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CHAPTER  6

Discussion and future persepectives
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Chapter 6

6.1 Summary and general discussion

Large quantities of medical images are generated every day. At present, in oncology, 

these are mainly used as a qualitative tool for diagnostic and staging purposes. Tumour 

phenotypic differences in patients can be visualized by imaging. However, images may 

contain more than meets the eye [1,2]. For example, they can also contain valuable 

unexplored information that is not visible to the naked eye. Novel computational 

technologies radiomics, which was first proposed in 2012, can help to convert qualitative 

image information into high-dimensional quantitative and mineable data [3,4]. These so 

called radiomic features or image biomarkers represent the intensity, shape and textural 

heterogeneity of a region of interest (ROI), which have a great potential for improving 

treatment outcome predictions [3,5]. The overall purpose of this thesis is to provide 

better understanding of radiomic features in predicting treatment failures of head and 

neck cancer (HNC) patients after definitive non-surgical treatment and to investigate 

their additional prognostic power compared to classical prognostic factors. 

6.1.1 Association of radiomic data with treatment failures

Before 2017, the potential prognostic value of radiomic features, significantly associated 

with survival in HNC, has been demonstrated. Aerts et al. identified the best performing 

radiomic features from four radiomic categories (intensity, geometry/shape, texture and 

wavelet decomposition) to create a signature: statistics energy, shape compactness, gray 

level non-uniformity, and wavelet (HLH) gray level non-uniformity with a concordance 

index (c-index) of 0.69 in predicting the overall survival (OS) of HNC [3]. This radiomic 

signature was externally validated by Leijenaar et al. in a subsequent study in a large 

North American cohort of oropharyngeal squamous cell carcinoma with c-indexes of 

0.63-0.65 [6]. In 2017, we confirmed the prognostic value of radiomics for predicting 

OS using 289 nasopharyngeal cancer patients from Shantou University Medical College 

(SUMC), China and 298 HNC patients from the University Medical Centre of Groningen 

(UMCG), the Netherlands, which are presented in Chapter 2. In contrast to Aerts’ 

model, we included the most frequently selected radiomic features from 1000 bootstrap 

samples instead of combining the four-best performing radiomic features from each 

radiomic category. In this way, we could reduce the probability of over-fitting [7,8]. Our 

study identified a geometric feature (volume density) and a texture feature (run length 



115

discussion and future perspectives

6

non-uniformity) of the primary tumour as independent prognostic factors. Moreover, 

we were the first group that included radiomic features of the pathologic lymph nodes 

(pLN) and reported major-axis-length of pLN as a significant prognostic factor (Table 

1). The multivariable model for OS based on the three radiomic features resulted in a 
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c-index of 0.72 in SUMC training cohort and 0.67 in the UMCG validation cohort. We also 

showed that the radiomic features improved the prognostic performance of the models 

containing clinical factors significantly, which was not investigated in the study of Aerts 

et al. The additional prognostic value of radiomic data was discussed extensively in 6.1.3.

Subsequently, we performed a detailed analysis on the different patterns of failure 

by evaluating local control (LC), regional control (RC), distant metastasis-free survival 

(DMFS) and disease-free survival (DFS) in a large cohort of 444 HNC patients from UMCG 

described in Chapter 3. The patient cohort was split into a model development and 

validation cohort of 240 and 204 patients, respectively. The following radiomic features 

were most frequently selected and significantly associated with the endpoints in the 

multivariable analyses for LC: correlation of gray level co-occurrence matrix (GLCM); 

for RC and DMFS: bounding-box-volume and major-axis-length of pLN, and for DFS: 

bounding-box-volume and correlation of GLCM. More detailed information is given in 

Table 1. With only one or two radiomic features, the LC, RC, DMFS, and DFS models’ 

performances in the validation cohort were 0.62, 0.80. 0.68, and 0.65 respectively. 

The endpoints reflecting the specific pattern of relapse may provide more valuable 

information than survival prediction in guiding future treatment intensification targeted 

on patients with specific high risk of loco-regional failure or distant metastasis. 

