotc3(i,2) rotc4(i,2) 
rotc1(i,2)]; 
    rmx(i,:) = [rotm1(i,1) rotm2(i,1) rotm3(i,1) rotm4(i,1)]; 
    rmy(i,:) = [rotm1(i,2) rotm2(i,2) rotm3(i,2) rotm4(i,2)]; 
end; 
  
% next translate everything in the x,y directions for the midpoint 
junctions 
% no translation for first bone 
xdiff(1) = 0; 
ydiff(1) = 0; 
trcx(1,:) = rcx(1,:); 
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trcy(1,:) = rcy(1,:); 
trmx(1,:) = rmx(1,:); 
trmy(1,:) = rmy(1,:); 
  
% align top midpoint of other bones with bottom midpoint of previous 
bone 
for i = 2:bones 
    xdiff(i) = rmx(i,1) - rmx(i-1,3); 
    ydiff(i) = rmy(i,1) - rmy(i-1,3); 
    cumxdiff(i) = 0; 
    cumydiff(i) = 0; 
    for j = 1:i 
        cumxdiff(i) = cumxdiff(i) + xdiff(j); 
        cumydiff(i) = cumydiff(i) + ydiff(j); 
    end; 
    trcx(i,:) = rcx(i,:) - cumxdiff(i); 
    trcy(i,:) = rcy(i,:) - cumydiff(i); 
    trmx(i,:) = rmx(i,:) - cumxdiff(i); 
    trmy(i,:) = rmy(i,:) - cumydiff(i); 
end; 
  
% plot the rotated and translated bones 
hold off; 
plot(trcx(1,:),trcy(1,:),'m'); 
hold on; 
plot(trcx(2,:),trcy(2,:),'b'); 
plot(trcx(3,:),trcy(3,:),'r'); 
plot(trcx(4,:),trcy(4,:),'g'); 
  
%make a column vector of all top midpoints plus bottom midpoint of 
final bone 
xmid = trmx(:,1)'; 
ymid = trmy(:,1)'; 
xmid(bones+1) = trmx(bones,3); 
ymid(bones+1) = trmy(bones,3); 
midpoints = [xmid' ymid']; 
  
% make small ircles around the midpoints to be used for finding a best 
fit 
plot(midpoints(:,1),midpoints(:,2),'ko'); 
  
% find best fit to a circle through the midpoints 
% minimize least squares  
% choose the origin as a starting guess for center of circle 
xcen(1) = 0; 
ycen(1) = 0; 
% determine mean x and y positions of midpoints 
xmean = sqrt(sum(xmid.^2)); 
ymean = sqrt(sum(ymid.^2)); 
rad(1) = sqrt(xmean^2 + ymean^2); 
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%construct an error measurement from the initial guess 
  
for i = 1:length(xmid) 
    guess(i) = sqrt((xmid(i)- xcen(1)).^2 + (ymid(i) - ycen(1)).^2); 
end; 
errorsq = sum((guess  - rad(1)).^2 ); 
  
% adjust xcen, ycen, rad until stable 
% select testing incements 
xinc = 0.01*rad(1); 
yinc = 0.01*rad(1); 
rinc = 0.01*rad(1); 
%initalize new values 
newxcen = 0; 
newycen = 0; 
newrad = 1; 
% change values until minimum error is reached 
count = 0; 
while(((xcen(1)~=newxcen) | (ycen(1)~=newycen) | (rad(1)~=newrad)) & 
count <80) 
    count = count + 1; 
    xcen(1) = newxcen; 
    ycen(1) = newycen; 
    rad(1) = newrad; 
    xcen(2) = xcen(1) + xinc; 
    xcen(3) = xcen(1) - xinc; 
    ycen(2) = ycen(1) + yinc; 
    ycen(3) = ycen(1) - yinc; 
    rad(2) = rad(1) + rinc; 
    if rad(1) > rinc 
        rad(3) = rad(1) - rinc; 
    else 
        rad(3) = rad(1)/2; 
    end; 
    for i = 1:3 
        for j = 1:3 
            for k = 1:3 
                for m = 1:length(xmid) 
                    xlen(m) = xmid(m)- xcen(i); 
                    ylen(m) = ymid(m)- ycen(j); 
                    rlen(m) = sqrt(xlen(m)^2 + ylen(m)^2); 
                    rdiff(m) = rlen(m) - rad(k); 
                    rdiffsq(m) = (rdiff(m)).^2; 
                end; 
                newerrorsq = sum(rdiffsq); 
                if newerrorsq < errorsq 
                    xmin = i; 
                    ymin = j; 
                    rmin = k; 
                    errorsq = newerrorsq; 
                end; 
            end; 
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        end; 
    end; 
    newxcen = xcen(xmin); 
    newycen = ycen(ymin); 
    newrad = rad(rmin); 
    for k = 1:360 
        phi(k) = k/(2*pi); 
        xnew(k) = xcen(xmin) + rad(rmin)*cos(phi(k)); 
        ynew(k) = ycen(ymin) + rad(rmin)*sin(phi(k)); 
    end; 
end; 
plot(xnew,ynew,'k'); 
xcenter = xcen(1) 
ycenter = ycen(1) 
radiusofcurvature = rad(1) 
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