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Abstract: In this paper, we analyze next generation sequencing (NGS) data of wastewater
treatment plant (WWTP) in the North Water facility for revealing the role of 1236 different
genera of microorganisms in the aeration basin to the measured process data. Both the time-
series data of NGS and process parameters are pre-processed and analyzed using support
vector regression technique and is compared with the deep neural network approach. Local
sensitivity analysis is performed on the resulting models. Both machine learning analyses show
the importance of a subset of genera to the WW'TP process and can be used to enrich the

well-studied activated sludge model (ASM).

Copyright © 2019. The Authors. Published by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

It has been recognized that wastewater forms a significant
part of waste from human activities and it requires treat-
ment before it is environmentally safe to be discharged
to the natural water resources (see, for example, Henze
and Comeau (2008)). When it is discharged untreated,
it pollutes water resources and can lead to disastrous
ecological, environmental, as well as, economical impacts.
Wastewater comes from two major sources: human sewage
systems and process waste from manufacturing industries.
The biological treatment of wastewater was firstly intro-
duced in the early twentieth century and has become the
basis of wastewater treatment worldwide. It involves the
deployment of confining naturally occurring bacteria at
very high concentrations in tanks. These bacteria, together
with some protozoa and archaea, are collectively referred
to as activated sludge. The concept of biological treatment
is fairly simple. The microorganisms process small organic
compounds, ammonia, and phosphate by consuming them
for their growth; thereby the wastewater is cleansed. After
the clarification step (where the activated sludge is sedi-
mented), the treated wastewater is discharged to natural
water resources, such as river or sea.

While the concept is simple, the control of the treatment
process is very complex because of a large number of
variables that affects it (Davies (2005)). These include
changes in the composition of the bacterial flora in the
treatment tanks and changes in the sewage flowing into the
plant. The input can show variations in flow rate, chemical
composition, pH, and temperature which in turns influence
the population dynamics and metabolic process of the
activated sludge. Some of the plants that treat industrial
wastewater may have to cope with recalcitrant chemicals

that are difficult to degrade by the activated sludge.
Such industrial wastewater contains toxic chemicals and
has extreme properties such as low or high pH or high
salt concentration that can inhibit the functioning of the
activated sludge.

There are a number of established models for describing
the process dynamics in WWTP such as the well-studied
Activated Sludge Models from the International Water
Association (see Henze et al. (2000)). These ASM models
are lumped dynamical models where the influence of the
activated sludge is lumped to the kinetic laws/rate of few
WWTP process variables. The unknown parameters are
a fusion of metabolic activities of various microorganisms
and consequently they have a large degree of uncertainties.
This prevents the direct use of the models for optimization
and for the model-based control design of WWTP. For
improving the reliability and applicability of these models,
it is recognized that the knowledge and real-time informa-
tion of the microorganism population are indispensable
for enriching the ASM models, as concluded in Muszynski
et al. (2015); Liu et al. (2016); Bassin et al. (2017). In
particular, the high-throughput data of microorganisms
that are obtained from the Next Generation Sequencing
(NGS) or other omics tools can be used to adjust/to adapt
the uncertain parameters and decrease the uncertainties of
the models. The large degree of heterogeneity of microor-
ganisms, as well as, the time-varying and highly non-linear
characteristics of the WWTP process dynamics, pose some
challenges in linking the real-time data on microorganisms
and other relevant information to the overall process dy-
namics.

Towards the development of the aforementioned en-
riched/adaptive ASM models, we study in this paper the
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Fig. 1. Schematic diagram of the North Water’s Saline
Wastewater Treatment Plant, where 1) influent 2)
acration tank 3) sedimentation tank 4) effluent. The
picture is courtesy of North Water.
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Fig. 2. Block diagram of the aeration tank and clarifier.

relation of NGS data (which are obtained from an in-
dustrial WWTP of the North Water facility located in
Oosterhorn, Delfzijl, Netherlands) to the measured process
variables. The analysis is based on a machine learning tech-
nique, the so-called Support Vector Regression, which can
handle well high-degree of uncertainties and unstructured
relation between rich set (high-degree of heterogeneity)
of input and output data (with a small number of time
points). Such preliminary analysis can extremely be useful
to identify a subset of the microbial population that can
explain most of the variations observed in the process
dynamics. More importantly, a targeted low-cost and fast
measurement to this population subset (such as, using the
qPCR (quantitative polymerase chain reaction) technol-
ogy) allows us to provide an additional feedback control
loop to the process control of WWTP.

A generic schematic overview of the WWTP of North
Water is shown in Fig. 1. The influent of the WWTP
is industrial salt wastewater and the activated sludge
processes take place in the aeration tank which is indicated
by 2 in Fig. 1. In the sedimentation tank (which is given
by 3 in Fig. 1) the activated sludge is separated from the
water and partly fed back to the aeration tank. We refer to
Fig. 2 for the simplified block diagram of the system. The
treated water is then discharged into the Wadden Sea.