Approximately 65% of the HNC patients present with pathological lymph nodes, and more 

than 80% of them have more than one pathological lymph node [9]. From clinical practice 

we know that different lymph nodes within one HNC patients may show heterogeneity 

with regard to response to non-surgical treatment. This phenomenon might open new 

avenues to use prediction models to support clinical decision making, not only for 

individual patients, but also for specific lymph nodes within one patient. Therefore, we 

explored the association between radiomic features from individual pathological lymph 

nodes and nodal failures in 277 node-positive patients with 1,025 pathological lymph 

nodes (pLN) as described in Chapter 4. We found that lymph nodes with large values of 

least-axis-length and correlation of GLCM showed worse nodal control. When tested in 

the validation cohort as well as subgroup cohort of oropharyngeal cancer, the model with 

two radiomic features preserved good discrimination with c-indexes of 0.79 and 0.86, 

respectively. The model was further externally validated in a TRIPOD type 4 modelling 
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study. This study consisted of 113 patients with 374 pathological lymph nodes treated 

at Maastro, Maastricht, the Netherlands. The model showed good discrimination with 

a c-index of 0.71 and good agreement between predicted and observed nodal control 

probabilities (Chapter 5). External validation in an independent cohort is an essential 

step before the model can be used in the clinic to support treatment decisions for head 

and neck squamous cell carcinoma (HNSCC) patients. A discussion on the next steps into 

clinical applications will be given in the “future perspective” of this chapter. 

6.1.2 Association of radiomic data with tumour biology

The role of radiomic features in predicting treatment outcomes in patients with HNSCC is 

promising. Radiomic features provide quantitative information on tumour phenotypes at 

a macroscopic level, which is a result of genetic and microenvironmental characteristics 

[10,11]. In other words, it can be expected that correlations exist between radiomic 

features and genomic data  (Figure 1).

Aerts et al. compared the radiomic features with gene-expression profiles and showed 

that radiomic features from lung cancer significantly correlated with different biologic 

gene sets. It is worth mentioning that the textural radiomic features strongly correlated 

with cell cycling pathways which regulate cell proliferation and evolution [3]. Another 

study, based on a small cohort of 27 oral cavity squamous carcinoma patients, suggested 

that the expression of vascular endothelial growth factor (VEGF) receptors 1 and 2 

significantly correlated with the enhancement (textural features) of the tumour, while 

cyclin D1 expression and the regulator of apoptosis highly correlated with the tumour 

size (geometric features) [12,13]. Recently, Zhu et al. performed a comprehensive 

study to explore the relationship between the tumour genomic system and the 

multiple aspects of tumour image features for HNSCC. They identified wide-spread and 

statistically significant associations between various genomic features and radiomic 

features characterizing the size, shape, and texture of the tumour. In this study, more 

transcriptional activities were found in patients with radiomic features representing 

larger, more irregular and heterogeneous tumours. DNA methylation changes were 

negatively associated with tumour size features, while miRNA over-expression was 

positively associated with tumour texture homogeneity [14]. 

There are two main types of radiomic features reported in these radiomics-genomics 
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association studies, namely geometric and textural features. This is in line with the 

findings as presented in this thesis. Four geometric features (volume-density, major-axis-

length, bounding-box-volume, and least-axis-length) showed significant associations 

with all endpoints, and three textural features (run length non-uniformity, correlation of 

GLCM, and short run high gray level emphasis of gray level run-length matrix (GLRLM)) 

showed significant association with OS, LC, DFS, and NC.

