
 

 

 University of Groningen

Strategic Differentiation in Non-Cooperative Games on Networks (I)
Govaert, Alain; Cao, Ming

Published in:
Proceedings of the European Control Conference 2019

DOI:
10.23919/ECC.2019.8795771

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Govaert, A., & Cao, M. (2019). Strategic Differentiation in Non-Cooperative Games on Networks (I). In
Proceedings of the European Control Conference 2019 IEEE. https://doi.org/10.23919/ECC.2019.8795771

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.23919/ECC.2019.8795771
https://research.rug.nl/en/publications/a3c8e900-5079-4ac9-bd04-3f10c1fa454b
https://doi.org/10.23919/ECC.2019.8795771


Strategic Differentiation in Non-Cooperative Games on Networks

Alain Govaert, Ming Cao

Abstract— In the existing models for finite non-cooperative
games on networks, it is usually assumed that in each single
round of play, regardless of the evolutionary update rule driving
the dynamics, each player selects the same strategy against all
of its opponents. When a selfish player can distinguish the
identities of its opponents, this assumption becomes highly
restrictive. In this paper, we introduce the mechanism of
strategic differentiation through which a subset of players in
the network, called differentiators, are able to employ different
pure strategies against different opponents in their local game
interactions. Within this new framework, we study the existence
of pure Nash equilibria and finite-time convergence of differen-
tiated myopic best response dynamics by extending the theory
of potential games to non-cooperative games with strategic
differentiation. Finally, we illustrate the effect of strategic
differentiation on equilibrium strategy profiles by simulating a
non-linear spatial public goods game and the simulation results
show that depending on the position of differentiators in the
network, the level of cooperation of the whole population at an
equilibrium can be promoted or hindered. Our findings indicate
that strategic differentiation may provide new ideas for solving
the challenging free-rider problem on complex networks.

I. INTRODUCTION

Simple decisions or actions taken by interacting indi-
viduals can lead to surprisingly complex and unpredictable
population-level outcomes. In particular, when individual de-
cisions or actions are based on personal interest, the long run
collective behavior, characterized by these selfish decisions,
can be detrimental for the population as a whole. Mathe-
matical models of such systems require trade-offs between
the complexity of micro-dynamics and the accuracy with
which the model can describe a macro-behavior. Evolution-
ary game theory, originally proposed as a dynamical model
for Darwinian competition [1], has proven to be a valuable
tool in providing mathematical models for such complex
dynamical systems. In evolutionary game theory, the concept
of bounded rationality [2] was proposed that supports the
idea that in order to reach decisions players are satisfied with,
they may rely on simple rules. In economic contexts evo-
lutionary dynamics are, typically, driven by simple rational
thinking, (e.g. myopic best response). Such dynamics have
been studied extensively for finite non-cooperative games us-
ing potential functions [3] and Markov chain theory [4], [5].
Much literature has been developed on evolutionary games
on networks that study the consequences of spatial or social
population structure [6], [7] on the evolutionary success of

The work was supported in part by the European Research Council (ERC-
CoG-771687) and the Netherlands Organization for Scientific Research
(NWO-VIDI-14134).

A. Govaert and M. Cao are with ENTEG, Faculty of Science
and Engineering, University of Groningen, The Netherlands, {a.govaert,
m.cao}@rug.nl.

the population. These extended research efforts resulted in
the identification of several mechanisms that help to explain
the emergence of cooperation in competitive environments
[8]. One such mechanism is known as network reciprocity:
when a cooperator pays some cost that its neighbors can
benefit from and a defector bears no costs, not creating any
benefit for its neighbors, then cooperators can succeed by
forming clusters in the network [8]. Evolutionary games on
networks and the study of their evolutionary success have
later been generalized to include groupwise interactions [9],
and multilayer networks [10], [11]. An extensive review of
these games can be found in [12].

