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Integrated Path Following and Collision Avoidance Using a Composite
Vector Field

Weijia Yao, Bohuan Lin, Ming Cao

Abstract— Path following and collision avoidance are two
important functionalities for mobile robots, but there are only a
few approaches dealing with both. In this paper, we propose an
integrated path following and collision avoidance method using
a composite vector field. The vector field for path following is
integrated with that for collision avoidance via bump functions,
which reduce significantly the overlapping effect. Our method
is general and flexible since the desired path and the contours of
the obstacles, which are described by the zero-level sets of suffi-
ciently smooth functions, are only required to be homeomorphic
to a circle or the real line, and the derivation of the vector field
does not involve specific geometric constraints. In addition,
the collision avoidance behaviour is reactive; thus, real-time
performance is possible. We show analytically the collision
avoidance and path following capabilities, and use numerical
simulations to illustrate the effectiveness of the theory.

I. INTRODUCTION

Path following serves as one of the most fundamental
capabilities for mobile robots. Treating the desired path as a
geometric object instead of a function of time, path following
algorithms are able to overcome the inherent performance
limitations of trajectory tracking algorithms [1]. Among
different path following algorithms, the one using a vector
field is shown to achieve high path-following accuracy while
requiring low control efforts [2]. The principal idea behind
this method is that the vector field’s integral curves converge
to the desired path, and thus the vector field can be used as
a guidance signal for a robot [3]–[5]. Another fundamental
capability of mobile robots is collision avoidance. There are
already many different collision avoidance methods, such
as the Artificial Potential Fields (APF) method [6], [7], the
Dynamic Window (DW) approach [8] and the Vector Field
Histogram (VFH) [9]. In the APF method, the goal position
creates attractive force and the obstacles create repulsive
force such that the combined force guides the robot to
approach the goal while avoiding obstacles on the way. This
method is similar to the vector-field-based path following
method in the sense that they induce some kinds of vector
fields to fulfil their tasks.

It is important to integrate path following with collision
avoidance since during the path following process, there
might be unexpected obstacles. For the sake of safety, the
robot needs to compromise the accuracy of path following
and deviate from the path. Recently, an experimental study
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is presented in [10]. To avoid obstacles on the path, the
authors propose a method to deform the desired path slightly.
However, the theoretical analysis of this method is limited in
the literature. Another possible method to enable the robot
to deviate from the desired path is to modify the vector
field locally. This idea is reported in [11] recently. Since
the combination of one vector field for path following and
the other for collision avoidance may generate undesirable
effects, different decay functions have been evaluated to
mitigate them [11]; however, there is no theoretical guarantee
for either collision avoidance or path following.

To the best of our knowledge, there are only a few papers
investigating the problem of path following and collision
avoidance in a unified framework. In [12], the authors design
a combined path following and obstacle avoidance control
law using the Deformable Virtual Zone (DVZ) method and a
Lyapunov backstepping design. An inherent limitation is that
the path following controller and the collision avoidance con-
troller generate antagonistic system reactions. The authors
provide a solution exploiting heuristic switching, but there
is no mathematical analysis, and convergence to the path is
not guaranteed. In addition, the path following functionality
is achieved by controlling the rate of progression of a virtual
target on the path explicitly; thus, it inherits the performance
limitation of trajectory tracking algorithms. Another work
[13] employs the idea of the force field and path deformation
to achieve path following and collision avoidance at the
same time. This approach requires low computational load;
however, they only consider straight lines as the desired
paths between adjacent waypoints, which may lead to large
path-following error. The study [14] proposes a switching
guidance system with a path following mode and a collision
avoidance mode for an unmanned surface vessel (USV).
Since the system relies on calculating the cross-track error, it
is probably challenging to deal with paths and obstacles with
shapes other than straight lines or circles. In addition, Zeno
behaviour might exist in the switching system [15, Section
1.2.2].

