

 University of Groningen

Session-based concurrency: between operational and declarative views
Cano Grijalba, Mauricio

DOI:
10.33612/diss.108552669

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Cano Grijalba, M. (2020). Session-based concurrency: between operational and declarative views.
University of Groningen. https://doi.org/10.33612/diss.108552669

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.33612/diss.108552669
https://research.rug.nl/en/publications/8c9a2e5d-04e7-4032-b46e-190e29db246d
https://doi.org/10.33612/diss.108552669

Session-Based Concurrency:
Between Operational and Declarative

Views

M.A CANO GRIJALBA

The Netherlands
2019

The work in this book has been carried
out at University of Groningen as part of
the doctoral studies of the author.

IPA Dissertation Series No. 2019-14
The work in this thesis has been carried
out under the auspices of the research
school IPA (Institute for Programming
Research and Algorithms).

ISBN (printed): 978-94-034-2190-2
ISBN (e-book): 978-94-034-2189-6

Typeset with XƎLATEX
Printed by Ridderprint, the Netherlands
Cover designed by Tom van Akken, Ridderprint
Copyright ©M. A. Cano Grijalba

Session-Based Concurrency:
Between Operational and

Declarative Views

PhD Thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. C. Wijmenga
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Tuesday 7th January 2020 at 11.00 hours

by

Mauricio Alejandro Cano Grijalba

born on 13th July, 1992
in Cali, Colombia

Supervisors:
Prof. J.A. Pérez
Prof. G.R. Renardel de Lavalette

Assessment committee:
Prof. F. S. de Boer
Prof. M. Dezani-Ciancaglini
Prof. T. van der Storm

Summary

The analysis of message-passing programs remains an open challenge for Computer
Science. In particular, certifying a program’s conformance with respect to some in-
tended protocols is an active research problem. These programs can be specified by
considering an operational view, in which explicit sequences of actions describe the
program’s protocol interactions. These operational specifications have been much
investigated, but may miss important requirements. Consider, e.g., a client-server
interaction: the client maywant to drop the connection if the server does not respond
within t seconds, or the server may want to react to a failure by executing certain ac-
tions. This kind of requirements fit better in what we call the declarative view of the
program, which describes the conditions that govern the program’s behavior, rather
than the behavior itself.

This dissertation investigates the relation between the operational and declarative
views of message-passing programs, following a rigorous approach that lies at the
intersection of Concurrency Theory, Programming Languages, and Software Verifi-
cation. Concretely, our work rests upon process calculi, small programming languages
that rigorously specify interacting programs, and on behavioral type systems that can
statically verify the conformance of a program specification against a protocol (ab-
stracted as a behavioral type). We focus on session-based concurrency, an approach to
message-passing concurrency in which the messages exchanged by protocol partici-
pants are structured using session types. Our approach exploits techniques for assess-
ing the relative expressiveness of a process calculus with respect to another one; we also
propose new typed process calculi when necessary.

In ourwork, we relate operational and declarative languages using encodings (cor-
rect language translations). As operational languages, we consider a π-calculus with
binary session types, called π, and several variants of it. As declarative languages, we
consider linear concurrent constraint programming (lcc), a specification language
in which behavior is governed by constraints shared in a centralized store, and Re-
activeML (RML), an extension of OCaml to the paradigm of synchronous reactive pro-
gramming (SRP).

Our contributions are divided in three parts. In the first part, the focus is on pro-
cess calculi: we develop two encodings of π into lcc. The first encoding relates the
notions of linearity present in both calculi and allow us to analyze how the point-to-
point communication of π can be modeled in lcc. The second encoding shows that
lcc can give a low-level declarative view of session establishment mechanisms by us-
ing private information and authentication protocols. In the second part, we connect
process calculi and actual programming languages: we develop two encodings of π
into RML to examine the relation between session-based concurrency and timed be-
havior with event-handling constructs. The first encoding demonstrates that signals

vi

(the synchronization unit of SRP) can represent the communication structures in π.
The second encoding considers variants of π into RML with asynchronous commu-
nication: it showcases how synchronous reactive structures can be used to add time
and event-handling constructs to session-based programs. In the final part, we con-
sider the interplay of π and SRP in a slightly different way: we define MRS, a new
process calculuswith sessions, broadcast communication, event-handling constructs,
and timed behavior. We equip MRS with an expressive typing discipline, based on
multiparty session types, which allows us to statically check message-passing pro-
grams with session protocols, deadlines, and event-handling requirements.

All in all, this dissertation stresses the importance of adopting a unified view to
the analysis of message-passing programs in which the interplay of declarative fea-
tures (time, events, and partial information) influences and informs the operational
descriptions of behaviors (session protocols). Our approach is comprehensive and
rigorous, and allows us to give correct, declarative specifications of message-passing
programs. In our view, our technical contributions shed light on the foundations
required to ensure the harmonious integration of operational and declarative views
that guarantees program correctness and reliability.

Samenvatting

Het analyseren van message-passing programma’s blijft een belangrijk vraagstuk
binnen de informatica. Een relevant onderzoeksprobleem betreft met name de re-
latie tussen programma’s en communicatieprotocollen waarin zowel de uit te voeren
handelingen zijn omschreven alsook de volgorde waarin deze dienen te worden uit-
gevoerd. Deze programma’s kunnen nader worden gespecificeerd door gebruik te
maken van een operationeel perspectief, waarin duidelijk aangegeven reeksen van
uit te voeren handelingen de protocol-interacties van het programma beschrijven.
Deze operationele specificaties zijn reeds veelvuldig onderzocht, maar belangrijke
aspecten bleven hierbij onderbelicht. Te denken is bijvoorbeeld aan client-server in-
teractie: de client wil de verbinding mogelijk verbreken als de server niet binnen t
seconden reageert, of de serverwil wellicht op een fout reageren door bepaalde acties
uit te voeren. Dit soort vereisten passen beter in wat we het declaratieve perspec-
tief van het programma noemen, waarin de voorwaarden voor het gedrag van het
programma worden beschreven in plaats van het gedrag zelf.

Dit proefschrift onderzoekt het verband tussen het operationele en het declara-
tieve perspectief op message-passing programma’s. Hierbij wordt gebruik gemaakt
van een rigoreuze aanpak die op het snijvlak ligt van Concurrency Theory, program-
meertalen en softwareverificatie. In concreto berust dit werk op procescalculi: kleine
programmeertalen die met elkaar communicerende programma’s op rigoreuze wi-
jze specificeren, en op gedragstypesystemen waarmee statisch geverifieerd kan wor-
den of een programmaspecificatie voldoet aan een protocol (als gedragstype geab-
straheerd). We richten ons hierbij op session-based concurrency: een benadering voor
message-passing concurrency waarbij de berichten die worden uitgewisseld door pro-
tocoldeelnemers gestructureerd worden met behulp van session types. Deze aanpak
maakt gebruik van technieken voor het beoordelen van de relatieve expressiviteit van
een procescalculus ten opzichte van een andere. Ook nieuwe gedragstypesystemen
voor procescalculi worden voorgesteld.

In dit werk worden operationele en declaratieve talen met elkaar in verband ge-
bracht met behulp van coderingen (correct bewezen vertalingen). Als operationele
talen beschouwen we een π-calculus met binaire session types, genaamd π, en ver-
schillende varianten hiervan. Als declaratieve talen beschouwenwe linear concurrent
constraint programming (lcc), een specificatietaal waarin gedrag wordt beschreven
door constraints die worden gedeeld in een centraal bestand, en ReactiveML (RML),
een uitbreiding van OCaml met het paradigma van synchronous reactive program-
ming (SRP).

Onze bijdragen zijn verdeeld in drie delen. In het eerste deel ligt de nadruk
op procescalculi: hierin worden twee coderingen ontwikkeld van π naar lcc. De
eerste codering heeft betrekking op de verschillende vormen van lineariteit dat aan-

viii

wezig is in beide calculi en stelt ons in staat om te analyseren hoe de communi-
catie van π kan worden gemodelleerd in lcc. De tweede codering toont aan dat
lcc een eenvoudig declaratief perspectief kan bieden op session establishment mech-
anisms door privé-informatie en authenticatieprotocollen te gebruiken. In het tweede
deel verbinden we procescalculi en programmeertalen: twee coderingen worden on-
twikkeld van π naar RML om de relatie tussen session-based concurrency en gedrag
in de tijd te onderzoeken met event-handling constructs. De eerste codering toont
aan dat signalen (de synchronisatie-eenheid van SRP) de communicatiestructuren
in π kunnen representeren. De tweede codering houdt rekening met varianten van π
in RML met asynchrone communicatie: het toont aan hoe synchrone reactieve struc-
turen kunnenworden gebruikt om constructies voor tijds- en gebeurtenisafhandeling
toe te voegen aan session-based programma’s. In het laatste deel beschouwen we het
samenspel van π en SRP op een iets andere manier: hierin definiëren we MRS, een
nieuwe procescalculus met sessies, uitzendcommunicatie, constructies voor gebeur-
tenisafhandeling en gedrag in de tijd. We rustenMRS uit met een expressief typesys-
teem, gebaseerd opmultiparty sessions, waarmee wemessage-passing programma’s
statisch kunnen verifiëren met sessieprotocollen, deadlines en vereisten voor gebeur-
tenisafhandeling.

Al met al wordt in dit proefschrift het belang benadrukt van een overkoepelend
perspectief op de analyse van message-passing programma’s waarin het samenspel
van declaratieve kenmerken (tijd, gebeurtenissen en partiële informatie) de oper-
ationele gedragsbeschrijvingen (sessieprotocollen) beïnvloedt. Onze inclusieve en
rigoreuze aanpak maakt het mogelijk om correcte, verklarende specificaties te geven
voor message-passing programma’s. Naar ons inzicht werpen onze technische bij-
dragen nieuw licht op de fundamenten die essentieel zijn om een harmonieuze ver-
eniging van operationele en declaratieve inzichten te verzekeren die de correctheid
en betrouwbaarheid van programma’s garandeert.

TO MY FAMILY AND FRIENDS,
TO WHOM I OWE THEIR STAUNCH
SUPPORT AND WITHOUT WHOM
THIS DISSERTATION WOULD HAVE NEVER
BEEN COMPLETED.

Acknowledgments

Four years and three months have passed since the beginning of this adventure.
It all started with a simple question: what is the role of logic in Computer Science? I
remember thinking of this exact issuewhile attending a course aptly named “Logic in
Computer Science” during my undergraduate studies. Searching an answer to this
question led me to discover some of the most fascinating results in Logics, Mathe-
matics, and Computer Science. They sparked my interest in Theoretical Computer
Science and to this day, I find myself amazed at the elegance and beauty in them. I
cannot talk about my PhD without mentioning the many people that have inspired
me and supported throughout these years. In my view, this work has as much of
them as it has of me. It is unfortunate that it is almost impossible to mention every-
one who has supportedme during this process, but I would like to share a fewwords
of gratitude towards some of them.

First of all, I would like to extend my gratitude to my supervisors Prof. Gerard
Renardel de Lavalette and Prof. Jorge A. Pérez. It is their guidance and experience
that made these results possible. Gerard, I am extremely grateful to you for receiv-
ing me in the University of Groningen as one of your students. I never felt out of
place, even though I come from a quite far away place. Your experience and advice
were invaluable to my development as a researcher. Jorge, you are one of the most
talented researchers I have met. I am immensely grateful for all your teachings and
supervision during these years. It has been a really enriching experience to be able to
conduct research under your guidance. I still remember when you offered me a PhD
position in the Netherlands when I was finishing my undergraduate studies back in
Colombia. Looking back to that time, I believe that taking you up on that offer has
completely changed my perspective on the world and opened me to many experi-
ences that I would never have thought possible. For this I am extremely grateful.

I would also like to thank Prof. Frank de Boer, Prof. Mariangiola Dezani and
Prof. Tijs van der Storm for agreeing to assess my dissertation. Prof. Dezani, I am
particularly grateful for your detailed comments, which served as a basis to improve
the manuscript. I also want to thank Prof. Jos Roerdink for agreeing to chair the
defense of this dissertation and to Prof. de Boer, Prof. Dezani, Prof. Lazovik, Prof.
Verbrugge, Prof. van der Storm, Dr. Turkmen and Dr. Jongmans for agreeing to be
part of the examining committee.

I am extremely grateful to Dr. Cinzia di Giusto and Dr. Ilaria Castellani for re-
ceiving me for three months at Inria in Sophia-Antipolis. All our discussions on ses-
sion types allowed me to gain a much more deeper understanding of the nuances
and subtleties one can find in theoretical work. This research internship provided
me with invaluable experience in the field of Theoretical Computer Science. Spend-
ing time in France also allowed me to experience several enriching discussions with

xi

talented and dedicated researchers, all to whom I am grateful. I would also like to
extend my gratitude to Dr. Jaime Arias in Paris. Jaime, I am really grateful for all
the support you have given me in the most applied aspects of my research and all the
recommendations when dealing with pesky compilers that sometimes seem to not
work.

I also want to thank all the members of the Fundamental Computing research
group for all their support during this experience. Althoughmost of the current PhD
students in the research group are rather new, meeting them is one of the highlights
of my experience in the Netherlands. Alen, Joe, and Bas, thank you for our lengthy
discussions on topics that go from research to board games and finances. I am ex-
tremely grateful to have met you all and I wish you all the best during your academic
careers.

During my undergraduate studies I had several mentors who served as an inspi-
ration to start this PhD. I would like to thank, in particular, Prof. Camilo Rueda, Prof.
Carlos Olarte, and Prof. Frank Valencia. They opened the doors that let me into this
wonderful world and for that I am immensely grateful.

Living in the Netherlands has been a really enriching experience. From learning
what are bitterballen to understanding the unspoken biking rules, I have enjoyed my
experience here thanks to the people who have become part of this amazing experi-
ence. To Jasmijn, I am extremely grateful to have met you, binge watching series with
you has always made me feel like I never left my home. Our conversations about
history and life have always been a highlight of my stay in this country. To Elisa,
thank you for our discussions about teaching. I remember all the sushi dinners we
had; they helped me to understand that even all-you-can-eat buffets can have a limit.
To Ana, thank you for being my friend and showing me that attending the odd party
every few months can always be a fun and rewarding experience.

I cannot close this letter without mentioning all my friends back in Colombia. To
Carlos, Daniel, Jessica, Juan Pablo, Luis and Nelson, thank you for all the discussions
and games we played. Your friendship has been a source of strength during these
years. To Alejandro Lopéz, Isabella Lopéz, Camilo Arévalo, Daniela Orozco, Santi-
ago Quintero, Santiago Juri, Felipe Renjifo, Edgar Amézquita, Ghina Garcés, Mónica
Hurtado, and Lina Rozo I am grateful to all the experiences and meetings we have
had in the past.

Finally, I want to thank my family, without whom nothing of this would have
been possible. To my mother, thank you for your unconditional love and support
throughout these four years. Tomy father, thank you for being a source of inspiration
and admiration since I started this process. To my brothers and sister, I am extremely
grateful to all your support and kindness.

Contents

SUMMARY iv

SAMENVATTING vii

ACKNOWLEDGMENTS x

CONTENTS xii

LIST OF FIGURES xvii

I Introduction and Preliminaries 1

1 INTRODUCTION 2
1.1 Context and Motivation . 2
1.2 Towards a Unifying Perspective of Concurrent Systems 5
1.3 Research Challenges . 7
1.4 Approach: Relative Expressiveness . 9
1.5 Contributions . 16
1.6 Timed Patterns in Communication Protocols 18
1.7 This Dissertation . 22

2 PRELIMINARIES 24
2.1 Relative Expressiveness . 24
2.2 The Session π-Calculus (π) . 31
2.3 Linear Concurrent Constraint Programming (lcc) 39
2.4 ReactiveML (RML) . 44
2.5 Multiparty Session Types (MPSTs) . 52

3 SOURCE AND TARGET LANGUAGES 64
3.1 Variants of the Session Calculus π . 65
3.2 An Asynchronous Session π-Calculus (aπ) 84
3.3 Extending lcc with Private Information (lccp) 104
3.4 Queue-Based ReactiveML (RMLq) . 110
3.5 Summary of Sources, Targets, and Translations 118

Contents xiii

II Session-Based Concurrency and Concurrent Constraint
Programming 120

4 ENCODING π OR IN lcc 121
4.1 The Translation . 121
4.2 Static Correctness . 125
4.3 Operational Correspondence . 126
4.4 Timed Patterns Revisited: J·K . 152

5 ENCODING πE IN lccp 161
5.1 The Translation . 161
5.2 Static Correctness . 168
5.3 Operational Correspondence . 169
5.4 Secure Types and the Translation . 189

6 CONCLUSIONS AND RELATED WORK 190
6.1 Concluding Remarks . 190
6.2 Related Work . 192

III Session-Based Concurrency and Synchronous Reactive
Programming 195

7 ENCODING π R IN REACTIVEML 196
7.1 The Translation . 196
7.2 Static Correctness . 202
7.3 Operational Correspondence . 204
7.4 Timed Patterns Revisited: J·Kgf . 215

8 ENCODING aπ IN RMLq 221
8.1 The Translation . 221
8.2 Static Correctness . 225
8.3 Operational Correspondence . 226

9 CONCLUSIONS AND RELATED WORK 235
9.1 Concluding Remarks . 235
9.2 Related Work . 236

IV A Synchronous Reactive Session-Based Calculus 238

10 MULTIPARTY REACTIVE SESSIONS 239
10.1 Introduction . 239
10.2 Two Motivating Examples . 242
10.3 Our Process Model: MRS . 247
10.4 Types for MRS . 258
10.5 Time-Related Properties . 275
10.6 Timed Patterns Revisited: MRS . 281

Contents xiv

11 CONCLUSIONS AND RELATED WORK 284
11.1 Concluding Remarks . 284
11.2 Related Work . 285

V Closing Remarks and Future Perspectives 287

12 CLOSING REMARKS AND FUTURE PERSPECTIVES 288
12.1 Closing Remarks . 288
12.2 Future Work . 293

References 307

Appendices 307

APPENDIX A CHAPTER 3 308
A.1 Proofs for π OR . 308
A.2 Proofs for π R . 314
A.3 Proofs for πE . 318
A.4 Proofs for aπ . 320
A.5 Proofs for lccp . 324

APPENDIX B CHAPTER 4 327
B.1 Junk Processes . 327
B.2 Operational Completeness . 331
B.3 Invariants for Pre-Redexes and Redexes 334
B.4 Invariants for Well-Typed Translated Programs 336
B.5 A Diamond Property for Target Terms 347

APPENDIX C CHAPTER 5 357
C.1 Transforming Translated Terms Into lcc via Erasure 357
C.2 Auxiliary Results for Operational Soundness 358
C.3 Secure Types and The Translation . 362

APPENDIX D CHAPTER 7 365
D.1 Auxiliary Results for Operational Correspondence 365

APPENDIX E CHAPTER 8 370
E.1 Auxiliary Results for Operational Correspondence 370

APPENDIX F CHAPTER 10 374
F.1 Reactivity . 374
F.2 Type System . 379
F.3 Properties of the Type System . 385

List of Figures

Fig. 1.1 A unified view for message-passing programs. 7
Fig. 1.2 Client-Store-Shipper. 11
Fig. 1.3 An intuitive view of lcc semantics. 14
Fig. 1.4 Behavior of program edge. 16
Fig. 1.5 Summary of results. 17
Fig. 1.6 Request-response timeout. 19
Fig. 1.7 Messages in a time-frame. 20
Fig. 1.8 Action duration. 21
Fig. 1.9 Repeated constraint. 21

Fig. 2.1 Reduction relation for π processes. 31
Fig. 2.2 Session types for π . 34
Fig. 2.3 Typing rules for π . 36
Fig. 2.4 Intuitionistic linear sequents for lcc. 41
Fig. 2.5 Labeled Transition System (LTS) for lcc processes. 42
Fig. 2.6 Derived ReactiveML expressions. 46
Fig. 2.7 Well-formation rules for ReactiveML expressions. 47
Fig. 2.8 Big-step semantics for ReactiveML expressions (Part 1). 48
Fig. 2.9 Big-step semantics for ReactiveML expressions (Part 2). 49
Fig. 2.10 Syntax for MPST . 53
Fig. 2.11 Reduction rules for MPST. 55
Fig. 2.12 Syntax of MPST types. 56
Fig. 2.13 Typing rules for pure MPST processes. 58
Fig. 2.14 Syntax of message and generalized MPST types. 59
Fig. 2.15 Typing rules for single queues in MPST. 60
Fig. 2.16 Typing rules for processes with queues in MPST. 62

Fig. 3.1 Additional weakening rule for the π OR type system. 67
Fig. 3.2 Additional weakening rule and new replication rule for π R 73
Fig. 3.3 Reduction rules for networks in πE. 82
Fig. 3.4 Typing rules for networks in πE. 83
Fig. 3.5 Reduction relation for aπ processes. 86
Fig. 3.6 Typing rules for aπ. 93
Fig. 3.7 Typing rules for lccp. 107
Fig. 3.8 Substitution in lccp. 109
Fig. 3.9 Big-step semantics for RMLq expressions (Part 1). 113
Fig. 3.10 Big-step semantics for RMLq expressions (Part 2). 114

List of Figures xvi

Fig. 3.11 Big-step semantics for RMLq (Part 3). 115
Fig. 3.12 Summary of expressiveness results 118

Fig. 4.1 Predicates for J·K . 122
Fig. 4.2 Translation from π OR into lcc (cf. Def. 4.4). 123
Fig. 4.3 Evolution of a translated lcc program. 126
Fig. 4.4 Immediate observables in J·K. 135
Fig. 4.5 Set of intermediate redexes for J·K. 137
Fig. 4.7 Labeled Transitions for J·K. 143
Fig. 4.8 Proof of Lem. 4.48. 148
Fig. 4.9 Size of a finite π OR process. 154
Fig. 4.10 Breakdown function for finite π OR processes 154

Fig. 5.1 Security constraint predicates. 163
Fig. 5.2 Security constraint system: non-logical axioms. 163
Fig. 5.3 Translation from πE to lccp. 165
Fig. 5.4 Intermediate redexes for J·Kf . 174
Fig. 5.5 Notation for the intermediate redexes of J·Kf 175
Fig. 5.6 Labeled transitions for translated lccp processes. 176
Fig. 5.7 Erasure function for lccp processes. 179
Fig. 5.8 Proof of labeled soundness for J·Kf 182

Fig. 7.1 Handshake behavior in RML . 197
Fig. 7.2 Translation from π R to RML. 199
Fig. 7.3 Initialized Translations. 208

Fig. 8.1 Components of handler RMLq processes 222
Fig. 8.2 Handshake direction in RMLq. 223
Fig. 8.3 Auxiliary translation from aπ⋆ to RMLq. 224

Fig. 10.1 MRS implementation of the Reactive Buyer-Seller Protocol. 244
Fig. 10.2 MRS implementation of the Electronic Auction Protocol. 246
Fig. 10.3 MRS: syntax. 249
Fig. 10.4 MRS: Syntax of processes. 249
Fig. 10.5 Structural congruence. 251
Fig. 10.6 Reduction rules for MRS . 251
Fig. 10.7 Suspension Predicate. 252
Fig. 10.8 Reconditioning Function. 252
Fig. 10.9 Tick transition. 252
Fig. 10.10 Sorts, Global types, Local types and Message types. 259
Fig. 10.11 Saturation of global types. 261
Fig. 10.12 Projection of global types onto participants. 262
Fig. 10.13 Typing rules for services and process variables. 264
Fig. 10.14 Typing rules for expressions. 264
Fig. 10.15 Typing rules for memories. 264
Fig. 10.16 Projection of generalized types on participants. 267
Fig. 10.17 Typing rules for configurations (Part 1). 270
Fig. 10.18 Typing rules for configurations (Part 2). 271

List of Figures xvii

Fig. 10.19 trm() function . 274
Fig. 10.20 Flattening of saturated global and local types. 278

Fig. 12.1 Classes of well-typed processes in π, π OR, and π R 290

Fig. C.1 Typing derivations for J[aρ(x).P]mK and [am〈x〉.Q]n 364

PART I
INTRODUCTION AND

PRELIMINARIES

1
Introduction

1.1 Context and Motivation
Concurrency is the phenomenon exhibited by software systems in which multiple en-
tities, typically called processes, interact with each other. These interacting processes
can be seen as independent components that execute in parallel to better exploit com-
putational resources and form larger software systems. The study of concurrency and
concurrent systems is a long-standing research question in Computer Science, espe-
cially as concurrency increases its influence in modern computer systems. Indeed,
from banking software to government databases, it is almost impossible to conceive
a software system nowadays that does not rely on concurrency in some way.

Concurrency is a wide andmulti-faceted phenomenon. It is useful to classify con-
current programs according to theway inwhich concurrencymanifests itself in them.
A broad distinction accounts for shared-memory and message-passing concurrency. We
illustrate this distinction intuitively, by means of examples:

Shared-Memory Concurrency: Here we find processes that interact by reading and
writing data from a shared medium, such as a shared memory. Multi-threaded
programming is a good specific example: we have a set of threads (i.e., pro-
cesses) that execute in parallel within a single device, sharing access to a com-
mon pool of resources (e.g., RAM, processor time, bandwidth).

Message-Passing Concurrency: Here we find processes that interact by exchanging
messages with each other. Thus, concurrency can be assimilated to communi-
cation. Distributed applications, such as Web services, provide a good specific
example: processes may run and reside in different devices, and their over-
all behavior depends crucially on appropriate coordination patterns between
them.

Chapter 1. Introduction 3

Concurrent programs suffer from specific issues (e.g., deadlocks) that are not present
in sequential programs. Hence, a common concern for concurrency, be it shared-
memory or message-passing, is that of program correctness. Broadly speaking, we
may say that a (concurrent) program is correct if it does what it is supposed to do.
In practice, correctness is associated to some (in)formal properties that specify a set
of intended behaviors. Examples of these properties include “every process is al-
lowed to access memory during execution” or “all the message exchanges should re-
spect the prescribed order”. Notice that these correctness properties will be different
for shared-memory and message-passing concurrency. In the shared-memory case,
program correctness largely depends on enabling as much parallelism as possible
while disallowing malicious interferences between concurrent threads (e.g., ensuring
that two threads never modify the same variable at the same time). In the message-
passing case, program correctness largely depends on enforcing that parallel com-
ponents follow some appropriate communication structure for exchanged messages
(e.g., ensuring that every sent message will be eventually received by the intended
receiver).

The focus of this thesis is on message-passing concurrency, and on correctness
techniques for message-passing programs. Formal methods represent an appealing
approach to ensure the correctness of message-passing programs: these are rigorous
techniques for specifying, developing, and verifying programs. In this approach, a
system is typically modeled using some formal language so as to obtain a precise
specification. Such specifications are meant to capture the essential features of the sys-
tem, abstracting away from aspects not directly related to the intended correctness
properties. Formal specifications can then be used to establish the correctness of the
program using techniques such as model checking and equivalence checking. Examples
of specification languages for concurrent systems include Petri nets [Pet62], the actor
model [HBS73], and process calculi [CRS18], the main object of study in this work.

Generally speaking, a process calculus is a small programming language with a
precise mathematical formulation, which can be used to precisely specify concurrent
systems [Fok09]. In this sense, process calculi are for concurrent programs what
the λ-calculus is for sequential programs. There are three essential ingredients for
defining process calculi:

(1) A minimal set of constructs describe the behavior that can be expressed in the
calculus, and define the ways in which processes can be composed to describe
larger programs. Minimality is beneficial when developing theory, and helps
to ensure that specifications are as precise and compact as possible.

(2) An operational semantics formalizes a computational interpretation of the inter-
actions between processes.

(3) A process equivalence serves to rigorously compare the behavior of processes. A
fundamental question is whether two processes exhibit the same behavior—
whether they are observationally equivalent (see, e.g., [San09]).

Views of Concurrency In contrast to the canonicity of the λ-calculus in the sequen-
tial realm, a myriad of process calculi have been developed, each focused specific
aspects of concurrent programs. Given this diversity, we will find it useful to classify

Chapter 1. Introduction 4

process calculi in terms of the view they have on concurrent programs. For example,
while some calculi focus on describing explicitly the set of steps that the program
must execute, others may focus on describing the conditions that trigger such behav-
ior, leaving execution mechanisms implicit. In this dissertation we distinguish two
views for process calculi: operational and declarative. Although there is not a consen-
sus on the precise features that fallwithin the declarative view [RH04, FMR+09,Har],
for our work it is enough to use the following distinction:

Operational View: Here we find process calculi that explicitly describe the execu-
tion behavior of a concurrent program. Under an operational view, specifica-
tions typically consist of a set of states that can be modified by using control
structures, i.e., statements that indicate precise execution steps, such as con-
ditional, looping, and jumping statements. In this view, specifications often
exhibit an explicit control flow, i.e., the order in which each statement is exe-
cuted. Thus, an operational view of programs should allow to reconstruct the
program execution just by looking at its code.
We could say that the operational view embodies the idea behind Kowalski’s
equation: Algorithm = Logic + Control [Kow79]. Process calculi that can be
considered as inducing an operational view for message-passing concurrency
include the Calculus of Communicating Systems (CCS) [Mil80], the π-calculus
[MPW92a, MPW92b], and Communicating Sequential Processes (CSP) [Hoa85].
Indeed, these calculi explicitly model the interactions between processes using
prefixing, recursion, nondeterministic choice, among others.

Declarative View: Process calculi in the declarative view are more concerned with
the conditions that govern the program’s behavior, rather than with its execu-
tion flow. In general, these calculi try to abstract away fromnotions such as state
and control flow; hence, they are often called stateless [RH04]. In the declara-
tive view it is not uncommon to specify concurrent programs using statements
in some form of logic (e.g., linear temporal logic [MP95]). Because languages in
the declarative view are more concerned with the conditions that govern the
behavior of processes, the execution mechanisms of a program appear implicit.
In a way, we can say that the declarative view is only concerned with half of
Kowalski’s equation: logic, while control becomes a secondary concern. Ex-
amples of declarative languages include Prolog [Kow88], concurrent constraint
programming (ccp) [Sar93], linear temporal logic (LTL) [MP95], Reo [Arb16],Dy-
namic Response Graphs [HM10], and Constraint Handling Rules [FH93]. They all
focus on representing the governing conditions of the system, rather than on
explicitly representing interactions between processes.

Note that the distinction between operational and declarative views is not limited to
process calculi; rather, it can be extended to other formal languages used formodeling
concurrent systems. In this sense, we may also consider a third view:

“Hybrid” View: Intuitively, these languages are hybrid in the sense that they com-
bine both operational and declarative aspects to allow more flexibility in the
descriptions of concurrent programs. We use this category to classify some for-
mal languages that are not process calculi, but have formal semantics that allow

Chapter 1. Introduction 5

us to rigorously analyze their behavior. Examples of hybrid languages include
OCaml and ReactiveML [MP05].

Using the distinction between operational, declarative, and hybrid views we can
recognize which features are more easily represented in each class of languages. In-
deed, it can be harder to use operational languages to represent certain features that
are more easily expressed in declarative languages and vice versa. For example, LTL
(a declarative language), can easily represent the evolution of a program across time,
whereas in CCS (an operational language) the notion of time is not explicit, and
therefore extensions are needed [MT90]. We will use the terms operational, declar-
ative, and hybrid language to denote languages with operational, declarative, and
hybrid views, respectively.

It is worth noticing that realistic message-passing programs are often the product
of an amalgamation of features that requires both operational and declarative views
to be fully specified and verified. Hence, in this heterogeneous world, a natural ques-
tion that arises is:

Can we reason about the correctness of message-passing programs from a
unified view that integrates the best from operational and declarative views?

1.2 Towards a Unifying Perspective of Concurrent Sys-
tems

Most realistic concurrent systems cannot be comprehensively described using exclu-
sively an operational or declarative view. Let us consider, for example, the informal
requirements of the Travel Agency scenario presented in [KCD+09]:
(R1) The customer should pay the selected offer by providing his credit card data

within 30 minutes after the reservation step. Otherwise, the reserved offer will
be canceled.

(R2) In a 5 minutes interval the customer can only do 3 failed payment trials.

(R3) The customer can cancel a travel reservation the latest 7 days before his travel.

(R4) The customer can change his travel reservation only 2 times. Changes are only
allowed between 1 day and 5 days after the reservation date.

(R5) If the booking is done in a special period, a discount is given.
The scenario above is composed of at least two interacting entities: a customer and
the travel agency. As these entities most likely run in different devices, we can see
this scenario as an instance of a distributed system based on message-passing. We
highlight two interesting aspects from this example:

• The requirements are not operational. Rather, since they describe the condi-
tions that affect the execution of the whole system, they fall within the declar-
ative view. For example, Requirement (R2) imposes a condition on the num-
ber of failed payment trials within a time interval. Similarly, Requirement (R5)

Chapter 1. Introduction 6

indicates that the travel agency must change its behavior depending on infor-
mation provided by a context external to the system (i.e., special periods for
discounts). Since the description only includes the requirements for the travel
agency (not for its potential customers), we are left with an incomplete view
of the system. This is a common situation: components are often not aware of
the requirements and specifications of the other components that will interact
with them.

• This partial view of the scenario suggests that involved participants have an het-
erogeneous nature. Indeed, it is likely that both the agency and the customer are
implemented using different programming languages, each having different
features. For example, while the travel agency can be specified in a declarative
language that allows to describe timed behavior, the customermay bewell spec-
ified in an operational language in which timed behavior is not needed. This
heterogeneity is not uncommon in message-passing systems, which are often
formed out of the interactions of dozens of heterogeneous components. In this
setting, communication is the essential glue between these distinct components.

Other examples in which we observe the interplay between the operational and
declarative views have appeared in the literature: in [BFM98], the authors specify a
multimedia stream with timing requirements. In [CPS09], the authors specify an in-
trusion detection system thatmust redirect messageswhenever a certain threshold in
the number of received messages has been reached. Finally, the Simple Mail Transfer
Protocol (SMTP) [Kle08] is another example, in which specific retry strategies are
described for whenever the timing requirements of the protocol are not satisfied.

Scenarios such as the one above stress the need for adopting a unified view of
message-passing programs and systems. Viewingmessage-passing programs from a
unified perspective allows us to obtain comprehensive specifications, which aremore
robust than the ones obtained by solely viewing them operationally or declaratively.
In this way, all the features of the components that form the system can be analyzed
independently of the different formal languages used for their specifications.

In our opinion, the first step towards a unified view that homogenizes the com-
ponents of message-passing programs is to identify a class of formal languages en-
dowed with an adequate abstraction level to capture all the individual features of
the program’s components. Then, one needs to develop mechanisms to systemat-
ically translate component specifications into the language identified before. These
mechanisms must be carefully defined: we want to guarantee that translated spec-
ifications respect the behavior of the source specifications. Once this unified repre-
sentation has been obtained, we can then proceed to uniformly study the behavior of
message-passing programs without many of the issues introduced by their hetero-
geneous nature. In this unified setting we can also study the interplay of operational
and declarative views, because the identified target language must be able to repre-
sent both the specific execution steps and the conditions that govern the behavior of
the system.

Fig. 1.1 illustrates the concept of a unified view for specification and analysis, us-
ing three interacting components (C1, C2, and C3). We use different shapes to repre-
sent the different views adopted by the specification language in each case: rectangles
denote a declarative language, diamonds denote an operational language, and rect-

Chapter 1. Introduction 7

C1 C2 C3

Unified (Target) Language Low-Level

High-Level

Translation Translation Translation Abstraction

Figure 1.1: A unified view for message-passing programs.

angles with diamonds denote a hybrid language. This way, component C1, specified
in a declarative language, needs to react to certain events, similarly to Requirement
(R1). Component C2 has been specified in an operational language and does not
have any additional requirements. Component C3, specified in a hybrid language,
involves timed constraints similar to Requirements (R2) and (R4) above. In the bot-
tom, there is a target language that unifies these different views; its incoming arrows
represent mechanisms to translate the views used to specify C1, C2 and C3 into the
chosen target language. These translations compile specifications in a high-level of
abstraction into specifications expressed in the lower-level of abstraction of the target
language.

A key hypothesis of our work is that declarative languages are powerful enough
to provide a foundation for the unified view we advocate. Indeed, in several works
declarative languages have been used as target languages for operational languages.
Examples include the translations of the asynchronous π-calculus into first-order
logic [PSVV06], linear concurrent constraint programing [Hae11], and Flat Guarded
Horn Clauses [MM12]; also, the translation of a session π-calculus into universal
concurrent constraint programming [LOP09]. In contrast, expressing declarative
features in operational languages seems much harder; to cope with such require-
ments, several extensions of process calculi have been developed, see, e.g., [Ama07,
KYHH16, CDV15, BYY14]. These extensions often specialize in specific application
areas and do not provide the flexibility of a proper declarative language.

Motivated by the previous context and the need for a unified view for analyz-
ing message-passing programs, our work focuses on (1) identifying declarative lan-
guages which can be used as foundations for such a view and on (2) investigating
the translation mechanisms between languages implementing different views.

1.3 Research Challenges
In this dissertation we shall focus on operational process calculi for message-passing
programs and their relations with declarative and hybrid process calculi. We shall
use these relations to develop the translationmechanisms required for a unified view

Chapter 1. Introduction 8

of message-passing programs. We are particularly interested in analyzing the in-
terplay of specifications that fall within the operational view and two features that
are common in declarative languages: (1) behavior driven by partial information and
(2) timed and reactive behavior:

Partial Information: In message-passing systems, it is often the case that compo-
nents are influenced by partial and contextual information. For example, in the
Travel Agency presented in § 1.2 requirements (R2) and (R5) depend on infor-
mation external to the program like the number of failed payment trials and the
current date. While it may be easy to specify the behavior of the program for
failed payments or special dates in an operational language, it can sometimes be
difficult to express the conditions that trigger these behaviors. To address this
shortcoming, previous works have extended operational process calculi with
declarative features—see, e.g., [DRV98, BM07a, CD09, BJPV11, BM11]. On the
other hand, declarative models of concurrency naturally express partial and
contextual information because their logical foundations allow them to deduce
new information about the current state of the program—see, e.g., [dBGM00,
FRS01, NPV02, OV08b].

Time and Reactivity: As we have seen, the execution of message-passing programs
sometimes depends on timing constraints. For example, in the Travel Agency
presented in § 1.2 requirements (R1) and (R3) specify timing constraints for ex-
ecuting certain actions. If this timing constraint fails, the Travel Agency should
be able to react accordingly and, perhaps, cancel the order (in the case of (R1)).
Once again, while it may be easy to express the communication behavior of
the Travel Agency using an operational language, representing the timing con-
straints can sometimes be unnatural. Considering this shortcoming, previous
work have added timed and reactive capabilities to operational languages—
see e.g., [Ama07, KYHH16, CDV15, BYY14]. In contrast, some declarative lan-
guages are conceived to represent this kind of behavior—see e.g., [CPHP87,
BG92, SJG94, NPV02, MP05].

Given this, we refine the challenge stated at the end of § 1.1 into three research ques-
tions, given below. We aim at understanding to what extent declarative languages
are powerful enough to support a unified view for the analysis of message-passing
programs:

(Q1) Can we use declarative languages tailored to describe behavior driven by partial
information to analyze message-passing programs specified in operational process
calculi?

(Q2) Can we use declarative languages tailored to describe timed and reactive behavior
to analyze message-passing concurrent programs specified in operational process
calculi?

(Q3) Can we use a hybrid process calculus, extended with features to describe timed
and reactive behavior, to analyzemessage-passing programs specified in operational
process calculi?

Chapter 1. Introduction 9

1.4 Approach: Relative Expressiveness
To address questions (Q1) and (Q2), we shall use relative expressiveness techniques to
relate two formal languages that fallwithin different views. Then, to address question
(Q3), we shall develop a hybrid process calculus with timed and reactive behavior
that allows the analysis of these features within both the operational and declarative
views of message-passing programs.

We start by introducing the concept of relative expressiveness. When studying
formal languages, such as process calculi, it is natural to ask about their expressive
power. In general terms, the expressive power of a rigorous language refers to what
can be expressed in it [Par08]. There are two main approaches to study the expressive
power of formal languages: absolute expressiveness and relative expressiveness [Par08]
(or translational expressiveness [Pet12]).

Absolute expressiveness focuses on proving whether a formal language can be
used to solve some kind of computational problem [Par08, Gor10]. Whenever there
is a proof that the studied language can solve some specific problem or define some
operator, we call it a positive result. Proofs of the contrary are considered negative
results. Hence, absolute results are obtained irrespectively of how the language at
hand relates to other languages. Two examples of absolute results in the area of pro-
cess calculi include: De Simone’s work on proving that synchronous process calculi
SCCS and MEIJE can express all recursively enumerable transition graphs up-to a
bisimulation equivalence [dS84] and the work by Baeten et al. which shows that an
extension of the algebra of communicating processes (ACP) [BK84] can represent every
computable transition graph using finite expressions [BBK87].

Relative expressiveness studies translations (or mappings) between formal lan-
guages to determine if a target language is “as expressive” as some source language
[Par08, Gor10, Pet12]. At the heart of relative expressiveness lies the notion of en-
coding: a mapping that transforms terms of the source language into terms of the
target language and satisfies certain correctness properties. The set of correctness
properties that these mappings should satisfy is commonly called encodability crite-
ria. There is not a consensus on the specific criteria that should be used to assess
the correctness of an encoding. Nonetheless, several proposals have been laid out
regarding the desirable properties that should be satisfied by the mapping to ensure
it is a correct encoding [Par08, Gor10, Pet12, PvG15]. All these proposals agree on
the fact that correct encodings should ensure that translated terms preserve the struc-
ture and behavior of their source terms. In this way, together with themapping itself,
encodability criteria relate the expressive power of the source and target languages.

In this dissertation we shall focus on three criteria to ensure encoding correctness:
(1) name invariance, which ensures that substitutions are preserved by the transla-
tion (2) compositionality, which guarantees that the translation of a compound pro-
cess is given in terms of the translations of its sub-processes, and (3) operational cor-
respondence which ensures that the translation correctly represents the behavior of
source processes. More in detail, operational correspondence is given by two proper-
ties: operational completeness, which guarantees that the semantics of translated terms
matches that of the source language and operational soundness, which ensures trans-
lated terms can only execute what the source language can—for details, see § 2.1. In
the literature, name invariance and compositionality are referred to as static criteria

Chapter 1. Introduction 10

(i.e., criteria that concern the syntactic structure of the translation), whereas opera-
tional correspondence is a dynamic criterion, as it is concerned with the semantics of
translated processes.

The existence of an encoding that satisfies these encodability criteria is a good
indicator that the target language is as expressive as the source language. Hence,
we consider the existence of these encodings positive results. On the other hand,
negative results (also called separation results) are obtained when we can prove that
the target language cannot encode (all the constructs of) the source language up to
the selected criteria.

Importantly, correct encodings enable the transference of reasoning techniques. This
means that we would be able to analyze source specifications in the target language
[Pér10]. The idea is that the reasoning techniques native to the target language can be
used to analyze properties in encoded specifications. For example, an encoding from
an untimed process calculus into a timed process calculus can be used to analyze
untimed programs in a timed setting. It is because of this characteristic of encodings
that we consider them to be the most adequate foundations to our proposed unified
view (cf. § 1.2). In particular, encodings can help us cope with the heterogeneity
of message-passing programs and analyze the behavior of components in a unified
setting, where both operational and declarative views are considered.

1.4.1 Source Languages: Session-Based Concurrency
Most of our work focuses on encoding message-passing programs described using
operational process calculi into declarative languages. We concentrate on message-
passing programs whose interactions can be structured as sequences of communica-
tion actions. This kind of programs are part of what is known as session-based concur-
rency.

Session-based concurrency was first proposed by Honda in the 1990s [Hon93,
HVK98] as an approach to specify message-passing programs with the goal of struc-
turing the exchange of messages between interacting components. Session-based
concurrency uses types as an abstraction of the communication protocols that govern
the interactions in a message-passing program; it views communication as structured
sequences of message exchanges called sessions. In each session, two or more parties
interact by executing sequences of communication actions as indicated by a session
type. Then, using a type system, session types can be verified against an implementa-
tion to guarantee that the program ascribes to the desired communication protocol.
The main premise of session-based concurrency is that type soundness entails commu-
nication correctness (i.e., the program correctly follows the intended protocol).