A common assumption in the existing models for fi-
nite non-cooperative evolutionary games on networks is
that players do not distinguish between their opponents.
In some sense the opponents are anonymous and hence,
there is no difference in the strategies employed against
each of them. In real life competitive settings, in order
to create a competitive advantage it is often crucial to
identify the rivals [13]. And indeed, avoiding ‘blindspots’
in a competitive decision process, i.e. those decisions that
require taking into account the decisions of competitors, is a
major topic in the strategic decision making literature [14].
Thus, in such competitive environments, decision makers
are likely to distinguish their opponents, and consequently
they may employ different strategies against them. As a first
contribution of this paper, we introduce the mechanism of
strategic differentiation through which a subset of players
in the network, called differentiators, are able to employ
different pure strategies against different opponents. Within
this new framework, strategic differentiation can be applied
to both pairwise and groupwise games on networks. As a
second contribution, we connect strategic differentiation to
the theory of potential games and their generalizations and
show that for the class of weighted potential games the
effect of strategic differentiation on any network topology
can be studied analytically using the potential function of
the original game. Third, our results indicate that the effect
of strategic differentiation on the equilibrium strategy profile
can be profound and that the location of the differentiators in
the network has a crucial effect on the evolutionary success
of the non-cooperative evolutionary game. We believe that
decision making processes of interacting individuals that
can identify and distinguish their opponents can be modeled
more accurately using the mechanism strategic differentiation
compared to more traditional evolutionary network game
models and that the framework and results presented in this
paper can be useful in understanding such systems.

The paper is structured as follows. In Section II a short
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overview is given on traditional non-cooperative games on
networks with evolutionary game dynamics. In Section III
the mechanism strategic differentiation is formally defined
for non-cooperative games on networks. In Section IV
myopic best response dynamics in games with strategic
differentiation and their equilibria are formally defined. In
Section V strategic differentiation is linked to potential
games and their generalizations. In Section VI the effect of
strategic differentiation on the equilibrium strategy profile is
investigated via simulations.

II. NOTATIONS AND PRELIMINARIES

In this section we briefly define the notation to be used
in the paper and introduce the existing framework of non-
cooperative games on networks.

A. Notations and definitions

Let G = (V, E) denote an undirected network with node
set V and edge set E ⊆ V × V . The neighborhood of i is
denoted by Ni = {j ∈ V : (i, j) ∈ E} ∪ {i}. The degree of
player i ∈ V is denoted by di = |Ni|−1, where |A| denotes
the cardinality of the set A. The neighborhood hypergraph
of G is defined by H = (G, I), where the hyperedge set I
is a family of non-empty sets over V , corresponding to the n
neighborhoods in G. For a vector x ∈ Rn we denote its ith

element by xi. For any i = 1 . . . n, we write x = (xi, x−i)
where x−i = (x1, . . . , xi−1, xi+1, . . . , xn). We denote the
n-ary Cartesian product over the n sets A1 . . . ,An by
×n

i=1Ai := {(a1 . . . , an) : ai ∈ Ai ∀i = 1, . . . , n}.

B. Finite Non-Cooperative Games on Networks

Non-cooperative evolutionary games on networks are de-
fined by a network, a strategy space, payoff functions and
strategy update dynamics. We now introduce these elements
separately.
Network and finite strategy spaces: Consider an undirected
network G = (V, E) whose nodeset V = {1, . . . , n}
corresponds to a finite set of players. Each player i ∈ V has
a fixed and finite pure strategy set Xi. The resulting strategy
space is denoted by X = ×i∈VXi. The strategy profile is
indicated by x = (x1, . . . , xn) ∈ X , such that xi ∈ Xi for
all i ∈ V .