In this paper, we propose a general and unified framework
using a composite vector field to achieve collision avoid-
ance and path following simultaneously. Rigorous theoretical
analysis is provided, and thus, the behaviours of collision
avoidance and path following are provably enabled. Two
vector fields, one for path following and the other for
collision avoidance, are generated. Inspired by “partition of
unity” from topology [16, Theorem 2.23], we use bump
functions, which are smooth functions that admit non-zero
values on compact domains, to smoothly combine these two



vector fields, while greatly reducing the undesirable effects of
overlapping. This also guarantees the existence and unique-
ness of solutions of the corresponding differential equation.
Since no switching mechanism is introduced, Zeno behaviour
is irrelevant. One of the advantages of our framework is its
generality and flexibility. For example, since the construction
of the composite vector field does not involve any specific
geometric relations or constraints, the vector field is not
restricted to any fixed cases. In fact, there are no particular
constraints on the shapes of the desired path and the contours
of obstacles as long as they are homeomorphic to a circle or
the real line. Therefore, our method is even applicable in an
environment with obstacles of a concave geometric shape.
Another advantage is that the collision avoidance approach
is reactive, implying that no motion planning or construction
of symbolic maps of the environment is required. Therefore,
a robot is able to locally and smoothly modify the composite
vector field via bump functions when it encounters new
obstacles during its movement. This enables the capability
of real-time collision avoidance and path following. Note
that our method is fundamentally different from the APF
method in the sense that the composite vector field is not
deduced from a potential function, and we do not aspire to
have a unique global minimum. In fact, the control objective
of following a path requires a continuous motion of the robot
(e.g., an unmanned aerial vehicle) rather than just reaching
the desired destination point. In addition, our method enables
robots to smoothly go through narrow passages formed by
closely positioned obstacles, which can hardly be achieved
by the traditional APF [17].

The remainder of this paper is organized as follows.
Section II presents the problem formulation. Then the design
of the composite vector field is given in Section III. In
Section IV, the main theoretical results are elaborated. Then
some illustrative simulation examples are carried out to
validate the theoretical results in Section V. Finally, Section
VI concludes the paper and indicates future work.

II. PROBLEM FORMULATION

Generally speaking, we aim to obtain a control algorithm
for a robot to follow a predefined desired path, and at the
same time, avoid any obstacles near the path. The more
precise problem setting is formulated below.

A. Desired Path

The desired path P ⊂ R2 is described by the zero-level set
of a twice continuously differentiable function φ : R2 → R
as follows:

P = {ξ ∈ R2 : φ(ξ) = 0}. (1)

It is natural to assume that P is a one-dimensional connected
submanifold in R2. Thus, P is homeomorphic to a circle if
it is compact, and the real line R otherwise [18, Theorem
5.27]. One of the advantages of using the zero-level set is that
this facilitates the use of the value φ(ξ) at a point ξ ∈ R2 to

(a) Desired path P , reactive boundary
R, repulsive boundary Q, and the ob-
stacle (the red irregular object)

(b) Repulsive areaQin and
non-repulsive area Qex

(c) Reactive area Rin and
non-reactive area Rex

Fig. 1. Illustrations of concepts.

“measure” the distance dist(ξ,P)1 between the point ξ and
the path P . For example, a circular path P can be described
by using φ(x, y) = x2+y2−R2, where R is the radius of the
circle. The distance function is dist(ξ,P) = |

√
x2 + y2−R|.

Note that for every point ξ on the circle, dist(ξ,P) = 0 and
φ(ξ) = 0. As the value |φ(ξ)| increases, the distance between
the point and the circle also increases. One easily observes
that it is simpler to evaluate the distance using the φ(ξ) value
rather than the distance function. This advantage is more
obvious for more complicated paths, such as an ellipse. Thus
we make the following assumption:

Assumption 1: For any ξ1, ξ2 ∈ R2, if |φ(ξ1)| ≤ |φ(ξ2)|,
then dist(ξ1,P) ≤ dist(ξ2,P).

Remark 1: One may notice that this assumption is not
satisfied for an ellipse if the Euclidean metric is used in
the distance function dist(·,P). However, this can be easily
generalized by using an equivalent metric such that the
convergence properties still hold (e.g., such an equivalent
metric exists for an ellipse).

B. Obstacles, Reactive Areas and Repulsive Areas

Suppose there is a finite set of stationary obstacles Oall =
{Oi ⊂ R2 : i ∈ I}, where I = {1, 2, . . . ,m} and m
is the total number of obstacles. The geometric shapes of
the obstacles might be complicated (see Fig. 1), but they
can be captured by some enclosing “repulsive boundaries”
discussed in the sequel. Next we define two “paths” around
the obstacle Oi, called the reactive boundary Ri and the
repulsive boundary Qi respectively. Similar to the definition
of the desired path, one can choose a twice continuously
differentiable function ϕi : R2 → R and a nonzero constant
ci such that