A key idea of session-based concurrency is the distinction between linear and un-
restricted behavior. Intuitively, linear behavior corresponds to well-behaved interac-
tions that are deterministic, in the sense that they must always be executed as pre-
scribed by the session type. On the other hand, unrestricted behavior corresponds
to component interactions that are nondeterministic, in the sense that they may occur
zero or more times. Session-based programs are considered to execute two phases:
(1) a session establishment phase where sessions are created and (2) a phase that deals
with the communication within a session. The differences between linear and unre-
stricted behavior become clearer in this context. In the session establishment phase

Chapter 1. Introduction 11

Client Store
item
price
ok

Choice

more
Loop

done
cc

addr
eta

Figure 1.2: Client-Store-Shipper.

there are several services which may be requested by several clients. The system’s
behavior in this phase is unrestricted since there is not a specified order in which
clients may interact with services and clients do not always request a service. This
introduces nondeterministic behavior in the interactions between components. Once
a session has been established, the system’s behavior becomes linear as wewould like
all the communication within a session to be well-behaved and deterministic.

Session types are often investigated on top of the π-calculus because it provides
the essential constructs for specifying message-passing programs. In the π-calculus,
messages are sent across channels between parallel processes. A particularly appeal-
ing feature of the π-calculus is known as mobility: the ability to send channel names
along channels themselves. This feature allows the π-calculus to describe concurrent
systems in which the network configuration may change during execution. In the
context of session-based concurrency session types are assigned to channels names
in the π-calculus. Then, the type system verifies that the channels in the process ex-
ecute the actions prescribed by the assigned session type. Notice that, given their
nature, types “evolve” with process reductions.

Another appealing feature of the π-calculus is that it supports both synchronous
[MPW92a, MPW92b] and asynchronous [Bou92] communication. In synchronous
communication, output actions are considered to be blocking: they can only be exe-
cuted when there is a corresponding input action. In asynchronous communication,
outputs are non-blocking: they can be executed at any point during the program run,
relying on buffers that store messages in transit. Remarkably, in both the synchronous
and asynchronous case the syntax of session types remain unchanged; the main dif-
ferences are introduced in the details of the type system.

We can use the message sequence chart in Fig. 1.2 to intuitively illustrate the kind
of communication protocols that can be described with session types. In the figure
two parties interact: a Client and a Store. The description of the communication pro-
tocol follows:

(1) Client sends the item it wants to buy.

Chapter 1. Introduction 12

(2) Store responds by sending a price for the item.

(3) Client responds by stating it agrees to the price of the first item.

(4) At this point, Client can selectwhether to close the transaction or to keep buying
more items:

(i) If Client wants to keep buying more items then the protocol iterates back
to the beginning.

(ii) If Client wants to stop its purchase then the following checkout protocol
begins:
(a) Client sends his credit card details (cc) and its address (addr).
(b) Once Store has confirmed these details, it sends an estimated time for

delivery (eta), finishing the protocol.

A session type provides a compact way to describe this protocol, and can be used
to verify that implementations of the system correctly follow the desired behavior.
For example, we could represent Client’s behavior as the type:

µt.!item.?price.!ok.⊕ {more: t, done: !cc.!addr.?eta.end}

where ‘·’ represents the sequencing operator, which ensures that actions are executed
in sequence. Construct ‘µt’ denotes the fixpoint operator for declaring recursive types,
used to represent infinite protocols. Construct ‘!item’ represents the output of an
element of type item while the construct ?price represents the input of an element
of type price. Also, type ⊕{more: . . . , done: . . .} represents a selection in which the
protocol chooses between two possibly different behaviors. Type end represents the
termination of the session. To ensure that communication is correct, we require the
type representing the protocol of Store to be complementary to that of Client:

µt.?item.!price.?ok.& {more: t, done: ?cc.?addr.!eta.end}

In this complementary type all the sending actions are transformed into receive ac-
tions, and vice versa. Notice that in the case of the selection ⊕{more: . . . , done: . . .},
the complementary type offers the complementary actions for the alternative behav-
iors in the type. When two types are complementary, they are said to be dual. It is
important to notice that duality ensures the communication correctness by guaran-
teeing the absence of mismatches between the communications action of dual types.

While the original work by Honda et al. focused on binary communication (such
as in Fig. 1.2) [HVK98], the study of session-based concurrency has been extended
in numerous directions. One of the most salient extensions ismultiparty asynchronous
session times [HYC08]. Multiparty types enable the specification of communication
protocols with more than two participants from a global view, represented as a global
type. This type represents all the interactions between the components of a program.
Global types can be projected into local types to obtain the individual contributions
of each participant to the communication protocol. In a sense, local types are very
similar to the binary session types we presented above; the main difference appears
because the notion of duality changes. Specifically, multiparty types require local
types to be compatible with all the local types of the protocol participants.

Chapter 1. Introduction 13

Other research directions in session types include timed session types [BYY14], and
eventful asynchronous session types [KYHH16]. Also, there have been extensions of ses-
sion types for link failures [APN17], self-adaptation [CDV15], robotics [MPYZ19],
and exceptions [FLMD19]. The interest in session types has sparked both theoretical
and practical advances. Arguably, one of the most important theoretical advance-
ments in session-based concurrency is the discovery of a Curry-Howard isomorphism
between session types and linear logic [CP10, Wad14]. Several implementations of
session types have appeared, both as programming language with native session
types and libraries to be used in mainstream languages. Examples of languages
with native session type support include SePi [FV13] and SILL [PG15]. Similarly,
session types have been implemented in mainstram languages such as C [NYH12],
Java [KDPG18], Erlang [Fow16], Haskell [PT08, OY16], and OCaml [Pad17].

1.4.2 Target Languages
As representatives of declarative and hybrid languages, we focus on concurrent con-
straint programming (ccp) and synchronous reactive programming (SRP). In ccpwe find
it natural to describe partial and contextual information by using constraints, while
on SRP, we are able to naturally specify timed and reactive behavior. Notice that
synchrony in SRP refers to the fact that programs have periods in which all the com-
ponents compute until they cannot evolve anymore (see below for details). This dif-
fers with the notion of synchronous communication in the π-calculus, which refers
to communication where the output is a blocking construct.

(Linear) Concurrent Constraint Programming

Concurrent constraint programming is a specification language proposed by Saras-
wat in the 1990s [Sar93]. It is inspired by logic and uses a shared-memorymodel. The
fundamental idea behind ccp is that concurrent systems can be specified in terms of
constraints. A constraint is a (first-order) logical formula that represents partial infor-
mation about the state of the shared variables used in the program. The calculus ccp
is parameterized with a constraint system that specifies the logical formulas relevant
to the program and an entailment relation that allows to deduce information from the
formulas used (e.g., assuming that x is an integer, x > 5 entails x ≥ 6). In ccp there
are two forms of interaction: telling and asking. The telling action indicates that a pro-
cess adds constraints to a shared medium called a store. The store is a constraint itself
(i.e., the conjunction of all added constraints) and therefore represents partial infor-
mation about the system. The asking action indicates that processes can deduce new
information from the constraints contained in the store. The information that can be
deduced by asking processes is solely given by the entailment relation defined by the
constraint system. Asking processes are suspended until there is enough information
in the store to answer their query up to logical entailment (assumed to be decidable).
Because ccp is rooted in (first order) logic, information cannot be removed from the
store, hence, the store is a monotonic object. To understand this property, let us con-
sider Fig. 1.3.

In it, two ccp processes are exchanging information with the store. The leftmost
process is asking if variable y is greater than 5 and the rightmost process is telling

Chapter 1. Introduction 14

x ≤ 10 x > 4 P1

Store

P2

y = 20y > 5?

Figure 1.3: An intuitive view of lcc semantics.

that y is equal to 20. We can formally represent this scenario as:

x ≤ 10 ∧ x > 4︸ ︷︷ ︸
Store

‖ y = 20︸ ︷︷ ︸
P1

‖ y > 5→ x ≤ 7︸ ︷︷ ︸
P2

where ‘‖’ stands for parallel composition, ‘ · ’ stands for the tell process that adds infor-
mation to the store, and y > 5→ x ≤ 7 is the ask process. Intuitively, P2 represents a
process that adds constraint x ≤ 7 to the store once the constraint y > 5 is satisfied.
One of the highlights of lcc is that the store is represented as a process (the leftmost
one in this case). After the query from P2 is resolved, the process evolves to:

x ≤ 10 ∧ x > 4 ∧ y = 20︸ ︷︷ ︸
Store

‖ x ≤ 7

where the monotonicity of the store ensures that constraint y = 20 is not removed
after synchronization.

As a well-established model for concurrency, ccp has been extended to account
for different aspects of concurrent systems such as time [SJG94], nondeterminism
and asynchrony [NPV02], mobility [OV08a], and stochastic modeling [BP07]. The
most relevant extension of ccp for this work is linear concurrent constraint programming
(lcc) [SL92, BdBP97, FRS01]. The lcc calculus was designed to have strong ties with
classical linear logic [Gir87]. As a consequence, themonotonicity of the store is relaxed
in lcc, allowing for constraints to be linear resources to be used exactly once.

We can intuitively understand the semantics of lcc by once again considering
Fig. 1.3. Using lcc, we can represent the scenario in the figure as:

x ≤ 10⊗ x > 4︸ ︷︷ ︸
Store

‖ y = 20︸ ︷︷ ︸
P1

‖ y > 5→ x ≤ 7︸ ︷︷ ︸
P2

Themain difference with the ccp process shown before is that the logical conjunction
‘∧’ has been replaced by the multiplicative conjunction from linear logic (i.e., ‘⊗’).
Due to the non-monotonic nature of the store, once the query from P2 is resolved, the
process evolves to:

x ≤ 10⊗ x > 4︸ ︷︷ ︸
Store

‖ x ≤ 7

where constraint y = 20 has been consumed.

Chapter 1. Introduction 15

Synchronous (Reactive) Programming

In synchronous languages [Hal98] programs continuously react to events (signals).
These events can come from the environment or can be generated by the programs
themselves. That is, a program reacts to a set of input events by emitting their own
output events. In synchronous programming, the program reaction to its input events
defines a time instant (or simply, instant). As their name implies, time instants rep-
resent discrete logical time units that start from the moment an input event has been
detected up to the moment all the output events have been emitted.

We recognize two flavors of synchronous languages: dataflow and imperative. In
dataflow languages, such as LUSTRE [CPHP87] and SIGNAL [GLGB87], a program
reaction consists on the evaluation of a set of equations that define the values of out-
put variables (which represent output events). These equations are evaluated using
input events and the values of variables in previous instants. On the other hand, in
imperative synchronous languages such as ESTEREL [BG92] a reaction starts from a
set of control points and finishes when the program reaches a new set of them. Be it
dataflow or imperative, all synchronous languages must be deterministic (i.e., every
sets of inputsmust always yield the same results) andmust adhere to the synchronous
hypothesis [Hal98]; i.e., programs are supposed to react rapidly enough to perceive all
events in a suitable order. This implies: (1) the implicit notion of time in synchronous
languages is given by the order in which events appear, and (2) program reactions
are considered to be instantaneous. Moreover, the deterministic nature of these lan-
guages allows a precise analysis of the event sequences generated by the reactions of
the program.

Synchronous reactive programming (SRP) is a programming paradigm for reac-
tive systems proposed by Boussinot and De Simone in 1995 as an answer to some of
the shortcomings of ESTEREL [BdS96]. The goal of SRP is to avoid so-called causal-
ity issues caused by the simultaneous presence and absence of events in ESTEREL
programs. This paradoxical situation occurs because of the presence and absence hy-
potheses, which allow programs to react instantaneously to both the presence and ab-
sence of events. Hence, an ESTEREL program can react to the absence of an event
e by emitting e during the same instant, thus making making the event both absent
and present at the same time. Boussinot’s and De Simone’s proposal is to circumvent
causality issues by forbidding the presence and absence hypotheses. Namely, syn-
chronous reactive programs events are only considered to be present once they have
been emitted and the reaction to event absence is postponed until the next instant.

There are some implementations of synchronous reactive programming: Reac-
tive-C [Bou91], SugarCubes [BS00], FairThreads [Bou06], andReactiveML [MP05]—
see § 2.4. Our work focuses on ReactiveML, as it has received attention in recent
years [MP14, MPP15b], and has been found successful in applications such as sensor
networks, electrical grids, and interactivemodeling, among others [MB05, SMMM06,
MM07, BMP13, Ari15, MPP15a]. The main features of ReactiveML are: (1) dynamic
process creation, (2) a hybrid approach between functional and synchronous reactive
programming, and (3) an intrinsic notion of time, which can be exploited to study
time-related properties.

ReactiveML is a programming language built on top of OCaml so that every O-
Caml program (without objects, labels, and functors) is a valid program in Reactive-
ML. Furthermore, ReactiveML extends OCaml by adding processes, which are state

Chapter 1. Introduction 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ein

eout

Figure 1.4: Behavior of program edge.

machines that can be executed through several time instants. Notice that standard
OCaml functions are considered to be instantaneous [MP05].

To intuitively understand the semantics of ReactiveML consider an adapted ver-
sion of the edge detector presented in [MP05], called edge. The program receives two
parameters: events ein and eout. The expected behavior of the program requires that
the presence of event ein triggers event eout in the next time unit, provided ein was
not present in the previous one. This behavior repeats indefinitely, depending on
the presence of input event ein. A possible implementation in ReactiveML of edge is
given below:

let process edge ein eout =
loop

present ein? pause :

await ein in emit eout

The input and output events of a ReactiveML program can be described using
timing diagrams such as the one in Fig. 1.4. In the diagram, events are modeled as
continuous lines which can can tick upwards or downwards. Whenever the line cor-
responding to an event ticks upwards, it means that the event is present; otherwise,
it is absent. In particular, Fig. 1.4 describes the behavior of program edge and we can
observe that whenever ein is present, event eout is emitted by the program exactly
once in the next time instant. This shows how the reaction to events can be delayed
in ReactiveML. Due to the nature of ReactiveML, we consider it to be a hybrid (pro-
gramming) language.

1.5 Contributions
Considering our research questions (i.e., (Q1), (Q2) and (Q3)) and the proposed
approach, we now describe the three main contributions of our work. They are sum-
marized in Fig. 1.5.

1.5.1 Sessions and Partial Information
Our first contribution addresses (Q1) and develops two encodings of session-based
concurrency in lcc. This work takes inspiration on [LOP09], where the authors
present an encoding of the session π-calculus in [HVK98] into declarative processes
in universal ccp (utcc) [OV08b], a declarative language based on ccp. Although the
encoding in [LOP09] already enables us to reason about communication-centric sys-
tems from a declarative standpoint, it has two limitations: (a) the role of linearity
in session-based concurrency is not explicit in the encoding, and (b) declarative en-
codings of mobility and scope extrusion in utcc, based on abstraction constructs, are

Chapter 1. Introduction 17

Operational
(Source Languages)

Declarative/Hybrid
(Target Languages)

RMLq

aπ

RML

π R

π

π OR
lcc

πE

lccp

Concurrent Constraint
Programming

Session-Based
Concurrency

Synchronous Reactive
Programming

MRS

Figure 1.5: Summary of results: blue arrows symbolize extensions and red arrows
symbolize encodings.

not robust enough to properlymatch their operational counterparts in the π-calculus.
Our work addresses these shortcomings:

• To address (a), we develop an encoding of π OR, a variant of the session π-cal-
culus in [Vas12], into lcc. Using lcc as a target language provides a direct
treatment of linearity, as essential in operational approaches to session-based
concurrency. Moreover, we prove that this encoding satisfies a subset of Gorla’s
criteria for valid encodings [Gor10]. We also show that this encoding can be
used to express temporal session patterns as the ones presented in [NBY17] via
examples.

• To address (b) above, we introduce lccp, an extension of lcc with abstractions
with local information. Then, building upon the approach in [HL09], we endow
lccp processes with a type system that precisely stipulates which variables can
be abstracted. Thus, we limit the generality of abstractions, allowing us to faith-
fully represent hiding and scope extrusion in π OR.

• Finally, we present πE, an extension of π OR with constructs for session establish-
ment. We encode πE into lccp: by exploiting declarative specifications, we im-
plement the session establishment phase by embedding the well-known Need-
ham-Schroeder-Lowe authentication protocol [Low96]. This second encoding
is shown to satisfy the same correctness properties as the first one, and high-
lights the benefits of the type system for lccp.

Chapter 1. Introduction 18

1.5.2 Sessions and Timed, Reactive Behavior
Our second contribution addresses (Q2) by developing two encodings of session-
based concurrency into ReactiveML [MP05]. These encodings enable us to reason
about both timed and reactive behavior. Although previous works on session types
have developed session π-calculi for events [KYHH16] and time [BYY14, BMVY19],
to the best of our knowledge, there are not session-based calculi that allows the spec-
ification of both features at the same time. Moreover, our encodings yield executable
programs which can be used as inputs for the ReactiveML compiler.
• We first present an encoding of π R , a variant of the session-based calculus in

[Vas12], into ReactiveML (RML). Using RML as a target language provides di-
rect mechanisms to deal with events and timed behavior, as they are intrinsic to
the model [MP05]. Moreover, using the continuation-passing style in [DGS12]
allows us to account for the preservation of linearity, similarly towhat is done in
[Pad17]. We prove our encoding correct, and show that we can use it to model
temporal session patterns as the ones introduced in [NBY17].

• Next, we develop an encoding of an asynchronous session-based π-calculus
based in [KYHH16], called aπ, into a conservative extension of RMLwith queues
and explicit states, called RMLq. States and queues aim to explicitly represent
the memory that a RML programwould have to its disposal. In RML and RMLq,
signals can be emitted asynchronously; therefore, the second encoding aims at
investigating the relation between the asynchronous behavior of signals and
messages. This encoding also enjoys strong correctness properties [Gor10].

1.5.3 Synchronous Reactive Multiparty Sessions
Our third contribution addresses (Q3) and is a synchronous reactive extension of a
multiparty session π-calculus (MPST), called MRS. This calculus is equipped with
a multiparty session type system [HYC08, CDPY15]. Being a synchronous reactive
extension, MRS naturally accounts for timed and reactive behavior. Its type system
ensures session fidelity and communication safety, as well as two interesting temporal
properties:
P1. Output persistence: Every communicating participant sends a message (exactly)

once during every instant.

P2. Input timeliness: Every input is matched by an output during the current instant
or the next one.

The synchronous reactive type system relies on the usual features of multiparty
session types: global types that describe a multiparty protocol; local types which de-
scribe protocol associated to each participant, and a projection function relates global
and local types.

1.6 Timed Patterns in Communication Protocols
We summarize a number of interesting timed patterns for communication protocols
that were collected in [NBY17]. The authors identified these patterns in realistic sce-

Chapter 1. Introduction 19

narios and verified them using Scribble [YHNN13], a language to describe applica-
tion-level communication protocols based on multiparty session types. Throughout
this thesis we will use these examples as a reference for our developments. Specif-
ically, we shall show that our results can be used to analyze timed protocols in a
uniform setting that accounts for the interplay of operational and declarative views.

In recent years there has been an interest in studying the timed patterns that ap-
pear on communication protocols for message-passing programs [NBY14, NBY17,
BMVY19]. This is particularly important when analyzing application-level commu-
nication protocols. Timed patterns are necessary to correctly structure the commu-
nication between the components of distributed systems. In realistic scenarios, time
requirements can appear in many different ways. For example, as deadlines request-
ing the interaction to occur in a given time-frame or timed loops in which actions must
be repeated during a certain amount of time. The timed patterns that were identified
in [NBY14] follow:

1. Request-response timeout pattern: This pattern is used to enforce requirements on
the timing of a response, ensuring quality of service. The pattern can be required
both at server or client side, as illustrated in Fig. 1.6. In [NBY17], the authors

A B
REQ

ACK
tA tB

Figure 1.6: Request-response timeout.

identified three use cases for this protocol:

(1) In [CPS09], a service is requested to respond timely: “an acknowledgment
message ACK should be sent (by the server) no later than one second after receiving
the request message REQ”.

(2) Similarly, in the same article, a Travel Agency web service specifies the
pattern at the client side: “A user should be given a response RES within one
minute of a given request REQ”.

(3) Finally, extracted from the Simple Mail Transport Protocol specification
[Kle08], we have a requirement that exhibits a composition of request-
response timeout patterns: “a user should have a five minutes timeout for the
MAIL command and a three minutes timeout for the DATABLOCK command”.

Requirement (1) above (i.e., the pattern at the server side) specifies that a re-
ply should be sent within a fixed amount of time after the request have been
received. In requirement (2), which represents the client side, the server must
be ready to receive the client’s response within a fixed amount of time. In gen-
eral, these patterns can be written as:

(a) Server side: After receiving amessage REQ from A, Bmust send the acknowl-
edgment ACK within tA time units.

Chapter 1. Introduction 20

(b) Client side: After sending a message REQ to B, A must be able to receive the
acknowledgment ACK from B within tB time units.

2. Messages in a time-frame pattern: This pattern is used to enforce a limit on the
number of messages within a given time-frame (see Fig. 1.7). Regarding this

A B

MSG1...
MSGk

t

MSG1...
MSGk

t

MSGk+16

t′

Figure 1.7: Messages in a time-frame.

pattern, the authors of [NBY17] identified two use cases as they appeared in
[CPS09]:

(1) Controlling denial of service (DOS) attacks: “a user is allowed to send only
three redirect messages to a server with an interval between the messages of no
less than two time units”.

(2) Used in the Travel Agency web service: “a customer can change the date of
his travel only two times and this must happen between one and five days of the
initial reservation”.

Observe that this pattern specifies the repetition of a given number ofmessages.
We can then identify two ways in which this repetition is specified: (a) we can
require the repetition to occur at a specified pace; i.e., requiring that messages
can only be sent in intervals of time, or (b) specifying an overall time-frame for
the messages to be sent.
We generalize these patterns next. Trying to be consistent with Fig. 1.7, we will
use t for the interval pattern and t′, for the overall time-frame pattern. Letters
r and r′ denote the upper bound of the time-frames—i.e., t ≤ i ≤ r (resp.
t′ ≤ i ≤ r′), where i corresponds to the “safe time” for messages to be sent.

(a) Interval: A is allowed to send B at most kmessages, and at time intervals of
at least t and at most r time units.

(b) Overall time-frame: A is allowed to send B at most k messages in the overall
time-frame of at least t′ and at most r′ time units.

3. Action duration pattern: This pattern sets a constraint on the delay between ac-
tions of the same participant (see Fig. 1.8).

Chapter 1. Introduction 21

A B
MSG1

MSG2
t

Figure 1.8: Action duration.

In the figure, double-headed arrows are used because, contrary to the request-
response timeout, the action duration pattern expresses the requirement only
in terms of A. For example, the requirement “a user should not be inactive more
than 30 minutes” can be specified by this pattern. Neykova et al. [NBY17] state
that this pattern can express progress properties verified by the UPPAAL model-
checker [Uni]: “a user is allowed to stay in the state for no more than three time units”.
We generalize the pattern below:

(a) The time elapsed between two actions of the same participant A must not
exceed t time units.

4. Repeated constraint pattern: As its name implies, this pattern deals with repeated
constraints that appear as loops in the protocol (see Fig. 1.9).

A B

Cont. loop

Rec. loop

REQ
t

Figure 1.9: Repeated constraint.

According to Neykova et al. [NBY17], this pattern captures the requirements in
pull notification systems, where the intervals at which a certain interaction should
be repeated is fixed. For example: “the email client should request the emails from
the web service every 5 seconds”. A generalized version of the pattern is:

(a) Amust send (and unbounded number of)messages to B every t time units.

The main differences of this pattern with respect to the request-response time-
out are: (1) the number of messages is unbounded, and (2) the time required
to elapse between messages is exactly t.

We shall revisit these patterns in § 4.4, § 7.4, and § 10.6 to investigate how they
can be represented in the context of our proposed unified view.

Chapter 1. Introduction 22

1.7 This Dissertation
We present the overall structure of the dissertation and list some publications and
technical reports derived from the work herein presented.

1.7.1 Structure
This dissertation has been divided in four parts, described next. Some of the proofs
are presented in theAppendix, which has been organized following the chapter struc-
ture in the main text.

• Part I contains chapters that lay down the foundations of our work.

– Ch. 1 is the current chapter.
– Ch. 2 introduces our encodability criteria, based on [Gor10]; a session
π-calculus, called π [Vas12]; linear concurrent constraint programming
(lcc) [Hae11]; ReactiveML [MP05]; and a multiparty session calculus,
called MPST [CDPY15].

– Ch. 3 introduces the variants and extensions of the languages in Part I that
will serve as source and target languages for the translations presented
further in the dissertation. These languages have been developed specifi-
cally to address the challenges in further chapters.

• Part II answers (Q1) and presents two translations from session calculi into
linear concurrent constraint languages and their respective correctness proofs
(cf. § 1.5.1).

– Ch. 4 presents an encoding from a variant of π without output races (π OR)
into lcc. We also provide examples of timed communication patterns rep-
resented in our translation.

– Ch. 5 presents an encoding from an extension of π OR with explicit session
establishments and locations, called πE, into an lcc extension, called lccp,
that allows abstractions to have private information.

– Ch. 6 gives some final remarks andmention some additional relatedwork.

• Part III answers (Q2) and introduces two translations from session-based cal-
culi into ReactiveML (cf. § 1.5.2).

– Ch. 7 presents a translation from a variant of π without output and in-
put races (π R) into ReactiveML. We show the translation correctness and
present some examples of timed communication patterns in our transla-
tion.

– Ch. 8 presents a translation from an asynchronous session-based π-cal-
culus called aπ, a fragment of the calculus presented in [KYHH16], into
a queue-based variant of RML, called RMLq. We present the correctness
properties and give some small examples.

– Ch. 9 gives final remarks and mention some additional related work.

Chapter 1. Introduction 23

• Part IV answers (Q3) and presents a multiparty session-based calculus with
constructs for synchronous reactive programming, called MRS, and its type
system (see Ch. 10). In Ch. 11 we give some final remarks and related work
(cf. § 1.5.3).

• Part V concludes this dissertation by giving some closing remarks and future
work in Ch. 12.

1.7.2 Origin of the Results
The results in this dissertation supersede peer-reviewed publications and technical
reports co-authored by the author.

• Part II supersedes:

– Mauricio Cano, Camilo Rueda,HugoA. López, and JorgeA. Pérez. Declar-
ative interpretations of session-based concurrency. In Proc. of the Int. Sym-
posium on Principles and Practice of Declarative Programming (PPDP), pages
67–78. ACM, 2015.

• Part III supersedes:

– Mauricio Cano, Jaime Arias, and Jorge A. Pérez. Session-based concur-
rency, reactively. In Proc. of the Int. Conference on Formal Techniques for Dis-
tributed Objects, Components, and Systems (FORTE), pages 74–91, 2017.

– Mauricio Cano, Jaime Arias, and Jorge A. Pérez. A reactive interpreta-
tion session-based concurrency. Workshop on Reactive and Event-based
Languages & Systems (REBLS), co-located with the ACM SIGPLANCon-
ference on Systems, Programming, Languages andApplications: Software
for Humanity (SPLASH), 2016.

– Jaime Arias, Mauricio Cano, and Jorge A. Pérez. Towards A practical
model of reactive communication-centric software. In Proc. of the Italian
Conference on Theoretical Computer Science (ICTCS)., volume 1720 of CEUR
Workshop Proceedings, pages 227–233. CEUR-WS.org, 2016.

• Part IV supersedes:

– Mauricio Cano, Ilaria Castellani, Cinzia Di Giusto, and Jorge A. Pérez.
Multiparty Reactive Sessions. Research Report 9270, INRIA, April 2019.

2
Preliminaries

In this chapter we present the technical background needed in our work. First, we
formally define the correctness properties that we shall require in our encodings (cf.
§ 2.1). Next, we introduce a session π-calculus, called π [Vas12], used as a repre-
sentative language for session-based concurrency (cf. § 2.2). This process calculus
is the foundation for π OR (cf. § 3.1.1) and π R (cf. § 3.1.2); i.e., the source languages
for two of our translations (presented in Ch. 4 and Ch. 7, respectively). Similarly, we
introduce two of our target languages: lcc [Hae11] in § 2.3 and ReactiveML [MP05]
in § 2.4. These languages are used for the encodings in Ch. 4 and Ch. 7, respectively.
Finally, we introduce multiparty sessions (MPST) [CDPY15] in § 2.5. This calculus
is used as the basis for the results presented in Ch. 10.

2.1 Relative Expressiveness
In this section we define the correctness properties we desire for our translations. A
key reference for this section comes from Gorla’s criteria for valid encodings [Gor10].

In § 2.1.1 we formally introduce languages and translations. In § 2.1.2, we intro-
duce the correctness criteria used for our correct translations. Finally, in § 2.1.3, we
introduce a refined formulation of operational correspondence, needed to bridge the
differences between declarative and operational languages.

2.1.1 Languages and Translations
We first formally define languages and translations.

Definition 2.1 (Languages and Translations). We define:

• A language L is a triplet 〈P,−→,/〉, where P is a set of terms (i.e., expressions,
processes), −→ is a relation on P that denotes an operational semantics, and /

Chapter 2. Preliminaries 25

is a pre-order on P. We use =⇒ to denote the reflexive-transitive closure of −→.

• A translation from Ls = 〈Ps,−→s,/s〉 into Lt = 〈Pt,−→t,/t〉 (each with count-
ably infinite sets of variables Vs and Vt, respectively) is a pair 〈J·K, ψJ·K〉, whereJ·K : Ps → Pt is defined as a mapping from source to target terms, and ψJ·K :
Vs → Vt is a renaming policy for J·K, which maps source variables to target vari-
ables.

Some informal intuitions follow. In language triplets, P represents a set containing
all the terms of the language, and finitely represented as a formal grammar, which
gives the formation rules for terms. Next, the operational semantics are given as
relations between terms, finitely denoted by sets of rules. In an operational semantics,
P −→ P ′ represents a pair (P, P ′) that is included in the relation; we call each one of
these pairs a step. Each step represents the fact that term P reduces to term P ′. For
the rest of this section, we will refer to P −→ P ′ as a reduction step. Moreover, we use
P =⇒ P ′ to say that P reduces to P ′ in 0 or more steps (i.e., a “multi-step” reduction).
Finally, and differing from [Gor10], we have /, which denotes a pre-order between
terms used to compare processes inside the language. We use a pre-order, rather than
the equivalence relation used in [Gor10], to account for the more general setting in
this dissertation. Indeed, in our work we will instantiate / as a symmetric pre-order
denoting a structural congruence (cf. Def. 2.11), as a bisimilarity (cf. Def. 2.33), and
as a non-symmetric pre-order (cf. Def. 2.42).

Regarding the pairs that represent translations, we have that the mapping J·K as-
signs each source term a corresponding target term. Notice that this mapping is usu-
ally defined inductively over the structure of source terms. The renaming policy ψJ·K
is in charge of translating variables. Notice that we do not use the more general ver-
sion of a renaming policy, given in [Gor10], since it is not necessary—in all our trans-
lations, variables are translated to themselves.

When referring to translations, we often use J·K (i.e., the mapping), instead of the
pair notation. We now introduce some terminology regarding translations.

Notation 2.2. Let 〈J·K, ψJ·K〉 be a translation from Ls = 〈Ps,−→s,/s〉 into Lt = 〈Pt,−→t

,/t〉.

• We will refer to Ls and Lt as source and target languages of the translation, re-
spectively. Whenever it does not creates any confusion, we will only refer to
source and target languages as source and target.

• We say that any process S ∈ Ps is a source term.

• Similarly, given a source term S, we say that any process T ∈ Pt that is reachable
from JSK using −→t is a target term.

2.1.2 Correctness Criteria
Sincewe are interested inmeaningful translations, we define a set of propertieswhich
determine whether said translation is valid or not. Following [Gor10], we shall be
interested in four properties: name invariance, compositionality, operational completeness,
and operational soundness. We refer to these properties as correctness criteria.

Chapter 2. Preliminaries 26

Definition 2.3 (Valid Encoding). Let Ls = 〈Ps,−→s,/s〉 and Lt = 〈Pt,−→t,/t〉 be
languages. Also, let 〈J·K, ψJ·K〉 be a translation between them (cf. Def. 2.1). We say
that such a translation is a valid encoding if it satisfies the following criteria:

1. Name invariance: For all S ∈ Ps and substitution σ, there exists σ′ such thatJSσK = JSKσ′, with ψJ·K(σ(x)) = σ′(ψJ·K(x)), for any x ∈ Vs.

2. Compositionality: Let ress(·, ·) and pars(·, ·) (resp. rest(·, ·) and part(·, ·)) de-
note restriction and parallel composition operators in Ps (resp. Pt). Then, we
define: Jress(x, P)K = rest(ψJ·K(x), JP K) and Jpars(P,Q)K = part(JP K, JQK).

3. Operational Completeness: For every S, S′ ∈ Ps such that S =⇒s S
′, it holds

that JSK =⇒t T and T /t JS′K, for some T ∈ Pt.

4. Operational Soundness: For every S ∈ Ps and T ∈ Pt such that JSK =⇒t T ,
there exists S′, T ′ such that S =⇒s S

′ and T =⇒t T
′ and T ′ /t JS′K.

Above, name invariance and compositionality correspond to the so-called static
criteria. Name invariance ensures that substitutions are well-behaved in translated
terms. The condition ψJ·K(σ(x)) = σ′(ψJ·K(x)) ensures that for every variable sub-
stituted in the source term (i.e., σ(x)), there exists a substitution σ′ such that the
translation of x (i.e., ψJ·K(x)) is substituted by the translation of σ(x).

Compositionality ensures that the translation of compound terms depends on
their sub-terms. These sub-terms should then be combined in a target language con-
text that ensures their interactions are preserved. In this work, rather than the more
general version presented in [Gor10], we focus on compositionality at the level of
parallel composition and restriction. While the focus on parallel composition is ex-
pected (we are dealingwith languages that describe concurrent programs), our focus
on restriction comes from the fact that, as we shall see later, the hiding operator in
the π-calculus does not entirely correspond to the restriction operator in our target
languages.

Together, operational completeness and soundness form the operational correspon-
dence criterion, which can be considered a dynamic correctness criterion, as it deals with
preservation and reflection of behavior. Intuitively, operational completeness en-
sures that the behavior of the source semantics is preserved by the target semantics.
Operational soundness, on the other hand, ensures that the target semantics does not
introduce extraneous steps that do not correspond to anything the source can do.
More in details, operational completeness requires that for every multi-step reduc-
tion in the source language there exists a multi-step reduction in the target language
that simulates the source. The pre-order /t then ensures that the target term ob-
tained by the multi-step reduction in the target terms preserves the same behavior as
the translation of the reduced source term. Similarly, operational soundness requires
that every reduction in the target language corresponds to a reduction in the source,
where /t ensures that the reduced target term has the same behavior as the reduced
source term.

Remark 2.4 (Gorla’s Criteria). Besides name invariance, compositionality, and opera-
tional correspondence, Gorla [Gor10] advocates for two additional correctness cri-
teria (divergence reflection and success sensitiveness), which we do not consider in this
work.

Chapter 2. Preliminaries 27

Success Sensitiveness assumes a “success” predicate on source processes (denoted
S ⇓) that is also definable on target processes (denoted T ⇓). In the name-
passing calculi considered in [Gor10], this predicate can be naturally assimi-
lated to the notion of observable (or barb). The corresponding encodability cri-
terion is then defined as

“A translation J·K : Ls → Lt is success sensitive if, for every S, it holds that S⇓ if and
only if JSK⇓.”

We do not consider success sensitiveness because the session π-calculi we will
present in this work do not have a natural notion of observable behavior: as we
will see, the semantics of these languages are closed under restriction—there
are no free names we can observe (let alone preserve by a translation).

Divergence Reflection ensures that every infinite sequence of reductions in a tar-
get term corresponds to some infinite sequence of reductions in its associated
source term. Let us write S −→ω

s (resp. T −→ω
t) whenever the source term S

(resp. target term T) has such an infinite sequence of reductions. The corre-
sponding encodability criterion is then defined as:

“A translation J·K : Ls → Lt reflects divergence if, for every S such that JSK −→ω
t then

S −→ω
s .”

In our setting, this criterion is not very meaningful because the semantics of
target languages can be very different to the ones of source languages—see
below. Hence, there may not be a clear correspondence between infinite be-
havior between the source and target languages. Moreover, in most of the ses-
sion π-calculi we use as source languages, infinite behavior will only come from
(input-guarded) replicated processes (“servers”), which are triggered by a cor-
responding output prefix (“client requests”). As we will see later, the type
systems introduced for these source languages will ensure that well-typed pro-
cesses contain a finite number of server requests, which rules out the possibility
of having infinite reduction sequences in source processes.

2.1.3 A Refined Notion of Operational Correspondence
Arguably, the most interesting correctness criterion of the ones mentioned above
is operational correspondence: it attests that a translation preserves the intended
behavior of a source term, without adding or removing any meaningful behaviors
found in the source language. While this intuition is clear, formalizing operational
correspondence may be delicate: depending on the semantics of both source and
target languages, we may be interested in variants of the operational criteria stated
above.

To illustrate this point, we consider an extended example based on µccs: this is
the (tiny) fragment of CCS [Mil80] without prefixes, restriction, or relabeling, given
by the grammar below. We assume sets A and A, ranged over a, a′, . . . and a, a′, . . .,

Chapter 2. Preliminaries 28

respectively. These sets contain the actions that can synchronize.

s ::= X | a | a
P ::= s | P1 ‖ P2

Above, sdenotes actions a, a, or the terminated actionX. Then, P denotes the parallel
composition of actions (i.e., processes). Let us now consider the following semantics
for µccs:

bSYNCc
s1 = a s2 = a

s1 ‖ s2 −→ X bPARc
P1 −→ P ′1

P1 ‖ P2 −→ P ′1 ‖ P2

bSTRc
P1

.
= P ′1 −→ P ′2

.
= P2

P1 −→ P2

where Rule bSYNCc synchronizes complementary actions a and a; this is acknowl-
edged by evolving into X. Rule bPARc allows reduction of parallel components. Fi-
nally, Rule (STR) allows to use .

=, a syntactic equivalence extended with commuta-
tivity and associativity of the parallel composition operator, as the structural congru-
ence in µccs. The formal language is then given by Lµ = 〈µccs,−→, .=〉.

To compare semantics with different speeds, we define an alternative synchro-
nous (in the sense of synchronous programming) semantics for µccs. The goal of
this synchronous semantics is to execute all possible synchronizations in a process
instantaneously—i.e., in a single step. To define such semantics, we take into account
two important observations:

• In µccs, a redex is the parallel composition of two complementary actions: a ‖ a.
We use R1, R2, . . . to range over redexes.

• In µccs, a process can be represented as the finite parallel composition of re-
dexes and actions which, up to the structural congruence .

=, can be written as:
R1 ‖ · · · ‖ Rn ‖ s1 ‖ · · · ‖ sm, with n,m ≥ 1.

Using the previous observations, we now present a synchronous semantics for µccs,
given by the following reduction rule:

bSSYNCc
∀i, j ∈ {1, . . . ,m}.(i 6= j ∧ si ‖ sj not a redex)

R1 ‖ · · · ‖ Rn ‖ s1 ‖ · · · ‖ sm ⇓ X1 ‖ · · · ‖ Xn ‖ s1 ‖ · · · ‖ sm

In the semantics above, we assume that all the processes have already been pre-
organized by applying .

=. This is done for simplicity, as we would require to add
a rule similar to (STR), otherwise. Intuitively, Rule bSSYNCc synchronizes all the re-
dexes Ri contained in a process, while leaving the actions that cannot form redexes
(i.e., si) intact. The semantics above induces a formal language: L#

µ = 〈µccs,⇓, .=〉.
Notice that even in this simple setting, establishing operational completeness for a
concrete translation is not obvious.

Example 2.5. Let us consider the identity translation of Lµ into L#
µ, i.e., JP K = P .

Then, consider process P = a ‖ a ‖ a′ ‖ a′. With the semantics for Lµ, it can be
shown that a possible reduction is P −→ (X ‖ a′ ‖ a′) = P ′. In contrast, using the
semantics for L#

µ, the only possible reduction for the translation is JP K ⇓ (X ‖ X).
Therefore, it can be observed that criterion (3) in Def. 2.3 does not hold: using the
semantics of L#

µ, there does not exist a T such that JP K ⇓ T , where T .
= JP ′K. 4

Chapter 2. Preliminaries 29

The example above shows that, in a single step, the semantics of L#
µ allows more

synchronizations than the semantics for Lµ. Still, it can be shown that the translation
is semantically correct: although L#

µ cannot match exactly the reductions in Lµ, it can
be shown that for every −→ step there is a corresponding ⇓. This correspondence,
however, is not so obvious: it can be shown that for every step P −→ P ′, there exists a
reduction P ⇓ P ′′ such that P ′ −→ P ′′. In other words, it can be shown that for every
source reduction, there exists a target reduction which corresponds to a sequence of
source reductions starting from the reduced source term. For example, in Ex. 2.5, we
have that P −→ X ‖ a′ ‖ a′ = P ′, that JP K ⇓ X ‖ X, but also, P ′ −→ X ‖ X.

To formalize the previous idea, let us consider in detail the formulation of com-
pleteness in Gorla’s framework (cf. Def. 2.3(3)):

“For every S, S′ ∈ Ps such that S =⇒s S
′, it holds that JSK =⇒t T

and T /t JS′K, for some T ∈ Pt.”
In cases such as the translation of Lµ into L#

µ, this property does not appropriately
capture the connection between source terms and their translated target terms. We
should then relax this formulation in such a way that it allows target terms to be
“ahead” with respect to the behavior in their corresponding source terms. A refined
formulation for completeness is the following:

“For every S, S′ ∈ Ps such that S =⇒s S
′, it holds that JSK =⇒t T ,

S′ =⇒s S
′′ and T /t JS′′K, for some T ∈ Pt and some S′′ ∈ Ps.”

The difference is in the second line: since the target language “moves faster” than the
source language, the process T that is obtained from JSK is not related to S′, which
has been obtained using the (slower) source semantics; to compensate for this, ad-
ditional steps from S′ are required, until reaching some S′′. Then, we consider the
correspondence between JS′′K and T , rather than between JS′K and T .

In our results, this difference becomes apparent in Ch. 7, as ReactiveML has a
synchronous semantics. Therefore, the semantics of ReactiveML indeed “goes faster”
than that of π: in the semantics of ReactiveML each step represents a complete instant
and therefore, several actions will be executed in a single execution step. These dif-
ferent speeds create a mismatch with respect to the (standard) reduction semantics
of π. For these reasons, we establish the correctness of our translations with respect
to the following definition of refined encoding, which adopts our revised formulation
of completeness:

Definition 2.6 (Refined Encoding). Let Ls = 〈Ps,−→s,/s〉 and Lt = 〈Pt,−→t,/t〉 be
languages; also let 〈J·K, ψJ·K〉 be a translation between them (cf. Def. 2.1). We say that
such a translation is a refined encoding if it satisfies name invariance (cf. Def. 2.3(1)),
compositionality (cf. Def. 2.3(2)), operational soundness (cf. Def. 2.3(4)), and the
following criterion for operational completeness:

(3’) Operational Completeness: For every S, S′ ∈ Ps such that S =⇒s S
′, it holds

that JSK =⇒t T , S′ =⇒s S
′′ and T /t JS′′K, for some T ∈ Pt and some S′′ ∈ Ps.

Throughout the rest of this work we shall focus on both valid and refined encod-
ings as needed. In this sense, we will find it illustrative to consider the connection
between them. To this end, we establish results of semantic correspondence that connect
two different semantics for the same process language.

Chapter 2. Preliminaries 30

Semantic Correspondence

Notice that the differences between valid encodings and refined encodings are in-
duced by, what we have dubbed, the “semantic speed” of both the source and target
languages. In our message-passing setting, semantic speed refers to the number of
parallel synchronizations that a term can execute in a single step. For example, con-
sider the following π-calculus process:

P = (νxy)(νwz)(x〈v1〉.0 | w〈v2〉.0 | y(z1).0 | z(z2).0)

Aswe shall see later (cf. § 2.2), the semantics of π (cf. Fig. 2.1) will only let P execute
a single synchronization in each reduction. This means that P will reduce to either
(νwz)(w〈v2〉.0 | z(z2).0) or (νxy)(x〈v1〉.0 | y(z1).0). This behavior will contrast with
the synchronizations in ReactiveML aswewill see later (cf. § 2.4), since the following
ReactiveML program:

e4 = signal x, x′ in (emit x 42 ‖ await x(y) in y ‖ emit x′ 56 ‖ await x′(z) in z)

will reduce in a single step into 42 ‖ 56. This means that the semantics of Reactive-
ML allows e4 to make more than one parallel synchronization in a single step. Thus,
according to our intuitive definition of semantic speed, ReactiveML is faster than π.