Geometric features may contain similar information as classical clinical features, such as 

tumour volume, tumour diameters.  Moreover, in this thesis we showed that geometric 

features can represent more complex geometric phenotypes, such as bounding-

box-volume which not only gives information on the tumour volume, but also in the 

irregularity of the tumour shape. Bounding-box-volume, as reported in Chapter 3, which 

refers to the volume of the smallest cube that encloses all pixels of the contoured tumour, 

was more predictive for RC, DMFS and DFS than the classical clinical feature tumour 

volume. Some examples are shown in Fig. 4a and 4b in Chapter 3. The irregular tumour 

in Fig. 4b had a similar tumour volume as the tumour in Fig. 4a, but the bounding-box-

volume of Fig. 4b was twice as large as that of Fig. 4a. In our opinion, tumour volume 

depends on the doubling time of tumour cells, while tumour shape is more determined 

by invasive growth patterns. Therefore geometric radiomic features that represent the 

tumour shape could be related to the growth patterns and aggressive behaviours which 

are actually driven by gene mutations such as inactivation of tumour suppressor genes, 

dysfunction of regulators of apoptosis, over expression of VEGF, etc. [15] We expect that 

specific geometric features may be useful substitutes for classical clinical features to 

improve prediction of treatment failure in the future.

Another important type of radiomic features is the textural features. They decode the 

tumour radiological heterogeneity by quantifying the presence of different patterns 

in voxel intensities in the three-dimensional contoured tumour. The textural feature 

Correlation of GLCM (Corre-GLCM) describes the correlation of a reference voxel to 

its neighbours. Tumours with lower values of Corre-GLCM have large areas of similar 

intensities, i.e. lower radiological heterogeneity, which was associated with lower local 

failure and nodal failure rates in Chapter 3, 4 and 5. Visual inspection of the CT images 

with higher values of Corre-GLCM suggested that the presence of necrosis, which can be 
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recognized as an area with lower CT-intensities surrounded by an irregular rim of higher 

CT-intensities in contrast-enhanced CT images, increased the value of Corre-CLCM [16]. 

Therefore, in our opinion, Corre-GLCM may indicate the necrosis status of the tumour. 

The textural feature short run high gray emphasis (SRHGE) emphasises small areas with 

high CT-intensities. In this thesis, a lower SRHGE was associated with a higher nodal failure 

risk. Lower SRHGE values are expected in volumes with lower contrast enhancement (all 

included CT-scans were contrast enhanced). Since contrast enhancement is related to 

local circulation, lower SRHGE values can be expected in hypo-vascular volumes with 

a higher risk of hypoxia [17,18]. Accordingly, higher failure risk in lymph nodes with a 

lower SRHGE could be associated with the oxygenation status of the lymph node. 

Although we did not evaluate direct evidence on the relation between gene expressions, 

microenvironment and radiomic features, the radiomic features identified in this thesis 

are related to different tumour phenotypes such as tumour shape and necrosis (Figure 

1). From a biological point of view, the different tumour phenotypes are caused by a 

series of genetic mutations and heterogeneity of the microenvironment. For example, 

tumour necrosis is associated with multiple gene sets of IL6, CXCL8, SERPINE1 related to 

hypoxia, angiogenesis and inflammation [19]; irregular shape can be associated with DNA 

methylation changes, dysfunction of regulators of apoptosis, and more transcriptional 

activities [14]. A series of genetic mutations causes multiple subclonal populations 

coexisting in the tumour and regulates the proliferation and evolution of the tumour 

cells. Subsequently, differences in growth speed and pattern between the subclonal 

populations in combination with microenvironment heterogeneity result in tumour 

phenotypic heterogeneity [20–23] (Figure 1). The evidence on the associations between 

radiomic features and tumour heterogeneity related gene sets is not yet clear. Further 

research on large dataset is necessary to confirm the associations between radiomics 

and genomics, and develop a theoretical basis of biology for these associations [20,24]. 

We expect that radiomics could become a non-invasive tool that can provide data on 

tumour phenotypes which is complementary to data from limited biopsy samples.