Ri = {ξ ∈ R2 : ϕi(ξ) = 0}, Qi = {ξ ∈ R2 : ϕi(ξ) = ci}, (2)

where ci 6= 0. It is assumed that Ri and Qi are one-
dimensional compact connected submanifolds in R2. Ac-
cording to the Jordan curve theorem [19, Section VI.52], Ri
divides the plane R2 into the bounded open subset Rin

i (the
interior) and the unbounded open subset Rex

i (the exterior),
and we have Ri = ∂Rin

i = ∂Rex
i , where ∂(·) denotes the

1Given a positive integer n, the distance between a point p0 ∈ Rn and
a nonempty set S ⊂ Rn is denoted by dist(p0,S) := inf{d(p, p0) : p ∈
S}, where d(p, p0) = ‖p− p0‖2 is the Euclidean metric.



boundary of a set. Similarly, the boundary Qi divides the
plane R2 into the interior Qin

i and the exterior Qex
i , and

Qi = ∂Qin
i = ∂Qex

i . For convenience, we call Rin
i the

(open) reactive area, Rex
i the (open) non-reactive area, Qin

i

the (open) repulsive area and Qex
i the (open) non-repulsive

area of the obstacle Oi respectively. To name the closure
of these areas, we simply replace “open” by “closed” (e.g.
Rin
i is called the closed reactive area, where (·) denotes

the closure of a set). Intuitively, the reactive area Rin
i is the

area where the robot is near the obstacles and needs to be
reactive to obstacles, and the repulsive area Qin

i is the area
where the robot is forbidden to enter; if the robot’s initial
position is in Qin

i , then it is forced to leave (see Fig. 1).
Before presenting the following technical assumptions, note
that the distance between two non-empty sets A and B is
denoted by dist(A,B) := inf{||a− b||2 : a ∈ A, b ∈ B}. We
further make the following assumptions:

Assumption 2: Oi ⊂ Qin
i ⊂ Rin

i and dist(Qi,Ri) > 0.
Assumption 3: P 6⊂

⋃
i∈I Rin

i .
Assumption 4: For each i 6= j ∈ I, dist(Rin

i ,Rin
j ) > 0.

Assumption 2 implies that the reactive and repulsive areas
are “induced” by the obstacle inside them, and the repulsive
area is naturally “closer to” the obstacle than the reactive area
is. Assumption 3 implies that there is at least one segment
of the desired path that can be followed by the robot without
being “occupied” by the obstacles. Assumption 4 indicates
that any two obstacles are sufficiently faraway, and the robot
will not enter two different reactive areas at the same time.

C. Problem Definition

In this subsection, we will formally define what a vector-
field-based path following problem is when there are obsta-
cles. For the case without obstacles, the definition is found
in [20]. First recall that a trajectory ξ : [0,+∞) → Rn
asymptotically converges to a non-empty set A ⊂ Rn if for
any ε > 0, there exists T > 0 such that dist(ξ(t),A) <
ε for t > T . In addition, ξ̇(t) denotes d

dt ξ(t) for any
function ξ of time t. Now we present the Vector Field based
integrated Collision Avoidance and Path Following problem
(VF-CAPF).

Definition 1: The VF-CAPF problem is to design a con-
tinuously differentiable vector field χ : R2 → R2 for the
differential equation ξ̇(t) = χ(ξ(t)) such that the following
four control objectives are satisfied:

1) (Path following). If there are no obstacles (Oall = ∅),
then the vector field χ enables a robot to follow the desired
path [5], [20].

2) (Repulsive Qin). If ξ(0) /∈ Qin
i for all i ∈ I, then

ξ(t) /∈ Qin
j for t ≥ 0 and all j ∈ I. If there exits i ∈ I

such that ξ(0) ∈ Qin
i , then there exists T > 0, such that

ξ(t) /∈ Qin
j for t ≥ T and all j ∈ I.

3) (Bounded path error). There exists a positive finite
constant M such that dist(ξ(t),P) ≤ M for t ≥ 0.
Moreover, for all nonempty connected time intervals Ξj ⊂
R, j ∈ N, such that ξ(t) /∈

⋃
iRin

i for t ∈ Ξj , the path error
dist(ξ(t),P) is strictly decreasing on Ξj .

4) (Penetrable Rin
i ). Fixing i ∈ I, if for almost all

trajectories, there exists te0 ∈ R such that ξ(te0) ∈ Rin
i , then

there exists tl0 > te0 such that ξ(tl0) /∈ Rin
i . In addition, the

trajectory cannot cross the reactive boundary Ri infinitely
fast2.

