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Triangular formation maneuver using designed mismatched angles

Liangming Chen1,2, Ming Cao1, Hector Garcia de Marina3, Yanning Guo2, and Yuri Kapitanyuk1

Abstract— This paper investigates the problem of triangular
formation maneuver control for mobile 3-agent systems with
bearing measurements. Different from controlling rigid for-
mations’ maneuvering by introducing a pair of mismatches
per distance constraint, we introduce a pair of designed-
mismatches per angle constraint which leads to the desired
triangular formation shape. Considering that for the control of
triangular formations with angle constraints, each agent aims
at maintaining its own interior angle, to realize the formation
maneuver control we design the mismatches into each agent’s
own desired interior angle. Two types of designed-mismatch
are investigated: time-varying case and constant case. For the
time-varying case, under the assumption that each agent can
additionally measure the relative position from itself to the
formation centroid, the triangular formation maneuver control
algorithm is designed such that the desired maneuvering in
terms of translation, rotation, and scaling can be realized.
For the constant case, under the constraint that the desired
triangular shape is known only once for the mismatch design,
the triangular formation maneuver control algorithm is also
proposed, and the angle dynamics are derived by using the dot
product of two bearing vectors. Finally, simulation examples
demonstrate the effectiveness of the theoretical results.

I. INTRODUCTION

Multi-agent formations have attracted attention recently
for the broad applications in, e.g., search and rescue of
unmanned aerial vehicles [1], coordination of multiple mo-
bile manipulators [2], and satellite formation flying for
earth observation [3]. Two types of problems have been
mainly investigated in the research community of multi-agent
formation control, i.e., formation shape control and formation
maneuver control [4], [5]. The works in [6]–[8] realized the
control of desired formation shape described using inter-
agent displacements, distances, and bearings respectively.
However, in many practical applications, formations are
expected to be “maneuverable”, i.e., capable of translating,
scaling, and rotating to adapt to the complicated environ-
ment in practice [6]. For example, when a group of flying
unmanned aerial vehicles aims at smoothly passing through
some areas containing buildings or other types of obstacles,
they need to alter their motion speed, direction, and even size
of the whole formation. Therefore, some researchers started
studying the formation maneuver control which requires the

1L. Chen, M. Cao, and Y. Kapitanyuk are with Faculty of
Science and Engineering, University of Groningen, Groningen, 9747
AG, The Netherlands. l.m.chen@rug.nl, m.cao@rug.nl,
yura.kapitanyuk@gmail.com

2L. Chen and Y. Guo are with Department of Control Science
and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
guoyn@hit.edu.cn

3H. G. Marina is with Unmanned Aerial Systems Center, Maersk
Mc-Kinney Moller Institute, Southern University of Denmark, Denmark.
hgm@mmmi.sdu.dk

achievement of not only the desired geometric formation
shape, but also the formation as a whole being capable of
translating, scaling, rotating or moving in combination of
such maneuvering as dictated by the desired formation [9].

To solve the formation maneuver control problem, some
researchers have proposed different approaches towards dif-
ferent types of formation shape description and available
information. For the formation shape described by displace-
ments, the work in [3] realized the translational formation
maneuver control with the measurements of relative posi-
tions. For rigid formations with distance constraints, the
formation maneuver control algorithm was designed in [10]
by introducing a pair of mismatches per distance constraint,
in which the rotational and translational maneuvering was re-
alized under the measurement of local relative positions. For
the formation shape described by inter-agent bearings, the
work in [9] realized the translational and scaling formation
maneuver control with the measurement of relative positions.
Note that these works [3], [9], [10] cannot fully realize the
formation maneuvering of scaling, rotation, and translation
at the same time. To realize the formation maneuver control
with the capacity of translation, rotation and scaling, some
other approaches or tools were proposed, including leader-
follower affine formation [11], barycentric coordinate-based
approach [12], and complex Laplacian-based approach [13].
However, for most of the proposed formation maneuver
control algorithms [3], [9]–[13], the measurements of rel-
ative position are required. Compared with relative position
measurements, bearing measurements are becoming cheaper,
more reliable and accessible. With the rapid development
of sensor technologies, bearing can be measured using the
locally equipped passive radar, passive sonar, and vision-
based camera [14].