Next Generation Sequencing (NGS) of the 16S rRNA gene
from the bacteria in sludge samples is used to analyze
the microbial communities. The analysis of the NGS data
shows the presence and abundance of the microorganisms
in the sludge based on the millions of DNA sequence
data. According to Xu (2014), the DNA sequences are
compared to 16S rDNA sequences in public databases
to identify the microorganisms in the sludge. Based on
this comparison, an overview of the microorganisms that

occur in the sludge sample is created. The frequency of
the occurrence of the same sequence in the NGS dataset
is related to the abundance of a specific microorganism in
the sludge sample.

The rest of the paper is organized as follows. In Section 2,
we review the Support Vector Regression technique that
we use to explain the relation between the microorganism
data and the measured process variables. In Section 3, we
present the data pre-processing that we have used to both
dataset. We present our SVR analysis in Section 4 where
we compare it with the results that are obtained using the
deep neural network. Finally, in Section 5, we present the
conclusions.

2. SUPPORT VECTOR REGRESSION

Support Vector Machines (SVM) is a supervised learning
method where data can either be classified according to
a pre-determined set of kernel functions or be fitted to a
given set of basis functions, see also, Cortes and Vapnik
(1995) and Drucker et al. (1996). The latter use of SVM
for regression analysis is also referred to as the Support
Vector Regression (SVR) method.

In the following, we will briefly describe the SVR method
where nonlinear basis functions are used. Suppose that
x; € R with¢ =1,2,...,m are a collection of input vector
sampled from the vector space of R™ and m is the total
number of samples. Let y; € R be the corresponding sam-
ples of scalar output data. In SVR, the nonlinear regression
between x; and y; assumes the following regression model

Yi R quS(xZ) + b, (1)

where ¢ : R” — R? is the ¢—dimensional kernel functions
and w € RY is the parameter vector to be identified.

Using the regression model (1) and for a given g-
dimensional kernel function ¢, the SVR method looks for w
and b that solve a given nonlinear programming problem.
In the kernel-based regression model as in (1), we assume
a linear relation between the kernel output ¢(x;) to the
output scalar y; which simplifies the regression problem as
we can extend tools from linear regression techniques in a
straightforward manner. The kernel choice as well as the
particular selection of adjustable kernel parameters have
an important influence on the performance of the kernel.
For some data sets, the kernel parameters in ¢ need to
be optimized and can be done along side the regression
step, see Eitrich and Lang (2006). Usually, this is done by
performing a grid search, where all possible combinations
of parameters are investigated according to Hsu et al.
(2010).

A loss/error function is typically introduced to quantify
the regression performance. It gives a distance measure
between the approximated output w”¢(z;) + b to the
measured output y;. In a standard regression problem, this
loss function is given by a quadratic function. However,
in SVR, an e-insensitive loss function is used instead.
Roughly speaking, this function is equal to zero when the
error is within a range of € and is equal to the 1-norm of
the error minus € otherwise. In addition to this, in order
to guarantee the feasibility of the optimization problem,
two slack variables are introduced in our analysis, see for
instance, Scholkopf and Smola (2002).
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Thus, the corresponding nonlinear regression problem of
(1) is given by the following minimization problem where

both the e-insensitive term and slack variables f,é are
used.

n
minimize %||w||2 + C’Z(fi + éz) (2)
w,€,§ i=1
subject to
yi—wlo(z) —b<e+& i=1,....n
wl(z)+b—y; <e+& i=1,....n (3)
.6 >0

As a dual problem to the above minimization problem, we
can reformulate it by introducing Lagrange multipliers «
and a* as follows

minimize % Z (af — ai)(a) — ay)(x:) p(x;)
a,a Py} (4)

+eZ(a;‘ +a;) — Zyi(a; - ai))

i=1

1=1,...,n.

subject to
0<a;<C
n (5)
Z(ai —a)=0.
i=1
In this case, the identified weight/parameter vector w is
given by

w = Z(af — a;)p(xi). (6)
i=1
Consequently, when a new data x is given, we can predict
its output by computing
y=w'¢(x)+b (7)
where b is computed using the Karush-Kuhn-Tucker

(KKT) complementarity conditions. The KKT comple-
mentary condition we used are
aile+ & —yi+¢(xi)) =0
ai(e+& +yi — d(zi)) =0 (8)
61(0 — ai) =0
§(C—aj) =0.
Hence b can be computed as follows
b=y, —wlp(x;) —e for 0<o; <C
b=y —w p(x;)+e for 0<af<C

(9)

3. DATA PROCESSING
3.1 NGS Data

The NGS dataset, taken from the WWTP in Oosterhorn,
was made available for this paper by BioClear. The NGS
analysis of 32 active sludge samples was performed for 2.5

years, starting in week 42, 2014 and ending in week 6,
2017.

