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Relative Best Response Dynamics in finite and convex Network Games

Alain Govaert1 Carlo Cenedese1 Sergio Grammatico2 Ming Cao1

Abstract— Motivated by theoretical and experimental eco-
nomics, we propose novel evolutionary dynamics for games
on networks, called the h-Relative Best Response (h–RBR)
dynamics, that mixes the relative performance considerations of
imitation dynamics with the rationality of best responses. Under
such a class of dynamics, the players optimize their payoffs over
the set of strategies employed by a time–varying subset of their
neighbors. As such, the h-RBR dynamics share the defining
non–innovative characteristic of imitation based dynamics and
can lead to equilibria that differ from classic Nash equilibria.
We study the asymptotic behavior of the h–RBR dynamics
for both finite and convex games in which the strategy spaces
are discrete and compact, respectively, and provide preliminary
sufficient conditions for finite–time convergence to a generalized
Nash equilibrium.

I. INTRODUCTION

Game theoretic scenarios in which players interact exclu-
sively with a fixed group of neighbors traces back to the early
1990’s when economists and biologists started to explore the
effect of simple spatial structures in (probabilistic) decision
making processes driven by rational best response processes
and more biologically inspired imitation processes [1]–[3].
Later, the simple spatial structures were extended to arbitrary
structures defined by graphs [4]–[6].

The long-run collective behavior of non-cooperative net-
work games have been extensively studied for best response
dynamics in which the players, given the history of plays of
their neighbors, select a strategy that maximizes their own
payoff. These extended research efforts have resulted in the
identification of several classes of games that converge to a
pure Nash equilibrium under a variety of such best response
processes [7]–[10] and brought forth a number of algorithms
that ensure convergence to an equilibrium [11]–[13]. Best
response dynamics are “innovative” in the sense that, in order
to optimize their payoffs, players are always able to select
new strategies that are not played in the current strategy
profile. They are in line with classic economic theories that
support the idea that absolute optimization (or rational behav-
ior) is a natural result of evolutionary forces [14]. Recently,
the systems and control community has been interested in the
analysis of dynamical systems driven by imitation [15]–[17].
Such dynamics are “non–innovative”: players can only select
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strategies that already exist in the networked population.
Therefore, non–innovative dynamics can lead to equilibrium
concepts that differ from traditional Nash equilibria. In [18],
[19], the authors studied an evolutionary process where the
players, most of the time, choose a best response from the
set of strategies that exist in the entire population strategy
profile. In [19], this evolutionary process was simply referred
to as imitation. Perhaps a more suitable name was proposed
in [18], where such a revision was called a Relative Best
Response (RBR). In fact, RBR combines the non–innovative
nature of pure imitation with the rationality of best response.
Such dynamics match classic economic studies in which
rather than absolute performance, the players opt for rel-
ative performance, that prove decisive in the long run [20].
Experimental evidences of such behaviour are documented
in [21].

In this paper, we extend the RBR dynamics for finite
games, with finite discrete strategy sets, to a spatial version
where the players choose a best response from the current
set of strategies of their neighbors. In this set-up, even
though the feasible strategy sets are state-dependent, the
players interact and relate their success exclusively with a
fixed group of neighbours. So, the replacement graph [22],
which determines the feasible strategy set of a player, and
the interaction graph [22], which determines the payoff of
a player, are fixed and equal. We generalize this spatial
version of the RBR dynamics to the h–RBR, where players
relate their success only to the subset of neighbors that
obtain the h-highest payoffs. Such a generalized set-up is
motivated by a pure imitation process in which, typically,
only the strategies of the most successful neighbors are
taken into account [3]. For h–RBR, next to a state-dependent
feasible strategy set, the players relate their success to a state-
dependent subset of their neighbors. This corresponds to a
process in which the replacement graph is state-dependent
and the interaction graph is fixed. Furthermore, a variation of
the h–RBR dynamics is proposed for convex games, where
the admissible strategy sets of the players are compact spaces
that result from the convex hull of the strategies of the
successful neighbors. For both finite and convex games, we
analyze the asymptotic behavior of the h–RBR dynamics and
provide sufficient conditions for reaching a generalized Nash
equilibrium. To the best of the authors’ knowledge, this is
the first paper introducing the concept of (h–)RBR for both
finite and convex games on arbitrarily connected networks.
We believe that the RBR and h–RBR dynamics for games on
networks proposed in this paper are complementary to the
existing works on convergence of best response dynamics
and provide an interesting mix between pure imitation and

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 3134

Authorized licensed use limited to: University of Groningen. Downloaded on May 14,2020 at 09:24:12 UTC from IEEE Xplore.  Restrictions apply. 



rational decision making.