Single round payoffs: In a single round of a pairwise non-
cooperative game on a network, a player separately interacts
with each neighbor. Let πij(xi, xj) denote the payoff that
player i obtains from strategy xi ∈ Xi in the pairwise
interaction against opponent j ∈ Ni with strategy xj ∈ Xj .
The total payoff that player i obtains in a single round of
play is given by a weighted sum of the local payoffs. That
is,

πi(xi, x−i) =
∑

j∈Ni\{i}

wijπij(xi, xj), (1)

with wij ∈ R denoting the weight associated to the local
interaction between i and j. We refer to a non-cooperative
game with a payoff function of the form (1) as a pairwise
game on a network. Alternatively, players may interact in
groups with a size greater than two, and thus the local

interactions form a multiplayer game. In general, the payoffs
of multiplayer games on networks cannot be represented
by the corresponding sum of pairwise interactions and thus
the local multiplayer game interactions are described by the
neighborhood hypergraph of G. Again, the total payoff that
player i obtains in a single round of play is a weighted sum
of the local payoffs,

πi(xi, x−i) =
∑
j∈Ni

wjπij(xi, x−i), (2)

with wj ∈ R denoting a common weight that the players
in Nj associate to the local multiplayer game. Note that
in equation (2) the single round local payoffs depend on
|Nj | ≥ 2 strategies and the network structure imposes an in-
terdependence in the payoffs of players that are connected via
an undirected path with the length two, sometimes referred
to as the 2-hop neighbors. We refer to a non-cooperative
game with payoff functions of the form (2) as a groupwise
game on network. For both pairwise and groupwise games
we indicate the combined payoff function by π : X → Rn

that maps each strategy profile x ∈ X to a payoff vector
π(x) = [π1(x), . . . , πn(x)].
Strategy update dynamics: We study evolutionary dynamics
in which the players may change their strategy over time. For
some time t ∈ N0, let xt ∈ X indicate the strategy profile
at time t. A strategy update rule f : X × Rn → X is a
function that maps the current strategy profile xt and payoff
vector π(xt) to an updated strategy profile xt+1. Update
rules may be seen as a learning process or a simple rule of
thumb that players use in an effort to reach decisions they
are satisfied with. In this paper we assume the evolutionary
dynamics driven by f are asynchronous. That is, for each
t = 0, 1, 2, 3, . . . , there exists a unique player i ∈ V , referred
to as the unique deviator, such that xt+1 = (xt+1

i , xt−i). A
non-cooperative game on a network is then defined by the
triplet Γ = (G,X , π). When the evolution of the strategy
profile changes according to the strategy update rule f , we
denote the evolutionary game on the network by (Γ, f).

III. STRATEGIC DIFFERENTIATION

In this section we formally define the mechanism strategic
differentiation and show how it can be incorporated into the
existing framework of evolutionary games on networks.

A. Strategy spaces and payoffs in non-cooperative games
with strategic differentiation

In a non-cooperative game on a network with strategic
differentiation, a differentiator can employ a separate pure
strategy for each neighbor; see figure 1 for an example of
a pairwise game with a single differentiator. Let D be a
non-empty subset of V denoting the set of differentiators
in the network, and let F := V \ D denote the set of
non-differentiators. In a groupwise game on a network, the
strategy of a player i ∈ D is a vector si ∈ Si := X |Ni|

i : one
pure strategy can be chosen to employ in the multiplayer
game against each closed neighborhood that the player
belongs to. When the game interactions are pairwise, the
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dimension of the strategy vector of player i is reduced by
one because in this case players only interact with their di
neighbors. For some j ∈ Ni, we indicate by sij ∈ si the
strategy that player i ∈ D employs in the local pairwise
(resp. groupwise) game played against j (resp. Nj). Note
that for all i ∈ D, j ∈ Ni we assume that sij ∈ Xi, i.e. each
pure strategy employed by a differentiator is in their own
pure strategy set. The strategy space of non-differentiators
j ∈ F is indicated by XF := ×j∈FXj . Without loss of
generality, label differentiators by D = {1, . . . |D|} and
the non-differentiators by F = {|D + 1|, . . . , n}. Then
the strategy space of the networked game with strategic
differentiation is given by Ŝ = SD × XF , with SD :=
×i∈DSi. In a game with strategic differentiation we denote
the local payoff function for the interaction between i and
(the neighbors of) j ∈ Ni by uij : Ŝ → R. Similarly,
u : Ŝ → Rn denotes the combined payoff vector of the
game with strategic differentiation. For pairwise interactions
the payoffs of a differentiator i ∈ D is given by,

ui(ŝi, ŝ−i) =∑
j∈Ni∩D\i

wijuij(sij , sji) +
∑

h∈Ni∩F\i

wihuih(sih, xh).