6.1.3 Additional prognostic value of radiomic data

Several studies have shown the diagnostic, prognostic and predictive value of radiomic 

features. Furthermore, association analyses have revealed a possible relation between 
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radiomic features and genetic phenotypes.  However, the extent to which radiomic 

features can provide additional prognostic information to current clinical features 

in predicting HNC patient treatment failures, is less clear. Therefore, the first step in 

this thesis was to build optimal prediction models consisting of classical prognostic 

factors only as reference models (clinical models). Additionally, we developed models 

containing quantitative radiomic features only (radiomic models). In Chapter 2 and 3, we 

were the first to prove that radiomic models containing quantitative radiomic features 

describing the volume, irregular shape and radiological heterogeneity of the tumour and 

the distance between lymph nodes can perform as well as clinical variables in predicting 

LC, RC, DMFS, DFS and OS for HNC patients. However, when clinical and radiomics 

models were combined, model performance remained similar or became slightly better 

than clinical models in predicting LC, RC and DMFS. For the prediction of DFS and OS, 

the combined models performed significantly better than the clinical model. Patients 

stratified with the combined models showed greater differences between the low and 

high-risk groups in the validation cohort than with clinical models for LC, RC, DFS and OS 

(Figure 3 in Chapter 3). These combined models may be used to identify patients with 

high risks of recurrence and survival prior to treatment. After we published our results, 

Vallieres et al. confirmed our findings and demonstrated that the prediction models 

combining radiomic and clinical variables yielded a better performance than models 

with clinical variables or radiomic features only [25].

In Chapter 4 and 5, clinical, radiomic and combined models for individual lymph node 

failure prediction were built and compared. The c-index of the radiomic model was 0.84, 

slightly but not significantly (p = 0.093) better than that of the clinical model 0.78 in the 

UMCG training cohort. When tested in the UMCG validation cohort, the c-index of the 

radiomic model was 0.79 and was higher than that (0.69) of the clinical model. Further 

validation in the external Maastro cohort showed that the c-index of the clinical model 

was significantly worse (0.57) than that of the radiomics model (0.71) in this cohort. This 

illustrates that the clinical model based on patient-specific features may be less robust 

than the radiomic model based on individual lymph nodes for nodal failure prediction. 

Moreover, the radiomic features extracted from each lymph node are expected to be 

more informative than clinical features as they can be measured objectively and better 
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quantified than the categorical clinical features such as N-stage and presence or absence 

of central necrosis. This could be the reason why radiomic features outperform clinical 

variables in predicting individual lymph failures. 

When radiomic features were combined with clinical variables, the c-index significantly 

improved from 0.78 to 0.90 (p < 0.001). With the combined model, better discrimination 

and calibration was obtained in the UMCG as well as in the Maastro validation cohorts. 

The combined model enables a more accurate risk stratification of pathological lymph 

nodes and provide opportunities for more personalized decision making targeted on the 

individual tumour lesions [26–28]. 

To conclude, prediction models containing clinical factors and radiomic features perform 

as well  or slightly better than models with clinical variables only for the prediction of 

LC, RC, DMFS, DFS and OS. Therefore, the additional prognostic values are limited for 

the treatment outcome prediction of individual patient. However, radiomic features 

of individual lymph nodes provide additional prognostic information regarding nodal 

failures.

6.2 Future perspectives

According to Robert J. Gillies, “Images are more than pictures, they are data” [2]. 

Progress in medical image analysis, especially the application of artificial intelligence, 

converts images into minable data. The efforts on the correlations between these data 

and the prognosis of cancer build the bridge between medical imaging and personalized 

medicine [26]. One could envision that, in the near future, radiomics, either combined 

with current classical prognostic features or not, may be gradually introduced into the 

clinic to guide a more personalized approach. We reviewed recent developments in 

radiomics including multiple imaging modalities, deep learning features, and the quality 

of data and models to propose schemes for future model improvement. Furthermore, 

we will discuss a set of clinical studies to validate the models described in this thesis. 

After a successful clinical validation, these models could be introduced into the clinic.

6.2.1 Future improvement

Multi-modality medical images 

Radiomic features were extracted from computed tomography (CT) images in this 
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thesis. Data acquisition can be improved by including multi-modality medical images 

such as magnetic resonance imaging (MRI), positron emission tomography (PET), 

ultrasonography and in-treatment images such as weekly CT images. 

CT is the most straightforward method to visualize the ROI variations in density and 

the easiest technique to compare across institutions due to the standard phantoms and 

clinical settings [29]. CT scans are always acquired in patients primarily treated with 

radiotherapy. Consequently, large datasets are available for analysis. Therefore, in most 

radiomic studies, CT images have been used [3,4,6]. 