Therefore, motivated by the existing results, this study
aims at realizing the formation maneuver control with the
capacity of translation, rotation and scaling under bearing
measurements. As the start for this challenging problem,
we first focus on the case of three agents and triangular
formation in this paper. To solve this problem, we employ
the mismatch-based approach which was investigated in [10],
[15], but modify it as ‘designed-mismatch’ in this paper
since the mismatch is added into each agent’s own desired
interior angle which is different from the mismatch used in
the existing maneuver control of rigid formations. Two types
of designed-mismatch are investigated: time-varying case and
constant case respectively. For the time-varying case, under
the assumption that each agent can additionally measure the
relative position from itself to the formation centroid, the
triangular formation maneuver control algorithm is designed
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such that the steady-state formation can move with transla-
tion, rotation, and scaling. For the constant case, under the
constraint that the desired triangular shape is known for the
mismatch design, the triangular formation maneuver control
algorithm is proposed with only bearing measurements.

The contributions of this study can be summarized as
follows. The formation maneuver control is realized with
translation, rotation, and scaling at the same time under
the bearing measurements. Compared with other formation
maneuver control approaches [3], [9], [10], more motion
freedoms are realized in this study. For the constant designed-
mismatch case, the formation maneuver control algorithm
only needs the bearing measurements, without requiring the
measurements of relative positions [3], [9]–[13]. The angle
dynamics are derived by using the dot product of two bearing
vectors, which are different from the papers e.g. [16].

The rest of this paper is organized as follows. Section II
introduces basic background knowledge and problem formu-
lation. In Section III, we give the main results, including the
time-varying mismatch case and constant mismatch case. In
Section IV, the theoretical results are illustrated by numerical
simulations. The conclusions are given in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

For triangular formation with three agents, we first define
the agents’ dynamics and the bearing measurements. Then,
the research problem is formally formulated.

A. Agents’ dynamics

For a 3-agent system moving in the plane, the motion
dynamics of an agent i are governed by [16]

ṗi = ui = vi

[
cosβi
sinβi

]
, i = 1, 2, 3 (1)

where pi = [xi, yi]
T ∈ R2 denotes the position of agent i,

and vi ∈ R is the moving speed, and the heading angle βi
is defined counter-clockwise with respect to agent i’s local
x-direction and always takes its value from [0, 2π). Both vi
and βi are the control inputs to be determined.

B. Bearing measurements

Agent i measures the bearing φij ∈ [0, 2π),∀j ∈ Ni
towards agent j evaluated counter-clockwise from its local
xi-direction, and here Ni denotes the set of the neighbours of
agent i. For triangular formation, Ni = {(i+1) mod 3, (i−
1) mod 3} ∈ {1, 2, 3}, and φi(i+1) = φ31 when i = 3,
φi(i−1) = φ13 when i = 1.

First, we introduce the auxiliary angle

θi = |φi(i+1) − φi(i−1)| ∈ [0, 2π) (2)

which is the angle measured counter-clockwise from
min{φi(i+1), φi(i−1)} to max{φi(i+1), φi(i−1)} with respect
to agent i’s local x-direction.

Then, we define the interior angle αi to be

αi =

{
θi, if θi ≤ π
2π − θi, otherwise

(3)

where αi ∈ [0, π] represents agent i’s interior angle in the
triangle (i− 1)i(i+ 1), see Fig.1.
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Fig. 1: The bearing measurements.

C. Problem formulation

The goal of this paper is to design formation maneuver
control algorithm ui for each agent i, i = 1, 2, 3 such that
the closed-loop system can achieve:

(1) The desired triangular formation shape

lim
t→∞

(αi − α∗i ) = 0,∀i = 1, 2, 3 (4)

where α∗i ∈ (0, π) denotes agent i’s desired interior angle,
and naturally α∗1 + α∗2 + α∗3 = π.

(2) Translational formation maneuver

lim
t→∞

ṗi = ṗj = v∗c ,∀i, j = 1, 2, 3 (5)

where v∗c ∈ R2 is the steady-state translational velocity.
(3) Rotational formation maneuver

lim
t→∞

(ṗi · pbi ) = 0,∀i = 1, 2, 3 (6)

lim
t→∞

vi
‖pbi‖

= lim
t→∞

vj
‖pbj‖

= ω∗,∀i, j = 1, 2, 3 (7)

where · represents the dot product of two vectors, pbi = pi−
pc = pi− pi+pi+1+pi−1

3 denotes the vector from the formation
centroid pc to agent i’s position pi, ω∗ ∈ R is the steady-state
rotational angular velocity.