The dataset was arranged in multiple sheets of data,
each sheet representing one hierarchical rank of taxonomy.
The available taxonomical ranks in the dataset are (in
hierarchical order): Class, Order, Family, and Genus. For

this study, the genus rank was chosen to develop and
build the models. This rank shows the highest level of
detail of the four available ranks. In total, 1236 different
genera were identified in the 32 samples. The dataset was
imported in Python V2.7 and stored into a data-frame.
However, not all genera were identified in each of the 32
samples. This resulted in an empty cell for that particular
genus in the sample. These cells are filled with a value well
below the detection limit of that sample. Lastly, the values
were raised to the power of 10.

In the NGS dataset, samples are taken on average every
four weeks, resulting in 32 total samples. Unfortunately,
these samples are not spread evenly over the total period,
but differ in interval time. Since the process data has a
higher, weekly frequency, the NGS dataset is re-sampled
into a weekly frequency as well. This was done using
interpolation. The main two criteria for an interpolation
technique are that it naturally approximates the missing
data points and that it cannot be lower than zero. Values
lower than zero are not acceptable since the occurrence
of genera cannot be negative. One of the interpolation
techniques that satisfies these two criteria is Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP). There-
fore, the PCHIP interpolation technique was chosen and
applied to the dataset.

A dataset with 1236 columns or features is extremely high
for any machine learning model to deal with. Therefore,
to reduce the number of features, Principal Component
Analysis (PCA) is used for a dimensionality reduction
of the dataset. The retained variance per component re-
duces quickly after the first components and with 28 com-
ponents, the cumulative retained variance exceeds 0.99.
Thus, with that number of components, 99% of the vari-
ance from the original dataset is retained. Consequently,
a number of 28 principal components is chosen.

3.2 Process Data

The process data from the same WWTP consists of 108
time samples, where the first sample was taken in week 40
of 2014 and the last sample was taken in week 10 of 2017.
The process data consists of the chemical composition
of the wastewater influent and effluent. In the available
dataset of the process parameters, there are some missing
values for certain samples. The same PCHIP technique as
for the NGS data is used to fill in these values. However,
the data points are not re-sampled as done with the NGS
dataset, since the frequency of the data is already weekly.
The volatility of the process parameters is significantly
higher than that of the NGS data. A low-pass filter was
applied to overcome this difference by removing the higher
frequencies in the data, leaving out a smoother graph. To
smooth the process data we used the moving average filter
(MA).

3.8 SVR Model

Prior to training the regression model (1) using the
WWTP data, we firstly divide the collected data into
three subsets: a training, a validation, and a test set. The
training set is used to fit the model to the data, and the
validation set is used to tune the parameters of the model,
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Fig. 3. Comparison between SVR model and the measured data, (a) Nitrogen Influent (b) Nitrogen Effluent

whereas the test set will be used after the model is created
to evaluate the performance of the model. Consequently,
the model will not see the test set until the evaluation.
In this study, 20% of the dataset is used for testing the
developed models. The remaining 80% of the dataset is
then further divided into a training set and validation set.
When we refer to the regression model (1), the scalar
output data y; refers to each of the measured process
parameters in the WW'TP process data and x; corresponds
to the sample of input vector data obtained from NGS,
e.g., the vector of genera density /population.

In this work, we will use the following radial basis func-
tions.

¢i(x) = exp(—[lz — ai]|?), (10)
where ¢; is the i-th element of ¢, and a; € R™, v € R,
i = 1,...,q are the kernel parameters that need to be
optimized as briefly discussed before. We use the training
data x; as the centre of each basis function ¢;, i.e., a; = x;.
This means also that the dimension of ¢ and w as in (1)
is n.

Grid search methodology with 5-fold cross-validation on
the training set is applied to retrieve the optimal values for
the model parameters C' (regularization cost parameter), €
(determining the e-insensitive loss function) and v (kernel
parameter) for each of the process parameters. The search
was done by using exponential sequences for C, € and «y in
the ranges of

C =[2%,2%,2° ...,2"%]

y=[271%,271%, 271 27 (11)

e=[271,279 277 271
These three ranges resulted in a total of 420 different
combinations. In combination with the 5-fold cross vali-
dation, this resulted in 2100 runs of the model per process
parameter. After fitting the model with the optimized
parameters, the test set is used as input for the model.
Since the model has not known this dataset yet, it is
a validation of the model. The test output is compared
with the measured data using the performance criteria R2.
Fig. 3 shows the comparison between SVR model and the
measured data.