As previously mentioned, genomic variations may affect cell proliferation, hypoxia or 

necrotic areas, which could translate into tumour metabolism heterogeneity. Therefore, 

functional PET may play an important role in radiomic analysis. Vallieres et al. found 

that in HNC patients, more radiomic features could be identified for LC and DMFS with 

18F-FDG-PET than with CT images. However, models based on PET radiomic features 

failed to show better performance than CT radiomic features [25]. In addition, Bogowicz 

et al. compared PET and CT radiomic features for the prediction of LC, and confirmed 

that CT and PET radiomic features had equally good discriminative power[30]. 

CT radiomic features are calculated based on signal intensity (gray levels), generated 

from ROI density. In contrast to CT images, more sequences such as T1-weighted, T2-

weighted, diffusion weighted imaging (DWI) provide better contrast resolution of the 

soft tissue which makes MR superior in identifying lesions. Therefore, radiomic analysis 

based on MR might be more accurate in identifying aggressive tumours than radiomics 

based on CT. For example, MRI is superior in detecting nasopharyngeal carcinoma than 

CT [31]. Zhang et al. identified radiomic features extracted from MRI as significant 

prognostic factors for advanced nasopharyngeal carcinoma with a better performance 

than what we found iin Chapter 2 [32,33]. Until now, studies based on MRI have been 

scarce, as large variations across institutions exist in acquisition settings and intensity 

standardisation, which have an impact on the robustness of radiomic features [28,34].

A few studies showed that ultrasound features may be used to distinguish malignant 

from benign tumours in the breast and thyroid [35,36]. So far, no studies in HNC have 

been published.

The reason for the limited use of MRI, PET and US is the lack of standard imaging protocols, 
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which has a large influence on the reproducibility and stability of quantitative features. 

In order to improve the applicability of different modalities for radiomic research, at 

least image acquisition and processing parameters should be reported in detail to 

allow the comparison between radiomic features from different institutions. Preferably, 

to enhance wide spread clinical application of prediction models including radiomic 

features, multicentre studies collecting large image datasets should use standardized 

acquisition and processing parameters and allow data sharing. [37,38]. 

Imaging during treatment may be another direction to improve current radiomic 

risk models. A recent study from Zwanenburg et al. showed that combining radiomic 

features from pre- and during-treatment CT images is a promising way to improve the 

loco-regional tumour control and OS prediction in HNC [39]. Wu et al. further confirmed 

the prognostic value of pre- and mid-treatment CT radiomics for predicting DMFS in 

oropharyngeal cancer patients [40]. Tumour changes, such as shrinkage and density 

change, reflect the response to the therapy, and therefore may provide additional 

prognostic value.

Deep learning in radiomics

An overview of the current radiomics workflow in this thesis is shown in Figure 2. 

We expanded this figure by adding deep learning features in head and neck cancer 

applications. Deep learning can be used for segmentation, feature extraction and 

selection, and classification [41–43]. 

That manual delineation is so time-consuming and labour-intensive currently limits the 

applicability of radiomic analysis in big data sets. Auto-segmentation using deep learning 

has the ability to reduce inter-observer variability and time with respect to manual 

delineation while considerable accuracy can be achieved for organs at risk [41,42,44–46].

However, the application of deep-learning in tumour segmentation is far from 

comprehensive and developed. We found only one deep learning study on the auto-

segmentation of tumour volume by Men et al., and the accuracy  for the segmentation 

was relatively low [42]. Difficulties with target delineation are mainly determined by 

wide-ranging differences in tumour volume, location and shape. We expect better 

accuracy with more training data, but human interference and review will probably 

remain required for clinical safety [47].
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The traditional radiomic features, representing the shape, intensity and texture of ROIs, 

are well defined by formulas. 

These traditional radiomic features are called ‘hand crafted’ features in many publications 

to indicate that those features have been defined manually. In radiomics research the 

associations between the pre-defined image features and clinical outcome is investigated. 