(4) Scaling formation maneuver

lim
t→∞

ṗi = s(t) lim
t→∞

pbi = v∗si lim
t→∞

pbi
‖pbi‖

,∀i = 1, 2, 3 (8)

where v∗si ∈ R is agent i’s steady-state scaling velocity,
and s(t) ∈ R+ is a time-varying positive real number
which implies that ṗi/‖ṗi‖ = pbi/‖pbi‖ and ‖ṗi‖/‖pbi‖ =
‖ṗj‖/‖pbj‖ = s(t),∀i, j = 1, 2, 3 as t→∞.
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Fig. 2: Formation maneuver: translation, rotation and scaling.

III. MAIN RESULTS

In this section, we aim at solving the triangular forma-
tion maneuver control problem. First, we will introduce a
modified bearing formation control algorithm with a pair
of designed-mismatches per angle constraint. Then, for the
cases of time-varying and constant designed-mismatches, the
formation maneuver control algorithms and the correspond-
ing stability analysis will be given respectively.

A. Modified bearing formation control algorithm

In [16], by using the local bearing measurements, three
agents achieved a triangular formation shape described by
three interior angles α∗i , i = 1, 2, 3. The control algorithms
designed in [16] are

vi = −ki(αi − α∗i ), i = 1, 2, 3 (9)

βi =

{
αi/2 + min{φi(i+1), φi(i−1)}, if θi ≤ π
αi/2 + max{φi(i+1), φi(i−1)}, if θi > π

(10)

which physically means that agent i always moves towards
the bisection of the interior angle αi with the speed |ki(αi−
α∗i )|, where ki is a positive constant.

Actually, when the three agents are not collinear, the
control algorithms (9)-(10) can be equivalently written as

ui = −ki(αi − α∗i )
zi(i+1) + zi(i−1)

‖zi(i+1) + zi(i−1)‖
(11)

where the unit vector zi(i+1) =
pi+1−pi
‖pi+1−pi‖ =

[
cosφi(i+1)

sinφi(i+1)

]
is

a function of bearing φi(i+1). Since ‖zi(i+1) + zi(i−1)‖ > 0,
we propose another simple control algorithm

ui =− ki(αi − α∗i )(zi(i+1) + zi(i−1))

=− ki(αi − α∗i )zi(i+1) − ki(αi − α∗i )zi(i−1) (12)

Now, we introduce a pair of designed-mismatches per
angle constraint α∗i into (12) such that the formation maneu-
vering with translation, rotation, and scaling can be realized.

By following the method given in [10], we modify the
formation control algorithm as

ui =− ki(αi − α∗i −
µi
ki

)zi(i+1) − ki(αi − α∗i −
µ̃i
ki

)zi(i−1)

=− ki(αi − α∗i )(zi(i+1) + zi(i−1))

+ µizi(i+1) + µ̃izi(i−1) (13)

where µi ∈ R and µ̃i ∈ R are the designed-mismatches
associated with agent i’s desired angle α∗i . Note that the
triangular shape described by interior angles has the in-
variance of translation, rotation, and scaling. Thus, we can
use −ki(αi − α∗i )(zi(i+1) + zi(i−1)) to realize the desired
triangular shape, and µizi(i+1) + µ̃izi(i−1) to realize the
desired maneuvering in terms of translation, rotation, and
scaling. The steady-state velocity of each agent ṗ∗i at the
desired triangular formation shape can be decomposed into

ṗ∗i =ṗ
∗
i(translation) + ṗ∗i(rotation) + ṗ∗i(scaling) (14)

=v∗c + ω∗Epbi + v∗si
pbi
‖pbi‖

= µizi(i+1) + µ̃izi(i−1)

where E =

[
0 −1
1 0

]
is a skew-symmetric matrix, and

Epbi represents turning vector pbi with π/2 along counter-
clockwise direction. Note that in (14), zi(i+1) is the infor-
mation related to bearing measurement φi(i+1), but pbi is the
vector from the formation centroid pc to agent i’s position
pi which should be additionally measured. Therefore, in
the following, we design time-varying designed-mismatches
when both zij , j ∈ Ni and pbi can be measured, and constant
designed-mismatches when only zij can be measured.

