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A B S T R A C T

Background: Surgical site infection (SSI) remains a hazardous complication after vascular surgery. In this pilot
study we investigated the inguinal microbiome in skin biopsies using histology and 16S-23S rDNA Next
Generation Sequencing (NGS). Our hypothesis was that causative microorganisms of SSI are present in the
inguinal microbiome.
Methods: Data on surgical site infections and skin samples from the Percutaneous in Endovascular Repair versus
Open (PiERO) trail were evaluated. Two patients with SSI were matched for age and comorbidity to eight
matching patients of the PiERO trial. All patients were treated for an abdominal aortic aneurysm with en-
dovascular repair. Nasal and perineal cultures were taken preoperatively to detect Staphylococcus aureus car-
riage. After disinfection with chlorhexidine, groin biopsies were taken to identify bacteria in deeper skin layers.
All samples were subjected to histological analysis and culture-free 16S-23S rDNA NGS.
Results: Staphylococcus aureus species were cultured in 5 out of 20 preoperative nasal and perineal swaps.
Histology detected only a few bacteria. NGS of the 16S-23S rRNA regions identified DNA of bacterial species in
all biopsies (20/20). Most identified genera and species proved to be known skin flora bacteria. No relation was
found between SSIs and the preoperative microbiome.
Conclusion: In this pilot study, an innovative analysis of the preoperative microbiome using 16S-23S rDNA NGS
did not show a relation with the occurrence of a surgical site infection. No pathogenic bacterial species were
present in the inguinal skin after disinfection with chlorhexidine.

Introduction

Surgical site infections (SSI) after vascular surgery may cause ha-
zardous situations. The incidence of SSI varies from 1–6% after aorto-
iliac surgery [1] to 7–20% after open peripheral bypass surgery [2–4].
Frequently prosthetic graft material is used in vascular reconstruction,
increasing the risk of infection. A prosthetic graft infection is usually
preceded by an SSI, risking anastomotic bleeding, sepsis, and even
death [5,6]. This stresses the importance to prevent any SSI in vascular
surgery.

A diverse population of microorganisms that can be pathogenic,

harmless or even beneficial colonizes the human skin. Exogenous and
endogenous factors, together with the topographical location, are re-
sponsible for the composition of the microbiome present in different
areas of the human skin [7]. Studies focusing on finding the original
pathogenic source of SSI could not identify a causative relation between
intraoperative cultures or biopsies and agents identified during infec-
tion [8–10]. Although a gradual reduction in SSIs is achieved [11], SSI
incidence remains relatively high after an inguinal approach in vascular
surgery [2,3,12]. This inguinal microbiome needs further exploration,
specifically in relation to the shift from an abdominal surgical approach
toward a minimally invasive inguinal approach by transfemoral access
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to the abdominal aorta.
Techniques to detect and identify microbes have always focused on

visualization through light or electron microscopy or growth on culture
media. However, light microscopy shows bacterial shapes but cannot
identify SSI pathogens. Conventional bacterial culturing is a sensitive
method to identify possible pathogens, but it can take days to weeks to
culture bacteria, as some clinically relevant bacteria are slow or diffi-
cult to grow [13]. Molecular tests (e.g. polymerase chain reaction
(PCR)) that target specific microorganisms have proven to be more
rapid and sensitive than culturing [14], yet need a priori knowledge of
the likely pathogenic species that could be present in a sample. As a
complementary approach to culture, Sanger sequencing of the variable
16S rRNA gene has emerged for identification purposes [15]. The 16S
rRNA gene (~1.5 kilobase (kb) in length) has proven to be a useful
molecular target as it is present in all bacteria, either as a single copy or
in multiple copies, and is well preserved over time [16]. Yet this
method fails to identify some bacteria at the species level due to high-
sequence similarities between some bacterial species [17]. Although
Sanger sequencing of the 16S rRNA gene can be applied directly on
clinical samples, it is challenging to identify more than one species si-
multaneously, which precludes its use in polymicrobial samples [18].