II. NOTATION AND PRELIMINARIES

A. Notation

The set of real, positive, and non-negative numbers are
denoted by R, R>0, R≥0, respectively. The set of natural
numbers is denoted by N and the set of integers is denoted
by Z. For a square matrix A ∈ Rn×n, its transpose is denoted
by A>, [A]i is the i-th row of the matrix and [A]ij the
element in the i-th row and j-th column. Given two vectors
x, y ∈ Rn, x > y (x ≥ y) describes an element wise
inequality. The identity matrix is denoted by In ∈ Rn×n.
For a vector s ∈ Rn we denote the ith element as si.
For s1, . . . , sN ∈ Rn and I = {1, . . . , N}, the collective
vector is denoted as s := col({si}i∈I) = [s>1 , . . . , s

>
N ]> and

s−i := col({sj}j∈I\{i}) = [s>1 , . . . , s
>
i−1, s

>
i+1, . . . , s

>
N ]>.

Equivalently, we also use the notation s = (si, s−i). A
network with node set I and edgeset E is indicated by
G = (I, E). For each i ∈ I, the edgeset E ⊆ I × I
defines a set of neighbors indicated by Ni = {j ∈ I :
(i, j) ∈ E} \ {i}. For a set M = {m1, . . . ,mN} of
N points in Rn, organized in the collective vector m =
col({mi}i∈M) ∈ RnN we denote the convex hull of M by
conv(M) =

{
(α⊗ 1n)>m | α ∈ RN

≥0 , α
>1 = 1

}
. Given a

set A of M elements, its cardinality is indicated as |A| = M .
Given a set B with N non–repeated elements, the single
valued function max k(B), where k ≤ N , evaluates the k-th
highest value in the set. For a given polyhedron C, we denote
the vertices of C as vert(C).

B. Network Games

Let us introduce the three main ingredients of non-
cooperative network games: the network structure, the strat-
egy space and the combined payoff function. The strategy
space is defined for both finite games, and convex games,
in which the strategy spaces are discrete and compact,
respectively.

The network structure: Let G = (I, E) be an undirected
graph whose node set I = {1, . . . , N} represents players.
The edge set E ⊆ I × I, represents the player interaction
topology.

The strategy space: Let Si denote the set of strategies for
player i ∈ I. The strategy space of the game is defined as
the Cartesian product of the strategy sets of the players, i.e.,
S =

∏
i∈I Si. A strategy profile of the game is an element

of this set, hence a collective vector s := col({si}i∈I) ∈ S.
The payoff functions: Let πi : S → R indicate the local

payoff function of player i. The combined payoff function
π : S → RN maps each strategy profile s ∈ S to
a payoff vector π(s) = col({πi(s)}i∈I) who’s elements
correspond to the payoffs that the players receive for a single
round interaction. In network games, the spatial structure is
incorporated into the payoff function π. Thus, the network
structure determined by the graph G, the strategy space S,
and combined payoff function π define the network game as
the triplet Γ = (G,S, π). Throughout the paper, we consider
the following assumption on the strategy sets.

Standing Assumption 1 (Identical strategy sets). All players
have the same strategy set S, i.e., Si = S for all i ∈ I.

Standing Assumption 1 naturally allows players to imitate
each other and is in fact common in imitation–like dynamics
[3], [15], [16].