And the payoff of a non-differentiator k ∈ F is given by,

uk(ŝk, ŝ−k) =∑
l∈Nk∩D\i

wklukl(xk, slk) +
∑

v∈Nk∩F\i

wkvukv(xk, xv).

For games with strategic differentiation and groupwise inter-
actions, the payoffs are obtained using (2) with the strategy
space Ŝ. We are now ready to formally define a non-
cooperative game with strategic differentiation.

Definition 1 (Strategically differentiated game). A non-
cooperative game on a network with strategic differentiation
is defined by the triplet Ξ := (G, Ŝ, u). If πij = uij for all
(i, j) ∈ E , then Ξ is said to be the strategically differentiated
version of Γ = (G,X , π).

12

43

x2

s14x4

s12

x3

x4

x3 x2

Fig. 1: Graphical interpretation of a pairwise non-cooperative game
on a network with strategic differentiation. The label of outgoing
edges indicate the strategy played in the local pairwise interaction.
In this example D = {1} and F = {2, 3, 4}.

IV. BEST RESPONSES AND NASH EQUILIBRIA IN
STRATEGICALLY DIFFERENTIATED GAMES

Strategic differentiation requires a slight modification of
the concept of a Nash equilibrium, best responses and my-

opic best response update dynamics for games on networks.
These are provided in the following subsections.

A. Nash equilibrium of games with strategic differentiation

In finite games a pure best response for player i to a
strategy profile x ∈ X is a pure strategy x̄i ∈ Xi such that
no other pure strategy available to player i gives a higher
payoff against x ∈ X . This defines player i′s best response
correspondence [15],

βi(x, π) := {x̄i ∈ Xi : πi(x̄i, x−i) ≥ πi(xi, x−i) ∀xi ∈ Xi}.
(3)

A strategy profile x ∈ X is a pure Nash equilibrium if for
all i ∈ V , xi is a pure best response. In non-cooperative
games on networks with strategic differentiation the players
may employ a multitude of pure strategies. Based on the
definition of a players best response correspondence (3), a
best response of a differentiator is defined as follows.

Definition 2 (Differentiated Best Response). For player i ∈
D the strategy si ∈ Si is a strategically differentiated pure
best response for ŝ ∈ Ŝ if for all sik ∈ si

sik ∈ βik(ŝ, u), (4)

with βik(ŝ, u) := {x∗i ∈ Xi : uik(x∗i , ŝ−i) ≥
uik(xi, ŝ−i) ∀xi ∈ Xi}.

Based on the definition of a differentiated best response,
a Nash equilibrium in a strategically differentiated game is
naturally defined as follows.

Definition 3 (Differentiated Pure Nash equilibrium). A strat-
egy profile ŝ∗ ∈ Ŝ is a differentiated pure Nash equilibrium
of Ξ if for all i ∈ F , x∗i ∈ ŝ∗ is a pure best response and
for all j ∈ D, s∗j ∈ ŝ∗ is a strategically differentiated pure
best response.

When D = ∅ the original definition of a pure Nash
equilibrium is recovered. Best responses of differentiators
are thus vectors of pure strategies for which each element is
locally optimal. Herein lies the main distinguishing feature of
best replies in games without strategic differentiation: a best
reply x∗i over the aggregated payoff πi(xi, x−i) might not
optimize the payoffs of each separate local game with payoff
πij . Hence, a strategically differentiated Nash equilibrium
might contain strategies that are not present in the Nash
equilibrium of the game without strategic differentiation.