B. Time-varying designed-mismatches
Now, we use the time-varying designed-mismatches to

realize the desired maneuvering under the measurements of
zij and pbi . In the following, we first illustrate how to design
µi(t) and µ̃i(t), then analyze the closed-loop stability.

1) Translation: According to (14), one has

v∗c = µ1(t)z12 + µ̃1(t)z13 (15)

v∗c = µ2(t)z23 + µ̃2(t)z21 (16)

v∗c = µ3(t)z31 + µ̃3(t)z32 (17)

where we consider that the three agents are not collinear.
Then, µi(t), µ̃i(t), i = 1, 2, 3 can be calculated by[

µi(t)
µ̃i(t)

]
=

[
zi(i+1)(1) zi(i−1)(1)
zi(i+1)(2) zi(i−1)(2)

]−1 [
v∗c (1)
v∗c (2)

]
(18)

where zi(i+1)(1) and zi(i+1)(2) denote the first and second
elements of vector zi(i+1). Note that (15)-(17) are equivalent
to adding the same v∗c to all agents.

2) Rotation: According to (14), one has

ω∗Epb1 = µ1(t)z12 + µ̃1(t)z13 (19)

ω∗Epb2 = µ2(t)z23 + µ̃2(t)z21 (20)

ω∗Epb3 = µ3(t)z31 + µ̃3(t)z32 (21)

By using a similar way as given in (15)-(18), µi(t), µ̃i(t), i =
1, 2, 3 can be calculated.

1546



3) Scaling: According to (14) and (8), one has

s(t)pb1 = µ1(t)z12 + µ̃1(t)z13 (22)

s(t)pb2 = µ2(t)z23 + µ̃2(t)z21 (23)

s(t)pb3 = µ3(t)z31 + µ̃3(t)z32 (24)

Then, µi(t), µ̃i(t), i = 1, 2, 3 can be calculated.
Now, we give our main result.
Theorem 1: For a 3-agent formation system described by

(1), with the formation control algorithm (13) and time-
varying mismatches µi(t), µ̃i(t), i = 1, 2, 3 designed in
(15)-(17), (19)-(21), and (22)-(24), if the initial angle error
ei(0) and the designed-mismatches are sufficiently small and
αi(0) 6= 0, the 3-agent formation asymptotically converges to
its desired shape and maneuvers with prescribed translation,
rotation, and scaling, respectively.

Proof: Note that the angle dynamics are influenced by
the combination of formation shape control part −ki(αi −
α∗i )(zi(i+1)+zi(i−1)) and maneuver control part µizi(i+1)+
µ̃izi(i−1). By following the same analysis steps given in [16],
one has that when we only consider the formation shape
control part, the angle dynamics can be described as

ė =

α̇1

α̇2

α̇3

 = F (e)e =

−g1 f12 f13
f21 −g2 f23
f31 f32 −g3

α1 − α∗1
α2 − α∗2
α3 − α∗3


(25)

where ei = αi − α∗i , fi(i+1) = ki+1

li(i+1)
||z(i+1)i +

z(i+1)(i−1)|| sin αi+1

2 , gi = ( ki
li(i+1)

+ ki
li(i−1)

)||zi(i+1) +

zi(i−1)|| sin αi

2 , i = 1, 2, 3, where lij denotes the distance
between agents i and j. Following the local analysis method
examing eigenvalues of the linearized system [16], one can
easily obtain the local stability of (25).

When we only consider the maneuver control part, the
angle dynamics can be described by ė = 0 since time-varying
designed-mismatches µi(t), µ̃i(t), i = 1, 2, 3 designed in
(15)-(17), (19)-(21), and (22)-(24) have no contribution to
the angle changes α̇i.

Combining the above two parts, one can get the local
stability of the closed-loop system (25), i.e., limt→∞(αi −
α∗i ) = 0,∀i = 1, 2, 3. Since ėi = −gi(αi − α∗i ) +
fi(i+1)(αi+1−α∗i+1)+fi(i−1)(αi−1−α∗i−1), when αi → π,
one has ėi < 0, which implies the three agents will not be-
come collinear if they are not initially collinear at the initial
time. Thus, pbi and (18) are well-defined. Then, according
to (1) and (13), one has limt→∞ ṗi = µizi(i+1) + µ̃izi(i−1).
By using (15)-(17), (19)-(21), and (22)-(24), one has that the
maneuvering defined in (5)-(8) is achieved.