Convex and finite games: We say that Γ is a finite game
if the strategy set of each player is a finite discrete set such
that S ⊂ Z and S ⊂ ZN . We denote a finite game as Γf. On
the other hand, we say Γ is a convex game if the strategy
set of each player is a non-empty, convex subset of Rn, i.e.,
S ⊂ Rn and S ⊂ RNn. We denote a convex game by Γc.
The convexity assumption over the strategy set for convex
games is common in monotone games’ literature [11], [23].

III. h–RELATIVE BEST RESPONSE DYNAMICS

Before defining the h–RBR dynamics, for the purpose
of comparison, we give the definition of a best–response
mapping.

Definition 1 (Best–Response mapping). The best–response
(BR) mapping of player i ∈ I is

Bi(s−i) := argmax
y∈S

πi(y, s−i). (1)

The defining distinction of a relative best response is that,
instead of optimizing over a fixed strategy set S, player i ∈ I
optimizes its payoffs over some feasible subset of S that
depends on the strategies of the neighbors of i and si itself.
For a game Γ and a strategy profile s ∈ S, we denote the
feasible strategy set for player i ∈ I by Fi(s) ⊆ S . For a
finite game Γf, the feasible strategy set of player i ∈ I is
simply determined as the local set of strategies, i.e.,

F f
i(s) := {sj ∈ s | j ∈ Ni} ∪ {si} ⊆ S. (2)

Instead, for a convex game Γc, the feasible strategy set is
formed as the convex hull of a finite number of points.
Thus, the strategy sets are convex and compact subsets of
Rn. Formally, the feasible strategy set for player i ∈ I is
determined as

F c
i (s) = conv(F f

i) ⊆ S . (3)

We are now ready to formalize the idea of RBR.

Definition 2 (Relative Best Response). Given a game Γ, a
relative best response of player i ∈ I is any strategy in the
set

Br
i(s−i) := argmax

y∈Fi(s)⊆S
πi(y, s−i),

where Fi(s) is given by (2) for finite games and by (3) for
convex games.

In imitation dynamics, in order to choose which neighbor’s
strategy to imitate, the players must have information about
the strategies and the current payoffs of their neighbors. If
this information is available to the players, an interesting
generalization of a RBR is a decision process in which the
feasible strategy set of player i ∈ I depends on a subset
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of the neighbors that receive the hi highest payoffs. In this
case, the relative success of the neighbors of i will have an
influence on the future strategy of player i, and hi ∈ N is a
measure for how restricting this relative success is for player
i′s feasible strategy set. For all i ∈ I, hi cannot exceed
the number of neighbours of player i, i.e., 0 < hi ≤ |Ni|.
Before defining such a revision process, let us introduce some
additional auxiliary sets. For some strategy profile s ∈ S, let
us define the set of distinct payoffs obtained by the neighbors
of i as Ri(s) := {πj(s) | j ∈ Ni}, and define the set of
neighbors that receive at least the hi highest payoff as

Hi(s−i, hi) := {j ∈ Ni | πj(s) ≥ max hi(Ri(s))} ,

where the notation max hi(·) was introduced in Section II.
Note that, it always holds that |Ni| ≥ |Hi(s−i, hi)| ≥ hi.
Then, the set of strategies of these successful players is

Mi(s−i, hi) := {sj ∈ S | j ∈ Hi(s−i, hi)}. (4)

In this case, for a finite game Γf, the feasible set of strategies
is determined by

∀i ∈ I : F f
i(s, hi) := {Mi(s−i, hi)} ∪ {si} ⊆ S, (5)

while for a convex game Γc, it is

∀i ∈ I : F c
i (s, hi) := conv{F f

i(s, hi)}. (6)

Let h = col({hi}i∈I) ∈ NN . An h–RBR can now be
formalized as follows.

Definition 3 (h-Relative Best Response). Given a game Γ,
a h–relative best response of player i ∈ I is any strategy in
the set

Br
i(s−i, hi) := argmax

y∈Fi(s,hi)

πi(y, s−i), (7)

where Fi(s) is given by (5) for finite games and by (6) for
convex games.