3.4 Sensitivity Analysis

SVR is a black-box model. Thus, the intrinsic relations
between the inputs of microbial communities and the

predicted outputs of process parameters are not known.
A sensitivity analysis (SA) was performed on all selected
trained models, to show the relative importance of each
genus to the prediction of the process parameters.

One Factor At a Time (OFAT) technique is used for this
SA. OFAT is a local sensitivity analysis technique, only
measuring the influence of a genus on a process parameter
for a certain change of that genus. Thus, only a local area
of the influence of each genus is explored. Algorithm 1
shows how SA works.

Algorithm 1 Algorithm for One Factor At a Time

for all selected process parameters 7 do
load model
load all input variables x
y; = model.predict(z)
for all genera i do
==z
Az, =z —x;
y; = model.predict(z*)

Ay; =y; —y;
Ay
Syjea; = &
end for '
end for
4. RESULTS

4.1 Model Performance

The measured process parameters where measured output
is compared with predicted output of both the test set
and the training set. In general, all models scored very well
according to the performance criteria, since all models had
an R? score higher than 0.85 (except for INF_ SO, with
an R? score below 0.85). Therefore, all process parameters
are selected for the sensitivity analysis.

To further prove that the performance of the model created
by SVR can be used, we then compared it with a Deep
Neural Network (DNN) model. The comparison of the R?
score between SVR and DNN can be seen in Table 1. We
can see that the SVR produced better models than DNN
(70% of the models are better).
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4.2 Result of Sensivity Analysis

The sensitivity analysis with OFAT showed that Thalas-
sospira has a positive correlation with K and TOD in the
effluent and Cl, COD, EC, and Na in the influent (Fig 4).
Thalassospira species are usually isolated from marine
environments, as reported by Hutz et al. (2011). Since the
influent of this WWTP contains more salt than usual these
correlations with the electric conductivity (EC), NaCl,
and KCl) can be explained. Furthermore, this analysis
also showed that the anaerobic genera Desulfocapsa has
a negative SA with the SO4 in the influent and effluent.
As this species ranked in the top 10, this means that a high
number of this species in the activated sludge is correlated
with the concentration of SO4 in the effluent and influent.
However, the concentration of SO4 does not necessarily
imply the presence of Desulfocapsa. The sensitivity ranking
of the top 10 genera for each process parameter in the SVR
model is shown in Fig 4. Both SVR and DNN show similar
results for the sensitivity analysis.

5. CONCLUSION

By analyzing the (local) sensitivity of each modeled pro-
cess parameter to each input (each genus), an indication
of the influence of the microbial structure on process
performance was found. Some of these sensitivity scores
can be explained by looking at the function of a specific
organism in an environment, but most of them remain
unknown. It is difficult to further assess the plausibility
of this sensitivity analysis, due to two reasons. First, the
functions of many genera are still unknown. Second, a
strong sensitivity does not automatically mean that there

Table 1. Comparison between SVR and DNN

Parameter SVR DNN Better result
BOD-5 effluent  0.8954  0.7212 SVR
Cl effluent 0.8938 0.8134 SVR
COD effluent 0.9259 0.8555 SVR
EC effluent 0.9057 0.8667 SVR
K effluent 0.9990 0.9970 SVR
N effluent 0.9221 0.8678 SVR
Na effluent 0.9994  0.9989 SVR
NHy4 effluent 0.9285  0.8347 SVR
NKkj effluent 0.9014  0.8246 SVR
NOg2 effluent 0.9697 0.9215 SVR
NOj3 effluent 0.9325 0.8350 SVR
PO4 effluent 0.8806 0.9474 DNN
SOy effluent 0.9301 0.8068 SVR
TOD effluent 0.9989  0.9963 SVR
TSS effluent 0.8793  0.7709 SVR
BOD-5 influent  0.8671  0.8925 DNN
Cl influent 0.9640 0.9655 DNN
COD influent 0.8516  0.9068 DNN
EC influent 0.9651  0.9459 SVR
K influent 0.9994 0.9979 SVR
N influent 0.9171  0.8966 SVR
Na influent 0.9994  0.9984 SVR
NH4 influent 0.9705 0.9725 DNN
Nkj influent 0.9535 0.9784 DNN
NO: influent 0.9614  0.9443 SVR
NOg influent 0.9370  0.9451 DNN
POy influent 0.9221  0.9268 DNN
SO4 influent 0.7739  0.4766 SVR
TOD influent 0.9987  0.9971 SVR
TSS influent 0.8984  0.9388 DNN

is a causal relation between the two factors. In a next step,
we will generate NGS datasets of mRNA of the samples
and determine the metabolic pathways that are active in
the genus. Using this data we can optimize the SVR and
SA to predict the behavior of a WWTP in relation to the
influent composition.
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Fig. 4. Ranking of the SA of the top 10 genera using OFAT on the

parameter

trained models SVR and DNN using each process