Remark 2.7. Notice that the operational completeness from valid encodings (Def. 2.3)
implies the refined operational completeness presented in Def. 2.6. This means that
our operational correspondence relaxes Gorla’s operational correspondence by al-
lowing the source language to be “behind” the target language during a sequence of
reductions.

Considering the previous remark, it is natural to questionwhether given a refined
encoding (cf. Def. 2.6), there exists an alternative semantics for the source language
which makes the encoding valid (cf. Def. 2.3). In our setting, as we shall show in
this dissertation, this query can be answered positively. Nonetheless, the alternative
semantics should have a strong connection with the initial semantics, as we do not
want to add or remove behavior in the source language. We call this relation a se-
mantic correspondence between the two semantics. Notice that the idea of semantic
speed is orthogonal to semantic correspondence, as the correspondence just ensures
that the semantics allows the same behavior in a term. Intuitively, two semantics are
semantically corresponding if whenever one of them goes ahead of the other, it is possi-
ble to the semantics that is behind to “catch up” and reach the same term. Below we
give both the definition of semantic correspondence in a single-step and a multi-step
version.

Definition 2.8 (Semantic Correspondence (Single-Step)). Given a language Ls =
〈Ps,−→s,/s〉 and an alternative semantics for Ls, denoted −→s′ . We say that −→s and
−→s′ are semantically correspondent if for every S1, S2 ∈ Ps the following holds:

1. If S1 −→s S2 then there exists S′2 ∈ Ps such that S1 −→s′ S
′
2 and S2 =⇒s S

′
2.

2. If S1 =⇒s′ S2 then S1 =⇒s S2.

Chapter 2. Preliminaries 31

bCOMc (νxy)(x〈v〉.P | y(z).Q | R) −→ (νxy)(P | Q{v/z} | R)

bSELc (νxy)(x / lj .P | y . {li:Qi}i∈I | R)−→(νxy)(P | Qj | R) (j ∈ I)

bREPc (νxy)(x〈v〉.P |∗ y(z).Q | R) −→(νxy)(P | Q{v/z} |∗ y(z).Q | R)

bIFTc tt? (P) : (Q) −→ P bIFFc ff? (P) : (Q) −→ Q

bSTRc
P ≡S P

′ P ′ −→ Q′ Q′ ≡S Q

P −→ Q

bPARc
P −→ P ′

P | Q −→ P ′ | Q

bRESc
P −→ P ′

(νx)P −→ (νx)P ′

Figure 2.1: Reduction relation for π processes.

Definition 2.9 (Semantic Correspondence (Multi-Step)). Given a language Ls =
〈Ps,−→s,/s〉 and an alternative semantics for Ls, denoted −→s′ . We say that −→s and
−→s′ are semantically correspondent if for every S1, S2 ∈ Ps the following holds:

1. If S1 =⇒s S2 then there exists S′2 ∈ Ps such that S1 =⇒s′ S
′
2 and S2 =⇒s S

′
2.

2. If S1 =⇒s′ S2 then S1 =⇒s S2.

2.2 The Session π-Calculus (π)
In this section we present a session π-calculus, simply called π. As a variant of the π-
calculus, π is message-passing process calculus, used to model communicating sys-
tems. In π, communication is synchronous: every output action is blocked until a
complementary input action can receive the sent message. In π, binary sessions are es-
tablished over communication channels. Each communication channel in π is character-
ized by a pair of channel endpoints. Then, a communicating party can send messages
over its corresponding channel endpoint and receivemessages by reading its comple-
mentary endpoint. Channel endpoints can also be called session endpoints. Whenever
the context allows it, we use “endpoints” to refer to both session and channel end-
points.

We closely follow the presentation of Vasconcelos [Vas12]. In § 2.2.1, we summa-
rize the syntax and semantics of π. Next, in § 2.2.2, we summarize the type system
for π. Finally, we summarize the guarantees ensured by typing and present some
examples of typing derivations in § 2.2.3.

2.2.1 Syntax and Semantics
We assume a basic set of variables, represented as a countably infinite set Vs, ranged
over by x, y, Channels are represented as pairs of variables, called co-variables.
Messages are then represented by values, ranged over by v, v′, u, u′, . . . and whose
base set is called Us. Values can be both variables and the boolean constants tt, ff.
We also use l, l′, . . . to range over a countably infinite set of labels, denoted Bπ . We

Chapter 2. Preliminaries 32

write x̃ to denote a finite sequence of variables x1, . . . , xn with n ≥ 0 (and similarly
for sequences of other elements).

Below, we present the construction rules for π processes as a formal grammar. We
will often refer to the set of all processes as π.
Definition 2.10 (π). The grammar below defines the construction rules for π pro-
cesses:

(Processes) P,Q ::= x〈v〉.P (Output)
| x(y).P (Input)
| x / l.P (Selection)
| x . {li : Pi}i∈I (Branching)
| b? (P) : (Q) (Conditional)
| ∗x(y).P (Replicated input)
| (νxy)P (Restriction)
| P | Q (Parallel composition)
| 0 (Inaction)

Process x〈v〉.P sends value v over x and then continues as P ; dually, process
x(y).Q expects a value v on x that will replace all free occurrences of y inQ. Processes
x / lj .P and x . {li : Qi}i∈I define a labeled choice mechanism, with labels indexed
by the finite set I : given j ∈ I , process x / lj .P uses x to select lj from x . {li : Qi}i∈I
and triggering process Qj . We assume pairwise distinct labels. The conditional pro-
cess v? (P) : (Q) behaves as P if v evaluates to tt; otherwise it behaves as Q. Process
∗x(y).P denotes a replicated input process, which allows us to express infinite server
behaviors. The restriction (νxy)P binds together x and y in P , thus indicating that
they are two endpoints of the same channel; i.e., the same session. Parallel com-
position and inaction are standard. We often write

∏n
i=1 Pi to stand for P1 | · · · | Pn.

Furthermore, we say that the parallel sub-processes of
∏n

i=1 Pi are threads. Moreover,
whenever ‘ | ’ does not occurs at the top-level of a process, we say that process is a
sequential thread. In x(y).P and ∗x(y).P (resp. (νyz)P) occurrences of y (resp. y, z)
are bound with scope P . The set of free variables of P , denoted fvπ(P), is defined as
expected.

The operational semantics for π is given as a reduction relation −→, the smallest
relation generated by the rules in Fig. 2.1. Reduction expresses the computation steps
that a process performs on its own. It relies on a structural congruence on processes,
given below.
Definition 2.11. The structural congruence relation for π processes is the smallest
congruence relation≡S that satisfies the following axioms and identifies processes up
to renaming of boundvariables (i.e.,α-conversion). The renaming of boundvariables
is denoted ≡α.

(SCπ :1)
P | 0 ≡S P

(SCπ :2)
P | Q ≡S Q | P

(SCπ :3)
(P | Q) | R ≡S P | (Q | R)

(SCπ :4)
(νxy)(νwz)P ≡S (νwz)(νxy)P

(SCπ :5)
(νxy)0 ≡S 0

(SCπ :6)
P ≡α Q

P ≡S Q
(SCπ :7)

x, y 6∈ fvπ(Q)

(νxy)P | Q ≡S (νxy)(P | Q)

Chapter 2. Preliminaries 33

We briefly comment on the rules in Fig. 2.1. Reduction requires an enclosing re-
striction (νxy)(· · ·); this represents the fact that a session connecting endpoints x and
y has been already established. Hence, communication cannot occur on free vari-
ables, as there is no way to tell what is the pair of interacting co-variables. In Rules
bCOMc, bSELc, and bREPc, the restriction is persistent after each reduction, to allow fur-
ther synchronizations on co-variables x and y. Moreover, in the same rules, process
R collects all the threads that may share variables x and y.

Rule bCOMc represents the synchronous communication of value v through end-
point x to endpoint y. Furthermore, Rule bSELc formalizes a labeled choice mecha-
nism, in which communication of a label lj is used to choose which of the Qi will be
executed, Rule bREPc is similar to Rule bCOMc, and used to spawn a new copy of Q,
available as a replicated server. Rules bIFTc and bIFFc are self-explanatory. Rules for
reduction within parallel and restriction contexts, together with the reduction up to
≡S are as expected.

To reason compositionally about the syntactic structure of π processes, we intro-
duce the idea of (evaluation) contexts for π. A π context represents a process with a
“hole”, which may be filled by another π process. Formally:
Definition 2.12 (Contexts for π). The syntax of (evaluation) contexts in π is given
by the following grammar:

E ::= − | E | P | P | E | (νxy)(E)

whereP is a π process and ‘−’ represents a hole. WewriteC[−] to range over contexts
(νx̃ỹ)(−). We also write E[P] (resp. C[P]) denote the process obtained by filling ‘−’
with P .

2.2.2 Type System
We now summarize the type system presented in [Vas12]. We use q, q′, . . . , to range
over qualifiers; p, p′, . . . , to range over pre-types; T, T ′, U, U ′, . . . to range over types, and
Γ,Γ′, . . . to range over typing environments—i.e., sets that contains pairs x : T , where
x is a variable and T is a type.
Definition 2.13 (Syntax). The syntax of types and typing contexts is given in Fig. 2.2.
Given two typing environments Γ1 and Γ2, we write Γ1,Γ2 to denote their concate-
nation. We write dom(Γ) to denote the domain of Γ.

Intuitively, pre-types represent pure communication behavior (e.g., send, receive,
selection, and branching), which can then be assigned a qualifier to indicate whether
the behavior is unrestricted or linear (see below). Pre-type !T1.T2 represents a proto-
col that sends a value of type T1 and then continues according to type T2. Dually,
pre-type ?T1.T2 represents a protocol that receives a value of type T1 and then pro-
ceeds according to type T2. Pre-types ⊕{li : Ti}i∈I and &{li : Ti}i∈I denote labeled
selection (internal choice) and branching (external choice), respectively.

Qualifiers give additional information about the behavior represented by pre-
types. Briefly, linearly qualified pre-types can only be assigned to variables that do not
appear shared among threads (i.e., they only occur in exactly one sequential thread),
whereas unrestricted pre-types may be assigned to variables shared among differ-
ent threads. Types can be one of the following: (1) bool, used for constants and

Chapter 2. Preliminaries 34

(Qualifiers) q ::= lin (Linear)
| un (Unrestricted)

(Pre-types) p ::= ?T.T (Receive)
| !T.T (Send)
| ⊕{li : Ti}i∈I (Select)
| &{li : Ti}i∈I (Branch)

(Types) T ::= bool (Boolean)
| end (Termination)
| qp (Qualified Pre-type)
| a (Type Variable)
| µa.T (Recursive Type)

(Typing environments) Γ ::= ∅ (Empty Environment)
| Γ, x : T (Assumption, with x 6∈ dom(Γ))

Figure 2.2: Session Types: Qualifiers, Pre-types, Types, and Typing Environments.

variables; (2) end, which indicates a terminated behavior; (3) qualified pre-types,
which are assigned to variables and represent communication patterns (see below);
or (4) recursive types for disciplining potentially infinite communication patterns.
In π, recursive types are considered equi-recursive; i.e., types are equal to their un-
folding because are equated to the same regular infinite trees, and contractive; i.e.,
containing no subexpression of the form µt1. . . . µtn.t1 [Pie02]. Following [Vas12],
we omit end at the end of types whenever it is not needed; we also write recursive
types µa. un!T.a and µa. un?T.a as ∗ !T and ∗ ?T , respectively.

Observe that bool and end are always assumed to be unrestricted. Similarly, the
qualifier of a recursive type T = µa.T ′is obtained via unfolding, by assigning the
qualifier of the body T ′ to type T .

Following [Vas12], we define predicates over types to indicate which types can
be assigned to shared variables and which not:
Definition 2.14 (Predicates for Session Types). Let T be a session type (cf. Fig. 2.2).
We define q(T) and q(Γ) for each qualifier q ∈ {un, lin}:

• lin(T) if and only if true.

• un(T) if and only if T = bool or T = end or T = un p.

• q(Γ) if and only if x : T ∈ Γ implies q(T).
Predicate lin(T) is true for all types, whereas predicate un(·) only holds for the

terminated type, the ground type bool and pre-types qualified with un. Predicates
un(·) and lin(·) are extended to typing environments as expected.

Session type systems depend on type duality to relate two types with comple-
mentary (or opposite) behaviors: e.g., the dual of input is output (and vice versa);
branching is the dual of selection (and vice versa). Following [Vas12], we define du-
ality as an inductive function on the structure of types. Wewrite T to denote the dual
of type T .

Chapter 2. Preliminaries 35

Definition 2.15 (Duality of Session Types). For every type T except bool, we define
duality by:

end
def
= end a def

= a !T.U
def
= ?T.U ?T.U

def
= !T.U ⊕{li : Ti}i∈I

def
= &{li : Ti}i∈I

&{li : Ti}i∈I def
= ⊕{li : Ti}i∈I µa.T def

= µa.T

We use a typing environment splitting operator on typing environments, denoted
‘◦’, to maintain the linearity invariant for variables on typing derivations.

Definition 2.16 (Typing Environment Splitting [Vas12]). Let Γ1 and Γ2 be two typ-
ing environments. The (typing) environment splitting of Γ1 and Γ2, written Γ1 ◦ Γ2,
is defined as follows:

∅ ◦ ∅ = ∅
Γ1 ◦ Γ2 = Γ un(T)

(Γ1, x : T) ◦ (Γ2, x : T) = Γ, x : T

Γ1 ◦ Γ2 = Γ lin(T)

(Γ1, x : T) ◦ Γ2 = Γ, x : T

Γ1 ◦ Γ2 = Γ lin(T)

Γ1 ◦ (Γ2, x : T) = Γ, x : T

We also define a ‘+’ operation to correctly update the typing environment during
derivations.

x : T 6∈ Γ

Γ + x : T = Γ, x : T

un(T)

(Γ, x : T) + x : T = Γ, x : T

Given a typing environment Γ and a process P , typing judgments are of the
form Γ ` P . Fig. 2.3 gives the typing rules for π processes; some intuitions follow
(see [Vas12] for full details).

Rules (T:BOOL) and (T:VAR) are for variables; in both cases, we check that all
variables assigned to types satisfying lin(·) are consumed, by requiring un(Γ). Rule
(T:IN) types an input process: it checks whether x has the right type and checks the
continuation; it also adds variable y with type T and updates x in Γ with type U .
To type-check a process x〈v〉.P , Rule (T:OUT) splits the typing environment in three
parts: the first is used to check the type of the sent object v; the second is used to check
the type of subject x; the third is used to check the continuation P . Rules (T:BRA)
and (T:SEL) type-check label branching and label selection processes, and work simi-
larly to Rules (T:IN) and (T:OUT), respectively. Rule (T:RIN) types a replicated input
∗x(y).P ; it requires the environment Γ to be unrestricted (hence, no split is needed).
The rule also requires that the environment contains an input qualified with un , and
that the continuation P is typed with an environment that contains y : T and x : U .

Rule (T:PAR) types parallel composition using the (environment) splitting oper-
ation to divide resources among the two threads. Rule (T:RES) types the restriction
operator by performing a duality check on the types of the co-variables. Rule (T:IF)
type-checks the conditional process. Finally, Rule (T:NIL) types the inactive process
0; it also checks that the typing environment only contains unrestricted variables.

2.2.3 Typing Properties
As a way to introduce the fundamental guarantees expected from the type system of
a session calculus, we summarize the most prominent properties in [Vas12].

Chapter 2. Preliminaries 36

(T:BOOL)
un(Γ)

Γ ` ff, tt : bool
(T:VAR)

un(Γ1,Γ2)

Γ1, x : T,Γ2 ` x : T

(T:IN)
Γ1 ` x : q?T.U (Γ2 + x : U), y : T ` P

Γ1 ◦ Γ2 ` x(y).P

(T:OUT)
Γ1 ` x : q!T.U Γ2 ` v : T Γ3 + x : U ` P

Γ1 ◦ Γ2 ◦ Γ3 ` x〈v〉.P

(T:SEL)
Γ1 ` x : q⊕{li : Ti}i∈I Γ2 + x : Tj ` P j ∈ I

Γ1 ◦ Γ2 ` x / lj .P

(T:BRA)
Γ1 ` x : q&{li : Ti}i∈I ∀i ∈ I.Γ2 + x : Ti ` Pi

Γ1 ◦ Γ2 ` x . {li : Pi}i∈I

(T:RIN)
un(Γ) Γ ` x : un?T.U (Γ + x : U), y : T ` P

Γ ` ∗x(y).P

(T:PAR)
Γ1 ` P Γ2 ` Q
Γ1 ◦ Γ2 ` P | Q

(T:RES)
Γ, x : T, y : T ` P

Γ ` (νxy)P

(T:IF)
Γ1 ` v : bool Γ2 ` P Γ2 ` Q

Γ1 ◦ Γ2 ` v? (P) : (Q)
(T:NIL)

un(Γ)

Γ ` 0

Figure 2.3: Session types: typing rules for π processes.

Subject congruence proves that typing is preserved by structural congruence. In
other words, if P is typable with some environment Γ, then all of its structural con-
gruent processes Q are also required to be typable with Γ. This result is useful for
proving subject reduction.

Lemma 2.17 (Subject Congruence [Vas12]). If Γ ` P and P ≡S Q then Γ ` Q.

Subject reduction ensures that typing is preserved by the reduction relation given
in Fig. 2.1. Notice that due to Rule bSTRc, subject congruence becomes necessary to
prove this statement.

Theorem 2.18 (Subject Reduction [Vas12]). If Γ ` P and P −→∗ Q then Γ ` Q.

Next, we collect results that concern process structure: often, we refer to these
statements collectively as type safety results; they aim to show that the type system
rules out communication errors. We summarize these statements as they were pre-
sented in [Vas12]. We require auxiliary notions for pre-redexes, redexes, andwell-formed
processes, given next:

Definition 2.19 (Pre-redexes andRedexes). We shall use the following terminology:

• We say x〈v〉.P , x(y).P , x / l.P , x . {li : Pi}i∈I , and ∗x(y).P are pre-redexes (at
variable x).

• A redex is a process R such that (νxy)R −→ and:

Chapter 2. Preliminaries 37

1. R = v? (P) : (Q) with v ∈ {tt, ff} (or)
2. R = x〈v〉.P | y(z).Q (or)
3. R = x〈v〉.P | ∗ y(z).Q (or)
4. R = x / lj .P | y . {li : Qi}i∈I , with j ∈ I .

Moreover, a redex R is either conditional (if R = v? (P) : (Q)) or communicating
(otherwise).

In a session calculus like π, type safety results often depend on a well-formedness
property, such as the one presented below. The following well-formed property in
particular, showcases the flexibility that recursive unrestricted types introduce for the
type system presented in [Vas12].

Definition 2.20 (Well-Formed Process). A π process P0 is well-formed if for each of
its structural congruent processes P0 ≡S (νx1y1) . . . (νxnyn)(P | Q | R), with n ≥ 0,
the following conditions hold:

1. If P ≡S v? (P
′) : (P ′′) then v = tt or v = ff.

2. If P and Q are prefixed on the same variable, then they are of the same nature
(input, output, selection, or branching).

3. If P is prefixed at xi and Q is prefixed at yi, 1 ≤ i ≤ n, then P | Q is a redex.

Before stating type safety, we introduce a useful notation to characterize programs:
an important class of π processes.

Notation 2.21 ((Typable) Programs). A process P such that fvπ(P) = ∅ is called a pro-
gram. Therefore, program P is typable if it is well-typed under the empty environ-
ment (` P).

Type safety, stated below, ensures that all typable programs are well-formed.
Therefore, type safety ensures that no communication mismatches occur (absence
of communication errors).

Theorem 2.22 (Type Safety [Vas12]). If ` P then P is well-formed.

The following corollary shows that well-formedness is preserved under reduction
for well-typed programs. It follows from Thm. 2.18 and Thm. 2.22.

Corollary 2.23. If ` P and P −→∗ Q then Q is well-formed.

We now introduce a useful notation that allows us to refer to both inputs and
replicated inputs at the same time, whenever we do not wish to distinguish between
them.

Notation 2.24. Let P be a π process. We will write P = � y(z).P ′, to represent when-
ever P = y(z).P ′ or P = ∗ y(z).P ′.

We close this section by presenting some well-typed processes, which exhibits
the flexibility of recursive types, and their corresponding typing derivations. These
examples serve as illustration of the type system.

Chapter 2. Preliminaries 38

Example 2.25 (Well-Typed Processes). Let us consider the following well-typed π
processes:

P1 = (νxy)(x〈v1〉.Q1 | x〈v2〉.Q2 | ∗ y(z).Q3)

P2 = (νxy)(νwz)(x〈ff〉.0 | ∗ y(u).0 | ∗ y(u′).(w〈tt〉.0 | z(u′′).0))
P3 = (νwz)(νxy)(x〈z〉.w(u′).0 | ∗ y(u).u〈tt〉.0)
P4 = (νxy)(x〈tt〉.0 | x〈tt〉.y(u).0 | y(u′).x〈tt〉.0)

These processes are meant to give the reader an idea of the kind of processes that are
well-typed with unrestricted types in π. In particular, all the processes above, except
for P3, exhibit some form on nondeterminism in terms of reductions. For example,
process P1 has the following possible reductions:

P1 −→ (νxy)(Q1 | x〈v2〉.Q2 | Q3{v1/z} | ∗ y(z).Q3)

P1 −→ (νxy)(x〈v1〉.Q1 | Q2 | Q3{v2/z} | ∗ y(z).Q3)

Similarly, P2 also has two possible reductions:

P2 −→ (νxy)(νwz)(∗ y(u).0 | ∗ y(u′).(w〈tt〉.0 | z(u′′).0))
P2 −→ (νxy)(νwz)(∗ y(u).0 | w〈tt〉.0 | z(u′′).0 | ∗ y(u′).(w〈tt〉.0 | z(u′′).0))

Notice that although both P1 and P2 are similar in the sense that both allow two
nondeterministic reductions, each of them represents a very different scenario. The
intuitive model behind P1 corresponds to two clients attempting to interact with a
single replicated server, whereas in P2, we observe two replicated servers ready to
receive a message from a single client. Throughout this work, these two scenarios
will be known as output and input races, respectively, and will be detailed in further
chapters.

Below we present the typing derivation trees of P3 and P4, as examples of how
recursive, unrestricted types are used. Notice that we only mention the application
of typing rules for processes, while omitting the sub-trees corresponding to variables
and constants. For P2 we have:

(T:RES)

(T:PAR)
D1

(T:RIN)
(T:OUT)

(T:NIL)
un(Γ1, u : end)

Γ1, u : end ` 0
Γ1, u :!bool ` u〈tt〉.0

Γ1 ` ∗ y(u).u〈tt〉.0

x : ∗ !(!bool), y : ∗ ?(!bool)︸ ︷︷ ︸
Γ1

, w :?bool, z :!bool︸ ︷︷ ︸
Γ2

`
x〈z〉.w(u′).0 |
∗ y(u).u〈tt〉.0

` (νwz)(νxy)(x〈z〉.w(u′).0 | ∗ y(u).u〈tt〉.0)

where typing derivation sub-tree D1 corresponds to:

(T:OUT)
(T:IN)

(T:NIL)
un(Γ1, u

′ : bool, w : end)

Γ1, u
′ : bool, w : end ` 0

Γ1, w :?bool ` w(u′).0
Γ1,Γ2 ` x〈z〉.w(u′).0

Chapter 2. Preliminaries 39

A highlight from the typing derivation above is the fact that the typing environment
(i.e., Γ = Γ1,Γ2) displays both linear and unrestricted types. It can be seen that
un(Γ1) holds, hence we see Γ1 appear throughout the derivation, whereas lin(Γ2)
holds, and thus, Γ2 is only used in D1.

Finally, we show the typing derivation tree forP4. It is also important to notice that
in this case, the typing environment only contains unrestricted types and therefore,
it is unchanged during the derivation.

(T:RES)

(T:PAR)
(T:OUT)

(T:NIL)
un(Γ)

Γ ` 0
Γ ` x〈tt〉.0

(T:PAR)
D2 D3

Γ ` x〈tt〉.y(u).0 | y(u′).x〈tt〉.0
x : ∗ !bool, y : ∗ ?bool︸ ︷︷ ︸

Γ

` x〈tt〉.0 | x〈tt〉.y(u).0 | y(u′).x〈tt〉.0

` (νxy)(x〈tt〉.0 | x〈tt〉.y(u).0 | y(u′).x〈tt〉.0)

where the typing derivation sub-trees D2 and D3 are, respectively:

(T:OUT)
(T:IN)

(T:NIL)
un(Γ, u : bool)

Γ, u : bool ` 0
Γ ` y(u).0

Γ ` x〈tt〉.y(u).0
(T:IN)

(T:OUT)
(T:NIL)

un(Γ, u′ : bool)

Γ, u′ : bool ` 0
Γ, u′ : bool ` x〈tt〉.0

Γ ` y(u′).x〈tt〉.0

4

2.3 Linear Concurrent Constraint Programming (lcc)
In this section we introduce the first target language: linear concurrent constraint
calculus (lcc). It is a variant of ccp tightly related to linear logic [Gir87]. As in
ccp, concurrent processes in lcc interact via a (global) constraint store that defines a
synchronization mechanism for tell and ask operations.

The relation with linear logic follows in lcc due to the fact that the store is non-
monotonic, contrary to ccp. A non-monotonic store ensures that constraints can be
consumed whenever information is asked from it. Therefore, lcc is a formalism that
enables the specification and analysis of concurrent systems with partial information
and linear resources [FRS01, Hae11]. In particular, reasoning techniques over pro-
cesses based on observational equivalences [Hae11] and phase semantics [FRS01]
have been developed.

We follow the presentation of lcc given in [Hae11]. First introduce the syntax
and semantics of lcc (cf. § 2.3.1). Next, we introduce some important observational
equivalences that will be used throughout this work and we conclude with some
examples (cf. § 2.3.2).

2.3.1 Syntax and Semantics
Variables are ranged over by x, y, . . . and belong to the countably infinite set Vl. Simi-
larly, we assume thatΣc andΣf correspond to sets of predicate and function symbols,

Chapter 2. Preliminaries 40

respectively. First-order terms, built from Vl and Σf , will be denoted by t, t′, An
arbitrary predicate in Σc is denoted ϕ(t̃).

Definition 2.26 (Syntax). The syntax for lcc is given by the following grammar:

(Constraints) c, d ::= ff (False)
| tt (True)
| ϕ(t̃) (Predicates)
| c⊗ d (Linear Conjunction)
| ∃x̃.c (Existential)
| ! c (Bang)

(Guards) G,G′ ::= ∀x̃(c→ P) (Abstraction)
| G+G′ (Nondeterministic Sum)

(Processes) P,Q ::= c (Tell)
| G (Guards)
| P ‖ Q (Parallel)
| ∃x̃. P (Hiding)
| !P (Replication)

Constraints represent the pieces of information that can be posted to the store,
as well as be asked from it. Constant tt, the multiplicative identity, denotes truth;
constant ff denotes falsehood. Logic connectives used as constructors include the
multiplicative conjunction (⊗), bang (!), and the existential quantifier (∃x̃). Notation
c{t̃/x̃} denotes the constraint obtained by the (capture-avoiding) substitution of the
free occurrences of xi for ti in c, with |t̃| = |x̃| and pairwise distinct xi’s. Process
substitution P{t̃/x̃} is defined analogously.

The syntax for guards includes nondeterministic choices, denoted G1 + G2, and
parametric asks, denoted ∀x̃(c→ P), which spawns process P{t̃/x̃} if the current con-
straint store entails constraint c{t̃/x̃}; the exact operational semantics for parametric
ask operators (and its interplay with linear constraints) is detailed below. When x̃ is
empty (a parameterless ask), ∀x̃(c→ P) is written ∀ε(c→ P).

Besides guards, the syntax of processes includes the tell operator c that adds con-
straint c to the current store. Moreover, process constructs include parallel composi-
tion P ‖ Q, which has the expected reading, hiding ∃x̃. P , which declares x as being
local to P , and replication !P , that provides infinitelymany copies of P . We use nota-
tion

∏
1≤i≤n Pi (with n ≥ 1) to stand for process P1 ‖ · · · ‖ Pn. Universal quantifiers

in ask operators and existential quantifiers in hiding operators bind their respective
variables. Given this, the set of free variables in constraints and processes is defined
as expected, and denoted fv(·).

We follow closely the semantics for lcc processes given in [Hae11], which is para-
metric in a constraint system, as defined next.

Definition 2.27 (Constraint System). A constraint system is a triplet (C,Σ,`), where
Σ contains Σc (i.e., the set of predicates) and Σf (i.e., the set of functions and con-
stants). Also, C is the set of constraints obtained by using the grammar in Def. 2.26

Chapter 2. Preliminaries 41

(AX)
c ` c

(T1)
` tt

(CUT)
Γ, c ` d ∆ ` c

Γ,∆ ` d
(T2)

Γ ` c
Γ, tt ` c

(L⊗)
Γ, c1, c2 ` c
Γ, c1 ⊗ c2 ` c

(R⊗)
Γ ` c1 ∆ ` c2
Γ,∆ ` c1 ⊗ c2

(L∃)
Γ, c ` d

Γ,∃x.c ` d
x 6∈ fv(Γ, d) (R∃)

Γ ` c{t/x}
Γ ` ∃x.c

(!1)
Γ, c ` d
Γ, ! c ` d

(!2)
! Γ ` d
! Γ ` ! d

(!3)
Γ ` d

Γ, ! c ` d
(!4)

Γ, ! c, ! c ` d
Γ, ! c ` d

Figure 2.4: Intuitionistic linear sequents for lcc (cf. Def. 2.27).

and Σ. Relation is a subset of C × C that defines the non-logical axioms of the con-
straint system. Relation ` is the least subset of C∗×C containing and closed by the
rules in Fig. 2.4. We write c a` dwhenever both c ` d and d ` c hold.

The semantics of lcc processes is defined as a Labeled Transition System (LTS),
that relies on a structural congruence on processes, given next.

Definition 2.28 (Structural Congruence). The structural congruence relation for lcc
processes is the smallest congruence relation ≡ that satisfies α-renaming of bound
variables, commutativity and associativity for parallel composition and summation,
together with the following identities:

(SCl:1)
P ‖ tt ≡ P

(SCl:2)
∃z. tt ≡ tt

(SCl:3)
∃x.∃y. P ≡ ∃y. ∃x. P

(SCl:4)
!P ≡ P ‖ !P

(SCl:5)
c⊗ d a` e
c ‖ d ≡ e

(SCl:6)
P ≡ P ′

P ‖ Q ≡ P ′ ‖ Q

(SCl:7)
z 6∈ fv(P)

P ‖ ∃z.Q ≡ ∃z. (P ‖ Q)

(SCl:8)
P ≡ P ′

∃x. P ≡ ∃x. P ′

As customary, a (strong) transition P α−→l P
′ denotes the evolution of process P

to P ′ by performing the action denoted by the transition label α:

α ::= τ | c | (x̃)c

Label τ denotes a silent (internal) action. Label c ∈ C denotes a constraint “received”
as an input action (but see below) and (x̃)c denotes an output (tell) action in which x̃
are extruded variables and c ∈ C. We write ev(α) to refer to these extruded variables.

Before discussing the transition rules (cf. Fig. 2.5), we introduce a key notion: the
most general choice predicate:

Definition 2.29 (Most General Choice (mgc) [Hae11]). Let c, d, e be constraints,
x̃, ỹ be vectors of variables and t̃ be a vector of terms. We write

mgc
(
c,∃ỹ.(d{t̃/x̃} ⊗ e)

)
whenever for any constraint e′, all terms t̃′ and all variables ỹ′, if c ` ∃ỹ′.(d{t̃′/x̃}⊗ e′)
and ∃ỹ′.e′ ` ∃ỹ.e hold, then ∃ỹ.(d{t̃/x̃}) ` ∃ỹ′.(d{t̃′/x̃}) and ∃ỹ.e ` ∃ỹ′.e′.

Chapter 2. Preliminaries 42

bC:OUTc
c ` ∃x̃.(d⊗ e) ∃x̃.d ` ∃x̃′.d′ mgc

(
c, ∃x̃.(d⊗ e)

)
(x̃ ∪ x̃′) ∩ fv(c) = ∅

c
(x̃′)d′
−−−−→l e

bC:SYNCc
c ` ∃ỹ(d{t̃/x̃} ⊗ e) ỹ ∩ fv(c, d, P) = ∅ mgc

(
c,∃ỹ.(d{t̃/x̃} ⊗ e)

)
c ‖ ∀x̃(d→ P)

τ−→l ∃ỹ. (P{t̃/x̃} ‖ e)
bC:INc

tt
c−→l c

bC:COMPc
P

α−→l P
′ ev(α) ∩ fv(Q) = ∅

P ‖ Q α−→l P
′ ‖ Q

bC:SUMc
P ‖ Gi

α−→l P
′ i ∈ {1, 2}

P ‖ G1 +G2
α−→l P

′

bC:EXTc

P
(x̃)c−−−→l Q

∃y. P (yx̃)c−−−−→l Q

bC:RESc
P

α−→l P
′ y 6∈ fv(α)

∃y. P α−→l ∃y. P ′

bC:CONGc
P ≡ P ′ P ′

α−→l Q
′ Q′ ≡ Q

P
α−→l Q

Figure 2.5: Labeled Transition System (LTS) for lcc processes.

Intuitively, the mgc predicate allows us to refer formally to decompositions of a
constraint c (seen as “linear resources”) that do not “lose” or “forget” information
in c. This is essential in the presence of linear constraints. For example, assuming
that c ` d ⊗ e holds, we can see that mgc(c, d ⊗ e) holds too, because c is the precise
amount of information necessary to obtain d⊗e. However,mgc(c⊗f, d⊗e) does not
hold, assuming f 6= tt, since c⊗ f produces more information than the necessary to
obtain d⊗ e.

We briefly discuss the rules of Fig. 2.5. Rule bC:OUTc formalizes asynchronous
tells: using the mgc predicate, the emitted constraint is decomposed in two parts:
the first one is actually sent (as recorded in the label); the second part is kept as a
continuation. (In the rule, these two parts are denoted as d′ and e, respectively.)
Rule bC:SYNCc formalizes the synchronization between a tell (i.e., an output) and
an ask. The constraint mentioned in the tell is decomposed using the mgc predi-
cate: in this case, here the first part is used (consumed) to “trigger” the processes
guarded by the ask, while the second part is the remaining continuation. Rule bC:INc
asynchronously receives a constraint; it represents the separation between observ-
ing an output and its (asynchronous) reception, which is not directly observable.
Rule bC:COMPc enables the parallel composition of two processes P and Q, provided
that the variables extruded in an action by P are disjoint from the free variables ofQ.
Rule bC:SUMc enables non-deterministic choices at the level of guards. Rules bC:EXTc
and bC:RESc formalize hiding: the former rule makes local variables explicit in the
transition label; the latter rule avoids the hiding of free variables in the label. Finally,
Rule bC:CONGc closes transitions under structural congruence (cf. Def. 2.28).

We shall write τ−→
∗
l to denote the reflexive-transitive closure of lcc τ -transitions,

i.e., a sequence of zero or more τ -labeled transitions. Whenever the number k ≥ 1 of
τ -transitions is fixed, wewrite τ−→

k

l . Moreover, when explicit τ -labels are unnecessary

Chapter 2. Preliminaries 43

we shall write −→l, −→∗l , and −→k
l to refer to τ−→l, τ−→

∗
l , and

τ−→
k

l , respectively. Weak
transitions are standardly defined: we write P τ==⇒l Q if and only if (P τ−→

∗
l Q) and

P
α==⇒l Q if and only if (P τ−→

∗
l P

′ α−→l P
′′ τ−→

∗
l Q). We use the terms τ -transition

and reduction interchangeably to refer to τ -labeled transitions.

2.3.2 Observational Equivalences
We now present some useful observational equivalences for lcc processes. We require
the following auxiliary definition from [Hae11]:

Definition 2.30 (D-Accessible Constraints). LetD ⊂ C, where C is the set of all con-
straints. The observables of an lcc process P are the set of allD-accessible constraints
defined as follows:

OD(P) def
= {(∃x̃.c) ∈ D | there exists P ′. P τ==⇒l ∃x̃.(P ′ ‖ c)}

We now present a notion of equivalence for lcc processes in the form of a weak
barbed congruence, as in [Hae11]. We first introduce a notation to parameterize pro-
cesses in terms of the constraints they can tell and ask. Then, we introduce (evalua-
tion) contexts for lcc.

Notation 2.31 (DE-Processes). Let D, E be subsets of the constraint set C. Also, let P
be an lcc process (cf. Def. 2.26).

• P isD-ask restricted if for every sub-processs ∀x̃(c→ P ′) in P , we have ∃z̃.c ∈ D.

• P is E-tell restricted if for every sub-process c in P , we have ∃z̃.c ∈ E .

• If P is both D-ask restricted and E-tell restricted then we call P a DE-process.

Definition 2.32 (Contexts in lcc). Let E be the evaluation contexts for lcc as given
by the following grammar, where P is an lcc process and ‘−’ represents a hole in
said process:

E ::= − | P ‖ E | E ‖ P | ∃x̃.E
Given an evaluation contextE[−], wewriteE[P] to denote the lccprocess that results
from filling in the occurrences of the hole with process P . In lcc, we will say that a
context is a DE-context, ranged over C,C ′, . . ., if it is formed only by DE-processes.

Using the previous auxiliary definitions we now present a notion of weak barbed
bisimulation and a weak barbed congruence:

Definition 2.33 (Weak DE-Barbed Bisimulation). Let D ⊆ C and E ⊆ C. A symmet-
ric relation R is a DE-barbed bisimulation if, for DE-processes P and Q, (P,Q) ∈ R
implies:

(1) OD(P) = OD(Q) (and),

(2) whenever P τ−→l P
′ there exists Q′ such that Q τ==⇒l Q

′ and P ′RQ′.

The largest weak barbedDE-bisimulation is calledDE-bisimilarity and is denoted by
≈DE .

Chapter 2. Preliminaries 44

Definition 2.34 (WeakDE-Barbed Congruence). Wewill say that two lcc processes
P,Q are weakly barbed DE-congruent, denoted by P ∼=DE Q, if for every DE-context
E[−] we have that E[P] ≈DE E[Q]. We define the weak barbed DE-congruence ∼=DE
as the largest DE-congruence that is a weak barbed DE-bisimilarity.

We conclude this section by showing some examples of lcc processes and their
transitions. We also show some equivalences to help the reader to grasp the notions
presented above.

Example 2.35. Weuse lcc tomodel a simple vendingmachine that requires a number
of coins to return either tea or coffee. First, we assume the nullary functions (i.e.,
constants) Σf = {coin/0, coffee/0, tea/0} and an empty set of predicates (i.e., Σc =
∅). We let the constraint system then be the triple (C,Σ,`), where Σ = Σf ∪Σc = Σf ;
C is obtained from Σ and the formation rules in Def. 2.26; and ` is given solely by the
deduction rules in Fig. 2.27. We also consider sets D = E = C (cf. Not. 2.31). With
the previous assumptions, we can then define our vending machine as:

Q1 = ! ∀ε
(
coin⊗ coin→ coffee

)
‖ !∀ε

(
coin→ tea

)
InQ1 above, we have two replicated abstractions: the leftmost one requires two coins
to return a coffee, whereas the rightmost one requires a single coin to return tea. The
process above is suspended, as no process is providing information to the store. Hence,
we require a context that adds the necessary coins to buy a coffee or tea.

Assume a context E[−] = coin ‖ −. Then, we have that our complete system
can be modeled as E[Q1]. Since we only have available one coin, by applying Rule
bC:SYNCc, we have that:

E[Q1] −→l tea ‖ !∀ε
(
coin⊗ coin→ coffee

)
‖ !∀ε

(
coin→ tea

)
Note that this synchronization is enabled between the coin and the sub-process in
charge of returning tea. More interestingly, the process above allows us to show-
case our behavioral equivalences. Consider Q2 = ! ∀ε

(
coin → tea

)
. Then, it can be

shown that E[Q1] ≈DE E[Q2]. However, notice that E[Q1] 6∼=DE E[Q2]: a possible
DE-context to be tested could add an additional coin in parallel, which would enable
the abstraction that returns a coffee in Q1. This means that E[Q1] and E[Q2] are not
bisimilar in that particular context, which also means that these two processes do not
satisfy Def. 2.34. 4

2.4 ReactiveML (RML)
In this section we introduce ReactiveML [MP05], a synchronous reactive extension
of OCaml, based on the model for SRP given in [BdS96]. ReactiveML allows the
dynamic creation of processes and unbounded time response for processes. Since it
is based on the SRP introduced by Boussinot and De Simone, ReactiveML avoids all
the causality issues present in other SRP approaches, such as ESTEREL [BG92].

ReactiveML extends OCaml with processes: state machines whose behavior can be
executed through several time instants (or simply, instants). Processes are the reactive
counterpart of OCaml functions, which ReactiveML executes instantaneously. In Re-
activeML, synchronization is based on signals: events that occur in a single instant.

Chapter 2. Preliminaries 45

Signals can trigger reactions in processes, which can be run instantaneously or in the
next instant, depending on the process definition. Also, signals carry values and can
be emitted by different processes in the same instant.

Below we present the syntax and the semantics of ReactiveML, as they are given
in [MP14] (cf. § 2.4.1). We use this work as our source, as it presents the most up-
to-date formal specification for the ReactiveML compiler. Next, in § 2.4.2 we present
some examples and considerations necessary to use ReactiveML as a target language
in our work.

2.4.1 Syntax and Semantics
We assume countable infinite sets of variables Vr and signal names Sr (ranged over
by x1, x2 and n1, n2, respectively). To simplify some of our expressiveness results,
we assume that Sr ⊆ Vr. The free variables of a ReactiveML expression, written
fv(e), are defined as expected (i.e., signal declarations, recursive declarations, λ- and
let-expressions are binders).

Definition 2.36 (Syntax). The set RML of ReactiveML expressions is defined by the
grammar below:

(Values) v, v′ ::= c | (v, v′) | n | λx.e | process e | ()
(Expressions) e, e′ ::= x | c | (e, e′) | λx.e | e e′

| rec x = vmatch e with {ci → ei}i∈I
| let x = e and x = e′ in e′′ | run e | loop e
| signale′ x : e in e′′ | emit e′ e′′ | pause | process e
| present e? e′ : e′′ | do e when e′ | do e until e′(x)→ e′′

The set of values Ur, ranged over v, v′, . . ., includes constants c (booleans and the
unit value ()), pairs, names, abstractions, and also includes the process declaration
operator process e.

The syntax of expressions ranged over by e, e′, . . . extends a standard functional
substrate with matching expressions and parallel let definitions (i.e., let/and con-
structs) with process- and signal-related constructs. Expressions run e and loop e
follow the expected intuitions. Expression signalg x : d in e declares a signal xwith
default value d, bound in e; here g denotes a gathering function that collects the dis-
tinct values emitted alongside signal x in one instant. When d and g are unimportant
(e.g., when the signal will only be emitted once in a single instant), we write simply
signal x in P . We also write signal x1, . . . , xn in e when declaring n > 1 distinct
signals in e. Moreover, expression emit e1 e2 emits a signal carrying the value from
the instantaneous execution of e2, only whenever e1 evaluates to a signal name n. Re-
activeML also has an explicit pausing construct, pause , which postpones execution
until the next instant. The conditional expression present e1? e2 : e3 checks the pres-
ence of a signal: if e1 evaluates to some signal name n, which has been emitted in that
instant, then, e2 is run in the same instant; otherwise, if n is not present, e3 runs in
the next instant. Expression do e when e1 executes e only when e1 evaluates a signal
name n, with n present in the current instant, and suspends its execution otherwise.
Expression do e1 until e(x) → e2 executes e1 until e evaluates into a signal name n,

Chapter 2. Preliminaries 46

e1 ‖ e2
def
= let _ = e1 and _ = e2 in ()

e1; e2
def
= let _ = () and _ = e1 in e2

await e1(x) in e2
def
= do loop pause until e1(x)→ e2

let rec process

f x1. . .xn = e1 in e2

def
= let f = (rec f = λx1. . .λxn.process e1) in e2

if e1 then e2 else e3
def
= match e1 with {tt→pause ; e2, ff→pause ; e3}

Figure 2.6: Derived ReactiveML expressions. Assume n ≥ 1.

with n present, and (possibly) carrying a valuewhichwill substitute x. If this occurs,
the execution of e1 stops at the end of the instant and e2 is executed in the next one,
applying the substitution of x for the values contained in n.