Next-generation sequencing (NGS) offers higher resolution and ac-
curacy in identifying microbial species [19,20]. This technology allows
culture-independent testing of polymicrobial samples, detecting mul-
tiple species in parallel [21]. A method based on NGS of PCR products
obtained from amplification of the 16S-23S rRNA gene internal tran-
scribed spacer regions (~4.5 kb, 16S-23S rRNA NGS) has recently been
developed, with higher resolution and faster results. 16S-23S rDNA NGS
allows culture-independent detection of bacteria in polymicrobial
samples [21,22]. Ribosomal DNA (rDNA) provides the genetic coding
from which rRNA molecules are constructed.

Hypothesis

We hypothesized that identifying the inguinal skin microbiome with
16S-23S rDNA NGS may assist daily clinical practice in detection of
pathogenic bacteria, aiding the prevention of infectious complications
in aortic and peripheral vascular bypass procedures.

Methods and materials

The clinical, multicenter randomized trial Percutaneous in
Endovascular Repair versus Open (PiERO) addressed the risk of SSI in
inguinal endovascular aneurysm repair (EVAR) (trialregister.nl
NTR4257) [23,24]. Staphylococcus aureus (S. aureus) carriage was de-
termined with preoperative cultures of nose and perineum in all pa-
tients of the PiERO trial. In this pilot study we examined the skin groin
biopsies of 10 selected PiERO patients using regular culture methods,
microscopy techniques and NGS of the 16S-23S rRNA region [25].

Patient population

All patients received prophylactic antibiotics according to protocol
(1 gr cefazolin intravenously). Culture swabs were taken from the nose
and perineal regions (Amies transport medium). After chlorhexidine
skin disinfection, two 3mm biopsies were taken from the right groin.
One sample was preserved in a culture medium (Thioglycollate Medium
USP, Mediaproducts, Groningen, The Netherlands) and another kept in
formalin solution. For feasibility reasons 10 patients were selected for
this pilot study. The selection was based on the only two PiERO patients
that developed SSI. SSIs were defined according to the Centers for
Disease Control and Infection Prevention (CDC) guidelines [26]. Each
patient that contracted SSI (case 1 and case 2) was matched for age and
smoking habits with four other patients from the trial (Table 1).

Objectives

Our primary objective was to analyze the composition of the in-
guinal microbiome in patients undergoing an EVAR. Secondary objec-
tive was to examine the correlation between S. aureus carriage, with
16S-23S rDNA NGS identified bacteria and SSI in the PiERO trial.

Bacterial cultures

The swabs of the nasal and perineal regions were cultured on a 5%
sheep blood agar (Mediaproducts BV, Groningen, The Netherlands) and
the presence of S. aureus was identified by matrix-assisted laser deso-
rption ionization time-of-flight mass spectrometer (MALDI-TOF MS)
(VITEK MS, bioMérieux Inc., Durham, NC, USA) and the coagulase test.
The swabs of the SSI were cultured on a 5% sheep blood agar, a Media
CAP agar with colistin and aztreonam, and a standard MacConkey plate
(Mediaproducts BV).

Histological analysis

The formalin-fixed skin biopsies were paraffin-embedded.
Subsequently, 4 μm sections of tissue were mounted on pre-coated
slides. The tissue was dewaxed with xylene and rehydrated through
graded alcohol following standard procedures. Additionally, sections
were stained with hematoxylin and eosin stain and Gram stain (PREVI®
Color, bioMérieux Inc., Durham, NC, USA) and then coverslipped.

Next-generation sequencing of the 16S-23S rDNA regions

DNA-extraction
The Purelink Genomic DNA purification kit (Invitrogen, Carlsbad,

CA, USA) was used for DNA extraction of the skin biopsies. A small
piece was digested in 180 µl digestion buffer and 20 µl proteinase K
(Invitrogen). Digestion was performed in a thermoshaker at 56 °C until
lysis was complete. 200 µl Purelink Genomic lysis/binding buffer was
added to 200 µl of lysed sample and vortexed to create a homogenous
solution. 200 µl 96% ethanol was added and the DNA purification
protocol was followed according to the manufacturer’s instructions.

