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On Persistency of Excitation and Formulas for
Data-driven Control

C. De Persis and P. Tesi

Abstract— In a paper by Willems and coworkers it was
shown that persistently exciting data could be used to represent
the input-output trajectory of a linear system. Inspired by
this fundamental result, we derive a parametrization of linear
feedback systems that paves the way to solve important control
problems using data-dependent Linear Matrix Inequalities only.
The result is remarkable in that no explicit system’s matrices
identification is required. The examples of control problems
we solve include the state feedback stabilization and the linear
quadratic regulation problems. We also extend the stabilization
problem to the case of output feedback control design.

I. INTRODUCTION

Learning from data is essential to every area of science.
It is the core of statistics and artificial intelligence, and
is becoming ever more prevalent also in the engineering
domain. Control engineering is one of the fileds where
learning from data is now considered as a prime issue.

Learning from data is actually not novel in control theory.
System identification [1] is one of the major developments
of this paradigm, where modeling based on first principles is
replaced by data-driven learning algorithms. Prediction error,
maximum likelihood as well as subspace methods [2] are
all data-driven techniques which can be now regarded as
standard for what concerns modeling. The learning-from-
data paradigm has been widely pursued also for control
design purposes. A main question is how to design control
systems directly from process data with no intermediate
system identification step. Besides their theoretical value,
answers to this question could have a major practical impact
especially in those situations where identifying a process
model can be difficult and time consuming, for instance when
data are affected by noise. Despite many developments in this
area, data-driven control is not yet well understood even if
we restrict the attention to linear dynamics, which contrasts
the achievements obtained in system identification. A major
challenge is how to incorporate data-dependent stability and
performance requirements in the control design procedure.

Contributions to data-driven control can be traced back
to the pioneering work by Ziegler and Nichols [3], direct
adaptive control [4] and neural networks [5] theories. Since
then, many remarkable techniques have been developed. We
mention unfalsified control [6], iterative feedback tuning [7],
and virtual reference feedback tuning [8]. This topic is now
attracting more and more researchers, and the considered
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problems range from PID-like control design [9] to model
reference [10], [11], [12], predictive [13], [14], robust and
optimal control design [15], [16], [17], [18], [19], [20], the
latter being one of the most frequently considered problems.
The corresponding techniques are also quite varied, ranging
from dynamics programming to optimization techniques and
algebraic methods. We refer the interested reader to the sur-
vey [21] for more references on data-driven control methods.

Paper contribution. Despite the differences, all the afore-
mentioned contributions are centred around the question of
how one can replace process models with process data. For
linear systems, there is actually a fundamental result which
answers this question, proposed by Willems et al. [22].
Roughly, this result stipulates that the whole set of trajecto-
ries that a linear system can generate can be represented by a
finite set of system trajectories provided that such trajectories
come from sufficiently excited dynamics. While this result
has been (more or less explicitly) used in the context of data-
driven control [14], [15], [23], [24], [25], we feel that certain
implications of the so-called Willems et al.’s fundamental
lemma have not yet been fully captured.

In this paper, we show that Willems et al.’s fundamen-
tal lemma, can be used to obtain a data-based represen-
tation of the closed-loop system transition matrix, where
the controller is itself parametrized through the sample
trajectories (Theorem 1). Theorem 1 turns out to have
surprisingly straightforward, yet profound, implications for
control design. We discuss this fact in Section IV. The main
point is that the parametrization provided in Theorem 1
can be naturally related to the classic Lyapunov stability
inequalities. This makes it possible to cast the problem of
designing a stabilizing controller in terms of a simple Linear
Matrix Inequality (LMI) [26] (Theorem 2). In Theorem 3, the
very same arguments are used to solve a Linear Quadratic
Regulation problem through a convex optimization program.
The main derivations are given for state feedback control.
The case of output feedback control (Theorem 4) is discussed
in Section V. Discussion and some research directions are
given in Section VI. Throughout the paper we report several
numerical examples to substantiate the analysis.