Finally, notice that the constructor for recursive expressions rec x = v only allows
for values to be used in the right hand side. This restriction is done to allow only λ-
terms or process declarations to be used as the definition of a recursive expression.
We sometimes say processes when referring to expressions, in particular, when said
expression contains timed subexpressions.

Using these basic constructs, we may obtain the useful derived expressions re-
ported in Fig. 2.6. The first three are the most useful ones: the parallel composition
e1 ‖ e2, the sequential composition e1; e2, and the awaiting operator await s(x) in e,
which waits until signal s is present to execute e in the next instant. In the awaiting
construct, x is a bound variable which is used to extract the values contained in sig-
nal s. The last two derived constructs are shortcuts for declaring recursive processes
and conditional operators. We say that an expression with no parallel composition
operator at top level is a thread.

Following [MP14], we define a big-step operational semantics for ReactiveML.
Each step in this semantics intuitively corresponds to a single instant in the Reac-
tiveML computation model. Notice that in ReactiveML, every pure OCaml expres-
sion is considered to be instantaneous. Therefore, the authors introduce a set of well-
formation rules in [MP14] to separate instantaneous expressions from reactive expres-
sions. These well-formations rules are summarized in Fig. 2.7.

In the figure, a well-formation judgment is of the form ω ` e, where ω is either 0 or
1: if ω = 1 then the expression is reactive, otherwise (i.e., ω = 0) then the expression
is instantaneous. The most important takeaways from this figure are: (1) the body of
OCaml functions has to be instantaneous, whereas the body of ReactiveML processes
may be reactive and (2) the matching operator requires e to be instantaneous. For
further details see [MP05, MP14].

Wenowproceed to define the semantics of ReactiveML.Wefirst require some aux-
iliary definitions for signal environments and events. Below,] and v denote the usual
multiset union and inclusion, respectively. Intuitively, signal environments refer to
functions that assign signal names to triplets of default values, gathering functions,
and a multiset that contains all the other emitted values in that signal.

Chapter 2. Preliminaries 47

ω ` x ω ` c 1 ` pause
0 ` e1 0 ` e2
ω ` (e1, e2)

0 ` e
ω ` λx.e

0 ` e1 0 ` e2
ω ` e1 e2

0 ` v
ω ` rec x = v

∀i ∈ I 0 ` e ω ` ei
ω ` match e with {ci → ei}i∈I

ω ` e ω ` e1 ω ` e2
ω ` let x = e and x = e1 in e2

0 ` e
1 ` run e

1 ` e
1 ` loop (e)

0 ` e 0 ` e1 ω ` e2
ω ` signale1 x : e in e2

0 ` e1 0 ` e2
ω ` emit e1 e2

1 ` e
ω ` process e

0 ` e 1 ` e1 1 ` e2
1 ` present e? e1 : e2

1 ` e1 0 ` e2
1 ` do e1 when e2

1 ` e 0 ` e1 1 ` e2
1 ` do e until e1(x)→ e2

Figure 2.7: Well-formation rules for ReactiveML expressions.

Definition 2.37 (Signal Environment). LetD, G,M be sets of default values, gather-
ing functions, and multisets, respectively. A signal environment is a function S : Sr →
(D × G ×M), denoted S def

= [(d1, g1,m1)/n1, . . . , (dk, gk,mk)/nk], with k ≥ 1.

We use the following notations: Sd(ni) = di, Sg(ni) = gi, and Sm(ni) = mi.
Also, Sv(ni) = fold gi mi di where fold recursively gathers multiple emissions of
different values in the same signal; see [MP05, MP14] for details. An event, similarly
to a signal environment, is a function E that associates a signal name ni to a multiset
mi that represents the values emitted during the current instant.

Definition 2.38 (Events). An event is defined as a function E : Sr → M, i.e., E def
=

[m1/n1, . . . ,mk/nk], with k ≥ 1. Given events E1 and E2, we say that E1 is included
in E2 (written E1 vE E2) if and only if ∀n ∈ Dom(E1)∪Dom(E2)⇒ E1(n) v E2(n).
The union E1 and E2 (written E1 tE E2) is defined for all n ∈ Dom(E1) ∪Dom(E2)
as (E1 tE E2)(n) = E1(n)] E2(n).

The big-step semantics for ReactiveML is given in Fig. 2.8 and Fig. 2.9. Intuitively,
a big-step reduction captures reactions within a single instant, and is of the form
e

E,b−−→
S

e′, where S stands for the smallest signal environment (with respect to vE

and Sm) containing input, output, and local signals; E is the event made of signals
emitted during the reaction; b ∈ {tt, ff} is a boolean value that indicates termination:
b is false if e is stuck during that instant and true otherwise. At each instant i, the
program reads an input Ii and produces an output Oi. The reaction of an expression
obeys three conditions:

(C1) (Ii tE Ei) vE S
m
i (i.e., S must contain the inputs and emitted signals);

(C2) Oi vE Ei (i.e., the output signals are included in the emitted signals);

(C3) Sd
i ⊆ Sd

i+1 and Sg
i ⊆ Sg

i+1 (i.e., default values and gathering functions are pre-
served throughout instants).

Chapter 2. Preliminaries 48

bL-PARc
e1

E1,b1−−−→
S

e′1 e2
E2,b2−−−→

S
e′2 b1 ∧ b2 = ff

let x1 = e1 and x2 = e2 in e3
E1⊔EE2,ff−−−−−−−→

S
let x1 = e′1 and x2 = e′2 in e3

bL-DONEc
e1

E1,tt−−−→
S

v1 e2
E2,tt−−−→
S

v2 e3{v1, v2/x1, x2}
E3,b−−−→
S

e′3

let x1 = e1 and x2 = e2 in e3
E1⊔EE2⊔EE3,b−−−−−−−−−→

S
e′3

bRUNc
e

E1,tt−−−→
S

process e′ e′
E2,b−−−→
S

e′′

run e
E1⊔EE2,b−−−−−−→

S
e′′

bLP-STUc
e

E,ff−−−→
S

e′

loop e
E,ff−−−→
S

e′; loop e

bLP-UNc
e

E1,tt−−−→
S

v loop e
E2,b−−−→
S

e′

loop e
E1⊔EE2,b−−−−−−→

S
e′

bSIG-DECc
e1

E1,tt−−−→
S

v1 e2
E2,tt−−−→
S

v2 e3{n/x}
E3,b−−−→
S

e′3 n fresh S(n) = (v1, v2,m)

signale2 x : e1 in e3
E1⊔EE2⊔EE3,b−−−−−−−−−→

S
e′3

bEMITc
e1

E1,tt−−−→
S

n e2
E2,tt−−−→
S

v

emit e1 e2
E1⊔EE2⊔E[{v}/n],tt−−−−−−−−−−−−−→

S
()

bPAUSEc
pause

∅,ff−−→
S

()

bSIG-Pc
e1

E1,tt−−−→
S

n n ∈ S e2
E2,b−−−→
S

e′2

present e1? e2 : e3
E1⊔EE2,b−−−−−−→

S
e′2

bSIG-NPc
e1

E,tt−−−→
S

n n 6∈ S

present e1? e2 : e3
E,ff−−−→
S

e3

bDU-ENDc
e2

E2,tt−−−→
S

n e1
E1,tt−−−→
S

v

do e1 until e2(x)→ e3
E1⊔EE2,tt−−−−−−−→

S
v

bDU-Pc
e2

E2,tt−−−→
S

n n ∈ S e1
E1,ff−−−→
S

e′1

do e1 until e2(x)→ e3
E1⊔EE2,ff−−−−−−−→

S
e3{S

v(n)/x}

bDU-NPc
e2

E2,tt−−−→
S

n n 6∈ S e1
E1,ff−−−→
S

e′1

do e1 until e2(x)→ e3
E1⊔EE2,ff−−−−−−−→

S
do e′1 until n(x)→ e3

bDW-NSc
e2

E,tt−−−→
S

n n 6∈ S

do e1 when e2
E,ff−−−→
S

do e1 when n

bDW-INTc
e2

E2,tt−−−→
S

n n ∈ S e1
E1,ff−−−→
S

e′1

do e1 when e2
E1⊔EE2,ff−−−−−−−→

S
do e′1 when n

bDW-ENDc
e2

E2,tt−−−→
S

n n ∈ S e1
E1,tt−−−→
S

v

do e1 when e2
E1⊔EE2,tt−−−−−−−→

S
v

Figure 2.8: Big-step semantics for ReactiveML expressions (Part 1).

Intuitions on the big-step reduction rules follow. Rules bL-PARc and bL-DONEc

Chapter 2. Preliminaries 49

bVALc

v
∅,tt−−→
S

v

bPAIRc
e1

E1,tt−−−→
S

v1 e2
E2,tt−−−→
S

v2

(e1, e2)
E1⊔EE2,tt−−−−−−−→

S
(v1, v2)

bRECURc
v{rec x = v/x} E,tt−−−→

S
v′

rec x = v
E,tt−−−→
S

v′

bAPPLc
e1

E1,tt−−−→
S

λx.e3 e2
E2,tt−−−→
S

v′ e3{v
′
/x} E3,tt−−−→

S
v

e1 e2
E1⊔EE2⊔EE3,tt−−−−−−−−−−→

S
v

bCASEc
e

E1,tt−−−→
S

cj j ∈ I ej
E2,b−−−→
S

e′j

match e with {ci → ei}i∈I
E1⊔EE2,b−−−−−−→

S
e′j

Figure 2.9: Big-step semantics for ReactiveML expressions (Part 2).

handle let expressions, distinguishing when (a) at least one of the parallel branches
has not yet terminated, and (b) both branches have terminated and their resulting
values can be used. Rule bRUNc ensures that declared processes can only be executed
while they are preceded by a run construct. Rules bLP-STUc and bLP-UNc handle loop
expressions: the former decrees that a loop will stop executing when the termina-
tion boolean of its body becomes ff; the latter executes a loop until Rule bLP-STUc
is applied. Rule bSIG-DECc declares a signal by instantiating it with a fresh name in
the continuation; its default value and gathering function must be instantaneous ex-
pressions. Rule bEMITc governs signal emission. Rule bPAUSEc suspends the process
for an instant. Rules bSIG-Pc and bSIG-NPc check for presence of a signal n: when
n is currently present, the body e2 is run in the same instant; otherwise, e3 is exe-
cuted in the next instant. Rules bDU-ENDc, bDU-Pc, and bDU-NPc handle expressions
do e1 until e2(x) → e3. Rule bDU-ENDc says that if e1 terminates instantaneously,
then the whole expression terminates. Rule bDU-Pc says that if e2 reduces to the
name of a currently present signal n, then e3 is executed in the next instant, substi-
tuting x with the values gathered in n. Rule bDU-NPc executes e1 as long as e2 does
not reduce to a currently present signal. Rule bVALc allows values to execute instan-
taneously. Finally, Rules bPAIRc, bRECURc, bAPPLc and bCASEc are the usual functional
programming rules for pairs, recursion, application and case operators.

To simplify notation, we use e 7−→ e′ to represent e E,b−−→
S

e′ whenever E, S, and
b are unimportant, or can be clearly derived from the context. Similarly, we write
e 7−→∗ e′, whenever there exists E1, . . . , En, S1, . . . , Sn, and b1, . . . , bn, with n ≥ 0

such that e E1,b1−−−→
S1

e1
E2,b2−−−→
S2

. . .
En,bn−−−−→
Sn

e′.

2.4.2 Equivalences for ReactiveML Expressions
Before providing some examples of ReactiveML expressions and their execution, we
point out that the original formulation in [MP14] does not provide a method to com-
pare processes, either syntactically nor behaviorally. Such tools are required for our

Chapter 2. Preliminaries 50

results. Therefore, we introduce a structural congruence for ReactiveML expressions:
we write ≡R to denote the smallest equivalence on expressions that satisfies the fol-
lowing axioms: (i) e ‖ () ≡R e; (ii) e1 ‖ e2 ≡R e2 ‖ e1; (iii) (e1 ‖ e2) ‖ e3 ≡R e1 ‖ (e2 ‖
e3).

Using the previous structural congruence as a base, we propose an useful exten-
sion of ≡R that allows us to consume matching constructs whenever the compared
value is already a constants. For example, we would like to equate the following
expression:

match c2 with {c1 → λx.x, c2 → λx.λy.(x+ y)}

with λx.λy.(x+ y). Therefore, we shall extend ↪→R to denote the following pre-order:

Definition 2.39 (Equality with Case Normalization). Let ↪→R denote the extension
of ≡R with the axiom match cj with {ci → Pi}i∈I ↪→R Pj , where cj is a constant and
j ∈ I .

Another glaring difference between ReactiveML and the calculi introduced so far
(π in § 2.2 and lcc in § 2.3) is the fact that ReactiveML does not have a construct simi-
lar to the restriction construct. Indeed, in ReactiveML, signal, variable, and recursive
declarations disappear during execution.

Thus, considering the fact that the objective of this work is to encode session π-cal-
culus in ReactiveML, it is clear that we must find a way to ensure that the translation
of restriction operators is preserved. We achieve the previous goal by extending the
pre-order in Def. 2.39 (i.e., ↪→R) to include all the missing signal declarations in a
ReactiveML expression. As an example, consider the following expression:

e1 = signal x in (emit x ‖ pause ; emit x) (2.1)

Observe that e1
E,ff−−−→
S

() ‖ emit x, with E = [tt/x], and S = [(tt, λx.x, tt)/x], and

that () ‖ emit x E,tt−−−→
S

() ‖ (). Moreover, notice that it also holds that signal x in (() ‖

emit x)
E,tt−−−→
S

() ‖ (). It becomes then clear that, intuitively, the two ReactiveML
expressions above are equivalent up to certain missing declarations.

Considering this, we shall compare expressions up-to their signal declarations.
To this end, we define a special context which will contain the missing signal decla-
rations: a so-called signal declaration context.

Definition 2.40. Let x̃ be a set of variables and Dx̃ be a ReactiveML process with a
hole ‘−’, given by the following grammar:

Dx̃ ::= − | signal x̃ in −

We callDx̃ a signal declaration context and we writeDx̃[e] to denote the replacement
of the hole by expression e. Furthermore, we will say that Dx̃ is empty whenever x̃ is
the empty sequence. Finally, whenever Dx̃ is empty, we will say that Dx̃[e] = e.

Remark 2.41. Notice that for the syntax of expressions (cf. Def. 2.36) we assumed that
the set of signal names is a subset of the set of variables: Sr ⊆ Vr. Therefore, a signal
declaration signal ñ in e can bind all the signal names ñ in e. This is simply done out

Chapter 2. Preliminaries 51

of convenience to reduce the number of substitutions we need to apply to Reactive-
ML expressions and does not affect the expressiveness results. To understand what
would happen if we relax this condition, observe that Rule bSIG-DECc (cf. Fig. 2.8),
applied to expression e = signal x in e, substitutes x by a fresh signal name n in Q
(i.e., e{n/x}). Thus, to obtain the correct signal declaration signal x in e it would be
necessary to substitute back some variable x in e (i.e., (e{n/x}){x/n}).

To compare ReactiveML expressions that include signal declaration contexts, we
extend ↪→R into the following pre-order:

Definition 2.42 (Equality with Case Normalization and Signal Declaration). We
will say that two ReactiveML expressions e1 and e2 are equivalent up-to signal dec-
larations, written e1 . e2, whenever e1 = e′1 ‖ · · · ‖ e′n with n ≥ 1 and there exist,
possibly empty, signal declaration contexts Dx̃, Dx̃1

, . . . , Dx̃n
such that:

Dx̃[Dx̃1
[e′1] ‖ · · · ‖ Dx̃n

[e′n]] ↪→R e2

When presenting our translations we will delve deeper on how to apply the pre-
orders presented above in our results.

We conclude this section by giving some examples of interesting ReactiveML ex-
pressions and their big-step reductions.

Example 2.43. Consider the following expressions:

e1 = signal x in (emit x 42 ‖ await x(y) in y)
e2 = do loop (emit x 42; pause) until w → e

e3 = signal x,w in (e2 ‖ pause ; do emit w when x; await x(y) in y)

In expression e1, we showcase a synchronization between two expressions: the left-
most sub-expression inside the signal declaration (i.e., emit x 42) is emitting signal
x, whereas the rightmost sub-expression is awaiting for signal x to be emitted and
retrieve its value, assigning it to variable y. The big-step reduction of this expression
is e1

E,ff−−−→
S

42, where E = [42/x], and S = [(1, λx.x, 1)/x] (assuming a default value
of 1). An important thing to notice is that the termination boolean is ff—the expres-
sion does not terminate in the current instant. Indeed, the await construct executes
the continuation at the next time instant, whenever the signal is present.

Expression e2 showcases the fact that signal emissions are asynchronous (i.e.,
non-blocking). Notice that for this expression we assume that signals x, and w have
already been declared. In e2 we have a loop that is emitting signal x with value 42
exactly once in each instant until signal w is emitted. However, there is no process
emitting said signal, hence, this expression will loop indefinitely:

e2
E,ff−−−→
S

e2
E,ff−−−→
S

e2
E,ff−−−→
S

. . .

where E = [42/x], and S = [(1, λx.x, 1)/x, (tt, λx.x, tt)/w].
In expression e3, we find two sub-expressions in parallel inside a signal decla-

ration. The leftmost sub-expression (i.e., e2) behaves as previously shown. Analo-
gously, the rightmost sub-expression is awaiting for signal x, before emitting signal

Chapter 2. Preliminaries 52

w. The big-step reductions for e3 is given below:

e3
E1,ff−−−→
S

e2 ‖ do emit w when x; await x(y) in y
E2,ff−−−→
S

e ‖ 42

where E1 = [42/x], S1 = [(1, λx.x, 1)/x, (tt, λx.x, tt)/w], and E2 = [42/x, tt/w].
4

2.5 Multiparty Session Types (MPSTs)
We summarize the theory ofmultiparty asynchronous session types [HYC08, CDPY15].
Briefly, multiparty session types is a generalization of the binary type discipline pre-
sented in § 2.2, used to certify asynchronous communicating systems that allowmul-
tiple parties to interact. We closely follow the presentation given in [CDPY15]. In
§ 2.5.1 we introduce the syntax and semantics of MPST. Next, in § 2.5.2, we introduce
the type systems. Finally, in § 2.5.6 we present the main guarantees ensured by typed
MPST processes.

2.5.1 Syntax and Semantics
In MPST, processes are ranged over by P,Q, . . . and expressions are ranged over by
e, e′, Besides processes and expressions, we also introducemessage queues and run-
time channels. These new elements will only appear during process execution and are
therefore referred to as runtime syntax. Some additional naming conventions follow:
(1) we use a, b, . . . to range over service names, (2) and s, s′, . . . to range over session
names; (3) similarly, we use x, x′, . . . to range over value variables, (4) y, z, t, . . . to range
over channel variables, (5) and X,Y, . . . to range over process variables; (6) finally, we
use l, l′, . . . to range over a countably infinite set of labels.

Definition 2.44 (Syntax). The syntax of MPST processes is given by the grammar in
Fig. 2.10. Runtime processes appear shaded in the figure.

In the figure, processes u[p](y).P and u[p](y).P enable the initiation (or establish-
ment) of a multiparty session through some service u. Session participants are ranged
over by p, q, r, . . . and are identified by successive numbers. As a design choice, we let
the participant with the highest number correspond to p in u[p](y).P . Coincidentally,
participant p gives the total number of participants needed to establish a session. In
both session initiation constructs, variable y appears bound and is used as a place-
holder for the channel that will be used in the communication. Once the session has
been established each channel place holder will be replaced by a channel with a role,
denoted s[p]. This construct represents the channel of participant p in session s at
runtime. Inside a established session processes can communicate in three ways:

(1) Value exchanging, governed by primitives c!〈p, e〉.P and c?(p, x).P , which cor-
respond to the sending of a value and the receiving of a value, respectively.
Therefore, c!〈p, e〉.P represents the sending of a value on channel c to partici-
pant p; similarly c?(p, x).P represents the reception of some value on channel
c; variable x is bound and is used as a placeholder for the value to be received.

Chapter 2. Preliminaries 53

P,Q ::= u[p](y).P (Multicast Request) E ::= [−] | P | (νa)E (Context)
| u[p](y).P (Accept) | (νs)E | Def D in E
| c!〈p, e〉.P (Value Sending) |E | E
| c?(p, x).P (Value Reception)
| c!〈〈p, c〉〉.P (Channel Delegation) u ::= x | a (Identifier)
| c?((p, y)).P (Channel Reception) v ::= tt | ff | a (Value)
| ⊕c〈p, l〉.P (Selection)
| &c(p, {li : Pi}i∈I)(Branching) e ::= v | x (Expression)
| e? (P) : (Q).P (Conditional) |e and e | not e
| P | Q (Parallel)
| 0 (Inaction) c ::= y | s[p] (Channel)
| (νa)P (Service Hiding)
| Def D in P (Recursion) m ::= (q, p, v) (Message in
| X〈e, c〉 (Process Call) | (q, p, s[p′]) Transit)
| (νs)P (Session Hiding) | (q, p, l)
| s : h (Message Queue)

D ::= X(x, y) (Declarations) h ::= h ·m | ∅ (Queue)

Figure 2.10: Syntax for MPST processes, declarations, (evaluation) contexts, identi-
fiers, values, expressions, channels, and messages. Shaded constructs only appear at
runtime.

(2) Session delegation, governed by constructs c!〈〈p, c〉〉.P and c?((p, y)).P . Delegation
represents the exchange of a channel and the constructs behave similarly to the
output and receive.

(3) Selection, governed by constructs ⊕c〈p, l〉.P and &c(p, {l : Pi}i∈I) and which
represents an interaction which allows the selection construct to pick one of
the choices offered by &c(p, {li : Pi}i∈I). The labels li ∈ I are assumed to be
pairwise distinct.

In the sequel, wewill consider output actions to correspond to value sending, chan-
nel delegation or label selection; moreover, we will say that an output process is a pro-
cess whose first action is an output action. Dually, we let input actions correspond to
value reception, session reception or label branching; then, an input process is a pro-
cess whose first action is an input action. We also use the term communication action
to refer to either an output and input actions.

Evaluation contexts, denoted by E , correspond to processes with holes (written
[−]), which can be filled in by replacing themwith a process. Wewrite E [P] to denote
the substitution of [−] by process P .

Message queues are used to model asynchronous communications in which the
message order is preserved and sending is non-blocking. Messages contained inside
queues are characterized by the object they send; hence, a value message (q, p, v) rep-
resents a message from q intended for p which contains value v. Label messages are

Chapter 2. Preliminaries 54

interpreted in the in a similar way. Finally, a channel message (q, p, s[p′]) indicates that
q delegates to p the role if p′ on session s (i.e., s[p′]). Empty queues are represented
by ∅. The construct s : h denotes the queue h of session s.

Remark 2.45 (Runtime Syntax). The constructs that appear shaded in Fig. 2.10 are ex-
clusively generated by the operational semantics of the calculus (cf. Fig. 2.11). More-
over, whenever a process does not contain message queues, we will call it pure.

We findmany binders in Fig. 2.10: as mentioned above, constructs for request and
accept bind channel variables; moreover, value receptions bind value variables, chan-
nel receptions bind channel variables, declarations bind value and channel variables,
recursions bind process variables, and hidings bind service and session names. Also
notice that the session hiding (νs)P also binds all free occurrences of s[p] and queue
s in P . Finally, a process P is closed if its free names (written fn(P)) only contains
service names.

The operational semantics of MPST is given as a reduction relation −→ over pro-
cesses. As usual, the semantics is given up to structural congruence, which we define
below. In the sequel, we write fpv(P) to denote the free process variables in P , and
dpv(D) to denote the set of process variable declared inD. Moreover, we assume that
free names are extended to declarations as expected. Throughout the section we also
assume that r ::= a | s and ζ ::= v | s[p] | l.
Definition 2.46 (Structural Congruence). The structural congruence relation onM-
PST processes, written≡, is given by the smallest relation generated by α-conversion
and the following rules:

(STR:1) P | 0 ≡ P (STR:2) P | Q ≡ Q | P (STR:3) (P | Q) | R ≡ P | (Q | R)
(STR:4) Def D′ in 0 ≡ 0 (STR:5) (νr)(νr′)P ≡ (νr′)(νr)(P | Q)

(STR:6) (νa)0 ≡ 0 (STR:7) (νa)0 ≡ (νs)(s : ∅ ≡ 0)

(STR:8)
r 6∈ fn(Q)

(νr)P | Q ≡ (νr)(P | Q)
(STR:9)

r 6∈ fn(D)

Def D in (νr)P ≡ (νr)Def D in P

(STR:10)
dpv(D) ∩ fpv(Q) = ∅

Def D in (νr)P | Q ≡ (νr)Def D in P | Q

(STR:11)
(dpv(D) ∪ fpv(D)) ∩ dpv(D′) = dpv(D) ∩ (dpv(D′ ∪ fpv(D′)))

Def D in Def D′ in P = Def D′ in Def D in P

(STR:12)
p 6= p′ ∨ q 6= q′

s : h · (q, p, ζ) · (q′, p′, ζ ′) · h′ ≡ s : h · (q′, p′, ζ ′) · (q, p, ζ) · h′

Above, the first eleven rules are standard for the π-calculus [Mil99]. In contrast,
the last rule (Rule (STR:12)) is unique to MPST: it allows to rearrange messages in
a queue whenever the senders or receivers are not the same. The rules that gener-
ate the reduction relation on MPST processes are given in Fig. 2.11. We also use the
shorthands −→∗ and −→k to denote the reflexive-transitive closure of −→ and a re-
duction sequence of k ≥ 0 steps, respectively. Intuitively, Rule bINITc describes the
session establishment phase: n participants synchronize over name a, where the last
participant, distinguished by the bar over its service name, specifies n. During the

Chapter 2. Preliminaries 55

bINITc
a[1](y).P1{s[1]/y} | . . . | a[n− 1](y).Pn−1 | a[n](y).Pn

−→ P1 | . . . | Pn−1{s[n− 1]/y} | Pn{s[n]/y} | s : ∅

bSENDc
e ↓ v

s[p]!〈q, e〉.P | s : h −→ P | s : h · (p, q, v)

bRCVc s[p]?(q, x).P | s : (q, p, v) · h −→ P{v/x} | s : h

bDELEGc s[p]!〈〈q, s′[p′]〉〉.P | s : h −→ P | s : h · (p, q, s′[p′])

bSRCVc s[p]?((q, y)).P | s : (q, p, s′[p′]) · h −→ P{s′[p′]/y} | s : h

bSELc ⊕s[p]〈q, l〉.P | s : h −→ P | s : h · (p, q, l)

bBRAc
j ∈ I

&s[p](q, {li : Pi}i∈I) | s : (q, p, lj) · h −→ Pj | s : h

bPROCCALLc
e ↓ v

Def X(x, y) = P in X〈e, s[p]〉 | Q −→ Def X(x, y) = P in P{v, s[p]/x, y} | Q

bIFFc
e ↓ tt

e? (P) : (Q) −→ P

bIFFc
e ↓ ff

e? (P) : (Q) −→ Q

bCTXTc
P −→ P ′

E [P] −→ E [P ′]

bSTRc
P ≡ P ′ −→ Q′ ≡ Q

P −→ Q

Figure 2.11: Reduction rules for MPST.

establishment, private session name s and the queue associated with s (which is ini-
tially empty), are shared among participants. Then, the variable y is replaced in each
participant with the corresponding channel with role s[p]. Once a session has been
established, Rules bSENDc, bDELEGc, and bSELc are used to enqueue values, channels,
and labels, respectively, into the queue associated with session s. In Rule bSENDc,
e ↓ v denotes the evaluation of expression e to value v. Dually, Rules bRCVc, bSRCVc,
and bBRANCc are used to dequeue these values and use them in their continuations.
All the other rules are as expected.

2.5.2 Global Types and Session Types
Wenow introduce the type systemofMPST.With it, we can check the communication
safety of processes.

In MPST, global types describe the overall communication protocol by providing
a global view of the interactions between participants. On the other hand, local or
session types describe the individual contributions of each participant to the protocol.
They are obtained by projecting the global types and therefore, they correspond to the
types of pure processes. The syntax of types is given in Fig. 2.12.

The basic types are sorts, ranged over by S, S′, . . .; they are associated to values
or closed global types G (i.e., global types without free type variables). Similarly,
exchange types, ranged over by U,U ′, consist of sorts and closed session types T (i.e.,

Chapter 2. Preliminaries 56

(Sorts) S ::= bool | . . . | G
(Exchange Types) U ::= S | T

(Global types) G ::= p→ q : 〈S〉.G (Value Exchange)
| p→ q : 〈T〉.G (Channel Exchange)
| p→ q : 〈{li : Gi}i∈I〉 (Branching)
| t (Recursive Variable)
| µt.G | end (Recursion/End)

(Local Types) T ::= !〈p, S〉.T (Send Value)
| !〈p, T〉.T (Send Channel)
| ?(p, U).T (Receive)
| ⊕〈p, {li : Ti}i∈I〉 (Selection)
| &(p, {li : Ti}i∈I) (Branching)
| t (Recursive Variable)
| µt.T | end (Recursion/End)

Figure 2.12: Syntax of MPST types.

local types without variables).
Intuitively, the global type p→ q : 〈S〉.G says that participant p is sending a value

of sort S to participant q, provided that p 6= q; then, the interactions in G follow.
Similarly, global type p → q : 〈T〉.G denotes the delegation of a channel of type T to
participant q, then continuing as G. Whenever it is not important, we write p → q :
〈U〉.G to refer to both p→ q : 〈S〉.G and p→ q : 〈T〉.G.

The global type p→ q : 〈{li : Gi}i∈I〉 represents an interaction where participant
p sends one of the labels li to participant q. If lj is sent, then the interactions in Gj

are executed next. Type µt.G represents a recursive types, where recursive variables
are ranged over by t, t′, . . . and where these variables are assumed to always appear
under some prefix. Once again, we take an equi-recursive view of types and let µt.G
be equal to its unfoldingµt.G{µt.G/t} because they represent the same regular infinite
trees [Pie02]. Finally, type end represents the terminated session.

As hinted before, session types represent the input and output actions performed
by each individual participant. Thus, the send types !〈p, S〉.T and !〈p, T〉.T represent
the sending of a value of sort S to participant p and the delegation of a channel of
type T to participant p, respectively. In both cases, the communication then follows
as T . The selection type ⊕〈p, {li : Ti}i∈I〉 represents the transmission of a label li
by participant p, chosen from the set indexing I . The type will continue with the
communication described in Ti. The receive and branching types are complementary
of send and selection types, respectively. Finally, recursive types and the type end are
handled as in global types.

The relation between global types and local types is given by a projection function
on global types. Intuitively, the projection function extracts the individual contribu-
tions of a participant to the overall protocol to construct the local type. The definition
of projection is given below.

Chapter 2. Preliminaries 57

Definition 2.47 (Projection). The projection of a global typeG onto the local type of
participant q, written G � q, is defined inductively on G:

(p→ p′ : 〈U〉.G′) � q =

!〈p′, U〉.(G′ � q) if q = p

?(p, U).(G′ � q) if q = p′

G′ � q otherwise

(p→ p′ : 〈{li : Gi}i∈I〉.G′) � q =

⊕〈p′, {li : Ti}i∈I〉.(G′ � q) if q = p

&(p, {li : Gi � q}i∈I).(G′ � q) if q = p′

Gi0 � q
where i0 ∈ I
if q 6= p, q 6= p′ and
Gi � q = Gj � q
∀i, j ∈ I

(µt.G) � q =

{
µt.G � q if G � q 6= t
end otherwise

t � q = t end � q = end

In the sequel, we assume that all global types are well-formed, meaning that G � q
is defined for all participants q that occur in G.

2.5.3 Typing Pure Processes
The typing rules are split in three categories: typing rules for pure processes, typing
rules formessage queues, and typing rules for processes (runtime and pure). We first
present the rules for typing pure processes. The typing judgments for expressions
and pure processes are:

Γ ` e : S Γ ` P .∆

where Γ and ∆ are defined as mappings given by the grammar below:

Γ ::= ∅ | Γ, x : S | Γ, a : G | Γ, X : S T ∆ ::= ∅ | ∆, c : T

Intuitively, Γ corresponds to the so-called standard environmentwhich associates vari-
ables to sorts, service names to closed global types, and process variables to pairs
of sort types and session types. On the other hand, ∆ is called the session environ-
ment which associates channels to session types. As usual, we assume dom(Γ) (resp.
dom(∆)) represents the domain of Γ (resp, ∆). Notice that the notation Γ, x : S is
only well-defined whenever x 6∈ dom(Γ). This convention extends to a : G, X : S T ,
and c : T . The latter implies that ∆,∆′ is only well-defined if ∆ ∩ ∆′ = ∅. Then,
the typing rules are given in Fig. 2.13. In the figure, mp(G) corresponds to the par-
ticipant with the highest number assigned, also called the maximum participant in G.
Some intuitions on the typing rules follow:

• Rules (NAME), (BOOL), and (AND) are as expected.

• Rules (MCAST) and (MACC) deal with request and accept constructs, respec-
tively. In the former rule, Γ must contain u : G and p must be the maximum
participant of G. Then, the projection of G onto p is added to the session envi-
ronment, assigned to y, to type continuation P . The latter rule is similar, except
for the fact that the number assigned to p is required to be less than mp(G).

Chapter 2. Preliminaries 58

(NAME)
Γ, u : S ` u : S

(BOOL)
Γ ` tt, ff : bool

(AND)
Γ ` ei : bool i ∈ {1, 2}
Γ ` e1 and e2 : bool

(MCAST)
Γ ` u : G Γ ` P .∆, y : G � p p = mp(G)

Γ ` u[p](y).P .∆

(MACC)
Γ ` u : G Γ ` P .∆, y : G � p p < mp(G)

Γ ` u[p](y).P .∆

(SEND)
Γ ` e : S Γ ` P .∆, c : T

Γ ` c!〈p, e〉.P .∆, c :!〈p, S〉.T

(RCV)
Γ, x : S ` P .∆, c : T

Γ ` c?(p, x).P .∆, c :?(p, S).T

(DELEG)
Γ ` P .∆, c : T

Γ ` c!〈〈p, c′〉〉.P .∆, c :!〈p, T〉.T, c′ : T

(SRCV)
Γ ` P .∆, y : T, c : T

Γ ` c?((p, x)).P .∆, c :?(p, T).T

(SEL)
Γ ` P .∆, c : Tj j ∈ I

Γ ` ⊕c〈p, lj〉.P .∆, c : ⊕〈p, {li : Ti}i∈I〉

(BRANCH)
Γ ` Pi .∆, c : Ti ∀i ∈ I

Γ ` &c(p, {li : Pi}i∈I) .∆, c : &(p, {li : Ti}i∈I)
(PAR)
Γ ` P .∆ Γ ` P .∆′

Γ ` P | Q .∆,∆′

(IF)
Γ ` e : bool Γ ` P .∆ Γ ` Q .∆

Γ ` e? (P) : (Q) .∆

(END)
∆ end only
Γ ` 0 .∆

(NRES)
Γ, a : G ` P .∆

Γ ` (νa)P .∆

(VAR)
Γ ` e : S ∆ end only

Γ, X : S T ` X〈e, c〉 .∆, c : T

(DEF)
Γ, x : S t, x : S ` P . y : T Γ, X : S µt.T ` Q .∆

Γ ` Def X(x, y) = P in Q .∆

Figure 2.13: Typing rules for pure MPST processes.

• Rules (SEND) and (DELEG) are reminiscing of Rules (T:OUT) and (T:IN) in Fig. 2.3
for π. The only difference is that, in MPST, there are no qualifiers, and we split
the rules: Rule (SEND) deals exclusively with the sending of values and Rule
(DELEG) with the sending of channels.

• Rules (RCV), (SRCV) are complementary to rules (SEND) and (DELEG).

• Rules (SEL) and (BRANCH) dealwith selection and branching, and are analogous
to rules (T:SEL) and (T:BRA) in Fig. 2.3.

• Rules (PAR), (IF), (END) are defined as expected. In Rule (PAR), the session
environments ∆ and ∆′ must be disjoint. Also, in Rule (END), we require ses-

Chapter 2. Preliminaries 59

Message Types M ::= !〈p, U〉 (Message Send)
| ⊕〈p, l〉 (Message Selection)
| M ;M (Message Sequence)

Generalized Types τ ::= T (Session)
| M (Message)
| M ;T (Continuation)

Figure 2.14: Syntax of message and generalized MPST types.

sion environments in which every channel is associated with type end (i.e., the
condition “∆ end only”).

• In Rule (NRES), the service name amust be added to the standard environment
Γ assigned to a closed global type G.

• Rules (VAR) and (DEF) deal with recursion. Notice that the recursion rule pre-
sented in here forces process variables to be associated with µ-types—for de-
tails, see [CDPY15].

2.5.4 Typing Queues
We now present the second set of typing rules for MPST mentioned in § 2.5.3: rules
for typing message queues. We start by defining the syntax ofmessage and generalized
types. The former correspond to the types assigned to message queues, while the
latter is defined as the “composition” of message types and local types (see below).
The syntax of message and generalized types is given in Fig. 2.14.

Intuitively, the message send type !〈p, U〉 indicates that a queue contains an ele-
ment of type U that is to be communicated to participant p. The message selection
type, on the other hand, signals the communication of a label l to participant p. Fi-
nally, type M ;M ′ denotes the sequencing of message types. Notice that we assume
“;” to be associative. For example, a message (q, p, tt) has type !〈p, bool〉.

Generalized types, as mentioned above, represent a composition of session types
and message types. Intuitively, a generalized type can be either a session type, a
message type, or a message type followed by a session type. In a sense, it can be
said that generalized types are used to reconstruct the overall type that governs the
behavior of one participant. Thus, typeM ;T represents that the continuation of the
typeM associated to some queue is T , which must be associated to a pure process.

Example 2.48 (Generalized Types). To explain the subtle difference between ‘.’ and
‘;’ let us consider the following two types:

!〈p, bool〉.?(p, bool).end !〈p, bool〉; ?(p, bool).end

where the leftmost type is a session type and the rightmost is a generalized type.
Intuitively, the first type indicates that participant p is ready to send a message of type
bool to participant q. In contrast, the second one represents a typewhere participant p
has already send amessagewith type bool, but thismessage has not yet been received
by participant q, and thus, the message is still in the queue. 4

Chapter 2. Preliminaries 60

(QINIT)
Γ `∅ s : ∅ . ∅

(QSEND)
Γ `{s} s : h .∆ Γ ` v : S

Γ `{s} s : h(p, q, v) .∆; {s[q] :!〈p, S〉}
(QDEL)

Γ `{s} s : h .∆
Γ `{s} s : h(p, q, s′[q′]) . (∆; {s[q] :!〈p, T〉}), s′[p′] : T

(QSEL)
Γ `{s} s : h .∆

Γ `{s} s : h(p, q, l) .∆; {s[q] : ⊕〈p, l〉}

Figure 2.15: Typing rules for single queues in MPST.

We can now explain the rules for typing single queues in Fig. 2.15. Typing judg-
ments for single queues are similar to judgments for pure processes. The main dif-
ferences are that ‘`’ is decorated with the singleton {s}, where s is the session name
of the current queue, and that session environments now map channels to message
types.

Intuitively, Rule (QINIT) assigns the empty session environment to the empty
queue. Then, Rules (QSEND), (QDELEG), and (QSEL) check that the queue of session
s contains the corresponding output types, before checking the rest of the queue. The
sequencing operator ‘;’ is extended to environments by letting:

∆; {s[p] :M} =

{
∆′, s[q] :M ′;M if ∆ = ∆′, s[q] :M ′

∆, s[q] :M otherwise

2.5.5 Typing Runtime Processes
We now present the full type system of MPST. Hence, we consider pure processes in
parallel with queues; therefore, we should use generalized types in session environ-
ments, and to add new rules.

We start by defining an equivalence, denoted ≈, between message types that will
allow us to take into account the structural congruence between queues (cf. Def. 2.46,
Rule (STR:11)). The equivalence is induced by the rule below:

M ; \〈p, Z〉; \〈p′, Z〉;M ′ ≈M ′; \〈p′, Z〉; \〈p, Z〉;M

where \ ∈ {!,⊕} and Z ∈ {U, l}. In the rest of this section we consider message types
modulo ≈. We then extend the equivalence to generalized types:

M ≈M ′ =⇒ M ; τ ≈M ′; τ

We then say that two session environments∆ and∆′ are equivalent (written∆ ≈ ∆′)
whenever:

c : τ ∈ ∆ ∧ τ 6= end =⇒ c : τ ′ ∈ ∆′ ∧ τ ≈ τ ′

Chapter 2. Preliminaries 61

Above, type end is ignored because the type system allows weakening for this kind
of types [CDPY15].

We must now define the composition of two session environments which may
contain the same channel with role s[p]. Moreover, in one of these environments, s[p]
may be assigned a message type, and in the other a session type. Hence, we define
a partial composition between generalized types, which allows to “sequentialize” the
types:

τ ∗ τ ′ =

{
τ ; τ ′ if τ is a message type
τ ′; τ if τ ′ is a message type

The composition above is partial because is only definedwhenever τ or τ ′ is amessage
type. We then extend this composition to environments:

∆ ∗∆′ = ∆ \ dom(∆′) ∪∆′ \ dom(∆) ∪ {c : τ ∗ τ ′ | c : τ ∈ ∆ ∧ c : τ ′ ∈ ∆′}

The definition of ∗ induces a commutativity property: ∆ ∗∆′ = ∆′ ∗∆.
To type processes with queues we introduce the notion of session environment con-

sistency. Intuitively, this property ensures that each individual participant in a mul-
tiparty session performs its communication actions in a consistent way—in a sense,
this property generalizes the guarantees given by duality in π (cf. Def. 2.15).

To define consistency we need two ingredients: the projection of generalized types
and duality, which are given below:
Definition 2.49 (Partial Projections of Generalized Types). The partial projections
of generalized types, ranged over by G,G, . . . is given below:

(!〈p, U〉.T) � q =

{
!U.T � q if q = p

T � p otherwise
(?(p, U).T) � q =

{
?U.T � q if q = p

T � p otherwise

(!〈p, U〉; τ ′) � q =

{
!U ; τ ′ � q if q = p

τ ′ � p otherwise
(⊕〈p, l〉; τ ′) � q =

{
⊕l; τ ′ � q if q = p

τ ′ � p otherwise

(⊕〈p, {li : Ti}i∈I〉) � q =

⊕{li : Ti}i∈I if q = p

Ti0
where i0 ∈ I if p 6= q and
Ti � q = Tj � q ∀i, j ∈ I

(&(p, {li : Ti}i∈I)) � q =

&{li : Ti}i∈I if q = p

Ti0
where i0 ∈ I if p 6= q and
Ti � q = Tj � q ∀i, j ∈ I

(µt.T) � q =

{
µt.(T) � q if T � q 6= t t � q = t end � q = end

end otherwise

Definition 2.50 (Duality). The duality relation on partial projections of generalized
types is given below:

end ./ end t ./ t G ./ G′ =⇒ µt.G ./ µt.G′

G ./ G′ =⇒ !U.G ./?U.G′ G ./ G′ =⇒ !U ;G ./?U.G′

∀i ∈ I Gi ./ G′i =⇒ ⊕{li : G}i∈I ./ &{li : G′}i∈I
∃i ∈ I l = li ∧ Gi ./ G′i =⇒ ⊕l;G ./ &{li : G′}i∈I

Chapter 2. Preliminaries 62

(GINIT)
Γ ` P .∆

Γ `∅ P .∆

(EQUIV)
Γ `Σ P .∆′ ∆ ≈ ∆′

Γ `Σ P .∆

(GPAR)
Γ `Σ P .∆ Γ `Σ P .∆ Σ ∩ Σ′ = ∅

Γ `Σ∪Σ′ P | Q .∆ ∗∆′

(GSRES)
Γ `Σ P .∆ Co(∆, s)

Γ `Σ\s (νs)P .∆ \ s

(GNRES)
Γ, a : G `Σ P .∆

Γ `Σ (νa)P .∆

(GDEF)
Γ, x : S t, x : S `Σ P . {y : T} Γ, X : S µt.T `Σ Q .∆

Γ ` Def X(x, y) = P in Q .∆

Figure 2.16: Typing rules for processes with queues in MPST.

Definition 2.51 (Consistency). A session environment∆ is consistent for the session
s (written Co(∆, s)) if s[p] : τ ∈ ∆ and s[q] : τ ′ ∈ ∆ imply τ � q ./ τ ′ � p. A session
environment is consistent if it is consistent for all sessions which occur in it.