Now that we have defined an h–RBR, let us introduce the
synchronous, or parallel, evolutionary game dynamics that
are associated with the h-RBR:

∀i ∈ I : si(t+ 1) ∈ Br
i(s−i(t), hi). (8)

We also define the asynchronous game dynamics via an
activation sequence: at each time step t ∈ N for which s(t+
1) 6= s(t), there exists a unique player it ∈ I such that the
collective dynamics satisfy

if i = it : s(t+ 1) = (si(t+ 1)), s−i(t+ 1))

∈ (Br
i(s−i(t), hi), s−i(t)).

(9)

We will analyse the convergence of (8) in Section V for
convex games, and that of (9) in Section IV for finite games.

Remark 1. When hi = |Ni| for every i ∈ I, the h–RBR
coincides with RBR. For finite games, when hi = 1, player
i can only choose between its own strategy and the strategy
of its most successful neighbors. Therefore, when for all
i ∈ I, hi = 1 the admissible strategies of the h–RBR for

v1

v2

v3

v4

v5

(a)

s1

s3
s4

s5

s2

F1(s, hi)

S

C(s)

(b)

Fig. 1: Suppose the network is as in (a) such that n = 5.
The set of strategies of the neighbors of 1 is M1(s−i) =
{s3, s4, s5}. Moreover, suppose that π4(s) > π3(s) >
π2(s) > π5(s) and hi = 2. Then, M1(s−i, 2) = {s4, s5},
F c

1(s, 2) = {s4, s5, s1} and the shaded area with the dashed
border in (b) illustrates F c

1(s, 2). Moreover, C(s) from
Equation (13) is indicated by the region with the red border.

finite games are exactly the admissible set of strategies in an
unconditional imitation process.

Remark 2. From the definition of the feasible strategy sets
in (5), it can be noticed that the evolutionary game dynamics
described by (8) and (9) are non–innovative dynamics with
time varying local strategy sets. Thus, the (h–) RBR dynamics
differ significantly from traditional best response dynamics.
For instance, when at some time t there exists a strategy
w ∈ S such that w /∈ Ni(s(t)), then si(t + 1) 6= w even if
w ∈ Bi(s−i).

A. Convergence Problem Statement

We devote the remainder of the paper to the study of the
convergence properties of (8) and (9), where the convergence
can be to an equilibrium point, or to a cycle. In the first
case, all players in the network reach a decision with which
they are satisfied. Thus, the decision process converges to
a strategy profile which is invariant for the game dynamics,
hence to an equilibrium strategy profile. First, let us postulate
the following assumption, which ensures that players only
switch to another strategy if they have an incentive to deviate.
This ensures that, when they reach a non-strict equilibrium
profile, the strategies do not change any further.

Standing Assumption 2 (Incentive to deviate). For Γ,
si(t) 6= si(t+ 1) only if there exists y 6= si(t) such that

y ∈ Fi(s, hi) and πi(y, s−i(t)) > πi(si(t), s−i(t)).

When updating is synchronous this is an if and only if
statement.

For the h-RBR dynamics, the local feasible strategy set
for each player is constrained by the strategies of the
other players and hence the equilibrium strategy profiles of
these dynamics correspond to a Generalized Nash Equilibria
(GNE) [24].
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Definition 4 (Generalized Nash Equilibrium). The strategy
profile s∗ ∈ S is a GNE for Γ, if for all i ∈ I

s∗i ∈ Br
i(s
∗
−i, hi), (10)

where the feasible strategy set Fi(s
∗, hi) of a finite game

and convex game are given by (5) and (6), respectively.

Note that, in the convex game case, our GNE problem is
not jointly convex [25].

Alternatively, the multi–agent decision process may con-
verge to a cycle, in which the players periodically adjust their
strategies.

Definition 5 (Convergence to a cycle). We say that the
sequence of strategy profiles (s(t))t∈N ∈ S converges to
a cycle if there exist t̄, T ∈ N such that

s(t+ T ) = s(t) ,∀t ≥ t̄, (11)

where T ∈ N is called period of the cycle.

For the asynchronous evolutionary dynamics in (9) we
assume that the activation sequence ensures that at any time
step, each player is guaranteed to be active at some finite
future time.