The proofs as well as further results such as the data-
driven stabilization of continuous-time systems, the design
of stabilizing controllers when data are corrupted by noise,
the stabilization of unstable equilibria of nonlinear systems
and the output feedback stabilization problem for MIMO
systems, are omitted due to space limitations and can be
found in [27].
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Notation. Given a signal z : Z → Rσ , we denote by
z[k,k+T ], where k ∈ Z, T ∈ N, the restriction in vectorized
form of the signal z to the interval [k, k + T ] ∩ Z, namely

z[k,k+T ] =

 z(k)
...

z(k + T )

 .
When the signal is not restricted to an interval then it
is simply denoted by its symbol, say z. To avoid nota-
tional burden, we use z[k,k+T ] to denote also the sequence
{z(k), . . . , z(k+T )}. For the same reason, we simply write
[k, k + T ] to denote the discrete interval [k, k + T ] ∩ Z.

We denote the Hankel matrix associated to z as

Zi,t,N =


z(i) z(i+ 1) . . . z(i+N − 1)

z(i+ 1) z(i+ 2) . . . z(i+N)
...

...
. . .

...
z(i+ t− 1) z(i+ t) . . . z(i+ t+N − 2)


where i ∈ Z and t,N ∈ N. The first subscript denotes the
time at which the first sample of the signal is taken, the
second one the number of samples per each column, and
the last one the number of signal samples per each row.
Sometimes – but not always – if t = 1, noting that Zi,t,N
has only one block row, then for compactness we simply
write Zi,N =

[
z(i) z(i+ 1) . . . z(i+N − 1)

]
.

II. PRELIMINARIES AND THE WILLEMS et al.’S
FUNDAMENTAL LEMMA

In this section, we revisit the main result in [22] and state a
few auxiliary results inspired by subspace identification [2],
which will be useful throughout the paper.

Consider x ∈ Rn, u ∈ Rm and y ∈ Rp and a controllable
and observable discrete-time linear system

x(k + 1) =Ax(k) +Bu(k) (1a)
y(k) =Cx(k) +Du(k). (1b)

Let (ud,[0,T−1], yd,[0,T−1]) be the input-output data of the
system collected during an experiment, and let[

U0,t,T−t+1

Y0,t,T−t+1

]
(2)

be the corresponding Hankel matrix. We also introduce
the matrix X0,T−t+1 =

[
xd(0) xd(1) . . . xd(T − t)

]
where xd(i) are the state samples produced by the system
(1a) under the input ud,[0,T−1]. For ud, yd, and xd, we use
the subscript d so as to emphasize that these are the sample
data collected from the system during some experiment.

Throughout the paper, having the rank condition

rank

[
U0,t,T−t+1

X0,T−t+1

]
= n+ tm (3)

satisfied plays an important role. Even though it is in general
difficult to check this condition when only input-output data
are accessible, it is possible to have it satisfied when the input
is persistently exciting of sufficient order. We first recall the
notion of persistency of excitation.

Definition 1: [22, p. 327] The signal z[0,T−1] ∈ Rσ is
persistently exciting of order L if the matrix

Z0,L,T−L+1 =


z(0) z(1) . . . z(T − L)
z(1) z(2) . . . z(T − L+ 1)

...
...

. . .
...

z(L− 1) z(L) . . . z(T − 1)


has full rank σL. �

For a signal z to be persistently exciting of order L, it
must be sufficiently long, namely T ≥ (m + 1)L − 1. We
can now recall two results by Willems et al. [22] which are
key for the developments of the paper.

Lemma 1: [22, Corollary 2] Consider system (1a). If the
input ud,[0,T−1] is persistently exciting of order n + t, then
condition (3) holds. �

Lemma 2: [22, Theorem 1] Consider system (1). Then the
following holds:

(i) If ud,[0,T−1] is persistently exciting of order n+ t, then
any t-long input/output trajectory of system (1) can be
expressed as [

u[0,t−1]
y[0,t−1]

]
=

[
U0,t,T−t+1

Y0,t,T−t+1

]
g

where g ∈ RT−t+1.
(ii) Given a T -long input/output trajectory of system (1),

any linear combination of the columns of the matrix in
(2), that is [

U0,t,T−t+1

Y0,t,T−t+1

]
g,

is a t-long input/output trajectory of (1). �

Lemma 1 shows that, for a fixed t, if T is taken sufficiently
large, then the rank condition (3) turns out to be satisfied.
In turn, condition (3) makes it possible to represent any
input/output trajectory of the system as a linear combination
of previously collected input/output data. Lemma 2 has been
originally proven in [22, Theorem 1] using the behavioral
language, and it was later referred to as the fundamental
lemma [28] to describe a linear system through a finite
collection of its input/output data.