Next-generation sequencing of the 16S-23S rRNA encoding regions

The 16S-23S rRNA region was amplified by PCR using forward
primer 27F (5′-AGAGTTTGATCMTGGCTCAG-3′), specific for the 16S
rRNA gene [27], and reverse primer 2490R (5′-GACATCGAGGTGCCA
AAC-3′), specific for the 23S rRNA gene and slightly modified by
truncation of a single nucleotide compared to the original publication
[28]. Amplification of the 16S-23S rRNA regions was carried out in a
25 µl reaction consisting of 1x Phire hotstart buffer (Thermo Fisher
Scientific, Breda, The Netherlands), 5 mM dNTPs (Roche), 0.5 µl Phire
hotstart II DNA polymerase (Thermo Fisher Scientific), 600 nM of each
primer and 5 µl of DNA template. PCR was performed using a Biorad
PTC-200 thermocycler. PCR fragment detection was performed with the
Agilent 2100 Bioanalyzer and the DNA 7500 kit (Agilent, Santa Clara,
CA, USA). PCR products were purified using the Qiaquick PCR pur-
ification kit (Qiagen, Hilden, Germany). A negative process control
consisting of a sample without human skin was used to access the
presence of process-related contaminants.

For library preparation, the Nextera XT DNA Sample Preparation Kit
(Illumina, San Diego, CA, USA) was used according to the manu-
facturer’s instructions. The purified PCR amplicons quantified with a
Qubit 3.0 Fluorometer (Thermo Fisher Scientific) were diluted to
0.2 ng/µl and a total of 1 ng DNA was tagmented at 55 °C for 5min
followed by PCR amplification to introduce Illumina index sequences.
The library DNA fragments were size-selected and purified using
AMPure XP beads (Beckman Coulter, Brea, CA, USA.). The indexed li-
braries were normalized, pooled and loaded onto an Illumina MiSeq
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reagent cartridge using MiSeq reagent kit v3 and 600 cycles. The
paired-end 2x300 bp sequencing was run on an Illumina MiSeq se-
quencer.

Data analysis of the 16S-23S rDNA NGS
NGS generated 700,000–1,000,000 sequencing reads per sample.

The FASTQ files containing the 300-nucleotide paired-end reads were
de novo assembled into contigs with CLC Genomics Workbench soft-
ware (Qiagen). De novo assembly of the reads was performed with a
minimum contig length of 1500 bp using CLCbio. Resulting contigs
were filtered to a subset using total thousand read count and an average
of hundred read coverage.

Bacterial species identification
Following the de novo assembly the generated contigs were assigned

a taxonomic classification by alignment using the nucleotide Basic
Local Alignment Search Tool (BLAST) against the nucleotide collection
database (NCBI database, December 2016). The alignment on NCBI was
manually performed by submitting contigs’ sequences via the website
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Results were sorted for the
best Per.ident.score (percent identity score): bacteria were assigned to a
species or genus when the identity score was ≥98.6% or between 90%
and 98.6%, respectively. An identity score of< 90% was interpreted as
an unidentified microorganism. If more than one contig was generated
for the same species, the reads of all contigs belonging to the same
species were added up and the relative abundance of that particular
bacterial species in each sample was calculated by dividing the total
read count of the corresponding contigs by the total number of mapped
reads in the sample.

Statistical analysis

Patient characteristics were expressed as mean and standard de-
viation (SD) for continuous data. Categorical data were expressed as
frequencies and percentages. The Statistical Package for the Social
Sciences, v 24 was used to make calculations (SPSS Inc., Armonk, NY,
USA).

Ethics statement

All clinical investigations were conducted according to the princi-
ples expressed in the Declaration of Helsinki for medical research. The
Institutional Review Board approved the study protocol UMCG research
no. 2013 365. All patients provided written informed consent. Data
were analyzed anonymously.

Results

The study population of the PiERO trial consisted of 137 patients, 10
of whom were selected for the current study (Fig. 1). Patient char-
acteristics are presented in Table 1. Mean age was 72 years (range
70–75). All patients were male and five were smokers (1/2 with SSI and

4/8 controls). One patient suffered from diabetes mellitus. Preoperative
nasal and perineal culturing yielded 5 out of 20 cultures positive for S.
aureus. Two patients (2/10) had nasal S. aureus colonization, one pa-
tient (1/10) had perineal colonization, and one patient (1/10) was
colonized in both nose and perineum. Both SSI cases had neither nasal
nor perineal S. aureus colonization (Table 1).