However, there could be image patterns with a larger association with clinical outcome 

that are not included in the set of predefined features. Therefore, researchers are 

also looking for new image features driven by data (clinical outcomes) with Artificial 

Intelligence techniques like deep learning. Convolutional neural networks (CNNs), the 

most popular deep learning tool, usually consists of convolutional layers, max pooling 

layers and fully connected layers which allow deep learning to detect complex image 

patterns. The outputs of CNNs are features learned adaptively from clinical outcomes. 

These characteristics potentially make deep learning an effective tool to find predictive 

and prognostic image features that may enhance the performance of prediction models 

with traditional radiomics. 

A few deep learning studies with specific focus on feature extraction and selection were 

successful in HNC outcome prediction. Diamant et al. showed that CNNs were capable of 

improving the area under curve (AUC, 0.86) of the Vallieres model to 0.92 in predicting 

distant metastasis [25,43]. A hybrid predictive model that combined traditional radiomics 

and CNN features was proposed by Zhou et al., which showed a better performance than 

traditional radiomic features and CNN features alone [48]. However, in contrast to the 

traditional models that take medical indications into account, the automatically obtained 

deep learning models are difficult to interpret clinically due to the nature of a black 

box. This limits the use of deep learning in medical image analysis. A lot of research on 

visualization of deep learning features and models is ongoing to diminish the black box 

perception [49,50]. We expect that the improvement of interpretability of deep learning 

features will stimulate the clinical implementation of deep learning models in the future. 

Another limitation of deep learning is the large risk of overfitting because of the 

very large numbers of variables. Deep learning can generate a model with a perfect 

performance on the training set, however, it can fail in an external validation cohort. 

Overfitting can be reduced by training on a large and representative data set. To define a 
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representative data set is still a challenge because of large variations that exist between 

patients. However, deep learning could advance the application of radiomics with a 

series of challenges in the years to come.

Quality of data and models

In order to assess the quality of current radiomic studies, we performed a literature search 

in MEDLINE and EMBASE using ((radiomic) OR (radiomics) OR (image biomarker)) AND 

(head and neck) as keywords. Among 210 unique records, 20 full-text articles (2 studies 

from our group) reported HNC treatment outcome prediction with models including 

radiomic features before August 22 2019. Table 2 summarizes the characteristics of these 

20 studies. The majority of studies addressed head and neck cancer (13 of 20 studies), 3 

studies were specifically on oropharyngeal cancer and 5 studies were on nasopharyngeal 

cancer. 

All radiomic features were extracted from manually contoured structures and more 

than 100 radiomic features were investigated in 80% of studies. In 15 studies, in-

house developed software was used for feature extraction. Open-source package and 

software such as IBEX and PyRadiomics were used in 5 studies since 2018. In general, 

all studies provided adequate information on features extraction including image 

acquisition setting, segmentation and software implementation. The well documented 

features extraction processes showed large variations between studies. Firstly, different 

image acquisition parameters and CT scanners of different manufacturers were used in 

different studies. It is worth mentioning that all studies used retrospective data sets, 

which means that the scan parameters could also be different within the study. Zhao 

et al. assessed the stability of radiomic features by using same-day repeated CT scans 

with different reconstruction algorithms and slice thicknesses [51]. They found that only 

19% of the features were repeatable when different settings were used. This indicates 

that radiomic features may be not reliable when the imaging protocol is not consistent. 

It is unclear whether the use of different scanners have an even larger influence on 

the quality and reliability of the extracted radiomic features. Secondly, the manual 

delineation is susceptible to inter-observer variations. We observed that 9% of radiomic 

features had inter-observer agreement lower than 0.7. This is in line with the finding of 

Leijenaar et al.[9,52]. The radiomic features with low inter-observer stability are mainly 
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intensity and geometric features. Textural features were overall more stable. Thirdly, 

different in-house developed software tools are used for radiomic feature extraction. The 

number of investigated features in the 20 studies ranged from 41 to 1,615, the variations 

between formulas are unknown. The currently available open-source packages can 

narrow the differences between features extracted from in-house software tools with 

slightly different definitions. Therefore, the use of validated software tools should be 

encouraged in the future analysis.