III. DATA-BASED SYSTEM REPRESENTATION

Theorem 1 below shows how one can parametrize feed-
back interconnections just by using data. This result will be
key later on for deriving control design methods that skip
any system identification step.

Consider a persistently exciting input sequence ud,[0,T−1]
of order t + n with t = 1, that is such that U0,1,T is full-
row rank. Notice that the only requirement on T is that T ≥
(n+ 1)m+ n = (m+ 1)n+m, which is necessary for the
persistence of excitation condition to hold. By Lemma 1,

rank

[
U0,1,T

X0,T

]
= n+m (4)

From now on, we will directly refer to condition (4), bearing
in mind that this condition requires persistently exciting

874

Authorized licensed use limited to: University of Groningen. Downloaded on May 12,2020 at 10:55:04 UTC from IEEE Xplore.  Restrictions apply. 



inputs of order n + 1. In this respect, we point out that
condition (4) can always be tested if the state of the system is
accessible. This is the standing assumption we will make in
Section IV when considering state-feedback control design
problems. Later in Section V we will provide a condition
alternative to (4) for the case where only input/output data
are accessible.

A. Data-based closed-loop representation

We now exploit Lemma 2 to derive a parametrization of
system (1a) in closed-loop with a feedback law u = Kx.

Theorem 1: Let condition (4) be satisfied. Then system
(1a) in closed-loop with a state feedback u = Kx has the
following equivalent representation x(k+1) = X1,TGKx(k)
where GK is a T × n matrix satisfying[

K
In

]
=

[
U0,1,T

X0,T

]
GK . (5)

In particular u(k) = U0,1,TGKx(k). �

B. From indirect to direct data-driven control

A crucial observation that emerges from Theorem 1 is
that also the controller K can be parametrized through data
via (5). Thus for design purposes one can regard GK as a
decision variable, and search for the matrix GK that guar-
antees prescribed stability and performance specifications.
In fact, as long as GK satisfies the condition X0,TGK = In
in (5) we are ensured that X1,TGK provides an equivalent
representation of the closed-loop matrix A + BK with
feedback matrix K = U0,1,TGK . As shown in the next
section, this corresponds to a design procedure that avoids
any identification step.

Before proceeding, we note that Theorem 1 already gives
an identification-free method for checking whether a can-
didate controller K is stabilizing or not. In fact, given K,
any solution GK to (5) is such that X1,TGK = A + BK.
Hence, one can compute the eigenvalues of X1,TGK to
check whether K is stabilizing or not. Notice that this
method does not require to place K into feedback, in the
same spirit of unfalsified control theory [6].

IV. EXAMPLES OF DIRECT DATA-DRIVEN DESIGN

In this section, we discuss how Theorem 1 can be used
to get identification-free design algorithms. Although the
problems considered hereafter are all of practical relevance,
we would like to regard them as application examples of
Theorem 1. In fact, we are confident that Theorem 1 can
be used to approach other, more complex, design problems
such as H∞ control and quadratic stabilization [26].

A. Stabilizing state feedback

By Theorem 1, the closed-loop system under state-
feedback u = Kx is such that A + BK = X1,TGK where
GK satisfies (5). One can therefore search for a matrix GK
such that X1,TGK satisfies the classic Lyapunov stability
condition. As the next result shows, it turns out that this

problem can be actually cast in terms of a simple Linear
Matrix Inequality (LMI).

Theorem 2: Let condition (4) be satisfied. Then, any ma-
trix Q satisfying[

X0,T Q X1,TQ
Q>X>1,T X0,T Q

]
� 0 (6)

is such that

K = U0,1,TQ(X0,TQ)−1 (7)

is a stabilizing feedback gain for system (1a). Conversely, if
K is a stabilizing state-feedback gain for system (1a) then
it can be written as in (7), with Q solution of (6). �

Note that in the formulation (6) the parametrization of the
closed-loop matrix A+BK is given by X1,TQ(X0,TQ)−1,
that is GK = Q(X0,TQ)−1 which satisfies X0,TGK = In
corresponding to the second identity in (5). On the other
hand, the constraint corresponding to the first identity in (5)
is guaranteed by the choice K = U0,1,TQ(X0,TQ)−1. This
is the reason why (6) is representative of closed-loop stability
even if no constraint like (5) appears in the formulation
(6). We also stress that this result characterizes the whole
set of stabilizing state-feedback gains in the sense that any
stabilizing feedback gain K can be expressed as in (7) for
some matrix Q satisfying (6).