B. Myopic best response dynamics in games with strategic
differentiation

In non-cooperative games on networks with payoff func-
tions of the form (1) or (2), the myopic best response of
player i against strategy profile x−i ∈ X−i is given by

xt+1
i ∈ βi(xt, π). (5)

Let us consider such myopic best response dynamics in
games with strategic differentiation: the strategy sij is chosen
such that it maximizes uij , ceteris paribus.
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Definition 4 (Differentiated Myopic Best Response).

st+1
ij ∈ βij(st, u) (6)

st+1
i = [st+1

ij , . . . , st+1
ij′ ]>, j, j′ ∈ Ni. (7)

When all differentiators update their strategy according to
the differentiated best response dynamics (6) and all non-
differentiators according to (5), we indicate the evolutionary
game with strategic differentiation by (Ξ, β).

The evolutionary dynamics (7) are an unconstrained ver-
sion of the classic myopic best response dynamics (5) for
non-cooperative games on networks in the sense that the
local strategies are optimized over the local payoffs without
requiring that the employed strategies are equal. It follows
that when D = V , for innovative strategy update dynamics
like myopic best response in which players can introduce
new strategies into the network, the effect of the network
structure on the equilibria is lost. In this case the equilibrium
strategy profile of the networked game would correspond to
a collection of separate Nash equilibria of the local games
played on the network. When D ⊂ V the network structure
remains important to the evolutionary dynamics. Moreover,
the differentiators may obtain an advantage over their oppo-
nents that are not able to differentiate their strategies because
for each xi ∈ Xi, ŝ−i ∈ Ŝ−i, there exists si ∈ Si such that
ui(si, ŝ−i) ≥ ui(xi, ŝ−i). Hence, in terms of payoffs, players
that differentiate their strategy rationally are always at least
as successful as they would have been not differentiating
their strategy. The benefit that differentiators can get over
non-differentiators implies that especially for evolutionary
update dynamics in which the most successful players are
likely to be imitated, the existence of differentiators can have
a significant impact on the evolution of the strategies in the
network and the set of equilibria. We will investigate this
effect in the simulation section.

V. POTENTIAL FUNCTIONS FOR NON-COOPERATIVE
GAMES WITH STRATEGIC DIFFERENTIATION

In this section we describe conditions on the local game in-
teractions of games on networks that ensure that their strate-
gically differentiated versions have pure Nash equilibria and
convergence of differentiated myopic best response dynamics
is guaranteed. For this we apply the theory of potential games
to strategically differentiated games. Consider the following
definition derived from ordinal potential games [3].

Definition 5 (Differentiated ordinal potential game). Ξ is
a strategically differentiated ordinal potential game if there
exists an ordinal potential function P : Ŝ → R such that
for all xj , x′j ∈ Xj , si, s′i ∈ Si, ŝ−i ∈ Ŝ−i and ŝ−j ∈ Ŝ−j
the following holds:

∀i ∈ D :

ui(si, ŝ−i)− ui(s′i, ŝ−i) > 0⇔ P (si, ŝ−i)− P (s′i, ŝ−i) > 0

∀j ∈ F :

uj(xj , ŝ−j)− uj(x′j , ŝ−j) > 0⇔ P (xj , ŝ−j)− P (x′j , ŝ−j) > 0.

Note that if D = ∅, the original definition of an ordinal
potential game introduced in [3] is recovered.

It is well known that every finite ordinal potential game
has a pure Nash equilibrium. This property is generalized to
strategically differentiated games in the following lemma.

Lemma 1. Every finite differentiated ordinal potential game
possesses a differentiated pure Nash equilibrium.

Proof. The proof is omitted due to space limitations.