All these variations in feature extraction methods make it difficult to compare different 

studies and to validate and implement published models. Therefore, it is recommended 

to develop public image protocol for the standardization of image acquisition  in addition 

to the well documented image protocols [26]. The robustness of radiomic features for 

inter- and intra- observer variability in contouring needs to be assessed and reported. 

Furthermore, the “image biomarker standardisation initiative” (IBSI) to standardize 

the definitions of radiomic features was published in 2016. Using  only (open source) 

software that was developed according to the IBSI definitions is recommended as this  

will improve the stability and reproducibility of radiomic features between different 

studies [53].

Only when large datasets with standardized image sets and well defined and stable 

image features are available can large clinical studies to develop and validate prediction 

models based on radiomic features be performed. The number of radiomic features are 

much larger than the size of dataset (Table 2). To reduce the probability of overfitting 

and multicollinearity, pre-selection was performed in most studies [7–9,33]. Next, 

multivariable analysis is expected to provide a more holistic model in contrast to the 

univariable analysis against the endpoints. Generally, the model fitting is optimal in 

the training set but this may be too optimistic. The TRIPOD statement suggests that a  

correction of coefficients in the model should be done with internal validation technique 

[54]. The repeated internal feature selection process can correct for optimism in the 

models due to overfitting effectively. Finally, an external validation with a dataset from 

a different institution is necessary for the assessment of the clinical value of the model.  

However, two studies performed multivariable analysis without internal validation, 12 

(60%) studies did not include external validation due to the lack of datasets from other 
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institutions. This emphasises the need for data sharing. Shared datasets can markedly 

improve the options for external validation analysis. Five studies published their data 

online, one can be obtained by contacting the authors. Two of these studies also made 

their analysis code publicly available. All of these shared data and codes can accelerate 

the progress of radiomics. 

The lack of standardization of acquisition parameters, inconsistent radiomic extraction 

methods, and lack of reproducibility of radiomic features are the main limitations in 

the current radiomic data and models. Researchers are working on overcoming these 

limitations, which can make radiomics more acceptable in the medical community.

6.2.2. Clinical application:

Many studies have investigated the use of radiomics in prognostic models for head 

and neck cancer patients (Table 2). The models combining radiomics with classical 

patient and tumour characteristics allow for more precise risk estimations. Successful 

external validation of these radiomic models has been demonstrated in several studies 

[3,6,25,30,43,55,56,59]. This indicates that the models have the potential to be used 

for personalised treatment-decision making after clinical validation. Using these models, 

tumours are classified into low- or high-risk groups, treatment strategies can be proposed 

targeted on those different risk groups. For example, intensified treatment schemes for 

tumours with a high treatment failure risk can be applied to improve tumour control, 

while less intensive treatment can be an option for low risk groups to reduce normal 

tissue side effects.

Figure 3. Clinical trial based on model selection. Based on the prediction model,  patients can be classified into 
low- and high-risk groups, patients with different treatment failure risk are selected for different randomized 
clinical trials. After treatment, the treatment outcomes of the low risk patients and high-risk patients treated 
with conventional treatment are compared to validate the model. Abbreviation: R = randomization.
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Figure 4. Possible clinical trial based on the local control model. (Courtesy  of L.V. van Dijk)

Before the new treatment schemes can be introduced into clinical practice, clinical trials 

need to be conducted to test the effectiveness of the new treatment methods. In order 

to increase the radiation dose to the tumour, proton therapy can be suggested in the 

clinical trial, which can ideally increase the dose to the target and limit the radiation dose 

to the normal tissue. However, if head and neck cancer patients are randomized without 

considering their treatment failure risk, the patients that are expected to benefit most 

from the new intensive treatment strategy may not be selected for the new treatment, 

and the patients with low treatment failure risk may be over-treated with proton therapy 

unnecessarily. Therefore, the models based on radiomic features and classical prognostic 

variables can be used to identify the patients with high treatment failure risk (Figure 3) 

eligible for the randomized controlled trials (RCTs) of intensified treatment strategies 

[67]. Similarly, patients with low treatment failure risk identified by the models will be 

eligible for the RCTs to investigate de-intensified treatment schemes. 