Illustrative example. As an illustrative example, consider
the discretized version of a batch reactor [29] using a
sampling time of 0.1s (up to the third digit),

[
A B

]
=

 1.178 0.001 0.511 −0.403 0.004 −0.087
−0.051 0.661 −0.011 0.061 0.467 0.001
0.076 0.335 0.560 0.382 0.213 −0.235

0 0.335 0.089 0.849 0.213 −0.016

 .
The system to be controlled is open-loop unstable. The
control design procedure is implemented in MATLAB. We
generate the data with random initial conditions and by
applying to each input channel a random input sequence of
length T = 15 by using the MATLAB command rand. To
solve (6) we used CVX [30], obtaining

K =

[
0.7610 −1.1363 1.6945 −1.8123
3.5351 0.4827 3.3014 −2.6215

]
,

which stabilizes the closed-loop dynamics in agreement with
Theorem 1. �

B. Linear quadratic regulation

Matrix (in)equalities similar to the one in (6) are recurrent
in control design, with the major difference that in (6) only
information collected from data appears, rather than the
system matrices. Yet, these matrix inequalities can inspire
the data-driven solution of other control problems. Important
examples are quadratic regulation problems. Consider the
discrete-time system

x(k + 1) = Ax(k) +Bu(k) + ξ(k)

z(k) =

[
Q

1/2
x 0

0 R1/2

][
x(k)

u(k)

]
(8)
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where ξ is an external input to the system, and where z
is a performance signal of interest; Qx � 0, R � 0 are
weighting matrices with (Qx, A) observable. The objective
is to design a state-feedback law u = Kx which renders
A+BK stable and minimizes the H2 norm of the transfer
function g : ξ → z [31, Section 4],

‖g‖2 :=

[
1

2π

∫ 2π

0

trace
(
g
(
ejθ
)>
g
(
ejθ
))
dθ

] 1
2

. (9)

This problem can be equivalently formulated as a convex
program [32], [33]. In fact, as a natural counterpart of the
continuous-time formulation in [32], the optimal controller
K can be found by solving

minK,W,X trace (QxW ) + trace (X)

s.t.


(A+BK)W (A+BK)> −W + In � 0

W � In
X −R1/2KWK>R1/2 � 0

(10)

This can be cast as a convex optimization problem by
means of suitable change of variables [32]. Based on this
formulation, it is straightforward to derive a data-dependent
formulation of this optimization problem.

Theorem 3: Let condition (4) be satisfied. The optimal H2

state-feedback controller K for system (8) can be computed
as K = U0,1,TQ(X0,TQ)−1 where Q optimizes

minQ,X trace (QxX0,TQ) + trace (X)

s.t.



[
X R1/2U0,1,TQ

Q>U>0,1,TR
1/2 X0Q

]
� 0

[
X0,TQ− In X1,TQ

Q>X>1,T X0,TQ

]
� 0

(11)

�

Illustrative example. We consider the batch reactor system
of the previous subsection. As before, we generate the data
with random initial conditions and by applying to each input
channel a random input sequence of length T = 15 by using
the MATLAB command rand. We let Qx = In and R =
Im. To solve (11) we used CVX, obtaining

K =

[
0.0639 −0.7069 −0.1572 −0.6710
2.1481 0.0875 1.4899 −0.9805

]
This controller coincides with the controller K obtained
with the MATLAB command dare which solves the classic
DARE equation. In particular, ‖K −K‖ ≈ 10−7. �

V. INPUT-OUTPUT DATA: THE CASE OF SISO SYSTEMS

In Section IV-A, the measured data are the inputs and the
full state, and the starting point is to express the trajectories
of the system and the control gain in terms of the Hankel
matrix of input-state data. This section considers the case
where only input-output data of the system are accessible.
The main derivations are given for single-input single-output
(SISO) systems.