Standing Assumption 3. Every sequence of activated play-
ers (it)t∈N driving the asynchronous dynamics (9) is per-
sistent, i.e., for every player j ∈ I and every time t ∈ N,
there exists some finite time t̄ > t at which player j is active
again, i.e., it̄ = j.

IV. CONVERGENCE IN FINITE NETWORK GAMES

In this section, we study the convergence of the asyn-
chronous h–RBR dynamics (9) to a GNE for finite network
games. First, we define two sets that will prove useful in the
analysis of the h-BRB dynamics in finite and convex games.
For an initial strategy profile s(0), let us denote the set that
contains all strategies that are employed by at least one player
in the initial strategy profile by S0 := ∪i∈I{si(0)}, and
let S0 := SN0 . The set S0 is called the support of s(0) in
[18]. The key property of S0 is that it is positively invariant
with respect to the h–RBR dynamics (9), due to their non–
innovative nature. To study the convergence properties of
finite games under the asynchronous h–RBR dynamics we
use the theory of potential games [7]. Consider the following
definition of a potential like function.

Definition 6 (S0–potential function). A function P : S → R
is a S0-potential function for Γf and some s(0) ∈ S, if for
every i ∈ I, si, s′i ∈ S0 and s−i ∈ SN−1

0 , the following
implication holds:

πi(s
′
i, s−i)−πi(si, s−i) > 0⇒ P (s′i, s−i)−P (si, s−i) > 0.

(12)
If such a function exists, then we call Γf a relative potential
game with respect to S0 .

Remark 3. When s(0) ∈ S is such that S0 = S, then
Definition 6 is recovers the definition of a generalized ordinal
potential function and a generalized ordinal potential game

[7, Sec. 2]. In this case, the implication in (12) needs to be
satisfied on the entire strategy space S to ensure convergence
of the innovative best response dynamics to a pure Nash
equilibrium.

We are now ready to present the main result for finite
games that relies on the existence of a S0-potential function.

Proposition 1. Suppose that Γf is a relative potential game
with respect to S0. Then, for all s(0) ∈ S0 the asynchronous
h–RBR dynamics defined in (9) converge to a GNE in finite
time.

Proof. The proof is based on the non-innovative feature
of h-RBR dynamics and the fact that (9) together with
Assumption 2 generates improvements paths over a finite
action space. Details are omitted due to space limitations.

Corollary 1. For any finite generalized ordinal potential
game, the asynchronous h–RBR dynamics converge globally
to a GNE.

Remark 4. Let E, W , G, B, represent the class of exact,
weighted, generalized ordinal and best response potential
games, respectively. Because E ⊆ W ⊂ G, Proposition 1
and Corollary 1 imply that for the classes of exact, weighted
and ordinal potential games, the asynchronous h–RBR dy-
namics converge to a GNE. For finite games it is known
that for another general class of games, called best response
potential games [9, Def. 2.1], the asynchronous best response
dynamics converge to a pure Nash equilibrium. For this
class of games there exists a function, common for all the
players, whose set of maximizers coincides with the set of
maximizers of each player’s payoff function. In general,
Bi(s−i) 6= Br

i(s−i, hi), and thus the existence of a best
response potential function for Γ does not imply convergence
of the h–RBR dynamics.

V. CONVERGENCE IN CONVEX NETWORK GAMES

In this section, we analyze the convergence of the dy-
namics in (8) for a convex game Γc. First, let us define an
auxiliary set, namely the convex hull of the support of some
given s:

C(s) := conv(∪i∈I{si}) , (13)

see Figure 1b for an example. In the following, we prove that
the set C(s) converges to a fixed polyhedron C̄. Furthermore,
we analyse the convergence for convex games with linear
payoff functions.

A. Convergence of the feasible strategy set

From the equations (6) and (13), it can be noticed that⋃
i∈IF c

i (s, hi) ⊆ C(s) , ∀i ∈ I. (14)

Since the players can only choose a strategy in the convex
hull of the local strategies, the set C(s(t)) cannot grow
over time, hence it must converge to some static set. Let
us formalize this statement in the following Lemma.