One can show that if Ξ is a differentiated ordinal poten-
tial game, then the evolutionary game (Ξ, β) will always
terminate in a differentiated Nash equilibrium. Instead we
now focus on finding conditions on the local interactions in
groupwise games on networks that ensure the convergence
properties of Γ are preserved in its strategically differentiated
version Ξ. This is especially useful when one already has
a potential function for the original game on a network
and is interested in comparing the behavior of the game
with strategic differentiation. Before doing so, consider the
following definition.

Definition 6 (Differentiated weighted potential games). Ξ
is a strategically differentiated weighted potential game if
there exists a potential function P̄ : Ŝ → R and weights
αi, αj ∈ R+, such that for all xj , x′j ∈ Xj , si, s′i ∈ Si,
ŝ−i ∈ Ŝ−i and ŝ−j ∈ Ŝ−j the following holds:

∀i ∈ D :

ui(si, ŝ−i)− ui(s′i, ŝ−i) = αi

(
P̄ (si, ŝ−i)− P̄ (s′i, ŝ−i)

)
∀j ∈ F :

uj(xj , ŝ−j)− uj(x′j , ŝ−j) = αj

(
P̄ (xj , ŝ−j)− P̄ (x′j , ŝ−j)

)
.

Note that if D = ∅, the original definition of a weighted
potential game introduced in [3] is recovered.

The following result relates the fundamental properties of
weighted potential games to their strategically differentiated
version.

Theorem 1. In Γ, if for all players i ∈ V there exists for
each local payoff function πij : X → R, j ∈ Ni, a weighted
potential function ρj : X → R with a common weight αi ∈
R+ for player i, then (Ξ, β) converges to a differentiated
pure Nash equilibrium.

Proof. For all j ∈ F , let s̄j := (xj , . . . , xj) ∈ X |Nj |

such that each element in s̄j is equal to xj ∈ Xj . For all
differentiators i ∈ D let s̄i := si. Then, for all j ∈ F
the payoff in the strategically differentiated game can be
written as uj(xj , ŝ−j) =

∑
l∈Nj

wlujl(s̄jl, s̄−jl), where
s̄−jl := {s̄kl ∈ Xk : k 6= j ∧ k ∈ Nl}. For differentiators
i ∈ D, the payoff in the strategically differentiated game
is ui(si, ŝ−i) =

∑
k∈Ni

wkuik(s̄ik, s̄−ik). By assumption,
in any local game with the neighbors of some j ∈ V ,
for all i ∈ Nj there exists a function ρj : X → R and
weights αi ∈ R+, such that for every xi, x′i ∈ Xi and every
x−i ∈ X−i the following equality holds, πij(xi, x−i) −
πij(x

′
i, x−i) = αi (ρj(xi, x−i)− ρj(xi, x−i)) . For all
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the non-differentiators l ∈ Nj ∩ F , it follows that
for any xl, x

′
l ∈ Xl, s̄−lj ∈ X−lj , ulj(xl, s̄−lj) −

ulj(x
′
l, s̄−lj) = αl

(
ρj(s̄lj , s̄−lj)− ρj(s̄′lj , s̄−lj)

)
. Simi-

larly for the differentiators i ∈ D ∩ Nj , since s̄ij ∈
Xi and s̄−ij ∈ X−ij , from the existence of the lo-
cal weighted potential function ρj it follows that for all
s̄ij , s̄

′
ij ∈ Xi, s̄−ij ∈ X−ij , uij(s̄ij , s̄−ij)− uij(s̄′ij , s̄−ij) =

αi

(
ρj(s̄ij , s̄−ij)− ρj(s̄′ij , s̄−ij)

)
. Let s̄{Nl} := {s̄kl ∈ Xk :

k ∈ Nl} denote the set of strategies employed by the players
in the local interaction with the closed neighborhood of l.
The difference in the payoff of a unique deviator i ∈ V
switching from strategy s̄′ to s̄ 6= s̄′ is given by

ui(s̄i, s̄−i)− ui(s̄′i, s̄−i) = αi

∑n
j=1 wj

(
ρj(s̄{Nj})− ρj(s̄′{Nj})