Consider a SISO systems as in (1) in left difference
operator representation [34, Section 2.3.3],

y(k) + any(k − 1) + . . .+ a2y(k − n+ 1) + a1y(k − n)
= bnu(k − 1) + . . .+ b2u(k − n+ 1) + b1u(k − n)

(12)
This representation allows us to reduce the output measure-
ment case to the state measurement case with minor effort.
Define the state vector

χ(k) := col(y(k − n), y(k − n+ 1), . . . , y(k − 1),

u(k − n), u(k − n+ 1), . . . , u(k − 1)),
(13)

from (12) we obtain the state space system (14) on the next
page. Note that we turned our attention to a system of order
2n, which is not minimal.

Consider now the matrix in (4) written for the system
χ(k + 1) = Aχ(k) + Bu(k) in (14), with T ≥ 2n + 1. If
this matrix is full-row rank, then the analysis in the previous
sections can be repeated also for system (14). We observe
that written for system (14), the matrix in question is[

U0,1,T

X̂0,T

]
=

[
ud(0) ud(1) . . . ud(T − 1)
χd(0) χd(1) . . . χd(T − 1)

]
, (15)

where χd(i + 1) = Aχd(i) + Bud(i) for i ≥ 0 and where
χd(0) is the initial condition in the experiment,

χd(0) = col(yd(−n), yd(−n+ 1), . . . , yd(−1),
ud(−n), ud(−n+ 1), . . . , ud(−1)).

We have the following result.

Lemma 3: The identity[
U0,1,T

X̂0,T

]
=

 U0,1,T

Y−n,n,T
U−n,n,T

 (16)

holds. Moreover, if ud,[0,T−1] is persistently exciting of order
2n+ 1 then

rank

[
U0,1,T

X̂0,T

]
= 2n+ 1. (17)

�

A. Direct data-driven design of output feedback controllers

Consider the left difference operator representation (12),
its realization (14) and the input/state pair (u, χ). We intro-
duce a controller of the form

yc(k) + cny
c(k − 1) + . . .+ c1y

c(k − n)
= dnu

c(k − 1) + . . .+ d1u
c(k − n) (18)

Its state space representation, with state χc defined similar
to (13), input uc and output yc, can be given analogously
to (14). We omit it due to lack of space. In the closed-loop
system, we enforce the following interconnection conditions
relating the process and the controller uc(k) = y(k), yc(k) =
u(k), k ≥ 0. Note in particular the identity, for k ≥ n,

χ(k) =

[
y[k−n,k−1]

u[k−n,k−1]

]
=

[
uc
[k−n,k−1]

yc[k−n,k−1]

]
=

[
0n×n In
In 0n×n

]
χc(k).
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χ(k + 1) =



0 1 0 . . . 0 0 0 0 . . . 0
0 0 1 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 1 0 0 0 . . . 0
−a1 −a2 −a3 . . . −an b1 b2 b3 . . . bn
0 0 0 . . . 0 0 1 0 . . . 0
0 0 0 . . . 0 0 0 1 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 0 0 0 0 . . . 1
0 0 0 . . . 0 0 0 0 . . . 0


︸ ︷︷ ︸

A

χ(k) +



0
0
...
0
0
0
0
...
0
1


︸︷︷︸
B

u(k)

y(k) =
[
−a1 −a2 −a3 . . . −an b1 b2 b3 . . . bn

]︸ ︷︷ ︸
C

χ(k)

(14)

Hence, for k ≥ n, there is no loss of generality in considering
the system

χ(k + 1) =



0 1 0 . . . 0 0 0 0 . . . 0
0 0 1 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 1 0 0 0 . . . 0

−a1 −a2 −a3 . . . −an b1 b2 b3 . . . bn
0 0 0 . . . 0 0 1 0 . . . 0
0 0 0 . . . 0 0 0 1 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 0 0 0 0 . . . 1
d1 d2 d3 . . . dn −c1 −c2 −c3 . . . −cn


χ(k).

(19)
as the closed-loop system. In the following statement we say
that (18) stabilizes system (12), meaning that the closed-loop
system (19) is asymptotically stable.