3137

Authorized licensed use limited to: University of Groningen. Downloaded on May 14,2020 at 09:24:12 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 1 (Convergence of feasible strategy set). Consider
the game Γc under the dynamics (8), then the following
statements hold:
• C(s(t+ 1)) ⊆ C(s(t)) for every t ∈ N,
• limt→∞ C(s(t)) = C 6= ∅.

Proof. The proof is omitted due to space limitations

The above lemma highlights that also in convex games the
h–RBR is non–innovative and the dynamics are positively
invariant with respect to the set C(s(0)). This feature is used
in Section V-B to prove the convergence of the h–RBR.

Remark 5. The fact that the set C(s(t)) converges to C̄,
does not imply that every set F c

i (s(t), hi) is converging. This
implication holds if (14) is an equality for all t ∈ N, e.g.,
if each player communicates to all other players (complete
communication graph).

B. Linear payoff function

By focusing on linear payoff functions, we are able
to prove finite time convergence of h–RBR dynamics for
convex games. For all i ∈ I, the linear payoff functions are

πi(y, s−i(t)) := s(t)>C>i y , ∀i ∈ I , ∀t ∈ N, (15)

where Ci ∈ Rn×Nn. If j /∈ Ni, then [Ci]lj = 0 for all l ∈
I, thus the cost function considers only the local strategies
of the neighbours. The following lemma guarantees that for
each player i ∈ I and at each time t, there exists an h–RBR
that is a corner point of the player’s feasible strategy set.

Lemma 2. Consider Γc with a payoff (15), for every time
t ∈ N and every i ∈ I it holds that

Bri (s−i(t), hi) ∩ vert(Fi(s(t), hi)) 6= ∅. (16)

Proof. The proof is omitted due to space limitations.

From the previous lemma, we have that the choice of the
future strategy of a player can always be found between
those of the best performing neighbors and the player’s
own strategy. This motivates us to postulate the following
assumption, which is met by adopting the simplex algorithm
[26, Ch. 3] for solving the set of h-relative best responses.

Assumption 4. In (8) each player i ∈ I chooses its future
strategy as a corner point of its feasible strategy set, i.e.,
si(t + 1) ∈ Bri (s−i(t), hi) ∩ vert(Fi(s(t), hi)). If there
exist multiple corner points that are optimal, the players
consistently choose one such corner point.

Assumption 4 connects the h–RBR in convex games with
linear payoff functions to h-RBR dynamics in finite games.
In fact, the set of all the strategies {si(t)}i∈I played at time
t is a subset of the strategies played at the previous time
instant, i.e, {si(t)}i∈I ⊆ {si(t− 1)}i∈I for all t ∈ N. Thus,
for all t ≥ 0 and all i ∈ I, si(t) ∈ S0. In other words, it can
be seen as a finite game in which S = S0.

Assumption 4 enables us to prove that for the convex game
Γc the dynamics converge to a cycle or to an equilibrium

Proposition 2. If Assumption 4 holds, then the dynamics in
(8) converge, for any initial strategy profile s(0) ∈ S, to a
cycle or to a point in S.

Proof. From Lemma 2 and Assumption 4, it follows
that {si(t + 1)}i∈I ⊆ {si(t)}i∈I , for all t. The proof
can be completed using the fact that the set of possible
feasible strategies is finite and players consistently choose
one optimal corner point.

It is worth noting that if Assumption 4 is relaxed such
that players choose randomly between optimal corner points,
then the strategy profile can exhibit oscillations with variable
periods. In the case in which the strategies are scalars, i.e.,
S ⊆ R, it is possible to refine the result in Proposition 2.
Specifically, under some condition on the linear payoff func-
tions we can show convergence of the dynamics to a strategy
profile in S. Similar to what was done in Section IV, we will
exploit the proprieties of S0 and S0 to prove convergence to
an equilibrium.

Proposition 3. Suppose Assumption 4 holds and Γc with S ⊆
R has payoff functions as in (15). Assume that for all i ∈ I,
the vector C>i ∈ RN is such that Cis̄ ∈ R has the same sign
for every s̄ ∈ S0. Then, for any initial condition s(0) ∈ S0

the sequence of profile strategies (s(t))t∈N, generated by the
dynamics (8), converge to a GNE.