C. Constant designed-mismatches
Now, we consider that agent i can only measure zi(i+1)

and zi(i−1), and the designed-mismatches µi and µ̃i are
constant. To achieve the maneuvering of translation, rota-
tion and scaling, we require that the steady-state formation
geometric shape is known for the design of mismatches.
By following the similar steps given in Sections A and B,
we give the following design procedure for the constant
designed-mismatch case.

1) Translation: According to (14), one has

v∗c = µ1z
∗
12 + µ̃1z

∗
13 (26)

v∗c = µ2z
∗
23 + µ̃2z

∗
21 (27)

v∗c = µ3z
∗
31 + µ̃3z

∗
32 (28)

where z∗i(i+1) is the unit vector corresponding to the steady-
state formation geometric shape. Then, µi, µ̃i, i = 1, 2, 3 can
be calculated by[

µi
µ̃i

]
=

[
z∗i(i+1)(1) z∗i(i−1)(1)

z∗i(i+1)(2) z∗i(i−1)(2)

]−1 [
v∗c (1)
v∗c (2)

]
(29)

2) Rotation: According to (14), one has

ω∗E(pb1)
∗ = µ1z

∗
12 + µ̃1z

∗
13 (30)

ω∗E(pb2)
∗ = µ2z

∗
23 + µ̃2z

∗
21 (31)

ω∗E(pb3)
∗ = µ3z

∗
31 + µ̃3z

∗
32 (32)

where (pbi )
∗ = p∗i − p∗c = (pi−pi+1)

∗+(pi−pi−1)
∗

3 . Then,
µi, µ̃i, i = 1, 2, 3 can be calculated.

3) Scaling: According to (14), one has

v∗s1
(pb1)

∗

‖(pb1)∗‖
= ks(p

b
1)
∗ = µ1z

∗
12 + µ̃1z

∗
13 (33)

v∗s2
(pb2)

∗

‖(pb2)∗‖
= ks(p

b
2)
∗ = µ2z

∗
23 + µ̃2z

∗
21 (34)

v∗s3
(pb3)

∗

‖(pb3)∗‖
= ks(p

b
3)
∗ = µ3z

∗
31 + µ̃3z

∗
32 (35)

where v∗si/‖(pbi )∗‖ = v∗sj/‖(pbj)∗‖ = ks > 0. Then,
µi, µ̃i, i = 1, 2, 3 can be calculated.

Now, we give our main result.
Theorem 2: For a 3-agent formation system described by

(1), with the formation control algorithm (13) and constant
mismatches µi, µ̃i, i = 1, 2, 3 designed in (26)-(28), (30)-
(32), and (33)-(35), if the initial angle error ei(0) and the
designed-mismatches are sufficiently small and αi(0) 6= 0,
the 3-agent formation asymptotically converges to its desired
shape and maneuvers with prescribed translation, rotation,
and scaling, respectively.

Proof: To analyze the convergence of ei, we first aim at
obtaining the dynamics of the interior angles αi, i = 1, 2, 3.
Note that the analysis method given in [16] cannot be used
in this case because of the existence of µizi(i+1)+ µ̃izi(i−1).
Instead, the angle dynamics can be obtained by using the dot
product of two bearings, from which one has the following
angle dynamics

ė = [α̇1 α̇2 α̇3]
T = F (e)e+H(e)

=

−g1 f12 f13
f21 −g2 f23
f31 f32 −g3

α1 − α∗1
α2 − α∗2
α3 − α∗3

+

h1h2
h3

 (36)

where
gi = sinαi(ki/li(i+1) + ki/li(i−1)),

fij = kj(sinαj)/lij ,
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hi =
µ̃i sinαi − µi+1 sinαi+1

li(i+1)
+
µi sinαi − µ̃i−1 sinαi−1

li(i−1)
.

To analyze the local stability of (36), we employ the
stability analysis method given in [16]. Since e1+e2+e3 = 0,
one has the following sub-dynamics

ės =

[
α̇1

α̇2

]
= Fs(es)es +Hs(es) (37)

=

[
−(g1 + f13) f12 − f13
f21 − f23 −(g2 + f23)

] [
e1
e2

]
+

[
h1(α1, α2)
h2(α1, α2)

]
where h1(α1, α2) = µ̃1 sinα1−µ2 sinα2

l12
+

µ1 sinα1−µ̃3 sin(α1+α2)
l13

, h2(α1, α2) = µ2 sinα2−µ̃1 sinα1

l21
+

µ̃2 sinα2−µ3 sin(α1+α2)
l23

.
The linearized system of (37) around the origin can be

written as
ε̇s = Aεs +Bεs = (A+B)εs (38)

where A = Fs(εs), and B = ∂Hs

∂es
|es=0.