The following proposition guarantees that all the projection of the same global
type are dual, and therefore the session environment obtained by projection global
types are always consistent.

Proposition 2.52 (Duality of Global Type Projections [CDPY15]). Let G be a global
type and p 6= q. Then (G � p) � q ./ (G � q) � p.

We are now ready to present the rest of the typing rule for MPST. For processes
with queues, the typing judgments are of the form:

Γ `Σ P .∆

where Σ is now the set of all queues whose session name is in ∆. The rules are then
given on Fig. 2.16.

Rule (GINIT) states that a pure process typeswithΣ = ∅, provided that it is typable
with the rules Fig. 2.13. Rule bEQUIVc introduces≈ to the type system. Whenever two
processes are composed in parallel, we require that each session name is associated
with, at most, one queue. Hence, we requireΣ∩Σ′ = ∅. Rules (GSRES) and (GNRES)
deal with the restriction of session names and service names. Notice that session
names can only be restricted whenever the environment is consistent for the session
that is restricted. Rule bGDEFc remains as (DEF).

2.5.6 Typing Properties
We now present the main typing property for the type system of MPST: subject re-
duction. Notice that since session types also represent ensuing communications, the

Chapter 2. Preliminaries 63

session environments after a reduction may change and therefore, we need to de-
fine a reduction relation for session environments (given below). This contrasts with
the type system with the subject reduction property in § 2.2.3 (cf. Thm. 2.18). The
reason for this difference is due to the fact that the π semantics require communicat-
ing endpoints to be closed under restriction (cf. Fig. 2.1), whereas the semantics of
MPST does allow communication between processes containing free channels with
roles (cf. Fig. 2.11).

Definition 2.53 (Environment Reduction). The reduction relation for session envi-
ronments, written ∆⇒ ∆′, is given by the following rules:

• {s[p] :M ; !〈q, U〉.T} ⇒ {s[p] :M ; !〈q, U〉;T}.

• {s[p] :!〈q, U〉; τ, s[q] :M ; ?(p, U).T} ⇒ {s[p] : τ, s[q] :M ;T}.

• {s[p] : ⊕〈p, {li : Ti}i∈I〉} ⇒ {s[p] :M ;⊕〈p, lj〉;Tj} for j ∈ I .

• {s[p] : ⊕〈q, l〉; τ, s[q] :M ;&(p, {li : Ti}i∈I)} ⇒ {s[p]; τ, s[q] :M ;Tj} if l = lj and
j ∈ I .

• ∆,∆′′ ⇒ ∆′,∆′′ if ∆⇒ ∆′.

whereM can be missing and message types are considered modulo ≈.

Intuitively, the first rule corresponds to putting a message with sender p, receiver
q and with content of type U in the queue for session s (hence the session type is
“transformed” into a message type). The second rule reads the message in the queue
and therefore consumes it. The next two rules are similar, applied to labels; the last
rule extends the reduction to larger session environments.

The authors in [CDPY15] observe that not all processes that can reduce are typed
with consistent environments. For example, they present the judgment:

Γ `Σ s[1]?(2, x).s[1]?(2, x′).0 | s : (2, 1, tt)︸ ︷︷ ︸
P

.
{s[1] :!〈2, bool〉.!〈2, nat〉.end,
s[2] :!〈1, bool〉}︸ ︷︷ ︸

∆

where P −→ s[1]?(2, x′).0 | s : ∅ and ∆ is not consistent. Given that the proof of
subject congruence goes by induction on the length of the process reduction, wemust
prove that whenever a process is typed with a non-consistent session environment,
which is consistent by composing it with another, then its reduction satisfies the same
property. We then conclude this section by stating this statement followed by the
subject reduction property.

Lemma 2.54 (Main Lemma [CDPY15]). Let Γ `Σ P . ∆ and P −→ Q be obtained
by any reduction rule different from bCTXTc, bSTRc, and ∆ ∗∆0 be consistent, for some ∆0.
Then there is ∆′ such that Γ `Σ Q .∆′ and∆⇒ ∆′ and ∆′ ∗∆0 is consistent.

Theorem 2.55 (Subject Reduction [CDPY15]). If Γ `Σ P . ∆ and P −→∗ Q, then
Γ `Σ Q .∆′ for some consistent∆′ such that∆⇒ ∆′.

3
Source and Target Languages

In this chapter we introduce the source languages for our translations, as well as
additional target languages. First, we introduce our source languages:

• In § 3.1 we develop three variants of π (cf. § 2.2):

1. In § 3.1.2 we introduce π OR, a variant of π that disallows output races (see
Ex. 2.25) by redefining the predicates un(·) and lin(·) for the π type system
(cf. § 2.2.2).

2. Next, in § 3.1.1 we present π R , a variant of π that disallows both output
and input races, while allowing infinite behavior given by replication.

3. Finally, in § 3.1.3 we present an extension of π OR, named πE, that allows
session establishment with localities.

• In § 3.2 we introduce aπ, an asynchronous variant of the language presented in
[KYHH16].

After presenting the source languages, we present our remaining target languages:

• In § 3.3we introduce an extension of lcc (cf. § 2.3)which allows for abstractions
to have private, local information when resolving a query to the store.

• In § 3.4 we then present RMLq, an extension of ReactiveML that uses queues to
keep track of the value of variables during execution (cf.).

In § 3.5 we close this chapter by summarizing all source and target languages and our
encodability results.

Chapter 3. Source and Target Languages 65

3.1 Variants of the Session Calculus π

3.1.1 A Session π Calculus without Output Races (π OR)
In this section we present π OR, a variant of π (cf. § 2.2), induced by a variant of the
type system in § 2.2.2. The goal of the new type system is to disallow output races.
Intuitively, we say that π process has an output race whenever said process has two
ormore output-like (i.e., sending and branching constructs) prefixes on the same vari-
able in parallel. We first motivate π OR by using some examples. Next, we introduce
our specialized type system and present further examples to intuitively explain the
details behind the taken design decisions. Finally, we present all the guarantees that
the type system for π OR ensures.

Motivation

When devising translations for formal languages with different natures such as the
ones present in this work, it is often necessary to narrow down the classes of pro-
cesses considered in the source language, enabling the translation to satisfy stronger
correctness criteria. Type systems, such as the one in § 2.2.2, can be used exactly
for this purpose. Our first translation, as hinted in § 3.5, is an lcc embedding of a
session-based π-calculus (cf. Ch. 4). Hence, to obtain a translation that enjoys strong
correctness properties it is necessary to reconcile the differences between π and lcc.
In particular, a prominent feature of π and its type system (cf. § 2.2.2) is its rather
flexible support for π processes with infinite behavior, in the form of recursive ses-
sion types that can be shared among multiple threads [Vas12]. This expressiveness
contrasts with the more modest replication present in lcc (cf. § 2.3.1).

To smoothen these differences, we shall devise a specialization of the type system
in § 2.2.2; this way we can identify a class of π processes that exhibits a tight corre-
spondence with lcc processes—a correspondence made precise by the correctness
properties of the translation in Ch. 4. At its core, this specialization rules out output
races, which can be typed using the system in § 2.2.2 using recursive types. To illus-
trate the kind of processes wewould like the new type system to rule out, let us recall
process P4 in Ex. 2.25:

P4 = (νxy)(x〈tt〉.0 | x〈tt〉.y(u).0 | y(u′).x〈tt〉.0)

It can be shown that P4 is typable by assigning the recursive type ∗ !bool to x and
its dual to y (cf. Ex. 2.25). Since our objective is ruling our processes such as P4, it
becomes clear that it is necessary to control the sharing of recursive types among the
threads in a process.

Disallowing output races is not an stringent restriction on the session calculus. In
fact, we can show that π OR can express an important class of processes with infinite
behavior by using unrestricted input types and replication. As we show later, our
type system allows processes such as P2 (cf. Ex. 2.25) below:

P2 = (νxy)(νwz)(x〈ff〉.0 | ∗ y(u).0 | ∗ y(u′).(w〈tt〉.0 | z(u′′).0))

which representsmultiple replicated servers offering services to a single client. More-
over, it can be argued that it is still possible to execute a similar behavior to the one

Chapter 3. Source and Target Languages 66

induced by output races, where all the requests (outputs) have been sequentialized.
This means that we could represent a process with output races such as:

P5 = (νx1y1)(x1〈v1〉.Q1 | x1〈v2〉.Q2 | ∗ y1(z).Q3) (3.1)

as a process without output races by establishing a specific execution order (i.e, by
saying which output interacts first), and creating new private channels to continue
the interactions with Q3:

P ′5 = (νx1y1)(νx2y2)(νx3y3)

(x1〈y2〉.x1〈y3〉.(x2〈v1〉.Q1{x2/x1} | x3〈v2〉.Q2{x3/x1}) | ∗ y1(z).z(z′).Q3)
(3.2)

In the rest of this section we introduce our specialized type system. Note that it is
necessary to prove again all the typing properties as a way to ensure that π OR still
satisfies the guarantees given in § 2.2.2 for π.

Remark 3.1 (Syntax and Semantics of π OR). The syntax and semantics of π OR will remain
the same as the ones presented in § 2.2.1. Similarly, the syntax of types is as in Fig. 2.2.
The only changes will appear in the type system—specifically, in the predicates un(·)
and lin(·), used to define the environment splitting operation (cf. Def. 2.16).

Type System

To disallow output races we focus on the splitting operation for the type system in
§ 2.2.2. Recalling Def. 2.16, we focus on the types that satisfy un(·), whose splitting is
given by:

Γ1 ◦ Γ2 = Γ un(T)

(Γ1, x : T) ◦ (Γ2, x : T) = Γ, x : T

In a nutshell, wewould like for T to be a type that cannot be assigned to an output-like
channel. Hence, we would like to completely exclude unrestricted output and selec-
tion types (i.e., q!T.T ′ and q⊕{li : Ti}i∈I) from being shared among environments—
even when they do not occur immediately; e.g., ?T.!T ′.end. We accomplish this by
redefining the predicate un(·) (cf. Def. 2.14). First, we present an auxiliary predicate,
which characterizes these output-like types:

Definition 3.2 (Output-Like Unrestricted Types). We define the predicate out(T)
for types T inductively. We start by defining out(p) for pre-types:

out(!T.U)
def
= tt out(?T.U)

def
= out(U)

out(⊕{li : Ti}i∈I)
def
= tt out(&{li : Ti}i∈I) def

=
∨

i∈I out(Ti)

then out(T) is given below:

out(bool)
def
= ff out(end)

def
= ff out(a) def

= ff

out(qp)
def
= out(p) out(µa.T) def

= out(T)

Having defined output-like unrestricted types, we proceed to show the new pred-
icates for the type system of π OR by replacing Def. 2.14 with the following definition:

Chapter 3. Source and Target Languages 67

(T:WKNIL)
Γ ` 0 uno(T)

Γ, x : T ` 0

Figure 3.1: Additional weakening rule for the π OR type system.

Definition 3.3 (Refined Predicates for π OR). Let T be a session type (cf. Fig. 2.2). We
define q(T) and q(Γ) for each qualifier q ∈ {un, lin}:

• lin(T) if and only if true.

• un(T) if and only if (T = bool) ∨ (T = end) ∨ (T = un p ∧ ¬out(p)).

• q(Γ) if and only if x : T ∈ Γ implies q(T).
Above, predicate lin(T) remains as presented in § 2.2.2. The main change can

be found in predicate un(T), that is modified to avoid sharing output-like types by
requiring that pre-types qualified with un do not satisfy out(·). Furthermore, we will
find it also useful to collect all pre-types qualified with un that satisfy out(·), hence
we add an additional predicate:

• uno(T) if and only if T = un p and out(p).
The type system of π OR is then obtained by using all the rules in Fig. 2.3 extended

with the rules in Fig. 3.1. In the figure, Rule (T:WKNIL) is used to allow the weak-
ening of unrestricted output-like types whenever the inactive process is being typed.
To understand why the new rule is necessary, we use a simple example. Below, we
unfold the notation for recursive types: ∗ !T = µa.!T.a.
Example 3.4. Consider the recursive type T = µa. un!bool.a, and the processes P1 =
x〈tt〉.x〈ff〉.0, and P2 = x〈tt〉.0 | x〈ff〉.0. With the new type system, we would like
to use environment x : T to type P1. Moreover, we would like the same environment
to rule out P2 (notice that P2 would be typable in π with the same environment). Let
us then analyze the typing derivation trees. For P1 we have:

(T:OUT)
(T:BOOL)

un(∅)
∅ ` tt

(T:VAR)
un(∅)

x : T ` x : q!bool.U

D

∅+ x : U ` x〈ff〉.0
∅ ◦ x : µa. un!bool.a ◦ ∅ ` x〈tt〉.x〈ff〉.0

The first important observation for the typing derivation above is that un(T) is false
and out(T) is true. This means that when splitting the environment (i.e., Γ1 = ∅,
Γ2 = µa. un!bool.a, andΓ3 = ∅), as required byRule (T:OUT), only one of the branches
will contain x : T—in this case, the middle branch. Next, we must obtain U ; since we
use equi-recursive types, we have that µa. un!bool.a =!bool.µa. un!bool.a. Therefore,
U = T , which means that the rightmost branch becomes x : T ` x〈ff〉.0. Below we
give the derivation sub-tree D:

(T:OUT)
(T:BOOL)

un(∅)
∅ ` ff

(T:VAR)
un(∅)

x : T ` x : q!bool.T
(T:WKNIL)

(T:NIL)
un(∅)
∅ ` 0

∅+ x : T ` 0
∅ ◦ x : µa. un!bool.a ◦ ∅ ` x〈ff〉.0

Chapter 3. Source and Target Languages 68

The sub-tree above is obtained by applying Rule (T:OUT). Notice that before con-
cluding the rightmost branch, we are left with judgment x : T ` 0. Then, since un(T)
is false, it is necessary to apply Rule (T:WKNIL), followed by (T:NIL) to finish the
derivation.

Intuitively, the need for Rule (T:WKNIL) follows from the fact that some typing
judgments may require the weakening of output-like unrestricted types before con-
cluding the derivation.

We now show the typing derivation for P2, and precisely detail how the redefined
un(·) predicate makes rules out the undesired output races:

(T:PAR)
Γ1 ` x〈tt〉.0 Γ2 ` x〈ff〉.0

x : µa. un!bool.a ` x〈tt〉.0 | x〈ff〉.0

Notice that since un(T) is not true, the splitting operation cannot have a copy of x : T
in both Γi, i ∈ {1, 2}. Therefore, one of the Γi = ∅, which implies that one of the
branches will not be able to type. 4

We further exhibit the intuitions behind the π OR type system. First, we recall P4

from Ex. 2.25 and show that it is not well-typed in the new type system as it contains
output races. Second, we recall P3 from Ex. 2.25 and show its derivation tree. In the
examples belowwe omit the application of the rules for boolean values and variables,
focusing only on processes:
Example 3.5. Consider process P4 below (cf. Ex. 2.25):

P4 = (νxy)(x〈tt〉.0 | x〈tt〉.y(u).0 | y(u′).x〈tt〉.0)

P4 is well-typed (cf. Ex. 2.25), but only if we are able to share the type of x among two
different environments for typing two different threads. This type is T = ∗ !bool =
unµa.!bool.a. By following the predicates defined above, it can be seen that un(T)
does not hold, as out(T) is true. Hence, the splitting rule does not allow to share T
among environments, and thus, some of the branches of the typing derivation will
not finish:

(T:RES)
(T:PAR)

Some of the branches in here fail as x : T cannot be shared.
x : ∗ !bool, y : ∗ ?bool.t ` x〈tt〉.0 | x〈tt〉.y(u).0 | y(u′).x〈tt〉.0
` (νxy)(x〈tt〉.0 | x〈tt〉.y(u).0 | y(u′).x〈tt〉.0)

4

Example 3.6. Let us consider process P3 = (νwz)(νxy)(x〈z〉.w(u′).0 | ∗ y(u).u〈tt〉.0)
(cf. Ex. 2.25), whose typing derivation tree is given below:

(T:RES)×2

(T:PAR)
D

(T:RIN)
(T:OUT)

(T:NIL)
un(y : ∗ ?(!bool), u : end)

y : ∗ ?(!bool), u : end ` 0
y : ∗ ?(!bool), u :!bool ` u〈tt〉.0

y : ∗ ?(!bool) ` ∗ y(u).u〈tt〉.0
x : ∗ !(!bool), y : ∗ ?(!bool),
w :?bool, z :!bool

` x〈z〉.w(u′).0 | ∗ y(u).u〈tt〉.0

` (νwz)(νxy)(x〈z〉.w(u′).0 | ∗ y(u).u〈tt〉.0)

Chapter 3. Source and Target Languages 69

where the derivation sub-tree D corresponds to:

(T:OUT)
(T:IN)

(T:WKNIL)
(T:NIL)

un(y : ∗ ?(!bool), u′ : bool, w : end)

y : ∗ ?(!bool), u′ : bool, w : end ` 0
x : ∗ !(!bool), y : ∗ ?(!bool), u′ : bool, w : end ` 0

y : ∗ ?(!bool), w :?bool+ x : ∗ !(!bool) ` w(u′).0
x : ∗ !(!bool), y : ∗ ?(!bool), w :?T, z :!bool ` x〈z〉.w(u′).0

4

Properties of Typing

Due to the above modifications, it becomes necessary to prove modified statements
that ensure typing correctness. We start by proving some auxiliary results. First, we
show some basic properties of the typing predicates defined above. The most salient
one is that un(T) does not necessarily implies un(T). This occurs because although
input-like types can satisfy un(·), their dual types necessarily satisfy out(·), and there-
fore, un(T) does not hold. Below, the requirement “T is defined” allows us to rule
out unnecessary types such as bool or µa.bool, whose duality is undefined.

Lemma 3.7 (Basic Properties for Types). Let T be a π OR type such that T is defined.
Then, all of the following holds:

1. If un(T) then one of the following holds:

(a) If T = end or T = a then ¬out(T) holds.
(b) If T = µa.T or T = qp then out(T) holds.

2. If lin(T) then lin(T) holds.

Proof. By induction on the structure of T . For details see App. A.1.

Next, we show some properties regarding typing environments. Let U(Γ) denote
the typing environment containing exactly the entries x : T ∈ Γ such that un(T).
Note that Lem. 3.8(2) below has been modified with respect to the lemma presented
in [Vas12] to account for output-like unrestricted types.

Lemma 3.8 (Properties of Typing Environments). Let Γ = Γ1 ◦ Γ2. Then all of the
following hold:

1. U(Γ) = U(Γ1) = U(Γ2).

2. Suppose that x : qp ∈ Γ ∧ (q = lin ∨ (q = un ∧ out(p) = tt)). Then, either
x : qp ∈ Γ1 and x 6∈ dom(Γ2) or x : qp ∈ Γ2 and x 6∈ dom(Γ1).

3. Γ = Γ2 ◦ Γ1.

4. If Γ1 = ∆1 ◦∆2 then∆ = ∆2 ◦ Γ2 and Γ = ∆1 ◦∆.

Proof. Every item is proven by induction on the structure of Γ and by using the defi-
nition of splitting and predicates un(·) and lin(·). For details see App. A.1

Chapter 3. Source and Target Languages 70

The unrestricted weakening lemma proven below allows us to introduce new vari-
ables paired with unrestricted types in a typing environment. This result is useful
whenever variables that do not appear free in the process being typedmust be added
in the environment.

Lemma 3.9 (Unrestricted Weakening). If Γ ` P and un(T) then Γ, x : T ` P .

Proof. By induction on the derivation Γ ` P . There are ten cases. The base case is
given by Rule (T:NIL), which follows from inversion on the rule, the definition of
un(·), and by applying Lem. 3.8(5). For the inductive step it is first necessary to prove
a similar result for the two rules dealingwith variables (Rules (T:BOOL) and (T:VAR)).
This follows by a simple case analysis and inversion on the corresponding rule (while
applying Lem. 3.8(5)). Using the result for variables, the inductive step for the state-
ment above follows by inversion, applying the IH to the hypotheses obtained, and by
reapplying the necessary rule.

Strengthening allows us to remove linear variables that do not appear free in P
from Γ. The statement below also ensures that variables with types that satisfy lin(·)
are consumed. Similarly to Lem. 3.8, Lem. 3.10(2) below has been adapted from
[Vas12] to account for output-like unrestricted types.

Lemma 3.10 (Strengthening). Let Γ ` P and x 6∈ fvπ(P). Then the following holds:

1. If x : qp ∧ (q = lin ∨ (q = un ∧ out(p) = tt)) then x : qp 6∈ Γ.

2. If Γ = Γ′, x : T and un(T) then Γ′ ` P .

Proof. Each item proceeds by induction on the typing derivation Γ ` P and there are
ten cases. First, we must establish a similar result for values, which follows by a case
analysis on the applied rule. For Item (1) notice that the Rule (T:NIL) follows imme-
diately, because predicate un(·) rules out the possibility of x : qp ∈ Γ; the inductive
cases proceed by applying the IH. In Item 2; the base case proceeds by considering
that x 6∈ fvπ(0), and un(Γ′) still holds. All the inductive cases proceed by applying
the IH.

We now state our subject congruence property. Notice that although this state-
ment remains unchanged regarding to the one in Lem. 2.17, the required proof will
differ noticeably. In particular, we find differences in the cases where Rule (T:PAR) is
applied, as it is necessary to split the environment.

Lemma 3.11 (Subject Congruence). If Γ ` P and P ≡S Q then Γ ` Q.

Proof. By a case analysis on the typing derivation for each member of each axiom for
≡S. For details see App. A.1.

The substitution lemma below ensures that typing is preserved by substitutions.
This lemma will be important for proving subject reduction (cf. Thm. 3.13).

Lemma 3.12 (Substitution). If Γ1 ` v : T and Γ2, x : T ` P then Γ ` P{v/x}, with
Γ = Γ1 ◦ Γ2.

Chapter 3. Source and Target Languages 71

Proof. By induction on the structure of P . For details see App. A.1.

Using the substitution lemma abovewe can prove subject reduction to ensure that
typing is preserved by the reduction relation given in Fig. 2.1.

Theorem 3.13 (Subject Reduction). If Γ ` P and P −→∗ Q then Γ ` Q.

Proof. By induction on the reductionP −→∗ Qwith a case analysis on the last applied
rule. See App. A.1 for details.

Finally, we prove type safety. Notice that disallowing output races entails a re-
vised class of well-formed processes, different from the one in Def. 2.20:

Definition 3.14 (Well-Formed Process). A π OR process P0 is well-formed if for each of
its structural congruent processes P0 ≡S (νx1y1) . . . (νxnyn)(P | Q | R), with n ≥ 0,
the following conditions hold:

1. If P ≡S v? (P
′) : (P ′′) then v = tt or v = ff.

2. IfP andQ are prefixed at the same variable, then they are of the same input-like
nature (inputs, replicated inputs, or branchings).

3. If P is prefixed at xi and Q is prefixed at yi, 1 ≤ i ≤ n, then P | Q is a redex.

Two important remarks about the above definition follow. First, since the syntax of
π OR is the same as the one of π, it is not necessary to redefine redexes and pre-redexes,
as they remain as in Def. 2.19. Second, the main difference of this definition with
respect to Def. 2.20 is in the second item: while Def. 2.20 allows processes prefixed on
the samevariable to be of the “samenature” (input-like or output-like), our definition
only allows these variables to be of input-like nature. Below we state type safety; we
lift the notation for programs (cf. Not. 2.21) to π OR as it is.

Theorem 3.15 (Type Safety). If ` P then P is well-formed.

Proof. By contradiction. For details see App. A.1.

The following corollary shows that well-formedness is preserved under reduc-
tion. It follows from Thm. 3.13 and Thm. 3.15.

Corollary 3.16. If ` P and P −→∗ Q then Q is well-formed with respect to Def. 3.14.

3.1.2 A Session π-Calculus without Races (π R)
We introduce a variant of π (cf. § 2.2) that disallows races (i.e., whenever a variable
x is shared among two or more threads). This calculus, called π R , can be understood
as a further specialization of π OR (cf. § 3.1.1). We first motivate the type system re-
quired for π R . Next, we present the type system for π R . Then, we show the properties
ensured by typing in π R . Finally, we introduce a big-step semantics for π R , which will
be useful for proving the encoding in Ch. 7 valid (cf. Def. 2.3) and proof its semantic
correspondence (cf. Def. 2.9).

Chapter 3. Source and Target Languages 72

Motivation

There are some differences between the expressive power of well-typed π programs
and our target languageswhich need to be reconciled to ensure encoding correctness.
The calculus π R is the source language for the encoding presented in Ch. 7 and Re-
activeML, the target. The main difference between these two languages arise from
their semantics: in ReactiveML signals are emitted and detected by processes that
react to them; this behavior makes signals ideal to simulate channel endpoints in
π. However, signals and channels behave in very different ways: while Reactive-
ML signals are asynchronous and they are broadcast to every process, messages sent
across channels in π are synchronous and point-to-point. Indeed, signals can: (1) be
emitted even if there is no process to detect them and (2) be simultaneously detected
by multiple processes in the same time instant. In contrast, channels in π: (1) cannot
sendmessages tomultiple receptors at the same time and (2) can only send amessage
whenever a receptor is ready to receive it.

Therefore, it is convenient to focus on a sub-class of well-typed π processes with a
particular type of infinite behavior. This sub-class corresponds to processes without
shared variables among parallel subprocesses. As we mentioned before, well-typed
processes bring a flexibility that goes beyond our purposes, as we want ReactiveML
to capture the essence of session types: linear behavior. Nonetheless, it is important
to mention that our translation allows for forms of infinite behavior. In particular,
we want to allow unrestricted behavior that is akin to servers establishing a linear
session with its corresponding client, as the example below:

P6 = (νxy)((νwz)(x〈w〉.z(y1).Q1) | ∗ y(y2).y2〈v〉.Q2) (3.3)

Process P6 represents a client that interacts with a replicated server: during the first
synchronization a new session is established. It is then expected that the new session
proceeds linearly. Notice that the replicated server remains available to further clients
after reduction. This behavior is reminiscent of the replicated servers in [CP10]. As
it will be shown later, we can also model processes like P ′5 in (3.2), provided that
y 6∈ fvπ(Q). We now present two processes we would like to rule out, as an example:

P7 = (νxy)(x〈v〉.Q1 | ∗ y(z).Q2 | x〈v′〉.Q3)

P8 = (νxy)(x〈v〉.Q1 | ∗ y(z).Q2 | ∗ y(z′).Q3)
(3.4)

Above, processes P7 and P8 present two forms of unrestricted behavior allowed in
typed π [Vas12]. In P7, a pair of clients are able to interact with a replicated server.
In P8, a client can interact with one of the two replicated servers.

Below we explain the difficulties that arise by using ReactiveML to encode the
behavior of P7 and P8, due to the semantics of ReactiveML:

Scenario for P7: The translations of two clients run in parallel. Given the asynchro-
nous nature of the ReactiveML semantics, the signal representing x, say sx, is
emitted twice in the same instant. Two issues arise: (1) unless the order of the
received values is fixed, the determinism required in SRP languages breaks and
(2) one of the messages would be lost, as sx can only be detected once in a time
instant.

Chapter 3. Source and Target Languages 73

(T:WKNIL)
Γ ` 0

Γ, x : un p ` 0
(T:RIN)

un(Γ) x : T ` x : un?T ′.U Γ, y : T ` P
Γ, x : T ` ∗x(y).P

Figure 3.2: Additional weakening rule and new replication rule for π R .

Scenario for P8: The translations of two servers interact with the translation of a
client. Thus, due to the broadcast nature of signals in ReactiveML, the emis-
sion of sx is detected by the translation of both servers at the same time, thus
activating the translations of Q2 and Q3 at the same time: a clearly incorrect
behavior.

Remark 3.17. As with π OR, the syntax and semantics of π R remain unchanged. Thus,
the syntax for π R is given by Def. 2.10, and its semantics by Fig. 2.1.

Type System

Wemodify the un(·)predicate (cf. Def. 2.14) to disallow every pre-type qualifiedwith
un, and add a rule for dealing with these types when finishing the typing derivation.
By modifying un(·) (cf. Def. 2.14) we disallow the sharing of variables by changing
the splitting operation in Def. 2.16. Below, we present the refined predicates for π R :
Definition 3.18 (Refined Predicates for π R). Let T be a session type (cf. Fig. 2.2).
We define q(T) and q(Γ) for each qualifier q ∈ {un, lin}:

• un(T) if and only if T = bool or T = end.

• lin(T) if and only if true.

• q(Γ) if and only if x : T ∈ Γ implies q(T).

The only difference with respect to Def. 2.14 is the fact that now pre-types qual-
ified with un do not satisfy un(·). This redefinition has an effect on the splitting op-
eration. In particular, the splitting operation now forbids to copy variables assigned
pre-types qualified with un between split environments.

In tandem with the previous changes, we modify the rules in Fig. 2.3 by adding
Rule (T:WKNIL) and replacing Rule (T:RIN) with the rule in Fig. 3.2. Intuitively,
the former allows us to remove unnecessary recursive types that are product of the
changes in predicate un(·). Then, the latter is changed to disallow any form of unre-
stricted behavior in the continuation P—observe that the only types that satisfy un(·)
are end and bool.

To understand the changes in the typing rules, we use a series of examples that
show how typing derivations work in π R :
Example 3.19. In π R wewould likes to typecheck process P1 = ∗ y(z1).z1(z2).0, while
discarding both P2 = ∗ y(z1).0 | ∗ y(z1).0 and P3 = ∗ y(z1).y(z2).0 with recursive

Chapter 3. Source and Target Languages 74

types. We first show how we can type P1. Assume that T = µa. un?(?bool.end).a:

(T:RIN)
un(∅)

(T:VAR)
un(∅)

y : T ` y : un .?(?bool.end).T

D

z1 :?bool.end ` z1(z2).0
y : µa. un?(?bool.end).a ` ∗ y(z1).z1(z2).0

The derivation above can be broken down as follows. First notice that Rule (T:RIN)
(cf. Fig. 3.2) requires the environment (without ∆(y)) to satisfy un(·). Next, the rule
requires that y is of an appropriate type; in this derivation sub-tree we can apply Rule
(T:VAR), due to our equi-recursive view of types. Finally, the rule requires that using
z1, we can type the continuation z1(z2).0. We do not expand sub-tree D, which can
be finished by applying Rule (T:IN) and (T:NIL).

Notice that process P2 does not typecheck because variable y cannot be shared
among environments when applying Rule bT:PARc; therefore, one of the branches
will not type-check.

Finally, we analyze process P3. This process should not be typable because it
generates races after reduction:

(νxy)(x〈tt〉.0 | ∗ y(z1).y(z2).0) −→ (νxy)(0 | y(z2).0 | ∗ y(z1).y(z2)) = P ′3

where P ′3 has a race on y. The typing derivation fails because for a reason similar to
P2: it is not possible to share y and thus, the continuation cannot be typed. 4

We conclude this section by showing how to type a process that delegates a linear
channel, using replication and recursive types.
Example 3.20. Consider process P3 below (cf. Ex. 2.25):

P3 = (νwz)(νxy)(x〈z〉.w(u′).0 | ∗ y(u).u〈tt〉.0)

whose typing derivation tree is given below. We only show the rule applications for
processes, omitting the ones for variables and constants:

(T:RES)×2

(T:PAR)
D

(T:RIN)
(T:OUT)

(T:NIL)
un(u : end)

u : end ` 0
u :!bool ` u〈tt〉.0

y : ∗ ?(!bool) ` ∗ y(u).u〈tt〉.0
x : ∗ !(!bool), y : ∗ ?(!bool),
w :?bool, z :!bool

` x〈z〉.w(u′).0 | ∗ y(u).u〈tt〉.0

` (νwz)(νxy)(x〈z〉.w(u′).0 | ∗ y(u).u〈tt〉.0)

where the derivation sub-tree D corresponds to:

(T:OUT)
(T:IN)

(T:WKNIL)
(T:NIL)

un(u′ : bool, w : end)

u′ : bool, w : end ` 0
x : ∗ !(!bool), u′ : bool, w : end ` 0

w :?bool+ x : ∗ !(!bool) ` w(u′).0
x : ∗ !(!bool), w :?bool, z :!bool ` x〈z〉.w(u′).0

4

Chapter 3. Source and Target Languages 75

Typing Properties

We now prove some useful properties for the type system of π R . As with π OR, we first
show some properties regarding typing environments. We shall reuse U(Γ) to denote
the typing environment containing exactly the entries x : T ∈ Γ such that un(T). Note
that Lem. 3.21(2) below accounts for the changes of predicate un(·) in Def. 3.18.

Lemma 3.21 (Properties of Typing Environments). Let Γ = Γ1 ◦ Γ2. Then all of the
following hold:

1. U(Γ) = U(Γ1) = U(Γ2).

2. Suppose that x : qp ∈ Γ. Then, either x : qp ∈ Γ1 and x 6∈ dom(Γ2) or x : qp ∈ Γ2

and x 6∈ dom(Γ1).

3. Γ = Γ2 ◦ Γ1.

4. If Γ1 = ∆1 ◦∆2 then∆ = ∆2 ◦ Γ2 and Γ = ∆1 ◦∆.

Proof. Every item is proven by induction on the structure of Γ and by using the defi-
nition of splitting and predicates un(·) and lin(·). Details in App. A.2.

We now prove unrestricted weakening and strengthening for π R . The proofs are
similar to the ones presented in the previous section. In the case of strengthening,
Item (2) has beenmodified to account for the modifications in Def. 3.18. Most details
are similar to the ones presented in § 3.1.1; thus, we only point out the most salient
changes.

Lemma 3.22 (Unrestricted Weakening). If Γ ` P and un(T) then Γ, x : T ` P .

Proof. The proof is immediate by induction on the derivation Γ ` P . It is similar to
the one for Lem. 3.22. There are ten cases.

Lemma 3.23 (Strengthening). Let Γ ` P and x 6∈ fvπ(P). Then the following holds:

1. If x : lin p then x : lin p 6∈ Γ.

2. If Γ = Γ′, x : T and un(T) then Γ′ ` P .

Proof. Immediate by induction on the derivation Γ ` P . It is similar to the one for
Lem. 3.10. There are ten cases.

We now prove subject reduction. For this we must first prove subject congruence
and a substitution lemma. The main difference in the proof with respect to the one
shown in [Vas12] appear for the cases that involve Rule (T:PAR).

Lemma 3.24 (Subject Congruence). If Γ ` P and P ≡S Q then Γ ` Q.

Proof (sketch). By a case analysis on each axiom for ≡S. In each case we prove both
directions of the structural congruence. Each direction proceeds by induction on the
typing derivation on P or Q (depending on the direction being proven). The proof
proceeds similarly as in Lem. 3.11.

Chapter 3. Source and Target Languages 76

Lemma 3.25 (Substitution). If Γ1 ` v : T and Γ2, x : T ` P then Γ ` P{v/x}, with
Γ = Γ1 ◦ Γ2.
Proof. By induction on the structure of P . Details in App. A.2. The proof is similar to
that of Lem. 3.12.

Theorem 3.26 (Subject Reduction). If Γ ` P and P −→∗ Q then Γ ` Q.
Proof. By induction on the reductionP −→∗ Qwith a case analysis on the last applied
rule. Details in App. A.2.

We finish this section by collecting results that concern the process structure and
are useful for proving the correctness of our translations. We first define well-formed
processes:
Definition 3.27 (Well-Formed Process). An π R process P0 iswell-formed if for each of
its structural congruent processes P0 ≡S (νx1y1) . . . (νxnyn)(P | Q | R), with n ≥ 0,
the following conditions hold:

1. If P ≡S v? (P
′) : (P ′′) then v = tt or v = ff.

2. There does not exist processes P andQ such that they are prefixed on the same
variable.

3. If P is prefixed at xi and Q is prefixed at yi, 1 ≤ i ≤ n, then P | Q is a redex.
By disallowing the sharing of qualified pre-types, the class of well-formed pro-

cesses changes in π R , as with π OR (cf. Def. 2.20). In this case, the second item of the
definition disallows any pair of threads to be prefixed on the same variable. This con-
trastswith the definition ofwell-formedprocesses for π OR (cf. Def. 3.14), which allows
to share variables with input-like types, and the definition of well-formed processes
for π (cf. Def. 2.20), which allows both variables with output- and input-like behav-
iors to be shared. We now prove the type safety of well-formed programs. Notice
that Not. 2.21 is lifted as it is for π.
Theorem 3.28 (Type Safety). If ` P then P is well-formed.
Proof. By contradiction, for details see App. A.2.

We finish by stating a corollary that shows that well-formedness is preserved un-
der reduction. It follows from Thm. 3.26 and Thm. 3.28.
Corollary 3.29. If ` P and P −→∗ Q then Q is well-formed.

A Big-Step Semantics for π R
As hinted in the motivation for this section, there are some differences between the
semantics of π R and the semantics of ReactiveMLwhich wemust reconcile. The races
introduced in π are addressed by the type system presented above. The second one
refers to the fact that in ReactiveML, a big-step reduction does not correspond to
a single synchronization in π R . Rather, as hinted in Ex. 2.43, several reactions can
occur in a single RML big-step reduction. To illustrate this point, we use the following
example:

Chapter 3. Source and Target Languages 77

Example 3.30. Consider the following ReactiveML expression:

e4 = signal x, x′ in (emit x 42 ‖ await x(y) in y ‖ emit x′ 12 ‖ await x′(z) in z)

Using the semantic rules in Fig. 2.8 and Fig. 2.9, e4 reduces into 42 ‖ 12. Hence, two
synchronizations have taken place in a single RML big-step reduction. 4

The fact that several reactions occur in a single big-step reduction contrasts with
the semantics of π R , which only allows a single synchronization in an execution step.
The reason for this disparity is rooted in the fact that in ReactiveML a big-step re-
duction corresponds to all the reactions in a single time instant. Therefore, all the
outermost threads that can react will do so.

We tackle this discrepancy by introducing a big-step semantics forπ R , andproving
that both the big-step semantics and the semantics given by Fig. 2.1 are semantically
corresponding (cf. § 2.1.3).

The intuition behind the big-step semantics for π R must be in the fact that all pos-
sible synchronizations between threads in parallel must synchronize in a single step.
We capture this idea with the following definition:

Definition 3.31 (Big-Step Semantics for π R). We define the reduction ↪↪→→ of π R by
introducing the following rule, where −→ is defined as in Fig. 2.1:

bBIG-STEPc
∀i, j∈{n+ 1, . . . ,m}.((νx̃ỹ)Pi 6−→ ∧(νx̃ỹ)(Pi |Pj) 6−→)

∀i∈{1, . . . , n}.∃j∈{1, . . . , n}.((νx̃ỹ)Pi−→(νx̃ỹ)P ′i∨(νx̃ỹ)(Pi |Pj)−→(νx̃ỹ)(P ′i |P ′j))
(νx̃ỹ)(P1 | . . . | Pn | Pn+1 | . . . | Pm) ↪↪→→ (νx̃ỹ)(P ′1 | . . . | P ′n | Pn+1 | . . . | Pm)

Rule bBIG-STEPc executes all the outermost reductions of a π R process. Hence, a sin-
gle step of ↪↪→→ corresponds to a sequence of reductions using the rules in Fig. 2.1 that
only reduces the outermost prefix or conditional operator of every thread.

Example 3.32. Consider the following π R process:

P9 = (νxy)(x〈v〉.P1 | x〈v′〉.P2 | y(z).P3 | tt? (P4) : (P5)) (3.5)

A possible sequence of outermost reductions would be:

P9 −→2 (νxy)(P1 | x〈v′〉.P2 | P3{v/z} | P4)

Using Rule bBIG-STEPc, we would then have:

P9 ↪↪→→ (νxy)(P1 | x〈v′〉.P2 | P3{v/z} | P4)

Notice that the big-step reduction ↪↪→→ captures the nondeterministic behavior of un-
typed π R processes, induced by −→. In particular, considering P9 in (3.5) there are
two possible reductions:

P9 ↪↪→→ (νxy)(P1 | x〈v′〉.P2 | P3{v/z} | P4)

P9 ↪↪→→ (νxy)(x〈v〉.P1 | P2 | P3{v
′
/z} | P4)

Chapter 3. Source and Target Languages 78

Another interesting case is replication, which introduces a new pre-redex in the pro-
cess. Consider process:

P10 = (νxy)(x〈v〉.P1 | x〈v′〉.P2 | ∗ y(z).P3 | tt? (P4) : (P5)) (3.6)

Notice that Rule bREPc in Fig. 2.1 would introduce a copy of ∗ y(z).P3 after a single
synchronization. However, we do not want both x〈v〉.P1 and x〈v′〉.P2 to interact with
∗ y(z).P3 in a single ↪↪→→ big-step reduction. Rather, we would like to impose an order
in the possible reductions: only one output can interactwith a replicated input in each
step. Therefore, the other output must wait until the next step to interact with the
replicated copy of the input. We then have that P10 in (3.6) can execute the following
big-step reductions:

P10 ↪↪→→ (νxy)(P1 | x〈v′〉.P2 | P3{v/z} | ∗ y(z).P3 | P4)

P10 ↪↪→→ (νxy)(x〈v〉.P1 | P2 | P3{v
′
/z} | ∗ y(z).P3 | P4)

4

Remark 3.33. Notice that the big-step semantics for π R allow the reduction P ↪↪→→ P
whenever all the parallel sub-processes of P are blocked.

Semantic Correspondence

We now prove the semantic correspondence (cf. Def. 2.9) between the big-step se-
mantics of π R (i.e., ↪↪→→) and the reduction semantics of π R (i.e.,−→). This result boils
down to proving the two following statements: (1) a ↪↪→→ big-step reduction can be
simulated by several π reduction steps, and (2) for every single reduction step −→,
there exists some big-step reduction that contains it.

Before proving the semantic correspondence between ↪↪→→ and−→, we characterize
the syntactic structure of well-typed π programs with the following corollary that
follows from Thm. 3.26 and Thm. 3.28:

Corollary 3.34. For every well-typed π program P (cf. Not. 2.21), it holds that:

P ≡S (νx̃ỹ)(P1 | P2 | . . . | Pn)

with n ≥ 1 and every Pi, 1 ≤ i ≤ n is either a pre-redex (cf. Def. 2.19) or Pi = v? (Q1) :
(Q2).

Intuitively, well-typedprograms can bewritten as the restriction of several threads
which can be pre-redexes that synchronize or conditional constructs to be evaluated.
The semantic correspondence statement follows:

Lemma 3.35 (Semantic Correspondence). For every well-typed π R program P the fol-
lowing holds:

1. If P ↪↪→→ Q then P −→∗ Q.

2. P −→∗ Q then there exists Q′ such that P ↪↪→→∗ Q′ and Q −→∗ Q′.

Chapter 3. Source and Target Languages 79

Proof. Item 1 proceeds by induction on the number of parallel sub-processes in P .
Item 2 proceeds by induction on the reduction P −→∗ Q. The IH guarantees that
whenever P −→∗ Q0 −→ Q with P −→∗ Q0 in k ≤ k0 steps, there exists Q′0 such
that P ↪↪→→∗ Q′0 and Q0 −→∗ Q′0. Then, to distinguish the reduction Q0 −→ Q, we
introduce a marked •−→ as notation. Hence, Q0

•−→ Q denotes reduction Q0 −→ Q.
We alsowriteP •−→∗ P ′ to denote sequenceP −→∗ •−→−→∗ P ′. We know, by IH, that
Q0 −→∗ Q′0. Next, we shall apply a case analysis depending on whether reduction
P

•−→ Q is included in the sequence Q0 −→∗ Q′0 (i.e., Q0
•−→∗ Q′0) or not. The

former case is immediate from the IH.
The latter case follows by showing that if reduction Q0

•−→ Q is not contained
in sequence Q0 −→∗ Q′0 then Q′0

•−→ Q′′0 , for some Q′′0 . To do this, we apply a case
analysis on the nature of reduction Q0

•−→ Q. There are two cases depending on
whether the reduction comes from either a conditional (i.e., Rules bIFTc or bIFFc)
or a synchronization (i.e., Rules bCOMc, bSELc or bREPc). Both cases proceed simi-
larly: using Def. 3.31 we analyze the shape ofQ′0 and show the existence of reduction
Q′0

•−→ Q′′0 . Furthermore, the existence of Q′0
•−→ Q′′0 implies that •−→ is an outer-

most reduction in Q′0, and therefore, there exists Q′ such that Q′0 ↪↪→→ Q′. Then, by
Lem. 3.35(1), Q′0

•−→∗ Q′ and then by composing the reduction sequences above,
Q0 −→∗ Q′0

•−→∗ Q′. Since Q0
•−→ Q and Q′0

•−→ Q′′0 , we can rearrange the reduc-
tions as Q0

•−→ Q −→∗ Q′. Finally, by the reasoning above and since P −→∗ Q0, we
obtain that P −→∗ Q0 −→∗ Q′0

•−→∗ Q′ and thus, P −→∗ Q′, finishing the proof. For
a more detailed proof see App. A.2

3.1.3 A Session π-Calculus with Session Establishment (πE)
In the section we introduce πE, a conservative extension of π OR with explicit localities
and session establishment. We will use πE as the source language for an lcc translation
which allows us to isolate and analyze the security protocols required to implement
session establishment. We first motivate πE with some examples. Next, we introduce
its syntax and semantics. Finally, we present the type system for πE as a conservative
extension of the type system of π OR (cf. § 3.1.1).