)
,

Where we have used the fact that when the unique devi-
ator is not a member of some closed neighborhood Nh,
then ρh(s{Nh}) − ρh(s′{Nh}) = 0. This implies that P̄ =∑

j∈V wjρj(s̄Nj
), with weights αi is a weighted potential

function for Ξ, and thus Ξ is a strategically differentiated
weighted potential game. The convergence of the differenti-
ated myopic best response then follows from the argument
used in traditional potential games. Clearly, since S̄ is finite,
P̄ is bounded. Moreover it is increasing along the trajectory
generated by asynchronous myopic best responses of non-
differentiators and asynchronous differentiated myopic best
responses of differentiators. This implies convergence of the
differentiated myopic best response strategy update dynamics
to a differentiated pure Nash equilibrium. �

The proof of Theorem 1 can be easily adjusted to show
that the same statement holds for strategically differentiated
pairwise games on networks with wij = wji for all (i, j) ∈
E . The following corollary of Theorem 1 applies to the class
of exact potential games in which αi = 1 for all i ∈ V .

Corollary 1. If the local groupwise interactions of Γ are
potential games, then (Ξ, β) converges to a strategically
differentiated Nash equilibrium.

Remark 1. Theorem 1 and its corollary hold because there
always exists a weighted potential function for payoffs that
are a linear combination of local payoffs obtained from
either potential games or weighted potential games with the
same strategy sets and fixed weight vectors [16]. Hence,
conditions on the local game interactions extend to the entire
network game and its strategically differentiated version.
This linear combination property does not hold for ordinal
potential games [3]. Thus, assuming that the entire network
game Γ is an ordinal potential game may not be sufficient for
convergence of its strategically differentiated version (Ξ, β).
Up to now we have not been able to find conditions on
ordinal potential games that ensure that their differentiated
versions share their fundamental properties.

VI. THE FREE-RIDER PROBLEM AND STRATEGIC
DIFFERENTIATION WITH IMITATION DYNAMICS

When the individuals of a group tend to be selfish
the possibility to profit from others naturally results in

trying to balance out one’s own efforts and rewards. The
free-rider problem describes the situation in which a good
or service becomes under-provided, or even depleted,
as a results of selfish individuals profiting from a good
without contributing to it. Here, we seek to determine via
simulations how strategic differentiation can result in more
desirable outcomes in which contributions to a good are
preserved in the long run.

All simulations are conducted on a linear public goods
game in which players need to determine whether or not
to contribute to a public good that their opponents can
profit from. This decision is modeled by the pure strategy
set Xi = {0, 1} for all i ∈ V . A differentiator i ∈ D
may choose to contribute to one good but withhold from
contributing to another. Hence, si ∈ {0, 1}|di+1|. For some
j ∈ Ni, when sij = 1 (resp. sij = 0 ) player i is
cooperating (resp. defecting) in the local game against the
group of opponent players in Nj . Let cij ∈ R>0 denote
the contribution of a cooperating player i in the game local
game against the players in Nj . In the linear public goods
game, the contributions get multiplied by an enhancement
factor r ∈ [1, n], which can seen as a benefit-to-cost ratio
of the local interaction. The payoff that player i obtains
in the local game with the neighborhood of j ∈ Ni is,
uij(sij , ŝ−i) = r(

∑
l∈Nj

sljclj + sjjcjj)/(dj + 1)− cijsij ,
and the aggregated payoff of player i is, ui(ŝi, ŝ−i) =∑

j∈Ni
uij(sij , ŝ−i). This model is well established in the

field of economics, sociology and evolutionary biology and
captures the free-rider problem because defectors can benefit
from contributions of cooperators [9], [17].