Proof. The proof relies on the fact that the finite sets
I+ := {i ∈ I |Cis > 0 , ∀s ∈ S0} and I− := {j ∈
I |Cjs < 0 , ∀s ∈ S0} are monotonically increasing,
respectively decreasing over time. Details are omitted due
to space limitations.

Corollary 2. Under the same conditions as in Proposition 3,
assume additionally that for all i ∈ I, the vector C>i ∈ RN

is such that Cis̄ ∈ R has the same sign for every s̄ ∈ S.
Then the sequence of profile strategies (s(t))t∈N, generated
by the dynamics (8), converge globally to a GNE.

VI. NUMERICAL SIMULATION

In this section we shortly explore the behavior of the
synchronous h–RBR dynamics (8) in a classic Rock-Scissors-
Paper (RSP) game on a square lattice network with N = 25
players. In the RSP game strategy set is S = {e1, e2, e3},
where ei is the i’th column of the 3 × 3 Identity matrix,
consequently S = {e1, e2, e3}N . At each time step, each
individual plays a RSP game with its neighbors. The total
payoff of player i is the sum of each payoff obtained from
each pairwise interaction is πi(s) =

∑
j∈Ni

s>i M isj , where
M i ∈ R3×3 is a circulant payoff matrix of player i ∈ I,
given by

∀i ∈ I : M i =

ai bi ci
ci ai bi
bi ci ai

 , bi > ai ≥ ci.

At each time step, all the agents update their strategies
in parallel. Figure 2 shows a typical behavior of such a
spatial RSP game under three different synchronous dynam-
ics: myopic best response associated to the Best-Response
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Fig. 2: The difference in consecutive strategy profiles of
synchronous myopic best response, h–RBR and ‘imitate-the-
best’ dynamics for a Rock-Scissors-Paper game on a square
lattice. In the simulation, n = 5 and h = 1.

mapping in Definition (1), h–RBR (8) and ‘imitate–the–
best’ dynamics (defined in [3]). In the latter, each player
updates its strategy by imitating the strategy of a neighbor
with the highest payoff. In Figure (2), it can be seen that
from time t = 20, the classic myopic best response dynamics
is cycling. This is in line with the behavior of two player
RSP games, that have a unique mixed Nash equilibrium. For
the h–RBR dynamics, after 7 rounds of parallel plays, one
of the strategies ceases to exist in the strategy profile. The
non–innovative nature of the h–RBR dynamics subsequently
allow the dynamics to converge to a GNE at time t = 10.
A similar behavior is observed in the trajectory generated
by synchronous imitation dynamics that converge to an
equilibrium strategy profile at time t = 11.

These numerical simulations highlight the key differences
between best response and h–RBR dynamics and show that
the non–innovative nature of the h–RBR can result in a
behavior that resembles a pure imitation process.

VII. CONCLUSION AND FINAL REMARKS

We have proposed the h–RBR dynamics for finite and
convex games as a mixture of rational best responses and
imitation dynamics. Moreover, we have shown conditions
under which these dynamics converge to a generalized Nash
equilibrium. In its current form, the h–RBR dynamics are
deterministic, i.e., all players always select an h–RBR. A
natural extension would be to consider a process in which
the probability of a non- h–RBR declines exponentially in
the loss of payoff. Such a setup would result in a learning
rule where the constraints on the strategy sets of players
are a function depending on the strategies of the opponents.
This approach is a variation of the log-linear learning process
for incomplete games studied in [27]. It can be shown
that for finite games, such a perturbed version of the h–
RBR is a regularly perturbed Markov chain [4]. We leave
characterization of the stochastically stable equilibria of this
process as future research.

A natural extension of the results presented for the h–
RBR in convex games is to study the convergence of more

general payoff function. Finally, the h–RBR can be linked to
opinion dynamics model in which the averaging of opinions
is performed over a state-dependent subset of neighbors.
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