Eligible patient selection + Clinical trial 

We recommend using the models as eligible criteria for RCTs aiming at introducing new 

intensified and de-intensified new treatments. The principal is depicted in Figure 3. By 

calculating the treatment failure risk, patients can be classified into low- and high-risk 

groups. In this way, patients with a low treatment failure risk can be prevented from 
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intensive treatment strategies that are only necessary for the high failure risk group. 

Further randomized controlled trials can help us to find intensified radiation schemes 

with proton therapy for the high failure risk group and de-intensified radiation scheme 

for the low failure risk group. Considering the limited availability and high costs of 

proton treatment, we can demonstrate the benefit of intensified treatment strategies 

in a smaller number of patients enriched with high risk patients using the models. This 

strategy is more efficient and has great  economic benefits. The comparison between 

low-risk and high-risk patients treated with conventional treatment can be used to 

clinically validate the based model in reverse.

We have started a clinical trial based on the local control model described in Chapter 3 in 

collaboration with the MD Anderson Cancer Center (MDACC), initiated by van Dijk et al. 

from UMCG. The local control model was validated and optimised on MDACC data. We 

estimated the local recurrence risk of patients based on the optimised model. A total of 

18 HNC patients with estimated local recurrence risk higher than 60% are enrolled in a 

Phase I trial to test the safety and feasibility of a novel radiation dose escalation regime. 

In this starting phase Istudy, the maximum tolerable dose administered to the tumour 

with proton therapy without severe unacceptable side effects will be determined. If this 

phase I trial is successful, the resulting next step will be to initiate a multi-center phase 

II randomized controlled trial within UMCG and MDACC. In Figure 4, the design of a 

possible future phase II clinical trial is presented. For the conventional treatment group, 

patients will receive 35 daily fractions of 2 Gy in 7 weeks. In the first 4 weeks of the 

intensive treatment group, patients will receive conventional daily treatment with 2 Gy. 

By the end of week 4, mid-treatment imaging will be performed to assess the geometric 

change of tumour.  Based on the decreased tumour target, a hyper-fractionated (twice-

daily) radiation plan will be scheduled using 1.55 Gy on the original tumour region plus 

a boost dose of 1.15 Gy on the decreased tumour target. We will assess the tumour 

control rate in the prospective follow-up.

The nodal control model in Chapter 4 and 5 showed promising performance in 

predicting individual nodal failure risk, and was successfully validated in Chapter 5. This 

model could be used in a clinical trial aiming at improving neck management in HNC. 

Before such an RCT can start, external validation on larger datasets and a feasibility 
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trial should be performed. Therefore, we only showed some proof of concept clinical 

new treatments in Figure 5. Based on the nodal control model, pathological lymph 

node can be identified as low-, intermediate, and high-risk of failure lymph nodes. As a 

potential future strategy, lymph nodes with low- and intermediate-risk of failure could 

be followed with a wait-and-see policy instead of surgical dissection in case of clinical 

residual disease shortly after radiotherapy, with the surveillance  of PET-CT. For the high-

risk lymph nodes, an intensified radiation schedule or lymph node targeted dissection 

before or after (chemo-)radiation could be arranged to avoid complex clinical decisions 

on re-irradiation or severe post-operative complications. Such a workflow might improve 

the nodal control rate in the high-risk patients and reduce the number of unnecessary 

lymph node dissections in the low-risk patients. 

In summary, radiomics features provide additional information to predict treatment 

outcome when combined with classical patient and tumour characteristics. Future 

improvement can be expected by investigating multiple imaging modalities and using 

more advanced analytical methodologies like artificial intelligence. In particular, this field 

requires a renewed focus on standardization, interpretability and data sharing. Ongoing 

and upcoming clinical trials may bring radiomics into clinical application in personalized 

medicine.
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