In all simulations we start with 50% cooperators which
are randomly assigned to the nodes on the network. The
local contributions are determined by a players degree: for
all i ∈ V , j ∈ Ni, cij = 1

di+1 . Hence, the total contributions
that a player can make is

∑
j∈Ni

cij = 1. This corresponds
to a set-up known as fixed costs per individual [9]. The total
number of contributions in an equilibrium strategy profile ŝ
is determined as,

0 ≤
∑
i∈D

∑
j∈Ni

cijsij +
∑
h∈F

∑
l∈Nh

chxh ≤ n,

where ch ∈ R>0 is the contribution of a cooperating non-
differentiator h ∈ F .

In the simulations the players update their strategies ac-
cording to an imitation process in which each differentiator
updates their strategy in a local game by imitating the
strategy employed in the local game by the player with the
highest payoff. The players who do not differentiate update
their strategy according to the well established unconditional
imitation update rule [6]. We now formally define the strat-
egy update rule for differentiators used in the simulation.

Definition 7 (Differentiated unconditional imitation). Given
some current state ŝt, in the local groupwise game with
players Nj , a differentiator i ∈ D updates according to
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st+1
ij ∈ Itj , with

Itj :=

{
stlj : ul(ŝ

t) = max
k∈Nj

uk(ŝt)

}
.

When |Itj | > 1 and s̄tij /∈ Itj , we assume a player
uniformly selects a random strategy from Itj . When s̄tij ∈ Itj
we apply the convention that a player does not switch strate-
gies. This imitation process is based on the widely accepted
unconditional imitation strategy update rule [18]. For these
imitation based dynamics the effect of differentiators located
on high degree nodes in the network is remarkable. For a
neutral benefit to cost ratio (r = 1), increasing the number
of differentiators tends to increase the level of cooperation in
an equilibrium strategy profile, see figure 2. When there are
only 4 differentiators located at high degree nodes almost
half of the players cooperate in the equilibrium strategy
profile. This behavior was consistent for different activation
sequences. Such levels of cooperation cannot be seen without
strategic differentiation. Next to network reciprocity, the
concept of false strategy attribution seems to be crucial for
large scale cooperation in the equilibrium of a social dilemma
with imitation based strategy update dynamics and strategic
differentiation. In these games, the players who differentiate
can obtain high payoffs when they defect against some of
their cooperating opponents. Other players in the network
observe these high payoffs and imitate the strategy that the
differentiator employs in their local game. False strategy
attribution occurs when that local strategy happens to be
cooperation: a defecting neighbor of the differentiator is then
likely to switch to cooperation, even though the differentiator
obtained the payoffs mostly by defecting. This suggests that
when the number of differentiators increases, not the payoff
parameters, but the initial strategy profile and the network
structure become determinative for the frequency of the
strategies in equilibrium. Indeed, whe observed that when
there are many differentiators in the network the influence of
the benefit to cost ratio r on the total contributions in equi-
librium is suppressed. This effect is similar to topological
enslavement [11] seen in evolutionary games on multiplex
networks in which hubs dominate the game dynamics. When
the differentiators are placed on low degree nodes, these
effects are mitigated.

VII. CONCLUSIONS

We have shown how the framework of evolutionary games
on networks can be extended to include a subset of players
that are able to employ different strategies against differ-
ent opponents. If the local games in the network admit a
weighted potential function, then convergence of the strate-
gically differentiated version with myopic best response dy-
namics is guaranteed. For imitation strategy update dynamics
the topology of the network, the existence and location
of differentiators in the networks can crucially alter the
strategy profile at an equilibrium of groupwise games. When
differentiators are plentiful the equilibrium strategy profile
becomes less sensitive to changes in the values of the payoff
parameters. The effect of strategic differentiation on different
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Fig. 2: Each plot is obtained by averaging 10 trajectories of
differentiated unconditional imitation. The horizontal axis shows
the number of differentiators. The vertical axis is the total number
of contributions in the equilibrium strategy profile. The two figures
correspond to simulations on different networks generated by a
preferential attachment process. In both cases, n = 50 and r = 1.

types of myopic strategy update rules and the extension to
continuous games remain interesting open problems.
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