Remark 2: In general, to solve the aforementioned vector-
field-related problems is mainly about designing an appro-
priate vector field χ : R2 → R2 such that the integral
curves of the vector field (that is, the trajectories of the ODE
ξ̇(t) = χ(ξ), where ξ ∈ R2) achieve some control objectives.
Therefore, after designing the vector field, it is of great
importance to investigate the properties of the trajectories,
such as the existence and uniqueness of solutions and the
convergence results. From the perspective of robotics, the
ODE implies that the robot model considered is a simple
single-integrator model:

ξ̇(t) = u(t), (3)

where ξ(t) = (x(t), y(t)) represents the position of the
robot at time t, and u is the control input that is taken as
the designed vector field (i.e., u(t) = χ(ξ(t))). The main
motivation behind the simplicity of the model is that the
vector field is treated as a guidance signal such that the
desired velocity (or orientation) χ(ξ) is given depending on
where the robot is. Then a subsequent robot-model-specific
control law could be derived to drive the robot’s velocity (or
orientation) to approach the desired one. The methodology
of first considering the single-integrator robot model and
then deriving subsequent control designs for complex robot
models, such as the unicycle model, is more general in this
sense and has been presented in the literature (e.g., [3], [4],
[20]). Due to page limits, the focus of the paper is the design
of a composite vector field χ discussed in the following
sections, while a robot-model-specific control law will be
left as our future work.

III. COMPOSITE VECTOR FIELD VIA BUMP FUNCTIONS

A. Individual Vector Fields

In this subsection, we explain the path following method
using a vector field [?], [4], [5]. The basic idea is to design
a suitable vector field which can guide the robot to move
towards and circulate along the desired path. We use the
construction of the vector field proposed in [4]. For the
desired path in (1) and the reactive boundary in (2), we define
the induced vector field χP , χRi

: R2 → R2 associated with
P and Ri by:

χP(ξ) = E∇φ(ξ)− kpφ(ξ)∇φ(ξ), (4)
χRi

(ξ) = E∇ϕi(ξ)− kriϕi(ξ)∇ϕi(ξ), (5)

where E =

[
0 −1
1 0

]
is the 90◦ rotation matrix, kp, kri

are positive gains and ∇(·) is the gradient with respect to

2Suppose there exists a strictly increasing sequence of time instants
(ti)
∞
i=1 such that a trajectory is in the exit set [21, Definition 2.2] of the

reactive boundary at these instants; precisely, ξ(ti) ∈ R− := {ξ0 ∈ R :
ξ(0) = ξ0,∀δ > 0, ξ([0, δ)) 6⊂ R}. If (ti)∞i=1 is a Cauchy sequence, then
the trajectory ξ(t) is said to cross R infinitely fast.



ξ. For convenience, χP is called the PF (path-following)
vector field and χRi the reactive vector field. The point
where a vector field becomes zero is called a singular point
of the vector field [16, p. 219]. The set of singular points of
the vector fields χP and χRi

are denoted by CP and CRi

respectively. To be more specific,

CP = {ξ ∈ R2 : χP(ξ) = 0} = {ξ ∈ R2 : ∇φ(ξ) = 0},
CRi

= {ξ ∈ R2 : χRi
(ξ) = 0} = {ξ ∈ R2 : ∇ϕi(ξ) = 0}.

The above equations show that the sets CP and CRi
are also

the sets of critical points of φ and ϕi respectively. Following
[4], we call these sets critical sets. Since P , Ri and Qi
are one-dimensional connected submanifolds, φ has a regular
value 0 and ϕi has two regular values 0 and ci [16, p. 105].
Therefore, we have P∩CP = ∅,Ri∩CRi

= ∅ andQi∩CRi
=

∅.
Under some mild assumptions (specifically, Assumptions

1-3 in [4]), which hold for all the examples presented later
in this paper, the following lemma regarding convergence
results is important [4].

Lemma 1 (dichotomy of convergence): Let χ : R2 → R2

be the vector field induced by the one-dimensional connected
submanifold (desired path) P described by (1). Then the
trajectory of ξ̇(t) = χ(ξ(t)) converges either to the desired
path P or the critical set C := {ξ ∈ R2 : χ(ξ) = 0}.