Histological analysis

Although standard histological analysis by light microscopy de-
tected few bacteria in the skin, identification of bacterial species is
impossible. If bacteria were recognized, they were localized adherent to
skin adnexa – hairs and sebaceous and sweat glands (Figs. 2 and 3).
Histological differences in skin tissue were not detected between sub-
jects for blood supply, skin thickness or number of sebaceous glands.

16S-23s rDNA NGS analysis

Bacterial identification results obtained by BLASTN analysis using
the NCBI database are shown in Fig. 4. Staphylococcus species were
identified in eight biopsies. Seven samples contained Propionibacterium
species in small relative abundance, and Corynebacterium species were
identified in five samples. In one sample Streptococcus species was
identified, but this patient did not develop SSI. For Case 1, who de-
veloped SSI, a large relative abundance of Staphylococcus haemolyticus
was identified using NGS. However, wound culture results from Case 1
yielded Escherichia coli, Enterococcus spp. and S. aureus. None of the
species identified by NGS from the preoperative biopsies are known as
pathogens, able to initiate SSI.

In some samples NGS identified bacteria suggestive for contamina-
tion (e.g. Sphingomonas spp., Paracoccus spp. and Hermimonas spp.).
NGS non-template control samples – samples processed without human
tissue – were positive for the same species, as well. When these species
were identified in samples they were classified as a contaminant.

Bacterial species identified with 16S-23S rDNA NGS were compared
to patient characteristics and results of preoperative S. aureus cultures
of patients with and without SSI. In 4 out of the 8 control cases, which
did not develop SSI but carried S. aureus in either nose or perineum,
NGS did not detect S. aureus in the groin biopsies.

Discussion

This pilot study shows the identification of the inguinal skin mi-
crobiome of vascular patients undergoing EVAR by combining standard
techniques, culture and histology, and a novel technique consisting of
16S-23S rDNA NGS. We have demonstrated three findings. First, the
16S-23S rDNA NGS technique was able to identify a variety of bacterial
species in skin biopsies, even after disinfection. Second, we did not find
a correlation between preoperative nasal or perineal S. aureus carriage,
deep-skin bacterial flora and SSIs. And third, in this small sample only
skin-colonizing non-pathogenic bacteria were identified in the biopsies,
suggesting that disinfection removed pathogenic superficial (transient)

Table 1
Patient characteristics, pre-operative cultures and SSI-result.

Case 1 Case 2 Comp.Case 1 Comp.Case 2 Comp.Case 1 Comp.Case 2

Ctrl 1 Ctrl 2 Ctrl 3 Ctrl 4 Ctrl 5 Ctrl 7 Ctrl 6 Ctrl 8

SSI + + − − − − − − − −
Age 72 72 72 72 73 70 72 75 72 70
Smoker No Yes No No Yes Yes No No Yes Yes
Diabetes mellitus − + − − − − − − − −
SA nasal culture − − − − + + − − − +
SA perineal culture − − − − − + − + − −

SSI: surgical site infection, + present/positive, − absent/negative. Ctrl: Control, SA: Staphylococcus aureus. Comp.Case: comparison with case.
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Fig. 1. Flow chart of inclusion in the PiERO trial and selection of 10 matched patients.

Fig. 2. Microscopy of a sebaceous gland of a PiERO patient, stained with H&E and Gram stain. Enhanced 100x, 200x and 1000x. Bacteria are positioned in the depth
and are hardly visible using standard microscopy (arrow).
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bacteria, such as S. aureus [29].
It appears that the bacterial species identified were not remnants of

the superficial skin flora, as in most species bacterial DNA is damaged
by the biocidal effect of chlorhexidine [30]. The use of 16S-23S rDNA
NGS enabled a very sensitive detection of all bacterial DNA in a small
tissue sample and provided relative quantitative information on the
detected species and genera [27,28]. No conventional methods can
provide these sensitive and specific results from a biopsy.