According to [16], it can be easily verified that

tr(Fs(εs))|εs=0 < 0 (39)

det(Fs(εs))|εs=0 > 0 (40)

which imply that all the eigenvalues of Fs(εs)|εs=0 have
negative real parts. Therefore A = Fs(εs)|εs=0 is a Hurwitz
matrix. Then, according to the Lyapunov theorem [17], there
always exists a constant positive definite matrix P such that
Q = −(PA+ATP ) is negative definite.

Consider the following Lyapunov function candidate

V = εTs Pεs (41)

Taking the time-derivative of (41) gives

V̇ ≤ −λmin(Q)||εs||2 + εTs (B
TP + PB)εs

≤ (−λmin(Q) + q)||εs||2 (42)

where q = λmax(B
TP + PB). For a neighborhood of

the equilibrium αi = α∗i , one can have λmin(Q) ≥ q by
choosing small designed-mismatches µi, µ̃i since q grows
with µ continuously and q(µ) ≥ q(0) = 0, or big ki which
only makes λmin(Q) bigger but not λmax(B

TP+PB). Since
P can be calculated for given Q and A according to [17,
Theorem 4.6], the stability for given µi, µ̃i can be known.

When λmin(Q) ≥ q, (A + B) is Hurwitz and the sub-
dynamics (37) are locally asymptotically stable. Since e1 =
e2 = 0 implies e3 = 0, the overall dynamic system (36)
is locally stable. Note that µi, µ̃i, i = 1, 2, 3 are designed
according to the steady-state geometric shape, it can be
obtained that when z∗ij and (pbi )

∗ describing the steady-
state geometric shape is sufficiently close to the steady-state
formation, the final formation will maneuver with translation,
rotation and scaling.

Remark 1: Note that for the time-varying designed-
mismatch case, to avoid using the information of desired
geometric shape and realizing distributively the calculation
of µi(t), µ̃i(t), i = 1, 2, 3 in (22)-(24), one can choose the
first equality in (8) and set s(t) = 1, which will result in

an uncontrolled scaling velocity. For the constant designed-
mismatch case, since the geometric triangular shape is known
for the designed-mismatch design, the scaling velocity can
be adjusted by choosing different ks in (33)-(35).

IV. SIMULATION EXAMPLES

In this section, we present numerical simulation examples
to verify the effectiveness of the proposed formation maneu-
ver control algorithms. For all the cases, the desired angles
are set as α∗i = π/3, i = 1, 2, 3.

(1) Time-varying mismatch case
The following figures show the maneuvering of translation,

rotation and scaling respectively.
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Fig. 3: Translational maneuver
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Fig. 4: Rotational maneuver
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Fig. 5: Scaling maneuver

(2) Constant mismatch case
The following figures show the maneuvering of translation,

rotation and scaling respectively.
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Fig. 6: Translational maneuver
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Fig. 7: Rotational maneuver
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Fig. 8: Scaling maneuver

According to Figs. 3-8, we can see that the desired
triangular formation shape and the desired maneuvering are
achieved under the proposed formation control algorithms.
Note that in Figs. 3-8, the relative angle errors converge
to zero, which illustrate the asymptotically stability of the
proposed maneuver control algorithms.

V. CONCLUSIONS AND FUTURE WORKS

This study realizes the triangular formation maneu-
ver control under bearing measurements by using a
designed-mismatch angle approach. Two types of designed-
mismatches are investigated: time-varying case and constant
case. For both cases, the triangular formation maneuver
control algorithms are proposed to realize the desired ma-
neuvering. To analyze the stability of the constant designed-
mismatch case, the angle dynamics are derived by using the
dot product of two bearings. Finally, simulation examples
demonstrate the effectiveness of the theoretic results.

Many studies about formation maneuver control focused
on rigid formation shapes and arbitrary number of agents.
It is very challenging to solve the general problem with
angle rigid formation shapes and arbitrary number of agents.
We are also interested in taking the proposed triangular
formation maneuver control strategy to trajectory tracking
or cooperative transportation tasks.
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