Note that the convergence result holds up to a positive
scaling of the vector field, as long as the orientation of
each vector of χ is not modified [20]. Moreover, the initial
conditions where the solution converges to an equilibrium
point is characterized by the stable manifold defined below.

Definition 2 (stable manifold): Let ξ∗ be an equilibrium
point of the ordinary differential equation ξ̇(t) = χ(ξ(t)),
where χ : Rn → Rn is a smooth vector field. The stable man-
ifold of ξ∗ is the set of all initial values denoted by W(ξ∗),
such that the solution converges to ξ∗ if ξ(0) ∈ W(ξ∗).
In addition, the union of the stable manifold is denoted by
W(C) :=

⋃
ξ∗∈CW(ξ∗), where C := {ξ ∈ Rn : χ(ξ) = 0}.

B. Bump Functions

The bump functions are inspired by the following lemma
originated from “partition of unity” in topology.

Lemma 2 ( [16, Proposition 2.25]): Consider an open
subset B 6= ∅ in Rn and a closed subset A 6= ∅ in Rn
such that A ⊂ B ⊂ Rn. There exists a smooth function
u : Rn → R such that u(x) ≡ 1 for x ∈ A, 0 ≤ u(x) ≤ 1
for x ∈ B \ A and u(x) ≡ 0 for x ∈ Rn \ B.

The function u in Lemma 2 is called a smooth bump
function, which is a smooth real-valued function that attains
1 on a specified set and attains zero outside a neighborhood
of that set [16, p. 42]. Using the same notations in the
above lemma, it is easy to conclude that there also exists an
“inverted” bump function t : Rn → R such that t(x) ≡ 0
for x ∈ A and t(x) ≡ 1 for x ∈ Rn \ B (e.g., letting
t = 1 − u). With abuse of notions, we call u a zero-
outside bump function and t a zero-inside bump function
intuitively. These functions are useful to “separate” different
regions in Rn. In the context of the VF-CAPF problem,

(a) VF χ̂P for P (b) VF χ̂R for R

(c) VF tQ(ξ)χ̂P (ξ) (d) VF uR(ξ)χ̂R(ξ)

(e) Composite VF

Fig. 2. Illustrations of the composite vector field. Given a vector field
χ : R2 → R2, each arrow in the figure represents a vector χ(ξ), where
ξ ∈ R2 is the position of the tail rather than the head of the arrow.

these functions can be utilized to integrate different vector
fields and reduce the undesirable effects of overlapping.
Specifically, the following corollary is given.

Corollary 1: For any reactive boundary Ri and repulsive
boundary Qi in (2), i ∈ I, there exist smooth zero-inside
and zero-outside bump functions tQi

,uRi
: R2 → [0,∞)

defined below:

tQi(ξ) =

{
0 ξ ∈ Qin

i

ai(ξ) ξ ∈ Qex
i ,
uRi(ξ) =

{
0 ξ ∈ Rex

i

bi(ξ) ξ ∈ Rin
i ,

(6)

where ai : Qex
i → (0,∞) and bi : Rin

i → (0,∞) are
bounded smooth functions.

C. Composite Vector Field

After introducing the individual vector fields and the bump
function above, the composite vector field χ

c : D ⊂ R2 →
R2 is shown as follows:

χ
c(ξ) =

∏
i∈I
tQi(ξ)χ̂P(ξ) +

∑
i∈I
uRi(ξ)χ̂Ri(ξ), (7)

where (̂·) is the normalization operator (i.e., for a nonzero
vector v ∈ Rn, v̂ = v/ ‖v‖), and D = R2 \ (

⋃
i CRi

⋃
CP)

is the domain on which the composite vector field is well-
defined. Taking the robot’s current position ξ(t) as the
feedback signal, the control input in (3) can be taken as
u(t) = χ

c(ξ(t)). Therefore, this gives rise to the autonomous
ODE: ξ̇(t) = χ

c(ξ(t)), ξ(0) ∈ D. Since bump functions are
smooth and the vector field χP and χRi

are continuously
differentiable with respect to ξ, the existence and uniqueness
of solutions is guaranteed [22]. For convenience, we define
Cc := {ξ ∈ D : χc(ξ) = 0}, which contains all the equilibria
of the differential equation.