Motivation

The calculus πE is concerned with two important characteristics of communicating
systems: session establishment and localities. Session establishment, as its name im-
plies, means creating a connection between two channel endpoints. This connection
will then be used for the session to proceed as intended. Notice that although an
encoding of session establishment is presented in [Vas12], π does not have a dedi-
cated construct for this purpose. Intuitively, πE has two new constructs: request and
accept, whose semantics embody the idea of session creation. Moreover, these new
constructs are also enriched with the notion of locality, an idea reminiscent of the dis-
tributed π-calculus [Hen07]. Intuitively, localities allow us to represent distributed
services that interact with each other while residing in different locations. This is a
common feature of web services, as both physical and logical localities are used to
delimit systems with different communication and security conditions. As an ex-
ample, consider the distinct regions and zones in platforms such as Amazon Web
Services (AWS) [Ama]. We have designed our request and accept construct in such

Chapter 3. Source and Target Languages 80

away that distributed services can be part of private localities whose services can only
be requested by clients residing in authorized locations.

The request and accept constructs in πE declare replicated services and clients,
respectively:

•
[
∗ aρ(y).P

]m is the declaration of a persistent service called a, with implemen-
tation given by processP , which resides in locationm and only accepts requests
from the locations contained in the set ρ.

•
[
am〈x〉.Q

]n is a request of service a, from some client located in n with imple-
mentation Q.

Our intention is that persistent services and requests interact in order to establish
sessions as long as they are authorized by their respective locations. This is formal-
ized by the following reduction rule:[

am〈x〉.P
]n | [∗ aρ(y).Q]m −→N (νxy)(P | Q) |

[
∗ aρ(y).Q

]m
which is enabled only if n ∈ ρ, i.e., if n is in ρ. Observe that once the session has been
established (i.e., the rightmost process), the new process becomes essentially a π OR
process composed with one or more service declarations in parallel. For πE we shall
follow Barendregt’s convention, whereby all channel names in binding occurrences in
any mathematical context are pairwise distinct and also distinct from the free names.

Below, we put the previous intuitions in context by describing a simple example.
Suppose that there are three locations in our system: i1, i2, and i3. We have an online
store residing in i1 that due to government regulations can only sell items to people
residing in locations i1 and i2. We model the store below, with only two items for
simplicity.

Ps =
[
∗ a{i1,i2}(y).y . {item1: y〈p1〉.y(z).y〈e1〉, item2: y〈p2〉.y(z).y〈e2〉}

]i1 (3.7)

Above, the store is modeled by a persistent service that can establish a connection
with a client. Once the session has been established, the store waits for the client
to select an item from its menu. The store then sends the price of the item (i.e., pi,
i ∈ {1, 2}), waits for a confirmation from the client and, finally, sends the estimated
arrival time (i.e., ei, i ∈ {1, 2}).

The clients that interact withPs can bewritten by using the dual constructs. In the
two processes below we leave the continuations undefined, as we are only interested
in the session establishment phase:

Pc =
[
ai1〈x〉.Q1

]i1
P ′c =

[
ai1〈x〉.Q2

]i3
There are two clients above: Pc resides in i1, whereas P ′c resides in i3. Then, the πE
system will correspond to what we call a network:

N = Ps | Pc | P ′c
Notice that the network above only has one possible reduction, as client P ′c resides in
i3, and is therefore unauthorized to interact with Ps. This corresponds to the desired
behavior as we only want client Pc, residing in i1, to establish a session with service
Ps.

Chapter 3. Source and Target Languages 81

Syntax and Semantics

The syntax of πE conservatively extends that of π OR by adding a new syntactic cate-
gory of networks, which range overN,M, Networks represent concurrent services
which reside in distinguished locations and seek to establish sessions. Formally, we
reuse the set Vs as the set of variables for πE, which ranges over x, y, Also, let
Sπ be a set of service names, ranged over by a, b, . . . , which will be used to establish
sessions. We will use u, v, . . . to denote elements in Vs ∪ Sπ . Also, let Ωπ be a set of
locations that ranges over m,n, . . . , i1, i2, We will use ρ, ρ′, . . . to denote sets of
locations.

Recall that since πE is an extension of π OR, the syntax of π processes builds upon
that of π (cf. Def. 2.10, § 3.1.1). We present it below:

Definition 3.36 (Syntax). An πE network is defined by the following syntax:

N,M ::=
[
∗ aρ(x).P

]m | [am〈x〉.P]n | (νxy)P | 0 |M | N
P,Q ::= x〈v〉.P | x(y).P | x / l.P | x . {li : Pi}i∈I | ∗x(y).P | v? (P) : (Q) | P | Q | 0

Networks in πE represent an additional layer of interaction atop π OR processes.
As hinted above, there are two additional constructs to represent session establish-
ment:

[
∗ aρ(x).P

]m for service accept and
[
am〈y〉.P

]n for service request. Formally,[
∗ aρ(x).P

]m defines a service identified by a ∈ Sπ whose behavior P resides in lo-
cationm. Variable x denotes a variable, bound in P . This service may only establish
sessions with requests from locations included in ρ. The service on a will persist af-
ter successful interactions with requests. Dually,

[
am〈x〉.P

]n denotes a request of a
service named a ∈ Sπ and located at m. This service request itself resides at n, and
has continuation P . Variable x is bound in P .

For simplicity of presentation, we disallow nested sessions, i.e., the establishment
of new sessions inside a session process. The syntax of networks also includes parallel
composition and inaction, as well as the construct (νxy)P , which can be seen as a
run-time construct, not occurring in “source” processes. As we will see, a network
N will be starting if it does not contain occurrences of (νxy)P , and it will be runtime
otherwise. That is, a starting network will correspond to the composition of services
and their requests.

In πE, the set of free variables of a network (fvπ(·)) corresponds to the set of
free variables of the π processes that compose it. This occurs because we have that
fvπ(

[
∗ aρ(x).P

]m
) = fvπ(

[
am〈x〉.P

]n
) = ∅.

The operational semantics for πE is given by a reduction relation, denoted −→N.
It is defined via the rules in Fig. 3.3, building upon the reduction relation for π OR
processes given in Fig. 2.1. In particular, Rule bSREDc, appeals to the semantics of π OR,
even if in πE (νxy)P is a network rather than a process.

As usual, the reflexive, transitive closure of−→N iswritten−→∗N . Informally speak-
ing, our operational semantics enables a starting network to evolve into a runtime net-
work, composed of π OR processes and persistent service definitions. In the following,
we shall refer to those π OR processes simply as processes.

In a slight abuse of notation, we will write N ≡S M when two πE networks are
structurally congruent. The same goes for P ≡S Q, in the case of πE processes. The
rules of structural congruence for networks are presented below. We then briefly

Chapter 3. Source and Target Languages 82

bSESTRc
[
am〈x〉.P

]n | [∗ aρ(y).Q]m −→N (νxy)(P | Q) |
[
∗ aρ(y).Q

]m
(n ∈ ρ)

bPARc
N −→N N

′

N |M −→N N
′ |M

bSREDc
(νxy)P −→ (νxy)P ′

(νxy)P −→N (νxy)P
′

bNSTRc
N ≡S N

′, N ′ −→M ′,M ′ ≡S M

N −→N M

Figure 3.3: Reduction rules for networks in πE (extends Fig. 2.1).

discuss the changes in this definition with respect to Def. 2.11. In particular, the dif-
ferences that appear in the scope extrusion rule:

N | 0 ≡S N N |M ≡S M | N N ≡S M ifM ≡α N

(N |M) | L ≡S N | (M | L) (νxy)(νwz)P ≡S (νwz)(νxy)P (νxy)0 ≡S 0
(νxy)P | (νwz)Q ≡S (νxy)(νwz)(P | Q) if x, y 6∈ fvπ(Q) and w, z 6∈ fvπ(P)

As hinted above, the scope extrusion rule is stated in accordance to the syntax of
πE. Namely, since (νxy)P is a network, scope extrusion is only present at a network
level in πE. It is for this reason that the scope extrusion rule requires two processes
with restriction operators.

Type System

We consider a simple type system for πE networks, defined on top of the π OR type
system (cf. § 3.1.1). Typing judgments are of the form Φ `N N , where Φ is a typing
context containing assignments of the form a : 〈T 〉where T is a π OR session type type
(cf. § 3.1.1) and a is a service name. We extend Fig. 2.2 as follows:

Φ ::= ∅ | Φ, a : 〈T 〉

Typing rules for networks are in Fig. 3.4; some intuitions follow. Rules (T:NPAR) and
(T:NNIL) are analogous to their counterparts for π processes (cf. Rules (T:PAR) and
(T:NIL) in Fig. 2.3); the only difference is that Φ behaves as an unrestricted environ-
ment in π. Rule bT:REQc checks if the type for service a in Φ is dual to the type of
its implementation. Rule bT:RACCc is similar. Finally, Rule bT:SESSc closes endpoints
x, y, checks for duality, and requires P to be well-typed using type judgments for π
processes.

We now prove the type preservation property for the type system for networks.
To this end, we rely on auxiliary results from the type system for π OR presented in
§ 3.1.1. We start by proving our subject congruence result.

Lemma 3.37 (Subject Congruence for πE). If Φ `N N and N ≡S M then Φ `N M .

Proof. Using a case analysis on all the rules for ≡S. For details see App. A.3.

We then proceed to prove subject reduction for the πE type system. We do not
need more auxiliary results, as they follow from the results in § 3.1.1.

Chapter 3. Source and Target Languages 83

bT:NNILc Φ `N 0

(T:REQ)
Φ `N a : 〈T 〉 x : T ` P

Φ `N
[
am〈x〉.P

]n (T:RACC)
Φ `N a : 〈T 〉 x : T ` P

Φ `N
[
∗ aρ(x).P

]m
(T:NPAR)

Φ `N N1 Φ `N N2

Φ `N N1 | N2

(T:SESS)
x : T, y : T ` P
Φ `N (νxy)P

Figure 3.4: Typing rules for networks in πE.

Theorem 3.38 (Subject Reduction for πE). If Φ,Γ `N N and N −→∗N N ′ then Φ,Γ `N
N ′.

Proof. By induction on k, the length of the reduction, followed by a case analysis on
the last applied rule. For details see App. A.3.

We also extend the notions of pre-redex and redex from π OR (cf. Def. 2.19). They
are built on top ofDef. 2.19. Wedistinguish betweenprocess pre-redexes andnetwork
pre-redexes, according to syntax in Def. 3.36.

Definition 3.39 (Pre-redexes and Redexes in πE). We say x〈v〉.P , x(y).P , x / l.P ,
x . {li : Pi}i∈I , and ∗x(y).P are process pre-redexes (at variable x). A process redex is a
process R such that (νxy)R −→ and:

1. R = v? (P) : (Q) with v ∈ {tt, ff} (or)

2. R = x〈v〉.P | y(z).Q (or)

3. R = x〈v〉.P | ∗ y(z).Q (or)

4. R = x / lj .P | y . {li : Qi}i∈I , with j ∈ I .

Similarly, networks
[
am〈x〉.P

]n and
[
∗ aρ(x).P

]n are both network pre-redexes at ser-
vice name a and that R =

[
am〈x〉.P1

]n | [∗ aρ(y).P2

]m, with n ∈ ρ, is a network redex.
We will say that any process redex or network redex R is communicating whenever
R 6= v? (P) : (Q).

Whenever the kind of pre-redex is unimportant we will call them simply pre-
redexes. We will re-use notation Not. 2.24 for pre-redexes y(z).Q and ∗ y(z).Q. We
now define (typable) closed networks, as the analogues of well-typed programs in π
(cf. Not. 2.21):

Notation 3.40 ((Typable) Closed Networks). AnetworkN such that fvπ(N) = ∅ is called
a closed network. A closed network is typable if Φ `N N holds for some environment
Φ.

We nowprove type safety for runtime networks. This theorem relies on Thm. 3.15.
This property will allow us to preserve the well-formedness of the π OR processes that
conform the network (cf. Def. 3.14).

Chapter 3. Source and Target Languages 84

Lemma 3.41 (Type Safety for Runtime Networks). IfN ≡S (νxy)P |M and Φ `N N
then (νxy)P is well-formed (cf. Def. 3.14).

Proof. Straightforward from the previous results. For details see App. A.3.

3.2 An Asynchronous Session π-Calculus (aπ)
In this section we introduce aπ, a session π-calculus with asynchronous (queue-
based) semantics. The design of this calculus follows the typed framework of Kouza-
pas et al. [KYHH16].

In § 3.2.1 we motivate aπ by using some examples and providing informal intu-
itions about its design. Next, in § 3.2.2, we formally introduce the syntax and (asyn-
chronous) semantics of aπ. The type system is introduced in § 3.2.3, § 3.2.4, § 3.2.5,
and § 3.2.6. Finally, as with π R , we present a big-step semantics for aπ and prove it
semantically corresponds with the reduction semantics (cf. § 3.2.7 and § 3.2.8).

3.2.1 Motivation
As mentioned in § 2.4, one interesting aspect of ReactiveML is the fact that signals
can be emitted at any moment during execution, independently of whether they are
detected or not (they are nonblocking). Hence, synchronization in ReactiveML can
be seen as being asynchronous. The natural question is thenwhether an asynchronous
session π-calculus would be a better fit to RML than a synchronous calculus like π R ,
in terms of the properties satisfied by the translation. To answer this question we use
aπ. In this calculus, communication occurs in two phases: (1) processes interact with
local queues, which contain messages being received or sent, and (2) queues in charge
of dual endpoints synchronize remotely.

Intuitively, the buffered semantics of aπ aims at modeling the low-level mecha-
nism of communication that can be found in network transport protocols such as
TCP (Transmission Control Protocol). Moreover, the semantics of aπ provides a fine-
grained view of interactions by mediating synchronizations with FIFO (first in, first
out) buffers, which help to model the non-blocking property of asynchrony. In gen-
eral, implementations of TCP protocols should be able to correctly preserve the order
of the sent messages, as the program must be able to reconstruct the overall message
using the packets sent. In aπ, this order-preserving property is ensured by a session
type system equipped with subtyping [GH05].

In aπ, every channel endpoint is assigned two local queues: an input queue, which
contains all the messages that have been received, and an output queue, containing all
the messages just before they are sent. Then, communication occur between queues,
rather than processes: a process writes messages to the output queue corresponding
to some channel endpoint x, which then transmits to the endpoint queue of its com-
plementary endpoint x. The transmitted messages can be read from this input queue
by the receptor process.

Syntactically, aπ is very similar to π, π OR, and π R . The main differences is that we
use a restriction operator that only binds a single variable (i.e., binding x also binds
its complementary endpoint x), following [KYHH16]. To illustrate this, consider the

Chapter 3. Source and Target Languages 85

following aπ process:

P11 = (νx)(νy)(x〈ff〉.0 | x(z).(y〈tt〉.0 | y(z′).0) |
x[i : ε, o : ε] | x[i : ε, o : ε] | y[i : ε, o : ε] | y[i : ε, o : ε])

(3.8)

Process P11 can be seen as having two parts: the first one, in the first line, is similar to
π: we have a process that is sending ff over endpoint x, to be received by endpoint
x, which then will activate a similar communication on endpoints y and y. The main
difference is in the second line: processes x[i : ε, o : ε], x[i : ε, o : ε], y[i : ε, o : ε], and
y[i : ε, o : ε] denote the queues of endpoints x and y, as well as their dual endpoints x
and y. In P11, the process implementing x writes ff in the queue x[i : ε, o : ε], which
then synchronizes with the queue x[i : ε, o : ε]. Then, the process using x reads this
value. At this point, the interactions between the processes implementing endpoints
y and y can be executed.

Remark 3.42. With respect to the constructs introduced in [KYHH16], we do not con-
sider session establishment, nor we allow shared variables and configurations. The
absence of session establishment is used to keep the symmetry with π (which does
not consider explicit session establishment), while the absence of shared variables is
needed for reasons similar to the ones presented in § 3.1.2.

3.2.2 Syntax and Semantics
The syntax of aπ includes variables x, y, . . . and co-variables, denoted x, y. Intuitively,
x and x denote the two endpoints of a session, with x = x. We write Va to denote
the set of variables and co-variables; k, k′, . . . will be used to range over Va. We use
m̃, m̃′, . . . to range over sequence of values. As in π, the set of values includes booleans
and variables, and will be denoted Ua. We also assume a countably infinite set of
labels Bπ . The syntax of processes is as follows:

Definition 3.43 (aπ and aπ⋆). The set aπ of asynchronous session processes is de-
fined as:

P,Q ::= k〈v〉.P | k(y).P | k / l.P | k . {li : Pi}i∈I | v? (P) :(Q) | P | Q | 0
| (νx)P | µX.P | X | k[i : m̃; o : m̃]

We write aπ⋆ to denote the sub-language of aπ without queues.

Differences with respect to Def. 2.10 appear in the second line above. The usual
(single) restriction (νx)P is convenient in a queue-based setting; it binds both x and
x in P . We consider recursion µX.P rather than input-guarded replication. Commu-
nication in aπ is mediated by queues of messagesm, which can be values v or labels l;
we use ε to denote the empty queue. Given an endpoint k, the process k[i : m̃; o : m̃]
explicitly represents the output and input parts of the queue; it appears shaded, as
we consider this a runtime process, similarly to queues in MPST (§ 2.5).

Synchronization between processes proceeds similarly to MPST, with an added
step: the sending endpoint first enqueues the message m in its own output queue;
then, m is moved to the input queue of the receiving endpoint; finally, the receiving
endpoint retrievesm from its input queue.

Chapter 3. Source and Target Languages 86

bSENDc x〈v〉.P | x[i : m̃1, o : m̃2]−→AP | x[i : m̃1, o : m̃2 · v]
bSELc x / l.P | x[i : m̃1, o : m̃2]−→AP | x[i : m̃1, o : m̃2 · l]

bCOMc x[i : m̃1, o : m · m̃2] |x[i : m̃1, o : m̃2]−→Ax[i : m̃1, o : m̃2] |x[i : m̃1 ·m, o : m̃2]

bRECVc x(y).P | x[i : v · m̃1, o : m̃2]−→AP{v/y} | x[i : m̃1, o : m̃2]

bBRAc x . {li : Pi}i∈I | x[i : lj · m̃1, o : m̃2]−→APj | x[i : m̃1, o : m̃2] (j ∈ I)
bIFTc tt? (P) :(Q)−→AP bIFFc ff? (P) :(Q)−→AQ

bRECc µX.P −→A P{µX.P/X}
bRESc

P −→AP
′

(νx)P −→A (νx)P
′

bPARc
P −→AP

′

P | R−→AP
′ | R

bSTRc
P ≡A P

′, P ′ −→A Q
′, Q′ ≡A Q

P −→A Q

Figure 3.5: Reduction relation for aπ processes.

We assume the expected notions of free/bound variables. In particular, we use
fpv(P) to denote the free process variables inP and fvπ(P) to denote the free variables
of process P . The operational semantics of aπ can be then defined as a reduction
relation coupled with a structural congruence relation ≡A (given below). Reduction
is defined by the rules in Fig. 3.5, which are either exactly as those for π or follow the
above intuitions for queue-based message passing.

Definition 3.44. Structural congruence is defined as the smallest congruence on pro-
cesses that satisfies the following axioms:

(SCaπ:1)
(νx)(νy)P ≡A (νy)(νx)P

(SCaπ:2)
(νx)0 ≡A 0

(SCaπ:3)
(νx)(x[i : ε; o : ε] | x[i : ε; o : ε]) ≡A 0

(SCaπ:4)
P | 0 ≡A P

(SCaπ:5)
P | Q ≡A Q | P

(SCaπ:6)
(P | Q) | R ≡A P | (Q | R)

(SCaπ:7)
P ≡α Q

P ≡A Q
(SCaπ:8)

x 6∈ fvπ(Q)

(νx)P | Q ≡A (νx)(P | Q)

We now define (evaluation) contexts for aπ. For this calculus we shall consider
two types of contexts: unary and binary. We do this distinction because aπ pro-
cesses are considered to have two parts: non-queue processes (i.e., aπ⋆ processes)
and queue processes.

Definition 3.45 (Contexts for aπ). The syntax of (unary) contexts in aπ is given by
the following grammar:

E ::= [−] | E | P | P | E | (νx)E

where P is an aπ process and ‘[·]’ represents a ‘hole’. Moreover, we write C[−1,−2]
to denote binary contexts (νx̃)([−1] | [−2]). We shall also write E[P] (resp. C[P,Q])
to denote the aπ process obtained by filling the hole in E[−] (resp. C[−1,−2]) with
P (resp. P and Q).

Due to the fact that both π and aπ abstract from an explicit phase of session ini-
tiation (cf. Rem. 3.42), we find it useful to identify aπ processes which are properly

Chapter 3. Source and Target Languages 87

initialized (PI): intuitively, these PI processes contain all the queues required to re-
duce.

Definition 3.46 (Properly Initialized Processes). Let P = C[P1, P2]with fvπ(P) = ∅
be an aπ process such that P1 is in aπ⋆ (i.e., it does not include queues) and fvπ(P1) =
{k1, . . . , kn}. We say P is properly initialized (PI) if P2 contains (empty) queues for
each session declared in P1, i.e., if P2 = k1[i : ε, o : ε] | · · · | kn[i : ε, o : ε].

3.2.3 Type System
The type system we develop for aπ follows closely the one in [KYHH16]. As men-
tioned above, we do not consider explicit session initiation nor shared types. First, we
assume a single ground type, the boolean bool. We also consider session types, ranged
over T, T ′, . . ., which describe communication behavior along endpoints. We assume
that U,U ′, . . . range over ground types and session types.

Definition 3.47 (Asynchronous Session Types). The syntax of types is given by the
grammar below:

U,U ′ ::= bool | T
T, T ′ ::= !U.T | ?U.T | & {li : Ti}i∈I | ⊕ {li : Ti}i∈I | t | µt.T | end

The types presented above correspond to the types in Fig. 2.2 without qualifiers.
Therefore, recall that type end represents a terminated session and bool represents
booleans. Similarly, recall that type !U.T is assigned to an endpoint that sends a value
of type U and then continues according to type T . Dually, type ?U.T is assigned
to an endpoint that receives a value of type U and then proceeds according to type
T . Types ⊕{li : Ti}i∈I and &{li : Ti}i∈I are assigned to endpoints that implement
selection (internal choice) and branching (external choice), respectively. Type µt.T
allows us to express recursive protocols. As in π, we take an equi-recursive view of
types, which means that a recursive type is assumed to be equal to its unfolding as
they represent the same regular infinite trees. We also assume µt.T is assumed to be
contractive (i.e., containing no subexpression of the form µt1. . . . µtn.t1).

3.2.4 Subtyping and Duality
Subtyping in session types provides flexibility when typing processes. It is charac-
terized by the notion of composability, which determines which behaviors are com-
posable and the ways in which they can be composed. We illustrate the convenience
of subtyping using a simplified version of a classical example, taken from [GH05].

Example 3.48. Suppose a mathematical server that can compute the boolean con-
junction of two boolean values and the negation. The type of such server Ts can be
defined as follows:

Ts = &{con: ?bool.?bool.!bool.end
not: ?bool.!bool.end}

Asmentioned above, type &{. . . } denotes an offer made from the server to the client
who must then select one of the above options. The client’s type would then be the

Chapter 3. Source and Target Languages 88

complementary of Ts, written Ts:

Ts = ⊕{con: !bool.!bool.?bool.end
not: !bool.?bool.end}

Observe that the communication structure remains the same, but Ts describes the
complementary operations to Ts (i.e., instead of a receive, the client must execute a
send and vice-versa). In other words, during an execution, the client can “select” a
label and execute behavior complementary to the one exhibited by the server.

Suppose then that the server is updated to allow now the disjunction of boolean
operators. The update type T ′s would now be:

T ′s = &{con: ?bool.?bool.!bool.end
not: ?bool.!bool.end
dis: ?bool.?bool.!bool.end}

It is possible to observe that a server implementing T ′s should be able to safely interact
with a client implementing Ts, since the complementary interactions for labels con
and not are present in T ′s. This means, in a sense, that T ′s is composable with more
peers than Ts, as T ′s implement the same or more behaviors than Ts. This means that
Ts is a subtype of T ′s. 4

Formally, due to the presence of recursive types, our subtyping relation must be
defined coinductively. To give such definition, we follow the approach in [Pie02]. In
our definitions we assume P(A) denotes the powerset of set A.
Definition 3.49 (Subtyping Relation for Session Types). Let T be the closed set of
contractive session types. We say that a type T1 is a subtype of T2, written T1 . T2, if
the pair (T1, T2) is in the largest fixed point of themonotone functionF : P(T ×T)→
P(T × T) defined by:

F(R) def
= {(end, end), (bool, bool)} (1)
∪ {(!U1.T2, !U

′
1.T
′
2) | (U ′1, U1), (T2, T

′
2) ∈ R} (2)

∪ {(?U1.T2, ?U
′
1.T
′
2) | (U1, U

′
1), (T2, T

′
2) ∈ R} (3)

∪ {(⊕{li : Ti}i∈I ,⊕{lj : T ′j}j∈J) | I ⊆ J ∧ ∀i ∈ I.(Ti, T ′i) ∈ R} (4)
∪ {(&{li : Ti}i∈I ,&{lj : T ′j}j∈J) | J ⊆ I ∧ ∀j ∈ J.(Tj , T ′j) ∈ R} (5)
∪ {(µt.T, T ′) | (T{µt.T/t}, T ′)∈R}∪{(T, µt.T ′) | (T, T ′{µt.T ′

/t})∈R} (6)

We comment on the definition above. First, line (1) is standard, as we require end
and bool to be subtypes of themselves. Similarly, lines (2) and (3) are as expected:
output is contravariant on the message type and input is covariant on the message
type. Next, lines (4) and (5) deal with selection and branching: in line (4), a selection
is covariant in the number of labels whereas in line (5), branching is contravariant.
Finally, line (6) deals with recursion, and embodies the idea of equi-recursivity: we
require that the subtype of a recursive type must be a subtype of its unfolding.

Next, we introduce duality; due to our addition of subtyping, duality must also
be defined coinductively. The definition follows the coinductive definition presented
in [BDGK14] by Bernardi et al.

Chapter 3. Source and Target Languages 89

Definition 3.50 (Duality). Let T be the closed set of contractive session types. We
say that a type T1 is a dual of T2, written T1⊥T2, if the pair (T1, T2) is in the largest
fixed point of the monotone function D : P(T × T)→ P(T × T) defined by:

D(R) def
= {(end, end)} ∪ {(!U1.T2, ?U

′
1.T
′
2) | U1 ∼ U ′1 ∧ (T2, T

′
2) ∈ R}

∪ {(?U1.T2, !U
′
1.T
′
2) | U1 ∼ U ′1 ∧ (T2, T

′
2) ∈ R}

∪ {(⊕{li : Ti}i∈I ,&{li : T ′i}i∈I) | ∀i ∈ I.(Ti, T ′i) ∈ R}
∪ {(&{li : Ti}i∈I ,⊕{li : T ′i}i∈I) | ∀i ∈ I.(Ti, T ′i) ∈ R}
∪ {(µt.T, T ′) | (T{µt.T/t}, T ′) ∈ R} ∪ {(T, µt.T ′) | (T, T ′{µt.T ′

/t}) ∈ R}

where ∼ denotes equivalence up-to equality of trees (see [Pie02, Vas12]).

The duality relation pairs session types with complementary behaviors. Duality
shows which pairs of session types can safely interact. Hence, an input is the dual
of output (and vice versa), and branching is the dual of selection (and vice versa).
Using duality, we then can state the following property of subtyping:

Lemma 3.51. Let T1, T2, T ′1, and T ′2 be session types such that T1⊥T ′1 and T2⊥T ′2. Then,
it holds that T1 . T2 if and only if T ′2 . T ′1.

Proof. We prove both directions by coinduction:

⇒) By assumption, T1 . T2 , T1⊥T ′1 and T2⊥T ′2 for some T ′1 and some T ′2. Then, by
definition of., there exists a relation S such that (T1, T2) ∈ S , called a subtyping
relation. We need to prove that there exists a relation S ′ such that (T ′2, T ′1) ∈ S ′.
Let S ′ = {(T ′2, T ′1) | T1 . T2}. It can be shown that S ′ is a subtyping relation by
induction on the structure of T1, finishing the proof.

⇐) This follows a similar strategy as above. The subtyping relation we show in this
case is S ′ = {(T1, T2) | T ′2 . T ′1}.

Next, we define the set of composable behaviors of a type T , this is, the set of session
types that can be composed with a given type T , up to subtyping:

Definition 3.52 (Composable Types). The set of composable types of a session type
T with a dual T ′ (i.e., T ⊥T ′), written comp(T), is defined as:

comp(T)
def
= {T ′′ | T ′′ . T ′}

We now state some properties of subtyping, taken from [KYHH16]. Informally,
we need to ensure that the subtyping relation is a pre-order and that the set of com-
posable types of a session types is bigger or equal than its subtypes.

Lemma 3.53 (Properties of Subtyping [KYHH16]).

(1) The subtyping relation . is a pre-order.

(2) For every pair of session types S1 and S2, it holds that S1 . S2 if and only if it holds
that comp(S2) ⊆ comp(S1).

Chapter 3. Source and Target Languages 90

To clarify the intuitions behind subtyping, we review Ex. 3.48, considering the
previously presented definitions. Below, we show how to prove that a type is a sub-
type of another and we analyze the relation between duality and subtyping.

Example 3.54. Let us consider the following types:

Ts = &{con: ?bool.?bool.!bool.end
not: ?bool.!bool.end}

Ts = ⊕{con: !bool.!bool.?bool.end
not: !bool.?bool.end}

T ′s = &{con: ?bool.?bool.!bool.end
not: ?bool.!bool.end
dis: ?bool.?bool.!bool.end}

The first thing to notice is that using our notion of duality (cf. Def. 3.50), we can
establish that Ts⊥Ts, formalizing our notion of complementarity between session
types.

Next, we will show that Ts . T ′s. To do this, we exhibit a subtyping relation R
that is a subset of F(R) (cf. Def. 3.49). Consider:

R = {(Ts, T ′s), (?bool.?bool.!bool.end, ?bool.?bool.!bool.end),
(?bool.!bool.end, ?bool.!bool.end), (!bool.end, !bool.end)

(?bool.!bool.end, ?bool.!bool.end), (!bool.end, !bool.end),

(end, end), (bool, bool)}

It can be shown that R is a subset of F(R) and therefore Ts . T ′s. Furthermore, by
Lem. 3.51, we have that for some type T ′s, if it holds that T ′s⊥T ′s, then T ′s . Ts, which
can also be proven by showing an appropriate relation.

Summarizing, this example shows that, assuming n ≥ 1 and m ≥ 1, a branching
offering n can be replaced by a branching type offering n + m options, whereas a
selection with n options can be replaced by a selection type containing n−m options.

4

3.2.5 Typing Processes and Queues
In defining typing for asynchronous calculi, it is common to distinguish between pure
processes (processes without queues) and runtime processes (processes with queues)
[HYC08, KYHH16]. In our case, this means distinguishing between aπ⋆ and the full
syntax given by aπ (cf. Def. 3.43). To define a type system for aπ, we first extend the
syntax in Def. 3.47 by adding message types, which we use to type queues k[i : m̃; o :
m̃]:

Definition 3.55 (Message Types). We extend the syntax of session types in Def. 3.47
with message typesM as follows:

(General) G ::= T |M (Input Messages) Mi ::= ∅ | ?U.Mi | & l.Mi

(Messages) M ::=Mi |Mo (Output Messages) Mo ::= ∅ | !U.Mo | ⊕ l.Mo

Chapter 3. Source and Target Languages 91

Our type system uses two judgments, one for variables and constants and another
one for (runtime) processes:

Γ ` v : U Γ `Σ P .∆

where classical and linear environments Γ and ∆ are defined as follows:

Γ,Γ′ ::= ∅ | Γ, x : U | X : ∆ ∆,∆′ = ∅ | ∆, k : G

A linear environment ∆ collects information regarding session types and queues.
Notice that ∆, k : G is only well-defined if k 6∈ dom(∆). The classical environment
Γ collects all the types of variables of ground types and process variables, which
are assigned linear environments ∆. In the judgment for (runtime) processes Γ `Σ
P .∆, we use Σ to denote a set that contains all the free session names for the queues
implemented in P . Whenever P ∈ aπ⋆, we write Γ ` P . ∆ instead of Γ `∅ P . ∆.
Before introducing our typing rules we introduce some auxiliary definitions:

Definition 3.56 (Auxiliary Definitions for Typing Rules). Let ∆ and ∆′ such that
dom(∆) = dom(∆′) be linear environments. Then:

1. We say that∆ . ∆′ whenever for every k ∈ dom(∆) it holds that∆(k) . ∆′(k).

2. The predicate end(∆) is true whenever for every k ∈ ∆, ∆(k) = end and false
otherwise.

Fig. 3.6 presents the typing rules. Before commenting on them, we introduce an
auxiliary merging operator on types. Due to the asynchronous communication of aπ,
it is possible that the full behavior of the endpoint is split between the process and its
corresponding queues. Therefore, it is necessary to define a way to reconstruct the
overall session type that captures the behavior of the session.

Definition 3.57 (Merging Session Types and Message Types). Let T be a session
type andM be a message type. The merging operation T �M is defined as follows:

T � ∅ def
= T

T � !U.Mo
def
= !U.(T �Mo) (1)

Tk � ⊕lk.Mo
def
= ⊕{li : Ti �Mo}i∈I (k ∈ I) (2)

?U.T � ?U.Mi
def
= T �Mi (3)

&{li : Ti}i∈I � &lk.Mi
def
= lk �Mi (k ∈ I) (4)

and undefined otherwise. Given linear environments ∆1 and ∆2, the definition is
extended as follows:

(∆1 � ∆2)(k)
def
=

{
T if ∃i ∈ {1, 2}.(k : T ∈ ∆i ∧ k 6∈ dom(∆1) ∩ dom(∆2))

T �M if k : T ∈ ∆i ∧ k :M ∈ ∆j with i 6= j ∧ i, j ∈ {1, 2}

In Def. 3.57, numerals (1)–(4) represent the inductive cases. The base case, which
is not numbered, corresponds to merging any session type T with the type of an
empty queue (i.e., ∅).

Chapter 3. Source and Target Languages 92

In (1), we merge a session type T with the type of an output queue that contains
a message of type U to be sent. The merging appends an output type sending a value
of type U at the beginning of T before inductively calling itself on T andMo.

In (2), the merging of a session type Tk with the message type of an output queue
⊕lk.Mo, creates a type T ′ such that ⊕{lk : Tk} . T ′. For example, suppose the
merging !bool.end � ⊕l.∅. Notice that, up-to subtyping, this merging can yield either
⊕{l :!bool.end} or ⊕{l :!bool.end, l′ : T}, depending on what is needed for typing.

In (3) and (4), merging a session type with an input message type Mi assumes
that the message has arrived already to their final destination. Thus, merging “con-
sumes” the outermost action of the type and continue inductively, merging the con-
tinuations. Specifically, in (3), when merging an input type ?U.T with a message
type ?U.Mi, we consume prefix ?U and require the merge of T and Mi. Similarly,
in (4), the merging picks the corresponding label lk and is called inductively on the
continuations.

The definition is extended to linear environments in a way that guarantees that
whenever the same session endpoint k is found in both ∆1 and ∆2, one of them cor-
responds to a message typeM and the other to a session type T . Thus, ensuring that
it is not possible for ∆1 and ∆2 to share a session endpoint with the same session
type or message type.

The rules in Fig. 3.6 are grouped in three parts, depending on the shape of Σ. The
first group at the top of the figure contains the rules that deal with aπ⋆ processes (i.e.,
Σ = ∅, hence omitted). The second group, in the middle, contains rules for typing
queues; finally, the third group, at the bottom, contains rules dealing with inaction,
weakening ofΣ, restriction, parallel composition and subtyping. We briefly comment
on all the rules below:

• Rules (T:BOOL), (T:VAR) and (T:RVAR) are standard. They deal with booleans,
variables and recursive variables. Notice that the recursive variable is assigned
a ∆ environment to allow for interleaved sessions inside a recursion.

• Rule (T:SEND) types an output process by verifying themessage is of the correct
type and that the continuation types with T .

• Analogously, Rule (T:RCV) types an input process by adding variable x into the
classical environment Γ and typing the continuation P with the corresponding
type T .

• Rule (T:SEL) types a selection operator by ensuring that the selected label j be-
longs to the set I and that the continuation P types with the corresponding
Tj .

• Rule (T:BRA) requires that all the possible continuations from a branching con-
struct are typable with their corresponding types.

• Rules (T:DEL) and (R:DRCV) are similar to Rules (T:SEND) and (T:RCV), dealing
with delegation.

• Rules (T:IF) and (T:REC) are standard. The former asks for both branches of
the conditional to be typable with the same environments. The latter adds the

Chapter 3. Source and Target Languages 93

(T:BOOL) Γ ` tt, ff : bool (T:VAR) Γ, x : U ` x : u (T:RVAR) Γ, X : ∆ ` X .∆

(T:SEND)
Γ ` v : U Γ ` P .∆, k : T

Γ ` k〈v〉.P .∆, k :!U.T
(T:RCV)

Γ, x : U ` P .∆, k : T

Γ ` k(x).P .∆, x :?U.T

(T:SEL)
Γ ` P .∆, k : Tj j ∈ I

Γ ` k / lj .P .∆, k : ⊕{li : Ti}i∈I

(T:BRA)
∀i ∈ I.Γ ` Pi .∆, k : Ti

Γ ` k . {li : Pi}i∈I .P .∆, k : &{li : Ti}i∈I

(T:DEL)
Γ ` P .∆, k : T2

Γ ` k〈k′〉.P .∆, k :!T1.T2, k
′ : T1

(T:DRCV)
Γ ` P .∆, x : T1, k : T2

Γ ` k(x).P .∆, x :?T1.T2

(T:IF)
Γ ` v : bool Γ ` P .∆ Γ ` Q .∆

Γ ` v? (P) :(Q) .∆
(T:REC)

Γ, X : ∆ ` P .∆

Γ ` µX.P .∆

(T:IQEND)
end(∆)

Γ `k k[i : ε, o : m̃2] .∆, k : ∅

(T:OQEND)
end(∆)

Γ `k k[i : m̃1, o : ε] .∆, k : ∅
(T:QOUT)
Γ ` v : U Γ `k k[i : m̃1, o : m̃2] .∆, k :Mo

Γ `k k[i : m̃1, o : v · m̃2] .∆, k :!U.Mo

(T:QIN)
Γ ` v : U Γ `k k[i : m̃1, o : m̃2] .∆, k :Mi

Γ `k k[i : v · m̃1, o : m̃2] .∆, k :?U.Mi

(T:QSEL)
Γ `k k[i : m̃1, o : m̃2] .∆, k :Mo

Γ `k k[i : m̃1, o : l · m̃2] .∆, k : ⊕l.Mo

(T:QBRA)
Γ `k k[i : m̃1, o : m̃2] .∆, k :Mi

Γ `k k[i : l · m̃1, o : m̃2] .∆, k : &l.Mi

(T:NIL)
end(∆)

Γ ` 0 .∆

(T:WKS)
k 6∈ fvπ(P) Γ `Σ P .∆

Γ `Σ,k P .∆

(T:RES)
T ⊥T ′ Γ `Σ,x,x P .∆, x : T, x : T ′

Γ `Σ (νx)P .∆
(T:QCONC)
Γ `Σ1

P .∆1 Γ `Σ2
Q .∆2 Σ1 ∩ Σ2 = ∅

Γ `Σ1∪Σ2
P | Q .∆1 � ∆2

(T:SUB)
Γ `Σ P .∆ ∆ . ∆′

Γ `Σ P .∆′

Figure 3.6: Typing rules for aπ.

recursive variableX assigned to environment∆ toΓ and types the continuation
P .

• Rules (T:IQEND) and (T:OQEND) type empty input and output queues, respec-
tively. In both cases, the rule requires that the session name of the queue k is
the only element in Σ and that the type is the empty message type ∅.

Chapter 3. Source and Target Languages 94

• Rules (T:QOUT) and (T:QIN) type queues that contain messages in the output
and input queue, respectively. In both cases Σ is required to contain the ap-
propriate session name for each queue. Also, the types of the values inside the
queue are tested with respect to the message types.

• Rules (T:SELQ) and (T:BRAQ) are similar to bT:QOUTc and bT:QINc, but deal
with labels in the queues.

• Rule (T:NIL) types an inactive process with a terminated linear environment. The
condition end(∆) means that ∆ only contains end types.

• Rule (T:WKS) allows you to add a session name k toΣ provided that k 6∈ fvπ(P).

• Rule (T:RES) requires process P to be typed with the appropriate dual session
endpoints and with Σ, k, k, ensuring that both queues for k and k are present
in P .

• Rule (T:QCONC) types two processes in parallel by using the merge operator �
on the linear environments ∆1, ∆2.

• Finally, Rule (T:SUB) deals with subtyping and is defined as expected.

3.2.6 Typing Properties
In this section we present all the guarantees ensured by the type system of aπ. First,
we present some important preliminary notions; we start by definingwell-configured
linear environments. Intuitively, these environments capture the idea of “correct”
environments. The assumption is that for every entry k : T in∆, there exists an entry
corresponding to k : T ′, with T ′ being the complementary of T—notice that this is
similar to the notion of consistent environments in MPST (cf. § 2.5).

Definition 3.58 (Well-Configured Linear Environment). A linear environment∆ is
well-configured if, for every k ∈ dom(∆), ∆(k) = T implies ∆(k) = T ′ and T ⊥T ′.

Next, we introduce a notion of reduction for our linear environments. Informally,
this definition is used to precisely characterize the evolution of session types due to
process reductions.

Definition 3.59 (Linear Environment Reduction). Let ∆ and ∆′ be linear environ-
ments. Then, we define the follow reduction rules:

bE:COMc {k :!U.T, k :?U.T ′}⇀ {k : T, k : T ′}
bE:SELc {k : ⊕{li : Ti}i∈I , k : &{li : T ′i}i∈I}⇀ {k : Tj , k : T ′j} (j ∈ I)

bE:COMPc
∆1 ⇀ ∆′1

∆1,∆2 ⇀ ∆′1,∆2

Remark 3.60. It is perhaps useful to recall that π does not have an analogue toDef. 3.59
above (cf. § 2.2). This difference arises because the semantics ofπ (cf. Fig. 2.1) require
the synchronizing endpoints to be always bound by a restriction.

We now prove weakening, strengthening and substitution lemmas:

Chapter 3. Source and Target Languages 95

Lemma 3.61 (Weakening Lemmas). Let Γ `Σ P .∆:

1. If X 6∈ dom(Γ) then Γ, X : ∆′ `Σ P .∆, for any∆′.

2. If k 6∈ dom(∆) then Γ `Σ P .∆, k : end.

Proof. We prove each numeral:

1. By induction on the structure of the aπ process P . The base cases are when-
ever P = 0 and P = k[i : h̃1, o : h̃2]. Both are immediate by inversion and
reapplying their corresponding typing rule. All the inductive cases, except for
P = µX ′.P ′ conclude by applying inversion, applying the IH and reapplying
the corresponding typing rule. For the case P = µX ′.P ′ we also consider the
fact thatX 6∈ dom(Γ) to apply the IH and conclude by reapplying Rule (T:REC).

2. By induction on the structure of process P . The base cases are whenever P = 0
and P = k[i : h̃1, o : h̃2]. As above, they are straightforward by using inversion
and applying the corresponding rule. Notice that adding k : end in ∆ means
that the environment is still terminated and therefore, the condition end(∆) still
holds. The inductive cases proceed by using inversion, the IH and reapplying
the corresponding typing rule.