The current selection of 10 PiERO patients (10/137) was made on
preoperative and postoperative characteristics, and was small for fea-
sibility and financial reasons. Though non-pathogenic, the bacterial
species identified in this small cohort with NGS, are known to be able to
colonize implanted foreign body materials. Neither patients who con-
tracted SSI nor those without SSI carried pathogenic bacteria that cause
SSI in their skin, according to NGS analyses. Hence NGS was unable to
predict SSI outcome. Conversely, absence of S. aureus carriage or pa-
thogenic bacteria did not prevent SSI.

It may be that the bacteria identified with NGS were relatively
tolerant to chlorhexidine [30], but our results show that pathogenic
bacteria were absent in the skin when initiating the operation. Post-
operatively cultured bacteria in case of an SSI were not identified in the
skin preoperatively.

How do we explain the original pathogenic source of the pathogens
that caused an SSI in two patients? Inguinal regions are moist and
contain high densities of bacterial species with pathogenic fecal bac-
teria closely available to contaminate the skin [29], and preoperative
chlorhexidine baths do not reduce the risk of SSI [9]. Could the resident
deep-skin flora protect the host against pathogenic species? This has
been described before for resident intestinal bacterial flora [31], and
recently suggested for resident skin flora [7].

Our study results are of interest because inguinal vascular proce-
dures are complicated by a relatively high percentage of SSI, varying
from 7 to 20% in peripheral bypass surgery [4,32,33]. It is thought that
abundant bacterial flora in the groin is responsible for primary con-
tamination of the wound, a hypothesis that could not be reproduced in
our study. Perhaps damage to lymphatic drainage increases the risk of
SSI in the groin [5], and ischemic tissue seems more prone to develop
SSI [34]. Our findings anyhow suggest that the superficial and deep-
skin bacterial flora is not responsible for SSIs after EVAR.

The cost aspect should be discussed too. A conventional culture with
identification and resistance profiling costs €25-€125, and histologic
research €121.52 [35]. NGS costs are dependent on the platform used;
in this study 16S-23S rDNA NGS Illumina Nextera XT MiSeq sequence
material costs were calculated at €100-150 per sample without analy-
tical staff wages. Assuming an SSI incidence in vascular groin incisions
of 7% [2], one in 15 groin incisions become infected. So, if NGS would
be able to prevent SSI, the microbiome of 15 patients would have to be
tested to prevent one SSI (number needed to screen is 15). If the total
costs of full knowledge of the microbiome added up to approximately
€200 – culture and NGS – the gain could weigh against the supposed
mean costs of a single vascular graft infection, at an extra €20,000 [36].
Further research towards the clinical applicability and subgroup iden-
tification of patients susceptible to vascular graft infection with these
techniques is needed.

This study has limitations that need to be addressed. Firm conclu-
sions cannot be drawn due to the small sample size. Furthermore, the
exemplification for the entire inguinal microbiome may be questionable
because of the small amount of tissue used for amplification of bacterial
DNA. But we consider this study as a pilot showing that 16S-23S rDNA
NGS can detect bacterial species in disinfected skin. The original pa-
thogenic source of an SSI remains unknown and further research on
deeper tissues may be of added value.

Another limitation is the presence and detection of possible con-
taminants. DNA of some contaminants like Paracoccus and
Sphingomonas spp. was detected in the reagents. Thanks to the sensi-
tivity of the NGS technique, even very small amounts of residual DNA in
reagents will be detected. The presence of contaminating DNA in re-
agents is a challenge when analyzing samples containing a low micro-
bial biomass [37]. Contaminating DNA also interferes with the detec-
tion of very small numbers of bacteria, making the data analysis
complex.

Conclusion

In this pilot study the intradermal microbiome of inguinal skin only
contained bacterial species that unlikely cause SSI. Larger studies
analyzing the intradermal microbiome and deeper structures of patients
for vascular surgery could contribute to a better understanding of the
development of SSI, and ultimately prevention of graft infections in
susceptible patients.
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