Theorem 4: Let condition (17) be satisfied. Then:
(i) The closed-loop system (19) has the equivalent repre-

sentation χ(k + 1) = X̂1,TGKχ(k), where GK is a
T × 2n matrix such that[

K
I2n

]
=

[
U0,1,T

X̂0,T

]
GK, (20)

and
K :=

[
d1 . . . dn − c1 . . . −cn

]
(21)

is the vector of coefficients of the controller (18).
(ii) Any matrix Q satisfying[

X̂0,T Q X̂1,TQ
Q>X̂>1,T X̂0,T Q

]
� 0, (22)

is such that controller (18) with coefficients given by

K = U0,1,TQ(X̂0,TQ)−1 (23)

stabilizes system (12). Conversely, any controller (18)
that stabilizes system (12) must have coefficients K
given by (23), with Q a solution of (22). �

As for the case of full-state measurements, the result above
unveils the identity A + BK = X̂1,TGK, which gives a
method to check whether a controller (18) with coefficients

in (20) is stabilizing for system (12). As a final point, we
note that given a solution K as in (23) the resulting entries
ordered as in (21) lead to the following state-space realization
of order n for the controller

ξ(k + 1) =


−cn 1 0 . . . 0
−cn−1 0 1 . . . 0

...
...

...
. . .

...
0 0 0 . . . 1
−c1 0 0 . . . 0

 ξ(k) +

dn
dn−1

...
d2
d1

 y(k)
u(k) =

[
1 0 0 . . . 0 0

]
ξ(k).

(24)

Illustrative example. Consider a system [35] made up by
two carts. The two carts are mechanically coupled by a spring
with unknown stiffness γ ∈ [0.25, 1.5]. The aim is to control
the position of one cart by applying a force to the other cart.
The system state-space description is given by

[
A B
C D

]
=




0 1 0 0
−γ 0 γ 0
0 0 0 1
γ 0 −γ 0




0
1
0
0

[
0 0 1 0

]
0

 . (25)

Assume that γ = 1 (unknown). The system is controllable
and observable. All the open-loop eigenvalues are on the
imaginary axis. The input-output discretized version using a
sampling time of 1s is as in (12) with coefficients (up to the
fourth digit)[

a1 a2 a3 a4
]
=
[
1 −2.311 2.623 −2.311

][
b1 b2 b3 b4

]
=
[
0.039 0.383 0.383 0.039

]
.

We design a controller following Theorem 4. We generate
the data with random initial conditions and by applying a
random input sequence of length T = 9. To solve (22) we
used CVX, obtaining from (23)

K =

[
1.1837 −1.5214 1.3408 −1.4770
0.0005 −0.5035 −0.9589 −0.9620

]
,
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which stabilizes the closed-loop dynamics in agreement with
Theorem 4. In particular, a minimal state-space representa-
tion (Ac, Bc, Dc, Dc) of this controller is given by (see (24))

[
Ac Bc
Cc Dc

]
=



−0.9620 1 0 0
−0.9589 0 1 0
−0.5035 0 0 1
0.0005 0 0 0



−1.4770
1.3408
−1.5214
1.1837

[
1 0 0 0

]
0

 .
�

VI. CONCLUSIONS

We have shown the existence of a parametrization of
feedback control systems that allows us to reduce the sta-
bilization problem to an equivalent data-dependent linear
matrix inequality. Since LMIs are ubiquitous in systems
and control we expect that our approach will lead to data-
driven solutions to many other control problems, such as H∞
control and quadratic stabilization [26]. As first examples, we
have considered the LQR problem and the case of output
feedback controllers. The important extension to the case
when data are corrupted by noise is tackled in [27].

A great leap forward will come from extending the meth-
ods of this paper to systems where identification is hard,
such as nonlinear systems. Our results in [27, Section V.B]
show that this approach is concretely promising for nonlinear
systems, but we have only scratched the surface of this
research area. Recent results have reignited the interest of the
community on system identification for nonlinear systems,
interestingly pointing out the importance of the concept of
persistently exciting signals [36]. We are confident that our
approach will also play a fundamental role in developing a
systematic methodology for the data-driven design of control
laws for nonlinear systems.
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