Lemma 3.62 (Strengthening Lemmas). Let Γ `Σ P .∆:

1. If X 6∈ fpv(P) then Γ, X : ∆′ `Σ P .∆ implies Γ `Σ P .∆.

2. If k 6∈ fvπ(P) then Γ `Σ P .∆, k : T implies Γ `Σ P .∆.

Proof. Both numerals are proven by induction on the structure of P . We only detail
1 as 2 is similar.

Base Cases: There are two base cases: (1) P = 0 and (2) P = k[i : h̃1, o : h̃2].
Both cases follow immediately from inversion and reapplying the correspond-
ing typing rule.

Inductive Step: For the inductive step, we only detail the case P = µX ′.P ′ as all
the other cases are similar. By assumption, Γ, X : ∆′ `Σ µX ′.P ′ . ∆ and X 6∈
fpv(µX.P ′). We can then deduce that Σ = ∅. Furthermore, by inversion, Γ, X :
∆′ ` µX ′.P ′ .∆. Then, by applying inversion once more, Γ, X : ∆′, X ′ : ∆ `
P ′ . ∆ and X 6∈ fpv(P ′). Thus, by IH, Γ, X ′ : ∆ `Σ P ′ . ∆ and by reapplying
Rule (T:REC), we obtain Γ `Σ µX.P ′ .∆, concluding the case.

Lemma 3.63 (Substitution Lemmas).

1. If Γ, x : U `Σ P .∆ and Γ ` v : U then Γ, v : U `Σ P{v/x} .∆.

2. If Γ `Σ P .∆, k : T then Γ `Σ P{k
′
/k} .∆, k′ : T .

Proof. We prove both items by induction on the structure of P .

Chapter 3. Source and Target Languages 96

1. By induction on the structure of P and a case analysis on the free variables of
the process.

Base Case: There are two base cases: (1)P = 0 and (2)P = k[i : h̃1, o : h̃2]. We
detail (2) as the other cases are immediate. By assumption,P = k[i : h̃1, o :

h̃2]. Then, we distinguish four cases (i) h̃1 = ε, h̃2 = ε, (ii) h̃1 6= ε, h̃2 = ε,
(iii) h̃1 = ε, h̃2 6= ε, (iv) h̃1 6= ε, h̃2 6= ε. Case (i) is immediate, as no
substitutions can be made. Notice that our type system does not allow for
delegation and hence, substitution of channels cannot occur. Below we
detail Case (iv).
By assumption, Γ, x : U `Σ k[i : h̃1, o : h̃2] . ∆. We can then deduce
that Σ = k and ∆ = ∆′, k : M . We then distinguish cases depending on
whetherM isMi orMo. We only detail wheneverM =Mo. Then, without
loss of generality, assume that h̃2 = v1·. . .·vm·x·. . .·vn, n,m ≥ 1,m ≤ n. By
applying inversionm times we have that Γ, x : U `Σ k[i : h̃1, o : x · . . . ·vn].
∆′, !U.M ′o. Then, by inversion and assumption (Γ ` v : U), we can apply
Rule (T:QOUT) to conclude thatΓ, v : U `Σ k[i : h̃1, o : v·. . .·vn].∆′, !U.M ′o.
We finish the proof by reapplying Rule (T:QOUT)m times.

Inductive Steps: All the inductive cases proceed similarly as the base case de-
tailed above. The only difference is that the IH is used to deal with the
continuations of the processes.

2. The proof is similar to the one above. The main difference is that for this state-
ment whenever P = k〈v〉.Q and P = k(x).Q, we assume that P is typed using
Rule (T:DEL) and (T:DRCV), respectively. Both cases finish by applying the IH.

We finally present the main results for our the type system: subject reduction and
type safety. The latter ensures that our processes do not reduce to errors as understood
in [KYHH16]. Before giving the formal definition of error processes, we introduce
the idea behind them with an example:

Example 3.64. Below, we assume that every process Qi, i ∈ {1, 2, 3} contains the
necessary queues for making the process reduce.

P12 = (νx)(x〈tt〉.0 | x〈tt〉.0 | Q1)

P13 = (νx)(x〈tt〉.x(y).0 | x(z).x〈ff〉.0 | Q2)

P14 = (νx)(x〈tt〉.x(y).0 | x〈tt〉.0 | x(z).x〈ff〉.0 | Q3)

We consider processesP12 andP14 errors, and processP13 as a non-error process. 4

Formally, errors are defined in terms of k-processes and k-redexes. Intuitively, a
k-process is any process whose subject is k and does not have a parallel composition
operator at top level; similarly, a k-redex is a redex formed only by k-processes.

Definition 3.65 (k-Redex). A k-redex is one of the following compositions of two
k-processes:

Chapter 3. Source and Target Languages 97

1. k〈v〉.P | k[i : h̃1, o : h̃2].

2. k(x).P | k[i : v · h̃1, o : h̃2].

3. k / l.P | k[i : h̃1, o : h̃2].

4. k . {li : Pi}i∈I | k[i : lj · h̃1, o : h̃2], with j ∈ I .

5. k[i : h̃1, o : v · h̃2] | k[i : h̃1, o : h̃2].

Definition 3.66 (Errors). We say that an aπ process P is an error whenever P ≡A

(νx̃)(Q1 | Q2 | R) for any pair of processes Q1 and Q2 which are both k-processes
but do not form a k-redex.

Before stating our subject reduction theorem, we prove subject congruence to en-
sure that typing is preserved by the structural congruence in Def. 3.44.

Theorem 3.67 (Subject Congruence for aπ). If Γ `Σ P . ∆ and P ≡A Q then Γ `Σ
Q .∆.

Proof. By a case analysis on the rules of ≡A (cf. Def. 3.44). For details see App. A.4.

Next, we present an auxiliary result that clarifies the semantics of well-typed pro-
cesses. In [KYHH16], the authors demonstrated that for any given endpoint k, the
reduction of a well-typed process under a well-configured linear environment im-
plies that the queue of k, corresponds to a process Qk = k[i : h̃1, o : h̃2] with h̃1 = ε

or h̃2 = ε. This statement is useful for proving subject reduction, because in the cases
involving queues, the result implies that only one set of rules (i.e., rules for input
queues or output queues) is applicable. Belowwe show the original statement as the
authors presented it. The proof can be found in the cited paper.

Lemma 3.68 ([KYHH16]). Let P = P1 | k[i : ε, o : ε] and Γ `Σ P . ∆ with ∆ well-
configured (cf. Def. 3.58). Then if P −→A P

′
1 | k[i : h̃1, o : h̃2] then h̃1 = ε or h̃2 = ε.

Theorem 3.69 (Subject Reduction for aπ). If Γ `Σ P .∆ with ∆ well-configured (cf.
Def. 3.58) and P −→∗A Q then Γ `Σ Q .∆′ with∆⇀∗ ∆′ and ∆′ is well-configured.

Proof. By induction on the length of reduction P −→∗A Q. The base case is immediate.
For details see App. A.4.

We now state type safety for the aπ type system. This result ensures that com-
munication executes correctly for well-typed aπ programs (cf. Def. 2.21). In other
words, type safety ensures that well-typed programs never reduce to an error.

Theorem 3.70 (Type Safety for aπ). If P is a well-typed program, then Γ `∅ P . ∅ and
P never reduces to an error.

Chapter 3. Source and Target Languages 98

Proof. The proof is a direct consequence of subject reduction (Thm. 3.69). The proof
goes by contradiction, by assuming that a typable program reduces to an error and
then proving that said error is not typable, thus leading to a contradiction.

More in detail, assume that P −→∗A P ′ and that Γ `∅ P .∆. Then, assume that P ′
is an error (i.e., P ′ contains, up to structural congruence, a termQ that is the parallel
composition of two k-processes that do not form a k-redex). Notice that the definition
of � and Rule (T:QCONC) prevents are important for the proof, as they will prevent
the typing of errors. We proceed by a case analysis in Q. We only detail the case
whenever (1) Q = x〈v〉.Q1 | x〈v′〉.Q2. All the other cases are similar.

If Q = x〈v〉.Q1 | x〈v′〉.Q2, then the linear environment ∆ would need to contain
k :!U.T , which can be split by Rule (T:QCONC), however, the merging operation �
is only defined for a session type and a message type, not two session types, thus
reaching a contradiction.

Next, we identify the set of aπ programs induced by PI processes (cf. Def. 3.46)
and typing. First, we have that as a consequence from Thm. 3.70, the following corol-
lary holds:
Corollary 3.71. If a PI process P is well-typed then for every Q such that P −→∗A Q, Q is
not an error.

The previous corollary then allow us to define what we callwell-formed programs:
Definition 3.72 (Well-Formed aπ Programs). We say that a aπ process P is well-
formed if there exists a PI process P0 such that P0 is well-typed and P0 −→∗A P .

These well-formed aπ programs will be focus of the translation in Ch. 8. We re-
quire well-formed programs to originate from a PI process (cf. Def. 3.46), ensuring
that all the necessary queues are present. Furthermore, the well-typedness condition
on the PI processes ensures typing of P by Thm. 3.70. The last property we prove
in this section is a basic fact about well-typed programs. Intuitively, we say that it
is possible to use the structural congruence in Def. 3.44 to write the aπ program as a
context C[P,Q], where P is in aπ⋆ and Q only contains queues.
Lemma 3.73. For every well-typed aπ program P , it holds that:

P ≡A C[P
′, Q]

with C[·, ·] = (νk̃)([·]1 | [·]2) (cf. Def. 3.45), P ′ ∈ aπ⋆, and Q containing only queues.
Proof. By Def. 3.72, there exists a PI process P0 (cf. Def. 3.46) such that P0 is well-
typed and P0 −→∗A P . By Thm. 3.69, P is well-typed and by Thm. 3.70, it is not
an error (Def. 3.66). Thus, we can apply the structural congruence (≡A) rules for
scope extrusion and commutativity of the parallel composition operator to show that
P ≡A C[P

′, Q], with P ′ ∈ aπ⋆ and Q only containing queues.

Before introducing examples, we present an useful notation for compactlywriting
PI processes. This notation will be used throughout the dissertation.
Notation 3.74. Let P ≡A (νx̃)(

∏
i∈{1,...,n}Qi |

∏
kj∈k̃ kj [i : ε, o : ε]) be PI process (cf.

Def. 3.46)with variables k̃ = x̃x̃. WewriteP asC[
∏

i∈{1,...,n}Qi,K(k̃)], whereK(k̃) =∏
kj∈k̃ kj [i : ε, o : ε].

Chapter 3. Source and Target Languages 99

We conclude this section by presenting examples that provide more intuitions
about the type system and the semantics of aπ. For this example, we omit trailing
inaction processes and types (i.e., 0, end), and only write them when necessary.
Example 3.75. Let us recall the process P11 in (3.8), rewritten using Not. 3.74 and the
considerations above:

P11 = (νx)(νy)(x〈ff〉 | x(z).(y〈tt〉 | y(z′)) | K(w̃))

with w̃ = xxyy. The typing derivation is given below. Notice that, as with the ex-
amples for π OR and π R , we only show the derivation sub-trees for processes, and omit
the ones for variables:

(T:RES)×2

(T:QCONC)
(T:QCONC)

D1

∅ ` x〈ff〉 . x :!bool

D2

∅ ` R .∆

∅ ` x〈ff〉 | R . x :!bool,∆ D3

∅ `w̃ x〈ff〉.0 | R | K(w̃) . x :!bool, x :?bool, y :!bool, y :?bool︸ ︷︷ ︸
∆

∅ ` (νx)(νy)(x〈ff〉 | x(z).(y〈tt〉 | y(z′))︸ ︷︷ ︸
R

| K(w̃)) . ∅

where D1, D2, and D3 are given below (in that order):

(T:SEND)
(T:NIL)

end(x : end)

∅ ` 0 . x : end

∅ ` x〈ff〉 . x :!bool

(T:RCV)

(T:QCONC)

(T:SEND), (T:NIL)
z : bool ` y〈tt〉.0 .∆′

(T:RCV), (T:NIL)
z : bool ` y(z′) . y :?bool

z : bool ` y〈tt〉 | y(z′) . x : end, y :!bool︸ ︷︷ ︸
∆′

, y :?bool

∅ ` x(z).(y〈tt〉 | y(z′)) . x :!bool,∆

(Q:CONC)

(T:IQEND)
end(∅)

∅ `x K(x) . x :∅

(T:IQEND)
end(∅)

∅ `x K(x) . x :∅

(T:IQEND)
end(∅)

∅ `y K(y) . y :∅

(T:IQEND)
end(∅)

∅ `y K(y) . y :∅
∅ `w̃ K(w̃) . x :∅, x :∅, y : ∅, y : ∅

The first thingwe notice is that the asynchronous nature of aπmakes these derivation
trees longer than the ones presented in § 3.1.1 and § 3.1.2. Moreover, we can notice
that a general typing strategy consists in grouping queues and processes separately
to apply the corresponding rules. An interesting part of the derivation is the sub-
tree D3, which shows how queues are typed and how Σ (in this case w̃) is used to
ensure that queues appear only once. Intuitively, the hypothesis Σ1 ∩Σ2 = ∅ in Rule
(T:QCONC) enable us to split the queue names in w̃ evenly, assigning each element to
a single queue, which cannot appear repeated in the process. 4

Chapter 3. Source and Target Languages 100

3.2.7 A Big-Step Semantics for aπ
We present a big-step semantics that will be useful for proving the correctness of the
translation in Ch. 8. Before presenting the big-step semantics for aπ, we will provide
some informal intuitions behind the translation presented in Ch. 8. These intuitions
do not aim to provide the full picture of the translation; further explanations will be
given in its corresponding chapter.

Remark 3.76. Notice that the target language for the translation in Ch. 8 will be intro-
duced in § 3.4 and is called RMLq (a queue-based variant of ReactiveML).

Remarkably, in aπ queues are local to processes that write or read from them.
Therefore, the translation in Ch. 8, assumes that writing and reading operations are
instantaneous. Hence, in a single big-step reduction, the target RMLq expression
executes several reading and writing operations. Moreover, we follow the design
decision presented in § 3.1.2, and only allow for outermost synchronizations in the
big-step semantics for aπ.

We start by defining some auxiliary terminology. In the sequel, we assume that a
value v can be marked to differentiate it from other values.

Notation 3.77. Let v be an aπ value. We shall write v̂ to denote that v is marked. Also,
we write ¬v̂when referring explicitly to unmarked values. Moreover, for any process
P which contain queues with marked values, we will say that P is a marked process.

Marked values denote a “break point” in the input queue of a given endpoint, to
denote the number of writing and reading operations that can be done in a single
step. This goes in accordance with our decision of considering writing and reading
operations on queues as instantaneous. In this regard, markings signal the end of an
“instant” in aπ. Informally, we achieve this by marking the first value available in the
next instant. For example, in a queue x[i : m̃1 · v̂ · m̃2, o : m̃3], values v̂ · m̃2 will only
be available for the process in the next big-step reduction, not in the current one.

The big-step semantics of aπ is given by two “sub-semantics”: (1) a semantics that
dealswith synchronization between queues and (2) a semantics focused solely on the
interaction between queues and processes. Our goal is to build a reduction relation
that simulates in a single step all the executions that an RMLq big-step reduction can
execute.

Definition 3.78 (Big-Step Queue Reduction for aπ). Let ⇁ denote the semantics
obtained by replacing Rule bCOMc in Fig. 3.5 with Rule:

bCOMMc
x[i : m̃1, o : v · m̃2] | x[i : m̃1, o : m̃2]⇁x[i : m̃1, o : m̃2] | x[i : m̃1 · v̂, o : m̃2]

Then, let
P0 = C[P,Q1 | . . . |Qn |Qn+1 | . . . | Qm]

with 1 ≤ n ≤ m be a well-typed program in aπ. The big-step queue reduction of
process P0, denoted P0 �→ Q is given by:

bQBSTEPc
∀i∈{1, . . . n}∃j ∈ {1, . . . n}.(Qi |Qj ⇁ Q′i |Q′j) ∀i, j∈{n+ 1, . . .m}.(Qi |Qj 6⇁)

C[P,Q1 | . . . | Qn |Qn+1 | . . . |Qm] �→ C[P,Q′1 | . . . |Q′n |Qn+1 | . . . | Qm]

Chapter 3. Source and Target Languages 101

Above, Rule bCOMMcmarks the values after synchronization from queue used for
outputs and an input queue. In accordance to our translation, Rule bQBSTEPc only
allows for a single synchronization (with Rule bCOMMc) between the queues corre-
sponding to complementary endpoints. Notice that whenever a synchronization is
not possible, queues are unchanged. Below, we tweak the aπ semantics in Fig. 3.5 to
account for marks.

Definition 3.79 (Big-Step Process Semantics). Given a well-formed aπ program P ,
we write P ⇀ Q, to denote the semantics generated by the rules in Fig. 3.5, without
Rule bCOMc and replacing Rules bRECVc and bBRAcwith:

bRECVMc x(y).P | x[i : ¬v̂ · m̃1, o : m̃2]⇀ P{v/xy} | x[i : m̃1, o : m̃2]

bBRAMc x . {li : Pi}i∈I | x[i : ¬l̂j · m̃1, o : m̃2]⇀ Pj | x[i : m̃1, o : m̃2] (j ∈ I)

We write⇀∗ to denote the reflexive transitive closure of⇀.

The second layer of the big-step semantics for aπ deals with the interaction be-
tween aπ⋆ processes and queues. Rule bCOMc is excluded from the definition of Ï→,
as no further queue synchronizations can occur. The big-step semantics for aπ is
then presented as the composition of �→ and ⇀. First, we introduce a function for
removing the marks in queues.

Definition 3.80 (Removing Marks). Let P be a aπ process. The function unm(Q) is
defined inductively as:

unm(ki[i : m̃1 · v̂ · m̃2, o : m̃3])
def
= ki[i : m̃1 · v · m̃2, o : m̃3]

unm(P1 | P2)
def
= unm(P1) | unm(P2) unm((νx)P)

def
= (νx)unm(P)

and the identity for every other case of P .

Definition 3.81 (Big-Step Semantics for aπ). Let P = C[P1 | . . . |Pn, Q1 | . . . | Qm],
with n,m ≥ 1 be a well-formed aπ program. The big-step semantics for aπ is gener-
ated by the following rule:

bBSTEPc

C[P1 | . . . | Pn, Q1 | . . . | Qm] �→ C[P1 | . . . | Pn, Q
′
1 | . . . | Q′m]

C[P1 | . . . | Pn, Q
′
1 | . . . | Q′n]⇀∗ C[P ′1 | . . . | P ′n, Q′′1 | . . . | Q′′m] 6⇀

C[P1 | . . . | Pn, Q1 | . . . | Qm] Ï→ C[P ′1 | . . . | P ′n, unm(Q′′1 | . . . | Q′′m)]

An important observation from Rule bBSTEPc is that the marks are removed at the
end of every big-step reduction. This effectively means that there is only one marked
value in each synchronizing queue at every big-step reduction. This fact accounts for
the correctness of the unm(·) function. To clarify the semantics we use the following
example.

Example 3.82. Consider the following aπ process

C[Q,K(xx)] = (νx)(x〈v1〉.x〈v2〉.x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0 |
x[i : ε, o : ε] | x[i : ε, o : ε])

(3.2)

Chapter 3. Source and Target Languages 102

We analyze the first big-step reduction below:

C[Q,K(xx)] Ï→ (νx)(x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0 |
x[i : ε, o : v1 · v2] | x[i : ε, o : ε])

= Q1

Above, observe that C[P,K(xx)] �→ C[P,K(xx)] since all the queues are empty and
no synchronization is possible. Moreover, observe that:

C[Q,K(xx)]⇀∗ (νx)(x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0 |
x[i : ε, o : v1 · v2] | x[i : ε, o : ε])

6⇀= Q1

The reduction above occurs by applying Rule bSENDc twice to obtain Q1 and Q1 6⇀.
The complete sequence of big-step reductions is given below:

Q1 Ï→ (νx)(x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0 | unm(x[i : ε, o : v2] |
x[i : v̂1, o : ε])) = Q2

Q2 Ï→ (νx)(x(y1).x〈v3〉.0 | x(y3).x〈y3〉.x(y4).0 | unm(x[i : ε, o : ε] |
x[i : v̂2, o : ε])) = Q3

Q3 Ï→ (νx)(x(y1).x〈v3〉.0 | x(y4).0 | unm(x[i : ε, o : ε] | x[i : ε, o : v2])) = Q4

Q4 Ï→ (νx)(x(y1).x〈v3〉.0 | x(y4).0 | unm(x[i : v̂2, o : ε] | x[i : ε, o : ε])) = Q5

Q5 Ï→ (νx)(0 | x(y4).0 | unm(x[i : ε, o : v3] | x[i : ε, o : ε])) = Q6

Q6 Ï→ (νx)(0 | x(y4).0 | unm(x[i : ε, o : ε] | x[i : ε, o : v̂3])) = Q7 Ï→ 0

Above, we have left the marking of values explicit to better observe where new in-
stants begin andwhere⇀ reductions cannot continue. In the big-step reduction from
Q1 to Q2, we apply Rule bCOMMc once, to communicate v2 from the output queue of
x to the input queue of x to obtain Q2, and the value gets marked. Hence, Q2 6⇀ and
no further reductions are possible.

The most interesting big-step reduction is perhaps the one from Q2 to Q3. In it,
we observe how the two types of reductions (�→ and⇀) are composed. First notice
that:

Q2 �→ (νx)(x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0 | x[i : ε, o : ε] |
x[i : v1 · v̂2, o : ε]) = Q′2

Above, we can observe that the newmarked value is v2. Thismeans that in the current
instant the only value available is v1. Hence,

Q′2 ⇀
∗ (νx)(x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0 | x[i : ε, o : ε] | x[i : v̂2, o : ε]) 6⇀

All the other steps continues as expected. The most important thing to notice is that
the big-step reduction sequence presented above coincides with the following aπ re-
duction sequence:

C[Q,K(xx)] −→2
A C[Q1, x[i : ε, o : v1 · v2] | x[i : ε, o : ε]]

Chapter 3. Source and Target Languages 103

−→A C[Q2, x[i : ε, o : v2] | x[i : v1, o : ε]]
−→2

A C[Q3, x[i : ε, o : ε] | x[i : v2, o : ε]]
−→2

A C[Q4, x[i : ε, o : ε] | x[i : ε, o : v2]]
−→A C[Q5, x[i : v2, o : ε] | x[i : ε, o : ε]]
−→2

A C[Q6, x[i : ε, o : v3] | x[i : ε, o : ε]]
−→A C[Q7, x[i : ε, o : ε] | x[i : v3, o : ε]]
−→A C[0, x[i : ε, o : v3] | x[i : ε, o : ε]]

where every process Qi (i ∈ {1, 2, 3, 4, 5, 6, 7}) is given below:

Q1 = Q2 = x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0
Q3 = x(y1).x〈v3〉.0 | x(y3).x〈y3〉.x(y4).0
Q4 = Q5 = x(y1).x〈v3〉.0 | x(y4).0
Q6 = Q7 = 0 | x(y4).0

4

3.2.8 Semantic Correspondence
We now proceed to prove our semantic correspondence result. First, we prove that
for everywell-typed aπ program, the big-step reductions always yield unmarked pro-
cesses. Then, we prove that there exists a semantic correspondence between the big-
step process semantics (cf. Def. 3.79) and the reduction semantics in Fig. 3.5. Then,
we prove a single-step semantic correspondence, which clarifies the relation between
Ï→ and −→A. This result is then generalized to multiple steps.

Lemma 3.83. Let P be a well-typed aπ program. If P Ï→∗ Q then Q = unm(Q′) for some
Q′.

Proof. This statement follows directly by the definition of the big-step semantics of
aπ (cf. Def. 3.81).

Lemma 3.84. For every aπ process P with marked values, the following holds:

1. If P ⇁∗ Q then unm(P) −→∗A unm(Q).

2. If P ⇀∗ Q then unm(P) −→∗A unm(Q).

Proof. We prove each item:

1. By induction on the reduction P ⇁∗ Q and a case analysis on the last applied
rule. Notice that⇁ and−→A only differ in the rule for communication between
queues: Rule bCOMMc for⇁ (cf. Def. 3.78) and Rule bCOMc for −→A. Observe
that the only difference is the marking of the value being added in the input
queue. From the previous observation, it follows that whenever P ⇁ Q with
Rule bCOMMc then P −→A Qwith Rule bCOMc.

Chapter 3. Source and Target Languages 104

2. The proof follows by induction on the length n of reduction P ⇀∗ Q and case
analysis on the last applied Rule from Def. 3.79. The base case and inductive
step are immediate.

Lemma 3.85 (Single-Step Semantic Correspondence). Let P be a well-formed aπ pro-
gram. Then, the following holds:

1. If P Ï→ Q then P −→∗A Q.

2. If P −→A Q then there exists R such that P Ï→ R and Q −→∗A R.

Proof. We prove both numerals. The first one can be derived from the previous def-
initions and the second one follows from Thm. 3.69 and Lem. 3.73. For details see
App. A.4.

We conclude this section by proving a multi-step semantic correspondence (cf.
Def. 2.9). The statement below is split int two parts: first, we ensure that the big-step
semantics of aπ only includes behavior that is also exhibited by its reduction seman-
tics. The second part of the statement ensures that the all the reductions exhibited by
P are captured by some big-step reduction.

Lemma 3.86 (Semantic Correspondence). Let P be a well-formed aπ program. Then,
the following holds:

1. If P Ï→∗ Q then P −→∗A Q.

2. If P −→∗A Q then there exists R such that P Ï→∗ R and Q −→∗A R.

Proof. We prove both items by induction on the length of the reduction. The proofs
are similar to the ones presented in Lem. 3.85.

3.3 Extending lcc with Private Information (lccp)
We introduce lccp, an extension of lcc in which abstractions are generalized with
local information. The idea is to use lccp to model systems where private informa-
tion is important (e.g., session establishment protocols with cryptography). These
developments are based on the work presented in [HL09] for utcc [OV08a].

In § 3.3.1 we motivate this extension via examples. Next, we present the syntax
and semantics in § 3.3.2 and the type system in § 3.3.3. We conclude by presenting
properties ensured by types in § 3.3.4.

3.3.1 Motivation
The encoding of π OR into lcc that will be presented in Ch. 4 relies critically on lcc ab-
stractions (i.e., universal quantifier) to represent intra-session communication in π
(including scope extrusions) and their associated continuations. However, abstrac-
tions in lcc turn out to be overly powerful for modeling scope extrusion, in the sense

Chapter 3. Source and Target Languages 105

that they can also represent combinations of name-passing and restriction not possi-
ble in a π-calculus such as π OR.

In particular, this issue arises because the local construct in lcc (i.e., the existen-
tial quantifier) allows abstractions to obtain information that should be hidden. To
illustrate this, we consider the following example:

Example 3.87. Let Q2 be the lcc process defined below:

Q2 = ∃x.
(
ϕ(x) ‖ ∀y

(
ϕ(y)→ tt

))
‖ Spy (3.3)

where Spy is defined as:
Spy = ∀z

(
ϕ(z)→ ff

)
Supposing that we would like the synchronization inside the local construct private
(something that can be done in π OR), we can notice thatQ above fails in this regard—
the semantics of lcc in Fig. 2.5 allow Spy to access ϕ(x) in the store:

Q2 −→l ∃x.
(
∀y

(
ϕ(y)→ tt

)
‖ ff

)
To intuitively understand how the privacy of the restriction construct behaves in π OR,
compared to the one in lcc, we consider the following π OR process:

P15 = (νxy)(x〈v〉.Px | y(z).Qy) | R (3.4)

The first thing to notice is that the restriction operator (νxy) ensures that communi-
cation between endpoints x and y is private, i.e., they cannot be interfered by some
external process. In particular, we have that the semantics of π OR (cf. Fig. 2.1) does
not allow R to get a hold of v in the reduction:

P15 −→ (νxy)(Px | Py{v/z}) | R

4

The situation illustrated by the example contrasts with a similar scenario for lcc,
given by process Q2 (cf. (3.3)), as the semantics of lcc does allow an external ab-
straction to get information from inside the local construct. To address this issue we
would like to limit the power of abstractions in lcc so we can preserve the nature
and essential assumptions of the restriction operator in π OR. Hence, we would like
the privacy of session endpoints (inherited from the restriction operator) to be ex-
plicitly programmed at the declarative level of lccp processes, relying on some extra
mechanism to limit abstractions.

To this end, next we develop a simple typing discipline for lccp, built upon the
approach in [HL09]—where the focus is in utcc and session-based concurrency is
not addressed. Our type system admits only abstractions whose associated vari-
ables adhere to a precisely defined policy. Informally speaking, we shall classify/sort
variables as either unrestricted (i.e., public) or restricted (i.e., privacy-sensitive), and
decree that restricted variables are non-abstractable. This is a simple access control
mechanism for lccp abstractions. A well-typed lccp process will then only contain
abstractions of the form ∀x̃(d ; e→ P) where e is a secure pattern, i.e., it respects the
classification policy by not involving non-abstractable variables.

Chapter 3. Source and Target Languages 106

The type system is defined in general terms; one application is an encoding of πE
into lccp—see § 3.1.3. In this case, the sorting policy applies to the predicates used
to represent synchronizations. This way, we assume a refined signature in which
ϕ(x̃; ỹ) is a predicatewith x̃ restricted and ỹ unrestricted. This allowsus to distinguish
process that try to access private variables, but are not allowed to do so (cf. Ex. 3.89).

3.3.2 Syntax and Semantics
Abstractions in lcc act on global information posted in the constraint store. This
may be an issue when specifying processes that use their local information to per-
form some public (observable) behavior. This is the case of session processes after a
session has been established, which rely on (private) endpoints to communicate. An-
other relevant example of local information are the (private) keys used in protocols
for secure communications.

To address this interplay between local information and public behavior, we con-
sider lccp, a variant of lcc in which abstractions are generalized so as to account for
local information. The syntax of lccp results from Def. 2.26 by replacing the abstrac-
tion operator ∀x̃(e→ P) (in the grammar for guards) with the following one:

∀x̃(d ; e→P)

The new element is constraint d, a piece of local information used jointly with e to
trigger P . That is, d is used as additional resource in inferring e from the (global)
constraint store; still, d is used locally, for it is not added to the store. This construct
is a generalization in the sense that ∀x̃(e → P) in lcc corresponds to ∀x̃(tt ; e→P)
in lccp. The operational semantics of lccp formalizes these intuitions. It is defined
by the LTS in Fig. 2.5, replacing Rule (C:SYNC) with the following rule:

bC:SYNCLOCc

c⊗ d ` ∃ỹ.(e{t̃/x̃} ⊗ f) ỹ ∩ fv(c, d, e, P) = ∅
mgc

(
c⊗ d,∃ỹ.(e{t̃/x̃} ⊗ f)

)
c⊗ d ` ff =⇒ c ` ff

c ‖ ∀x̃(d ; e→P) −→l ∃ỹ. (P{t̃/x̃} ‖ f)

In this new rule, premise c ⊗ d ` ff =⇒ c ` ff ensures that only local assump-
tions d which do not conflict with the information in the (global) constraint store c
are allowed. All other notions and definitions for lcc processes will carry over to
lccp. Next we define a simple type system for disciplining abstractions with local
information in lccp.

3.3.3 The Type System
The typing rules for secure patterns/processes are defined in Fig. 3.7. For simplic-
ity, we assume that patterns are conjunctions of predicates applied to terms over the
function signature. We consider two environments, ∆ and Θ, where ∆ is the set of
variables used as restricted and Θ is the set of variables used as unrestricted. Empty
environments are denoted ‘ · ’.

As hinted at above, the objective of the type system is to identify lccp processes
whose abstractions contain secure patterns. We consider three kinds of judgments:

Chapter 3. Source and Target Languages 107

(L:PRED)

res(ϕ(t̃1; t̃2));unr(t̃2) \ var(t̃1) `• ϕ(t̃1; t̃2)

(L:TRUE)

·; · `• tt

(L:FALSE)

·; · `• ff
(L:ASSOC-L)
∆;Θ `• (c⊗ d)⊗ e
∆;Θ `• c⊗ (d⊗ e)

(L:ASSOC-R)
∆;Θ `• c⊗ (d⊗ e)
∆;Θ `• (c⊗ d)⊗ e

(L:COMM)
∆;Θ `• c⊗ d
∆;Θ `• d⊗ c

(L:COMB)
∆1; Θ1 `• c ∆2; Θ2 `• d (∆1 ∩Θ2) = (∆2 ∩Θ1) = ∅

∆1 ∪∆2; Θ1 ∪Θ2 `• c⊗ d
(L:EXIST)
∆;Θ `• c

∆;Θ `• ∃x̃.c

(L:BANG)
∆;Θ `• c
∆;Θ `• !c

(L:ABS)
`⋄ P ∆;Θ `• c x̃ ⊆ Θ \ fv(d)

`A ∀x̃(d ; c→P)

(L:SUM)
`A G1 `A G2

`A G1 +G2

(L:GUARD)
`A G
`⋄ G

(L:TELL)
c ∈ C
`⋄ c

(L:PAR)
`⋄ P1 `⋄ P2

`⋄ P1 ‖ P2

(L:REPL)
`⋄ P
`⋄ !P

(L:LOCAL)
`⋄ P
`⋄ ∃x̃. P

Figure 3.7: Typing rules for lccp.

• Judgment ∆;Θ `• c concerns patterns: it says that pattern c is well-formed,
under restricted variables ∆ and unrestricted variables Θ.

• The judgment for guards (abstractions, non-deterministic choice) is denoted
`A G

• Finally, a well-typed process P is denoted by `⋄ P .

Recall that we write t̃ to denote a vector of terms with its length given by |t̃|. We
will consider predicates of the form ϕ(t̃1; t̃2) where, intuitively, t̃1 denotes restricted
parameters and t̃2 denotes unrestricted parameters. We introduce some useful func-
tions on terms:

Definition 3.88. Let x and t denote a variable and an arbitrary term, respectively.
Functions unr(t), res(t), and var(t) yield, respectively, the set of variables appearing
unrestricted in t according to the sorting; the set of variables appearing restricted in
t; and the set of all variables occurring in t. They are defined as:

unr(x)
def
= {x} unr(ϕ(t̃1; t̃2))

def
= unr(t̃2)

var(x)
def
= {x} var(ϕ(t̃1; t̃2))

def
= var(t̃1) ∪ var(t̃2)

res(x)
def
= {x} res(ϕ(t̃1; t̃2))

def
= var(t̃1) ∪ (res(t̃2) \ unr(t̃2))

We assume that these functions extend to sequences of terms by letting

unr(t̃) =
⋃

1≤i≤|t̃|

unr(ti)

Chapter 3. Source and Target Languages 108

and similarly for res(·) and var(·).

Notice that var(t) = res(t) ∪ unr(t). Also, res(t) ∩ unr(t) may be non-empty;
in ϕ(t̃1; t̃2), terms in t̃2 could contain restricted variables (e.g., in nested predicates,
which are not needed in our encodings).

We now comment on some of the rules in Fig. 3.7. Rule (L:PRED) decrees that all
variables in t̃1 as well as the variables occurring restricted in t̃2 are restricted. The re-
maining variables are unrestricted. Rules (L:ASSOC-L), (L:ASSOC-R), and (L:COMM)
define basic properties of constraint conjunctions. Rule (L:COMB) identifies the re-
stricted and unrestricted variables in the pattern c⊗ d. The set of restricted variables
for cmust be disjoint from the set of unrestricted variables for d, and vice versa. This
avoids treating restricted variables in c or d as unrestricted variables in c ⊗ d. Typ-
ing rules for guards and processes are simple. Rule (L:ABS) says that abstraction
∀x̃(d ; c→P) is secure as long as variables x̃ are unrestricted in the typing for c, and
no variables in d occur in x̃.

Example 3.89 (An Ill-Typed Process). As a simple illustration of our type discipline,
consider the following process:

Q3 = ∀x, y, w
(
tt ; ϕ(w; y)⊗ ϕ′(w, x; ε)→ϕ′′(ε;x, y)

)
(3.5)

Above, we assume that in constraint ϕ(w; y) variable w is restricted, while y is unre-
stricted. Similarly, suppose that both w and x are restricted in ϕ′(w, x; ε), and that
both x, y are unrestricted in ϕ′′(ε;x, y). The constant ε is used to denote an empty se-
quence of variables; it is useful to remember which predicates do not have restricted
(or unrestricted) variables.

Using Rule (L:COMB), we obtain that pattern snd(w, y)⊗{w:x} has an unrestricted
variable (y) and two restricted variables,w and x. We then infer thatQ3 is not typable
because a typing derivation would need to perform an insecure abstraction on the
restricted variable w. The tree for the failed derivation is as follows:

(L:ABS)

(L:TELL)
ϕ′′(ε;x, y) ∈ C
`⋄ ϕ′′(ε;x, y)

D1

The derivation fails here.
{x,w, y} ⊆ {y}

`A ∀x, y, w
(
tt ; ϕ(w; y)⊗ ϕ′(w, x; ε)→ϕ′′(ε;x, y)

)
with D1:

(L:COMB)
{w}; {y} `• ϕ(w; y) {w, x}; ∅ `• ϕ′(w, x; ε)

{w, x}; {y} `• ϕ(w; y)⊗ ϕ′(w, x; ε)

Notice that the derivation fails since predicate {x,w, y} ⊆ {y} does not hold. 4

3.3.4 Typing Properties
Before presenting the main results of the type system above, we must define the no-
tion of substitution for lccp. We do this below:

Definition 3.90 (Substitution). Given terms t̃ = t1, . . . , tn and process variables
x̃ = x1, . . . , xn, the application of a substitution to a constraint, guard and process,

Chapter 3. Source and Target Languages 109

tt{t̃/x̃} def
= tt (!c){t̃/x̃} def

= !(c{t̃/x̃}) ff{t̃/x̃} def
= ff

ϕ(ũ; ṽ){t̃/x̃} def
= ϕ(ũ{t̃/x̃}; ṽ{t̃/x̃})

(c⊗ d){t̃/x̃} def
= c{t̃/x̃} ⊗ d{t̃/x̃} (∃ỹ.c){t̃/x̃} def

= ∃ỹ.c{t̃/x̃} if (ỹ ∩ x̃ = ∅)

∀ỹ(d ; c→P){t̃/x̃} def
= ∀ỹ(d{t̃/x̃} ; c{t̃/x̃}→P{t̃/x̃}) if (ỹ ∩ x̃ = ∅)

(G1 +G2){t̃/x̃}
def
= G1{t̃/x̃}+G2{t̃/x̃}

(c){t̃/x̃} def
= c{t̃/x̃} (P ‖ Q){t̃/x̃} def

= P{t̃/x̃} ‖ Q{t̃/x̃}

(∃ỹ. P) def
= ∃ỹ. P{t̃/x̃} if (ỹ ∩ x̃ = ∅) (!P){t̃/x̃} def

= ! (P{t̃/x̃}) (G){t̃/x̃} def
= G{t̃/x̃}

Figure 3.8: Substitution in lccp.

denoted respectively c{t̃/x̃}, G{t̃/x̃}, and P{t̃/x̃}, is inductively defined on the struc-
ture of constraints, guards and process as in Fig. 3.8.

Below, we present the main results regarding the type system: subject congru-
ence, substitution lemma, and subject reduction. As with all the other process calculi
we have presented, subject congruence shows that typing is preserved by the struc-
tural congruence in Def. 2.28. Similarly, subject reduction ensures that the semantics
preserve typing.

Lemma 3.91 (Subject Congruence). If P ≡ Q and `⋄ P , then `⋄ Q.

Proof. By a case analysis on P ≡ Q (cf. Def. 2.28). Since congruences are symmetric,
we need to prove for both P ≡ Q and Q ≡ P . There are eight cases. For details see
App. A.5.

Proposition 3.92 (Substitution). Let P and t be a process and a term, respectively. If
`⋄ P then `⋄ P{t/x}.

Proof. By induction on the structure of P . Interesting cases are when P = c and
P = ∀ỹ(d ; e→P ′), for some ỹ, d, e, and P ′; other cases are straightforward.

• Case P = c: By the well-typedness assumption we infer that c ∈ C, which
immediately implies that c{t/x} ∈ C and so we conclude using (L:TELL).

• Case P = ∀ỹ(d ; e→P ′): By the well-typedness assumption we infer that P ′ is
well-typed, that∆;Θ `• e, and that ỹ ⊆ Θ\fv(d). Since universal and existential
quantifiers are binders, occurrences of variables in ỹ are not affected by {t/x};
this in particular rules out the possibility of renaming an unrestricted variable
into a restricted one. The substitution thus only affects free variables (not in ỹ)
and the thesis follows.

Chapter 3. Source and Target Languages 110

Theorem 3.93 (Subject Reduction). If P α−→l Q and `⋄ P then `⋄ Q.

Proof. By a case analysis on the transition rule applied (cf. Fig. 2.5). There are eight
cases. For details see App. A.5.

3.4 Queue-Based ReactiveML (RMLq)
In this section we present RMLq, a variant of ReactiveML that uses queues to store
and access values across time units. These queues store values that can be read by
expressions at any given time. This extension was considered to bring ReactiveML
closer to the idea of asynchrony presented in aπ (§ 3.2).

In § 3.4.1 we motivate the extension with some examples. Then, in § 3.4.2 we for-
mally introduce the syntax and semantics for the calculus and provide some exam-
ples. Finally, we conclude by introducing some equivalences for RMLq configurations
in § 3.4.3.

3.4.1 Motivation
Intuitively, RMLq was designed to be the target language for a translation of aπ (cf.
§ 3.2). Considering this, we claim that the key challenge of encoding aπ in a syn-
chronous language such as ReactiveML lies on the fact that signals (and the values
they contain) are ephemeral, i.e., they are deleted at the end of an instant. This fact
contrasts with the queues in aπ, which can be accessed at any time during execution,
without fear of losing messages. Thus, one must define a mechanism to make values
in queues persistent over time. Before presenting our solution, we discuss on the way
emitted values are stored during a ReactiveML big-step reduction.

Intuitively, ReactiveML uses event sets (Def. 2.38), to store the values emitted by
a signal x during a single big-step reduction. These events are reset every time a new
big-step reduction occurs. Hence, it is not possible to access values emitted during a
previous instant. Therefore, it is not possible to use these event sets to store persistent
values; a feature needed for modeling the asynchrony present in aπ. It can be argued
that ReactiveML is not natively equipped with the necessary features to persistent
emissions.

Considering the previous caveats, we have decided to focus on the way values are
stored in memory from a more computational perspective. Since ReactiveML is built
on top of OCaml, we have decided to make use of the more operational features of
the programming language and consider a persistentmemory that stores transmitted
values in queues. Thus, RMLq becomes a variant of ReactiveMLenrichedwith explicit
states. This means, that RMLq processes in parallel can also synchronize by putting
and popping values from queues. Formally, programs (i.e., executable expressions)
are represented in RMLq by configurations K = 〈e � Σ〉. In K, e represents a Reac-
tiveML expression and Σ is a set of queues that can be modified by the execution of
e.

Notice that having a explicit state and being able to synchronize values from
queues is coherent with the semantics of aπ, where processes can interact with their
queues, which are then in charge of synchronization. Then, it can be argued that

Chapter 3. Source and Target Languages 111

by using configurations we bring RMLq closer to aπ, which in turn allows for tighter
encodability results; this is a sought feature in our work.

To introduce RMLq, consider the following configuration, in which a ReactiveML
expression stores a value in a queue to be emitted at a later instant:

K1=〈put q1 tt ‖
pause ;

signal x in let y = pop q1 in emit x y; pause ; emit x y � q1 : ε〉
(3.6)

In K1 we have a configuration with a ReactiveML expression which first puts value
tt in queue q1—which is empty at the start of execution. At the next instant, the
expression declares a signal x and obtains the value stored in q1 to be then emitted
in the current instant, and also in the next one. Below, we formally introduce RMLq
and provide with more explanation on the semantics.

3.4.2 Syntax and Semantics
Besides configurations, states, and expressions, the syntax of RMLq shall consider
queues q : h̃, where the first element is called a queue identifier, ranged over by q, q′, . . .
and h̃ represents a (possibly empty) sequence of values. Sequences of values shall be
ranged over by h̃, h̃′, . . . and configurations are ranged over byK,K ′, The syntax
of RMLq is given below.