IV. MAIN RESULTS

Under Assumption 4 and in view of (7), different reactive
vector fields χRi

do not affect one another. Thus, without
loss of generality, we only need to consider the case where
there is only one obstacle; namely, the index set I is a
singleton. Therefore, all the notations in this section do not
have the subscript i. It is also natural to assume that the
obstacle is sufficiently close to the desired path such that
the robot can perceive the obstacle when on the path (i.e.,



Rin ∩P 6= ∅). Thus, the composite vector field is simplified
to

χ
c(ξ) =


b(ξ)χ̂R(ξ) ξ ∈ Qin ∩ D
a(ξ)χ̂P(ξ) + b(ξ)χ̂R(ξ) ξ ∈ Qex ∩Rin ∩ D
a(ξ)χ̂P(ξ) ξ ∈ Rex ∩ D,

(8)
where D = R2\(CR∪CP). An intuitive illustration is in Fig.
2. If the robot is in Qin, then only the reactive vector field
χR takes effect, while if the robot is in Rex, only the PF
vector field χP is effective. However, when the robot is in
the (open) mixed area M := Qex ∩Rin, both the PF vector
field and the reactive vector field matter. The closure of this
area M is called the closed mixed area, but note that the
vector field is not mixed on the boundaries.

We are now ready to present the main theorem.
Theorem 1: Taking the composite vector field in (7) as

the control input to (3), the VF-CAPF problem is solved if
the following conditions hold:

1) ξ(0) /∈ W(CP), W(CR) ∩Q = ∅, CP is bounded;
2) CP∩Rin = ∅ and there is only one equilibrium c0 ∈ Cc

in the mixed area M;
3) there exists a trajectory ξ(t) starting from the repulsive

boundary Q and reaching the reactive boundary R.
Proof: Due to page limits, the proof will be given in

the full version of the paper.
Remark 3: The conditions in this theorem are rather

technical, but in practice, they might be easily satisfied.
The stable manifold of the W(CR) and W(CP) can be
numerically computed using the Hadamard’s method or the
Lyapunov-Perron method [23, Section 3.5]. Fortunately, this
process can be omitted for some typical paths, such as
circles or ellipses, since they have only one critical point,
and the corresponding stable manifold is the critical point
itself. Note that it is usually sufficient to model the obstacle
as an ellipse; thus, the conditions of this theorem can be
greatly simplified. In addition, given a specific desired path
P , the important design choices are the repulsive boundary
Q, reactive boundary R and the bump functions. Thus the
second condition can be satisfied by changing these design
choices. In practice, a better design choice is to narrow
down the mixed area M to reduce the uncertainty of the
trajectories. The third condition might be most difficult to
verify rigorously, although it itself is not a conservative con-
dition (the existence of only one such trajectory is sufficient).
This condition is employed here to eliminate the possibilities
of limit cycles in the mixed area, hence ensure that the
trajectories are able to leave the mixed area. Note that the
proof of existence and non-existence of limit cycles itself is
generally a challenging problem in nonlinear system theory,
and there are only a few available tools, such as the Poincaré-
Bendixson theorem, the Bendixson criterion and the index
theory [22, Lemma 2.1-2.3]. These tools might be used to
verify the third condition. However, many tested examples
satisfy this condition. Intuitively, this can be observed from
the plot of the vector field. The vectors in the reactive vector
field χR point outward to leave the mixed area, while in

(a) (b)
Fig. 3. Simulations. (a) The first simulation; (a) The second simulation.

some regions of the mixed area, the vectors of the PF vector
field χP always point from the mixed area to the desired
path (e.g., see the vectors in the mixed area in Fig. 3(a)).
Therefore, in practice, the third condition might be safely
assumed to be true if the repulsive boundary, the reactive
boundary and the bump functions are not “pathological”.
Nevertheless, replacing the third condition by others that are
easier to verify in practice is our future work.

V. EXAMPLES

Two examples are illustrated3. First, we consider only one
obstacle. Specifically, the desired path is a circle described
by the implicit function φ(x, y) = x2 + y2 − R2 = 0,
where R > 0 is the radius. It is shown in [4] that CP =
W(CP) = {(0, 0)}. Suppose an obstacle O is on the path
(i.e., O∩P 6= ∅), and the reactive boundary is described by
a rotated ellipse in general: ϕ(x, y) = ((x−ox) cosβ+(y−
oy) sinβ)2/a2+((x−ox) sinβ−(y−oy) cosβ)2/b2−1 = 0,
where a, b > 0 and β is the rotation angle about the center
of the ellipse (ox, oy). The critical set and the corresponding
stable manifold is simply CR = W(CR) = {(ox, oy)}. We
choose the zero-inside bump function as

tQ(ξ) =


0 ξ ∈ {ϕ(ξ) ≤ c}

exp

(
l1

c− ϕ(ξ)

)
ξ ∈ {ϕ(ξ) > c}

(9)

and the zero-outside bump function as

uR(ξ) =

exp

(
l2
ϕ(ξ)

)
ξ ∈ {ϕ(ξ) < 0}

0 ξ ∈ {ϕ(ξ) ≥ 0},
(10)

where l1 > 0, l2 > 0 are used to change the decaying or
increasing rate of the bump function. In the first example,
we let R = 1, a = 1, b = 0.5, ox = 0, oy = −1, β = 0,
l1 = l2 = 0.1 and c = −0.72. It is easy to verify that the
first condition of Theorem 1 is satisfied. It is also verified
that CP ∩ Qin = ∅. To calculate the equilibria in the mixed
area, first we note that the equilibria is on the c/2-level set
of ϕ (the cyan dashed line in Fig. 3(a)) where the PF vector
field and the reactive vector field have the same length. By
numerical calculation, there is only one equilibrium point at
(0.094,−0.60), which is a saddle point (the black cross in

3Supplementary video: https://www.youtube.com/watch?v=
C5dmdexs8Oc&feature=youtu.be

https://www.youtube.com/watch?v=C5dmdexs8Oc&feature=youtu.be
https://www.youtube.com/watch?v=C5dmdexs8Oc&feature=youtu.be


Fig. 3(a)). In this case, we assume the third condition of
Theorem 1 is true (see Remark 3). The simulation result is
shown in Fig. 3(a). The red curve (partly covered by the pink
curve) is the desired circular path. The green solid line is the
reactive boundary and the black dashed line is the repulsive
boundary. The pink curves are the robot trajectories starting
from (0.4,−0.2), (−0.3,−0.1), (−0.8, 1) and (−0.3,−1.1)
respectively. The figure shows that the robot is able to leave
the repulsive area and remain in the non-repulsive area. In
addition, when it leaves the reactive area, it follows the
desired path successfully.

In the second simulation, we use the same circular desired
path and bump functions (with some changes in the param-
eters), but now there are five obstacles in total, which are
modelled by four ellipses and one Cassini oval respectively
(see Fig. 3(b)). The repulsive boundaries are shown by
dashed lines in the figure. The Cassini oval is described by
ϕ(x, y) = [(x− 0.9)2 + (y − 2)2][(x+ 0.9)2 + (y − 2)2]−
0.9 = 0. As shown in Fig. 3(b), starting from five different
positions: (−3, 1.5), (−0.8,−1), (1.4, 0.8), (2.2,−2) and
(0.2,−1.8), all trajectories successfully follow the desired
path and bypass the obstacles without entering into the
repulsive areas (except starting from the repulsive area).
Note that the trajectories smoothly pass the narrow passage
surrounded by two “vertical ” ellipses, while the artificial
potential field method can hardly achieve this [17]. Also note
that this method is effective even though there is a concave
obstacle, the Cassini oval.

VI. CONCLUSION AND FUTURE WORK

We have proposed a general and unified framework to
integrate collision avoidance and path following using a com-
posite vector field via bump functions. Rigorous theoretical
analysis and numerical simulations have been provided. The
desired path and the contours of the obstacles are homeomor-
phic to a circle or the real line, so no convexity assumptions
are required. In addition, since the derivation of the vector
field does not involve any specific geometric constraints,
the framework is superior in its generality. Moreover, the
collision avoidance behaviour is reactive, enabling real-time
performances.

Although we have modelled the robot as a point, this
does not impair the collision avoidance performance since
the repulsive area can be enlarged to take into account the
geometric sizes of both the obstacles and the robot. Note that
the single-integrator robot model is employed to study the
integral curves of the vector field, but it acts as a cornerstone
of control law designs for complex robot models without
using feedback linearization [4], [20]. However, a valid
starting region needs to be identified for a nonholonomic
robot so that collision is avoided when the robot is close
to obstacles. Also, note that the settings of the paper are
essentially different from that of the classic studies [7]; for
example, we do not assume that the free space is compact
or that the vector field is transverse on the boundary. With
regards to moving obstacles, a possible extension is to
introduce the time-varying feature of the function ϕ that

characterizes the movement of obstacles. To extend to the
three-dimensional case, we will consider the intersection of
two surfaces [5].
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