Definition 3.94 (RMLq). Let h denote constants, variables, signal names and pairs
(h, h). We obtain the syntax of RMLq by extending the grammar in Def. 2.36 as shown
below:

e ::= · · · | pop q | put q h | isEmpty q
h̃, h̃′ ::= ε | h̃ · u

Σ,Σ′ ::= ∅ | Σ, q : h̃
K,K ′ ::= 〈e � Σ〉

Above, h is used to denote first-order values, i.e., values that are not λ-expressions
or process declarations. Whenever it is clear from the context, we will only call them
values. Intuitively, in the syntax of RMLq the grammatical category of expressions
is extended with constructs for dealing with queues. Given a queue identifier q, ex-
pression pop q pops the first value from q and returns it. Analogously, put q h puts
the first-order value h at the end of q. Expression isEmpty q returns tt or ff, depend-
ing on whether q is empty or not. As hinted before, a state is a set of queues, where
Σ, q : h̃ denotes the union ofΣwith the singleton {q : h̃}. Notice that the union is only
well-definedwhenever q 6∈ dom(Σ). Sequences associatedwith queue identifiers, de-
noted h̃, are defined as concatenations of first-order values. Finally, configurations
are pairs of expressions and states, written 〈e � Σ〉.

The semantics of RMLq is obtained by extending the big-step semantics of Re-
activeML, presented in § 2.4.1, with configurations and states. We denote big-step
reductions in RMLq by using a similar notation to the one used for ReactiveML:

〈e � Σ〉
E,b999
S
K 〈e′ � Σ′〉

Chapter 3. Source and Target Languages 112

Above, the dashed arrow decrees that configuration 〈e � Σ〉 evaluates to configu-
ration 〈e′ � Σ′〉 in a single big-step reduction, where S is a signal environment, b is a
termination boolean, and E is an event set. The notions of signal environments, ter-
mination booleans, and event sets are as in the semantics of ReactiveML. The big-step
semantics is then generated by the rules in Fig. 3.9, Fig. 3.10, and Fig. 3.11.

We focus on presenting the most salient differences between the semantics of
RMLq and ReactiveML: (1) extending the semantics to consider configurations and
states, and (2) the rules for queue expressions in Fig. 3.11.

Configurations and states pose a challenge in RMLq. In particular, because ex-
pressions e1 and e2 executing in parallel could potentially try to modify the same
queue at the same time (expressions dealt by Rules bL-PARc, bL-DONEc, and bPAIRc).
Ideally, one would like to avoid these interferences altogether, but such assumptions
are too restrictive. To address this issue we assume that expressions can “lock” the
queue to execute a certain action. Thus, we have reading locks and writing locks. The
most problematic cause of interference is whenever two expressions executed in par-
allel have the same lock on the same queue. Moreover, as we show at a later stage,
our translation never induces situations inwhich two expressions are taking the same
lock on the same queue.

To rule out the undesired interference, we define two functions w(e) and r(e) that
return the set of queue identifiers of the queues fromwhich e has thewriting lock and
reading lock, respectively. Then, with this information, it is possible to deduce that
the kind of expressionswewould like to rule out are of the form let x1 = e1 and x2 =
e2 in e3, where the condition w(e1) ∩ w(e2) = r(e1) ∩ r(e2) = ∅ does not hold.

Definition 3.95. Let e be an RMLq expression:

1. Function w(e) is defined below:

• If e = put q v then w(e) = {q}.
• If e = (), e = x, e = c, e = n, e = pause , e = pop q, or e = isEmpty q then

w(e) = ∅.
• Inductively defined for every other case.

2. Function r(e) is defined below:

• If e = pop q, then r(e) = {q}.
• If e = (), e = x, e = c, e = n, e = pause , e = put q v, or e = isEmpty q then

r(e) = ∅.
• Inductively defined for every other case.

We are now left to handle the kind of interferences that are not captured by the
assumption w(e1) ∩ w(e2) = r(e1) ∩ r(e2) = ∅. They come in two types:

(1) The sets w(e1), w(e2), r(e1), and r(e2) are pairwise disjoint: This case means that
there are either no interferences or no queues are being modified in each ex-
pression.

(2) Either w(ei)∩r(ej) 6= ∅, w(ei)∩r(ej) 6= ∅ holds: This casemeans that there are two
expressions e1 and e2 executed in parallel and that one of them has a writing
lock and the other a reading lock.

Chapter 3. Source and Target Languages 113

bPAUSEc

〈pause � Σ〉
∅,ff999
S
K 〈() � Σ〉

bVALc

〈v � Σ〉
∅,tt999
S
K 〈v � Σ〉

bRECURc
〈v{x/rec x = v} � Σ〉

E,tt9999
S

K 〈v′ � Σ1〉

〈rec x = v � Σ〉
E,tt9999
S

K 〈v′ � Σ1〉

bRUNc
〈e � Σ〉

E1,tt99999
S

K 〈process e′ � Σ1〉 〈e′ � Σ1〉
E2,b9999
S

K 〈e′′ � Σ2〉

〈run e � Σ〉
E1⊔EE2,b99999999

S
K 〈e′′ � Σ2〉

bAPPLc

〈e1 � Σ〉
E1,tt99999
S

K 〈λx.e3 � Σ1〉

〈e2 � Σ1〉
E2,tt99999
S

K 〈v′ � Σ2〉 〈e3{x/v′} � Σ2〉
E3,tt99999
S

K 〈v � Σ3〉

〈e1 e2 � Σ〉
E1⊔EE2⊔EE3,tt999999999999

S
K 〈v � Σ3〉

bL-PARc
w(e1) ∩ w(e2) = r(e1) ∩ r(e2) = ∅ Σ′ = Σ1]ΣΣ2

〈e1 � Σ〉
E1,b199999

S
K 〈e′1 � Σ1〉 〈e2 � Σ〉

E2,b299999
S

K 〈e′2 � Σ2〉 b1 ∧ b2 = ff

〈let x1=e1 andx2=e2 in e3 � Σ〉
E1⊔EE2,ff99999999

S
K〈let x1=e′1 andx2=e′2 in e3 � Σ′〉

bL-DONEc

w(e1) ∩ w(e2) = r(e1) ∩ r(e2) = ∅ 〈e1 � Σ〉
E1,tt99999
S

K 〈v1 � Σ1〉

〈e2 � Σ〉
E2,tt99999
S

K 〈v2 � Σ2〉 〈e3{x1, x2/v1, v2} � Σ1]Σ Σ2〉
E3,b9999
S

K 〈e′3 � Σ3〉

〈let x1 = e1 and x2 = e2 in e3 � Σ〉
E1⊔EE2⊔EE3,b99999999999

S
K 〈e′3 � Σ3〉

bSIG-Pc
〈e1 � Σ〉

E1,tt99999
S

K 〈n � Σ1〉 n ∈ S 〈e2 � Σ1〉
E2,b9999
S

K 〈e′2 � Σ2〉

〈present e1? e2 : e3 � Σ〉
E1⊔EE2,b99999999

S
K 〈e′2 � Σ2〉

bSIG-NPc
〈e1 � Σ〉

E,tt9999
S

K 〈n � Σ1〉 n 6∈ S

〈present e1? e2 : e3 � Σ〉
E,ff9999
S

K 〈e3 � Σ1〉

Figure 3.9: Big-step semantics for RMLq expressions (Part 1).

Dealing with the previous cases requires a way for modified states to be merged.
In Fig. 3.9, themerging can be seen in Rules bL-PARc, bL-DONEc, and bPAIRc, written as

Chapter 3. Source and Target Languages 114

bEMITc
〈e1 � Σ〉

E1,tt99999
S

K 〈n � Σ1〉 〈e2 � Σ1〉
E2,tt99999
S

K 〈v � Σ2〉

〈emit e1 e2 � Σ〉
E1⊔EE2⊔E[{v}/n],tt999999999999999

S
K 〈() � Σ2〉

bPAIRc
〈e1 � Σ〉

E1,tt99999
S

K 〈v1 � Σ1〉 〈e2 � Σ〉
E2,tt99999
S

K 〈v2 � Σ2〉

〈(e1, e2) � Σ〉
E1⊔EE2,tt99999999

S
K 〈(v1, v2) � Σ1]Σ Σ2〉

bDW-NSc
〈e2 � Σ〉

E,tt9999
S

K 〈n � Σ1〉 n 6∈ S

〈do e1 when e2 � Σ〉
E,ff9999
S

K 〈do e1 when n � Σ1〉

bLP-STUc
〈e � Σ〉

E,ff9999
S

K 〈e′ � Σ1〉

〈loop e � Σ〉
E,ff9999
S

K 〈e′; loop e � Σ1〉

bDW-INTc
〈e2 � Σ〉

E2,tt99999
S

K 〈n � Σ1〉 n ∈ S 〈e1 � Σ1〉
E1,ff99999
S

K 〈e′1 � Σ2〉

〈do e1 when e2 � Σ〉
E1⊔EE2,ff99999999

S
K 〈do e′1 when n � Σ2〉

bDW-ENDc
〈e2 � Σ〉

E2,tt99999
S

K 〈n � Σ1〉 n ∈ S 〈e1 � Σ1〉
E1,tt99999
S

K 〈v � Σ2〉

〈do e1 when e2 � Σ〉
E1⊔EE2,tt99999999

S
K 〈v � Σ1〉

bLP-UNc
〈e � Σ〉

E1,tt99999
S

K 〈v � Σ1〉 〈loop e � Σ1〉
E2,b9999
S

K 〈e′ � Σ2〉

〈loop e � Σ〉
E1⊔EE2,b99999999

S
K 〈e′ � Σ2〉

bDU-ENDc
〈e2 � Σ〉

E2,tt99999
S

K 〈n � Σ1〉 〈e1 � Σ1〉
E1,tt99999
S

K 〈v � Σ2〉

〈do e1 until e2(x)→ e3 � Σ〉
E1⊔EE2,tt99999999

S
K 〈v � Σ2〉

bDU-Pc
〈e2 � Σ〉

E2,tt99999
S

K 〈n � Σ1〉 n ∈ S 〈e1 � Σ1〉
E1,ff99999
S

K 〈e′1 � Σ2〉

〈do e1 until e2(x)→ e3 � Σ〉
E1⊔EE2,ff99999999

S
K 〈e3{S

v(n)/x} � Σ2〉

bDU-NPc
〈e2 � Σ〉

E2,tt99999
S

K 〈n � Σ1〉 n 6∈ S 〈e1 � Σ1〉
E1,ff99999
S

K 〈e′1 � Σ2〉

〈do e1 until e2(x)→ e3 � Σ〉
E1⊔EE2,ff99999999

S
K 〈do e′1 until e2(x)→ e3 � Σ2〉

Figure 3.10: Big-step semantics for RMLq expressions (Part 2).

Σ1]ΣΣ2. Intuitively, mergingworks on two statesΣ1 andΣ2 that have been obtained
by modifying an initial state Σ. Then, the operation will fuse the modified queues of
Σ1 and Σ2 into a new state.

Chapter 3. Source and Target Languages 115

bSIG-DECc

〈e1 � Σ〉
E1,tt99999
S

K 〈v1 � Σ1〉 〈e2 � Σ1〉
E2,tt99999
S

K 〈v2 � Σ2〉

〈e3{x/n} � Σ2〉
E3,b9999
S

K 〈e′3 � Σ3〉 n fresh S(n) = (v1, v2,m)

〈signale2 x : e1 in e3 � Σ〉
E1⊔EE2⊔EE3,b99999999999

S
K 〈e′3 � Σ3〉

bCASEc
〈e � Σ〉

∅,tt999
S
K 〈cj � Σ1〉 j ∈ I 〈ej � Σ1〉

E,b999
S
K 〈e′j � Σ2〉

〈match e with {ci → ei}i∈I � Σ〉
E,b999
S
K 〈e′j � Σ2〉

bPUT-Qc

〈put q v � Σ, q : h̃〉
∅,tt999
S
K 〈() � Σ, q : h̃ · v〉

bPOP-Qc

〈pop q � Σ, q : v · h̃〉
∅,tt999
S
K 〈v � Σ, q : h̃〉

bNEMPTYc

〈isEmpty q � Σ, q : h̃〉
∅,tt999
S
K 〈() � Σ, q : h̃〉

bPOP-Qϵc

〈pop q � Σ, q : ε〉
∅,ff999
S
K 〈pop q � Σ, q : ε〉

bEMPTYc 〈isEmpty q � Σ, q : ε〉
∅,ff999
S
K 〈isEmpty q � Σ, q : ε〉

Figure 3.11: Big-step semantics for RMLq (Part 3): Queue-related operations.

The merging operation is formalized below. We first introduce some auxiliary
definitions:

Definition 3.96 (Subtracting and Comparing Sequences). Let h̃1 = v1 · . . . · vn and
h̃2 = v1 · . . . · vm, with 0 ≤ m ≤ n be sequences of first-order values.

1. The subsequence relation h̃2 ⊆ h̃1 holds if and only if |h̃1| ≥ |h̃2| and h̃1 =

v1 · . . . · vm · . . . · vn (i.e., h̃2 is a prefix of h̃1).

2. The subtraction operation h̃1 \ h̃2 is defined as follows:

h̃1 \ h̃2
def
=

{
vn−m · . . . · vn if n > m

ε otherwise

Definition 3.97 (State Merging). Let Σ, Σ1 and Σ2 be states such that dom(Σ) =

dom(Σ1) = dom(Σ2), and q be a queue such that Σ(q) = h̃, Σ1(q) = h̃1, and Σ2(q) =

h̃2. Then, assuming i, j ∈ {1, 2} with i 6= j, and that |h̃i| ≤ |h̃j |, the state merging
operation is defined as:

Σ1]Σ Σ2(q)
def
= h̃i · (h̃j \ h̃)

Notice that although Rules bL-PARc, bL-DONEc, and bPAIRc are themost prominent
sources of parallelism in the big-step semantics of RMLq, they are not the only one.
Take, for example, Rule bDU-Pc: in principle, both e1 and e2 are evaluated simultane-
ously. To control this kind of parallelism, we give the evaluation of these expressions
a specific order. In particular, for expressions dealing with signals, we have forced a

Chapter 3. Source and Target Languages 116

specific evaluation order, aiming to keep the states consistent throughout the deriva-
tion. Similarly, we have decided to give an evaluation order to applications: in Rule
bAPPLc, we specify the order in which the expressions are executed. Once again,
the evaluation order arises from the fact that first it is necessary to recover the λ-
expression before applying e2 to e1.

We now briefly address the second main difference with respect to the Reac-
tiveML semantics: the queue-related rules in Fig. 3.11. Rule bPUT-Qc pushes an el-
ement into a queue at the end of the time instant and terminates instantaneously.
Rule bPOP-Qc takes the first element from the queue (if not empty) and terminates
instantaneously. Rule bNEMPTYc enables isEmpty to terminate instantaneously if the
queue is not empty. Rule bPOP-Qϵc keeps the thread execution stuck for at least one
instant if the queue is empty; Rule bEMPTYc is similar.

We conclude this section by illustrating RMLq configurations and their big-step
reductions. We also use these examples to clarify the role of the state merging oper-
ation.

Example 3.98. LetK1,K2,K3, andK4 be defined as follows:

K1 = 〈put q1 tt; put q1 tt; put q1 ff ‖
signal s1 in emit s1 tt; pause ; put q2 s1 � q1 : ε, q2 : ε〉

K2 = 〈signal s in put q1 tt; pause ; emit s (pop q1) ‖
await s(x) in put q2 x � q1 : ε, q2 : ε〉

K3 = 〈put q tt; put q tt; () ‖ let y1 = pop q in

let y2 = pop q in let y3 = pop q in () � q : tt · ff〉
K4 = 〈put q tt ‖ put q tt ‖ let y1 = pop q in let y2 = pop q in () � q : tt〉

InK1, we can observe that adding elements to a queue is an instantaneous operation.
The execution of the program is as follows:

K1 79999K 〈() ‖ put q2 s1 � q1 : tt · tt · ff, q2 : ε〉
79999K 〈() � q1 : tt · tt · ff, q2 : s1〉

We illustrate themerging of states by showing the derivation tree for the first big-step
reduction. Let Σ = q1 : ε, q2 : ε, Σ1 = q1 : tt · tt · ff, q2 : ε, Σ2 = q1 : ε, q2 : ε, K ′1 =
〈put q1 tt; put tt ; put ff � Σ〉, andK ′′1 = 〈signal s1 in emit s1 tt; pause ; put q2 s1 �
Σ〉:

bL-PARc
bPUT-Qc × 3, bVALc

〈K ′1 � q1 : ε, q2 : ε〉 79999K 〈() � Σ1〉
bSIG-DECc, bPAUSEc

〈K ′′1 � q1 : ε, q2 : ε〉 79999K 〈put q2 s1 � Σ2〉
〈K1 � q1 : ε, q2 : ε〉 79999K 〈() ‖ put q2 s1 � Σ1]Σ Σ2〉

The merging then can be calculated by solving the following operation:

Σ1]Σ Σ2 = q1 : tt · tt · ff, q2 : ε]Σ q1 : ε, q2 : ε

Then, we merge individual queue. For q1, by observing the queues and following
Def. 3.97, it is clear that h̃i = ε, h̃j = tt · tt · ff and h̃ = ε. Similarly, for q2, we have

Chapter 3. Source and Target Languages 117

that all the queues are empty, thus:

(Σ1]Σ Σ2)(q1) = ε · (tt · tt · ff \ ε) = tt · tt · ff
(Σ1]Σ Σ2)(q2) = ε · (ε \ ε) = ε

Therefore, Σ1]Σ Σ2 = q1 : tt · tt · ff, q2 : ε, which is what one would expect.
Configuration K2 shows how values can be moved from queue to another. This

is an important point in our translation as aπ queues are associated to endpoints
and communication between queues is done by moving messages from one queue
to another. The execution ofK2 is given below:

K2 79999K 〈emit s (pop q1) ‖ await s(x) in put q2 x � q1 : tt, q2 : ε〉
79999K 〈() ‖ put q2 tt � q1 : ε, q2 : ε〉 79999K 〈() ‖ ()) � q1 : ε, q2 : tt〉

Finally, configurationK3 showcases an important feature of our semantics; let us an-
alyze its big-step reductions:

K3 79999K 〈() ‖ let y3 = pop q in () � q : tt · tt〉
79999K 〈() ‖ () � q : tt〉

Notice that the time instant ends when reaching configuration:

〈() ‖ let y3 = pop q in () � q : tt · tt〉

Therefore, values added to q by the left-hand expression put q tt; put q tt; () are
only visible for the right-hand expression in the next time instant. This behavior was
hinted before, and is the result of our assumption regarding the evaluation of put
and pop operations. Indeed, from our semantics, it can be inferred that values are
put in a queue at the end of the instants, whereas the pop operation is evaluated at
the beginning.

Finally, configurationK4 shows a process that does not have semantics according
to the rules in Fig. 3.9, Fig. 3.10, and Fig. 3.11, as there is a sub-expression put q tt ‖
put q tt that executes two put operations in parallel on the same queue. 4

3.4.3 Equivalences for RMLq

To compare RMLq configurations, we reuse Def. 2.40 as it is. Recalling this defini-
tion, we write Dx̃[·] to denote the context containing all the signal declarations for x̃.
Furthermore, we extend this definition to configurations by writing 〈Dx̃[P] � Σ〉. We
also define an analogous to Def. 2.42:

Definition 3.99 (CongruenceUp-ToSignalDeclaration). Wewill say that twoRMLq
expressions e1 and e2 are congruent up-to signal declarations, written e1 . e2, when-
ever e1 = e′1 ‖ · · · ‖ e′n, n ≥ 1 and there exist, possibly empty, signal declaration
contexts Dx̃, Dx̃1

, . . . , Dx̃n
such that:

Dz̃[Dx̃1
[e′1] ‖ · · · ‖ Dx̃n

[e′n]] ≡R e2

Furthermore, we say that two configurationsK1 = 〈e1 � Σ1〉 andK2 = 〈e2 � Σ2〉 are
congruent up-to signal declaration, writtenK1 . K2, if e1 . e2 and Σ1 = Σ2.

Chapter 3. Source and Target Languages 118

Operational Declarative/Hybrid

aπ RMLq

π R RML

π

π OR lcc

πE lccp

J·Kgf
L·M

J·Kf
J·K

Figure 3.12: Summary of expressiveness results: blue arrows symbolize extensions,
red ones symbolize encodings.

3.5 Summary of Sources, Targets, and Translations
In this section we summarize all the formal languages used in our translations and
informally introduce the notations we will use for the translations that will be pre-
sented in further chapters. A graphical summary of expressiveness results is given
in Fig. 3.12.

We first instantiate Def. 2.1 to formally describe our source languages and target
languages. We then summarize the translations and anticipate the notations used for
each mapping.

Definition 3.100 (Source Languages). The following are the source languages used
in our translations:

1. Lπ OR
def
= 〈π OR,−→,≡S〉, where: π OR is the set of well-typed programs induced by

the type system in § 3.1.1, −→ is the reduction semantics in Fig. 2.1, and ≡S

corresponds to the structural congruence in Def. 2.11.

2. LπE

def
= 〈πE,−→N,≡S〉 where: πE is the set of well-typed networks induced by

the type system in § 3.1.3, −→N is the reduction semantics in Fig. 3.3, and ≡S is
defined in § 3.1.3.

3. Lπ R
def
= 〈π R ,−→,≡S〉, where: π R is the set of well-typed programs induced by

the type system in § 3.1.2, −→ is the reduction semantics in Fig. 2.1, and ≡S

corresponds to the structural congruence in Def. 2.11.

4. L∗
π R

def
= 〈π R , ↪↪→→,≡S〉, where: π R is the set of well-typed programs induced by

the type system in § 3.1.2, ↪↪→→ is the big-step semantics in Def. 3.31, and ≡S

corresponds to the structural congruence in Def. 2.11.

Chapter 3. Source and Target Languages 119

5. Laπ
def
= 〈aπ,−→A,≡A〉, where: aπ corresponds to the set of well-typed programs

induced by the type system in § 3.2.3,−→A is the reduction semantics in Fig. 3.5,
and ≡A is the structural congruence in Def. 3.44.

6. L∗aπ
def
= 〈aπ,Ï→,≡A〉, where: aπ corresponds to the set of well-typed programs

induced by the type system in § 3.2.3, Ï→ is the big-step semantics in Def. 3.81,
and ≡A is the structural congruence in Def. 3.44.

Remark 3.101 (Starred Languages). Notice that the starred languages L∗
π R and L∗aπ are

not used as sources of new translations. Rather, these languages are obtained by
defining a big-step semantics in terms of the reduction semantics of π R and aπ, re-
spectively. The big-step semantics and reduction semantics are proven to be seman-
tically corresponding. We shall use starred languages to prove that the translations
from π R and aπ into RML and RMLq, respectively are not only refined encodings (cf.
Def. 2.6), but also valid (cf. Def. 2.3)

Definition 3.102 (Target Languages). The following are the source languages used
in our translations:

1. Llcc
def
= 〈lcc,−→l,∼=DE〉, where: lcc is the set of lcc processes, −→l corre-

sponds to the semantics induced by Fig. 2.5, and∼=DE corresponds to the barbed
congruence in Def. 2.34—sets D and E are properly instantiated in Def. 4.3.

2. Llccp
def
= 〈lcc,−→l,∼=DE〉, where: lcc is the set of lcc processes, −→l corre-

sponds to the semantics introduced in § 3.3.2, and ∼=DE corresponds to the
barbed congruence in Def. 2.34—sets D and E are instantiated in Def. 5.4.

3. LRML
def
= 〈RML, 7−→,.〉, where: RML corresponds to ReactiveML expressions,

7−→ corresponds to the semantics defined by Fig. 2.8 and Fig. 2.9, and . corre-
sponds to the pre-order define in Def. 2.42.

4. LRMLq
def
= 〈RMLq, 79999K,.〉, where: RMLq corresponds to RMLq configurations,

79999K corresponds to the semantics defined by Fig. 3.9, Fig. 3.10, and Fig. 3.11,
and . corresponds to the pre-order defined in Def. 3.99.

We now proceed to introduce the mappings between languages that will make
part of our translations (cf. Def. 2.1). We often use the set of processes to refer to
both source and target languages, rather than the notation above (e.g., RML refers
to LRML, π OR refers to Lπ OR). The following mappings correspond to the translations
presented in this dissertation:

1. The translation J·K : π OR → lcc is studied in Ch. 4.

2. The translation J·Kf : πE → lccp, where f is a function that carries information
about co-variables, is studied in Ch. 5.

3. The translation J·Kgf : π R → RML, where functions f and g carry some necessary
renamings, is studied in Ch. 7.

4. The translation L·M : aπ → RMLq is studied in Ch. 8.

PART II
SESSION-BASED CONCURRENCY
AND CONCURRENT CONSTRAINT

PROGRAMMING

4
Encoding π OR in lcc

In this chapter we introduce a translation from π OR (cf. § 3.1.1) into lcc (cf. § 2.3).
We formally describe it in § 4.1. Next, we prove the static correctness properties (cf.
Def. 2.6) in § 4.2. Then, in § 4.3, we prove the operational correspondence property
and state that J·K is a valid encoding (cf. Def. 2.3). Finally, in § 4.4, we illustrate the
use of this encoding using the timed patterns presented in § 1.6.

4.1 The Translation
In this sectionwe formalize the translationmentioned above. In § 4.1.1we introduce a
specialized constraint system for dealing with sessions and instantiate the behavioral
equivalences mentioned in Def. 3.102(1). Finally, in § 4.1.2 we present the mapping
we shall use to transform π processes into lcc processes.

4.1.1 A Session Constraint System and Observational Equivalences
Before formally introducing the translation, we present the constraint system which
defines the necessary predicates and deduction rules for modeling communication
in π OR.
Definition 4.1 (SessionConstraint System). The session constraint system is the tuple
〈C,Σ,`S〉, where

• Σ is the set of predicates given in Fig. 4.1;

• C is the set of constraints obtained by using linear logic operators !,⊗ and ∃ over
the predicates of Σ;

• `S is given by the rules in Fig. 2.4, extended with the syntactic equality ‘=’ .

Chapter 4. Encoding π OR in lcc 122

Σ ::= rcv(x, y) | snd(x, y) | sel(x, l) | bra(x, l) | {x:y}

Figure 4.1: Session constraint system: Predicates (cf. Def. 4.1).

Some intuitions on the definition above follow. The first four predicates in Fig. 4.1
serve as acknowledgments of actions in the source π OR process: predicate rcv(x, y)
signals an input action on x of a value denoted by y; conversely, predicate snd(x, y)
signals an output action on x of a value denoted by y. Predicates sel(x, l) and bra(x, l)
signal selection and branching actions on x involving label l, respectively. Finally,
predicate {x:y} connects variables x and y as required in the translation of the re-
striction operator in π OR.

Having introduced the constraint system, we now define two sets of observables
which will be important for the translation. Below, we define the output and complete
observables of lcc processes that use the constraint system in Def. 4.1.
Definition 4.2 (Complete and Output Observables). Let C be the constraint system
in Def. 4.1. We define Dπ OR , the set of output observables of lcc processes as follows:

Dπ OR
def
= {∃z̃.snd(x, v) | x ∈ Vs ∧ x ∈ z̃ ∧ (v ∈ z̃ ∨ v 6∈ Vs)}

∪ {∃z̃.sel(x, l) | x ∈ Vs ∧ l ∈ Bπ ∧ x ∈ z̃}
We also define D⋆

π OR , the set of complete observables of lcc, which extends Dπ OR as fol-
lows:

D⋆
π OR

def
= Dπ OR ∪ {tt} ∪ {∃z̃.rcv(x, y) | x, y ∈ Vs ∧ x 6= y ∧ x ∈ z̃}

∪ {∃z̃.bra(x, l) | x ∈ Vs ∧ l ∈ Bπ ∧ x ∈ z̃}
Notice that constraints such as {x:y} are not part of the observables. Consider-

ing that in the translation co-variable predicates are persistent, the information of
co-variables can be derived by using other constraints. In particular, as we will show
later, if ∃x, y.snd(x, v) and ∃x, y.rcv(y, v) are in the set of complete observables of
some process P then constraint !{x:y}must be in the corresponding constraint store
too. This will become clear when we analyze the shape of translated processes (cf.
Def. 4.13).

Using the sets of observables defined above, we can then instantiate sets D and
E for the barbed congruence for lcc mentioned in Def. 3.102(1) (cf. Def. 2.34). In
particular, we set D = Dπ OR , and E = C (cf. Def. 4.1). The barbed congruence is then
defined below:
Definition 4.3 (Weak o-barbed bisimilarity and congruence). We define weak o-
barbed bisimilarity and weak o-barbed congruence as follows:

1. Weak o-barbed bisimilarity, denoted ≈π OR
l , arises from Def. 2.33 as the weak

Dπ ORC-barbed bisimilarity.

2. Weak o-barbed congruence, denoted ∼=π OR
l , arises from Def. 2.34 as the weak

Dπ ORC-barbed congruence.

Chapter 4. Encoding π OR in lcc 123

Jx〈v〉.P K def
= snd(x, v) ‖ ∀z

(
rcv(z, v)⊗ {x:z} → JP K) (z 6∈ fv(P))

Jx(y).P K def
= ∀y, w

(
snd(w, y)⊗ {w:x}→ rcv(x, y) ‖ JP K) (w, z 6∈ fv(P))

Jx / l.P K def
= sel(x, l) ‖ ∀z

(
bra(z, l)⊗ {x:z} → JP K) (z 6∈ fv(P))

Jx . {li:Pi}i∈IK def
= ∀l, w

(
sel(w, l)⊗ {w:x} → bra(x, l) ‖∏

i∈I
∀ε(l = li → JPiK)) (w, z 6∈ fv(P))

Jv? (P) : (Q)K def
= ∀ε(v = tt→JP K) ‖ ∀ε(v = ff→JQK)

J(νxy)P K def
= ∃x, y. (!{x:y} ‖ JP K)

J∗x(y).P K def
= ! Jx(y).P K

JP | QK def
= JP K ‖ JQK

J0K def
= tt

Figure 4.2: Translation from π OR into lcc (cf. Def. 4.4).

4.1.2 Mapping π Processes Into lcc Processes
With the observational equivalences defined above, we are now ready to introduce
our translation. We first give the formal definition and then some intuitions follow.

Definition 4.4 (Translation of π OR into lcc). Let Lπ OR = 〈π OR,−→,≡S〉 and Llcc =

〈lcc,−→l,∼=
π OR
l 〉 (cf. Def. 3.100(1) and Def. 3.102(1), respectively). The translation

from Lπ OR into Llcc is given as the pair 〈J·K, ϕJ·K〉, where:

(a) J·K is the process mapping defined in Fig. 4.2.

(b) ϕJ·K(x) = x, i.e., the identity function.

In Fig. 4.2, the mapping uses the predicates shown in Fig. 4.1 as acknowledgment
messages to ensure correct synchronizations. Below, we discuss some of the transla-
tion cases:

• The output process x〈v〉.P is translated by using both tell and ask constructs:

snd(x, v) ‖ ∀z
(
rcv(z, v)⊗ {x:z} → JP K)

Intuitively, the translation of an output posts predicate snd(x, v) in the store, sig-
naling that an output has taken place, and can be received by an input process.
The sequential behavior of the π OR output is then modeled by only allowing the
continuation to be activated after the translation has receivedpredicate rcv(y, v),
which signals that the message has been correctly received by its co-variable
(e.g., predicate {x:y}). Therefore, input-output interactions are represented inJ·K as two-step synchronizations.

Chapter 4. Encoding π OR in lcc 124

• The translation of an input process x(y).Q is complementary to the translation
of the output process:

∀y, w
(
snd(w, y)⊗ {w:x}→ rcv(x, y) ‖ JP K)

The translation above does not post any information at the beginning of its ex-
ecution. In fact, whenever a predicate snd(x, v) is detected by the outermost
abstraction of the translation, snd(x, v) is consumed to obtain both the subject
x and the object y. Then, the co-variable restriction is checked: this restriction
is used to enforce synchronization between intended endpoints. Subsequently,
the translation emits a message rcv(·, ·) and spawns its continuation.

• The translation of branching-select synchronizations follows a similar strategy,
using bra(·, ·) and sel(·, ·) as acknowledgment messages. In this case, the ex-
changed value is one of the pairwise distinct labels, say lj ; depending on the
received label, the translation of branching will spawn exactly one continua-
tion, as expected. The continuations corresponding to labels different from lj
get blocked, as their equality guard can never be satisfied. Similarly, the trans-
lation of conditionals makes both branches available for execution; we use a
parameterized ask as guard to ensure that only one of them will be executed.

• The translation of the restriction (νxy)P provides infinitely many copies of the
co-variable constraint {x:y}, using hiding to appropriately regulate the scope
of the involved endpoints. The translation of replicated processes simply cor-
responds to the replication of the translation of the given input-guarded pro-
cess. Finally, the translations of parallel composition and inaction are self-
explanatory.

We reaffirm the intuitions for our translation by presenting some interesting exam-
ples.
Example 4.5. We recall a non-replicated version of process P3 in Ex. 2.25:

P ′3 = (νwz)(νxy)(x〈z〉.w(u′).0 | y(u).u〈tt〉.0)
whose translation JP3K is given below:

∃x, y, w, z.
(
! {x:y} ‖ ! {w:z} ‖ snd(x, z) ‖
∀w1

(
rcv(w1, z)⊗ {w1:x} →

∀w2, u
′(snd(w2, u

′)⊗ {w2:w} → rcv(w, u′) ‖ tt
))

∀w3, u
(
snd(w3, u)⊗ {w3:y} → rcv(y, u) ‖ snd(u, tt) ‖
∀w4

(
rcv(w4, tt)⊗ {w4:u} → tt

)))
where, using the semantics in Fig. 2.5, it can be shown that:

JP ′3K −→2
l ∃x, y, w, z.

(
! {x:y} ‖ ! {w:z} ‖

∀w2, u
′(snd(w2, u

′)⊗ {w2:w} → rcv(w, u′) ‖ tt
)︸ ︷︷ ︸Jw(u′).0K
‖

snd(z, tt) ‖ ∀w4

(
rcv(w4, tt)⊗ {w4:z} → tt

)︸ ︷︷ ︸Ju⟨tt⟩.0K
)

Chapter 4. Encoding π OR in lcc 125

which can then reduce as expected.
The most important takeaway from this example is that it shows how the trans-

lation captures delegation, an important property of the π-calculus that allows the
reconfiguration of the communication structure (i.e., mobility). Above, we can see
how channel endpoint z is being sent over x, to be received by endpoint y, which
then enables the communication between w and z. 4

In the next example, we show how certain forms of nondeterminism are captured
by our translation. In particular, we show that our translation captures processes
where nondeterministic behavior comes from a client trying to interact with two or
more replicated processes.

Example 4.6. Let us consider the π OR program P17 below, which is not encodable
in [LOP09]:

P17 = (νxy)(x〈v1〉.Q1 | ∗ y(z1).Q2 | ∗ y(z2).Q3) (4.1)
where the following reduction is possible:

P17 −→ (νxy)(Q1 | Q2{v1/z1} | ∗ y(z2).Q3 | ∗ y(z1).Q2) = P ′17

and whose translation follows:

JP17K = ∃x, y.(! {x:y} ‖ snd(x, v1) ‖ ∀z(rcv(z, v1)⊗ {x:z} → JQ1K) ‖
!∀z, w(snd(w, z1)⊗ {w:y} → rcv(y, z1) ‖ JQ2K) ‖
!∀z, w(snd(w, z2)⊗ {w:y} → rcv(y, z2) ‖ JQ3K))

Fig. 4.3 shows how this reduction proceeds in lcc. Similarly, the other possible re-
duction (the one that interacts with ∗ y(z2).Q3) is also captured by J·K. 4

We conclude this section by introducing the notion of target terms. Intuitively, a
target term refers to any process obtained by the execution of a translated process.

Definition 4.7 (Target Terms). We define target terms as the set of lcc processes that
are induced by the translation of well-typed π OR programs and is closed under τ -
transitions: {S | JP K τ==⇒l S and ` P}. We shall use S, S′, . . . to range over target
terms.

4.2 Static Correctness
In this section we prove that J·K is both name invariant and compositional. These are
two of the required properties to state that our encoding is valid (cf. Def. 2.3). First,
we prove that the translation is name invariant with respect to the renaming policy
in Def. 4.4.

Theorem 4.8 (Name Invariance for J·K). Let P be a well-typed π OR process. Also, let σ
and x be a substitution satisfying the renaming policy for J·K (Def. 4.4(b)), and a variable in
π OR, respectively.
Then JPσK = JP Kσ′, with ϕJ·K(σ(x)) = σ′(ϕJ·K(x)) and σ = σ′.

Proof. By structural induction on P .

Chapter 4. Encoding π OR in lcc 126

JP17K ≡ ∃x, y.(! {x:y} ‖ {x:y} ⊗ snd(x, v1) ‖
!∀z, w(snd(w, z1)⊗ {w:y} → rcv(y, z1) ‖ JQ2K) ‖
∀z(rcv(z, v1)⊗ {x:z} → JQ1K) ‖
!∀z, w(snd(w, z2)⊗ {w:y} → rcv(y, z2) ‖ JQ3K))

−→l ∃x, y.
(
! {x:y} ‖ rcv(y, v1) ‖ JQ2K{v1, x/z1, w} ‖ J∗ y(z1).Q2K ‖

∀z(rcv(z, v1)⊗ {x:z} → JQ1K) ‖
!∀z, w(snd(w, z2)⊗ {w:y} → rcv(y, z2) ‖ JQ3K))

≡ ∃x, y.
(
! {x:y} ‖ {x:y} ⊗ rcv(y, v1) ‖ ∀z(rcv(z, v1)⊗ {x:z} → JQ1K) ‖J∗ y(z1).Q2K ‖JQ2K{v1, x/z1, w} ‖ ∀z, w(snd(w, z2)⊗ {w:y} → rcv(y, z2) ‖ JQ3K))

−→l ∃x, y.
(
! {x:y} ‖ JQ1K{z/y} ‖ J∗ y(z1).Q2K ‖JQ2K{v1, x/z1, w} ‖

!∀z, w(snd(w, z2)⊗ {w:y} → rcv(y, z2) ‖ JQ3K)) = JP ′17K
Figure 4.3: One possible evolution of the lcc translation of the π OR program (4.1) (cf.
Ex. 4.6).

Next, we prove that J·K is compositional with respect to the restriction and parallel
composition operator. Below, we assume the expected extension of J·K to evaluation
contexts by decreeing J−K = −.
Theorem 4.9 (Compositionality for J·K). Let P andE[−] be a well-typed π OR process and
an π OR evaluation context as in Def. 2.12, respectively. Then we have: JE[P]K = JEK[JP K].
Proof. By induction on the structure of P and a case analysis onE[−], using Def. 2.12.

4.3 Operational Correspondence
In this section we prove that our translation satisfy the operational correspondence
property required by valid encodings (cf. Def. 2.3). In § 4.3.1 we present further
discussions on the observational equivalences in Def. 4.3; also, we present an analysis
on the syntactic shape of translated programs. Finally, we introduce so-called junk
processes—processes which do not have any behavior in our translation.

In § 4.3.2 we present the proof of operational completeness for our translation. In
§ 4.3.3 we introduce all the necessary machinery for proving operational soundness:
first, we give invariants for translated pre-redexes, redexes, andwell-typed programs.
Next, we present a diamond property for translated terms and present the proof of
operational soundness.

Chapter 4. Encoding π OR in lcc 127

4.3.1 Preliminaries
Observational Equivalences

Using the weak o-barbed equivalences in Def. 4.3 we can equate (i) lcc processes
obtained from the translation of an π OR process with (ii) so-called junk processes (cf.
Def. 4.14) and intermediate redexes (cf. Def. 4.25) that do not correspond to the trans-
lation of any source process, but that may be reached by executing a process in (i).
More precisely, given an π OR process P that reduces to Q via some communication
rule (i.e., bCOMc, bREPc or bSELc), we will show that if JP K τ==⇒l T then T can re-
duce to an S′ that is ∼=π OR

l -equivalent to JQK. The following example considers π OR
processes that make a selection using Rule bSELc and will intuitively show how junk
and intermediate redexes behave under ∼=π OR

l :

Example 4.10. For this example, let us consider the following process, which models
a simple transaction between a client an a store. We have decided to use a less ab-
stract process in this example, as we believe this helps with better understanding the
behavioral equivalences.

P18=(νxy)(x/buy. x〈5406〉. x(inv).0 |y.{buy: y(w).y〈invoice〉.0, quit: y(w′).0}) (4.2)

In P18 above, we have a client (i.e., leftmost process) that wants to buy some item
from a store (i.e., rightmost process). Intuitively, the client selects to buy, and sends
its credit card number, before receiving an invoice. Dually, the store is waiting for a
selection to be made. If the buy is picked, the store awaits for the credit card number,
before emitting an invoice. The translation of P18 is then given below:

JP18K = ∃x, y.(! {x:y} ‖ sel(x, buy) ‖ ∀u1(bra(u1, buy)⊗ {x:u1} → snd(x, 5406) ‖
∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K)) ‖

∀l, w(sel(w, l)⊗ {w:y} → bra(y, l) ‖

∀ε(l = buy→ ∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖Jy〈invoice〉.0K)) ‖
∀ε(l = quit→ ∀w2, u(snd(w2, u)⊗{w2:y} → rcv(y, u) ‖ Jy(w′).0K))))

Combining Def. 2.30 and Def. 4.2, we have the following observables:

O
D⋆

π

OR (JP18K) ={(∃x, y.sel(x, buy)), (∃x, y.bra(y, buy)), (∃x, y.snd(x, 5406)),

(∃x, y.rcv(y, 5406)), (∃x, y.snd(y, invoice)), (∃x, y.rcv(x, invoice)),
(∃x, y.tt)}

O
D

π

OR (JP18K) ={(∃x, y.sel(x, buy)), (∃x, y.snd(x, 5406)), (∃x, y.snd(y, invoice))}

Below, we analyze the single τ -transition for the translation of P18; we assume thatJP18K −→l S1, where:

S1 = ∃x, y.
(
! {x:y} ‖ bra(y, buy) ‖ ∀u1(bra(u1, buy)⊗ {x:u1} → snd(x, 5406) ‖

∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K)) ‖

Chapter 4. Encoding π OR in lcc 128

∀ε(buy = buy→ ∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖Jy〈invoice〉.0K)) ‖
∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ Jy(w′).0K)))

Let us now consider the output observables of S1:

O
D

π

OR (S1) = {∃x, y.snd(x, 5406),∃x, y.snd(y, invoice)}

For the sake of comparison, consider the reduction of P18, using Rule bSELc, which
discards the second labeled branch:

P18 −→ (νxy)(x〈5406〉. x(inv).0 | y(w).y〈invoice〉.0) = P ′18

The translation of P ′18 is as follows (we also show its reduction):

JP ′18K = ∃x, y.(! {x:y} ‖ snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K) ‖
∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖ Jy〈invoice〉.0K))

−→l ∃x, y.
(
! {x:y} ‖ ∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K) ‖ rcv(y, 5406) ‖Jy〈invoice〉.0K) = S′

and it is easy to see that:

O
D

π

OR (S1) = O

D
π

OR (JP ′18K) = {∃x, y.snd(x, 5406),∃x, y.snd(y, invoice)}

We now show that S1 −→2
l S2 and O

D
π

OR (S1) = O

D
π

OR (S2). This step illustrates the

fact that intermediate steps reduce to processes that are o-barbed congruent to their
respective translations:

S1 −→l ∃x, y.
(
! {x:y} ‖ snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K) ‖
∀ε(buy = buy→ ∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖Jy〈invoice〉.0K)) ‖
∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ Jy(w′).0K)))

−→l ∃x, y.
(
! {x:y} ‖ snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K) ‖
∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖ Jy〈invoice〉.0K) ‖
∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖Jy(w′).0K))) = S2

where:

O
D

π

OR (S1) = O

D
π

OR (S2) = O

D
π

OR (JP ′18K) = {∃x, y.snd(x, 5406),∃x, y.snd(y, invoice)}

We now informally argue that S2
∼=π OR

l JP ′18K. First, we show that S2 ≈
π OR
l JP ′18K

and then argue that for every Dπ ORC-context C[−], C[S2] ≈
π OR
l C[JP ′18K]. To justify the

former claim, consider the relation

R = {(S2, JP ′18K), (S3, S
′), (S4, S

′
1), (S5, S

′
2), (S6, S

′
3)}

Chapter 4. Encoding π OR in lcc 129

where:

S2 −→l ∃x, y.
(
! {x:y} ‖ ∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K) ‖ rcv(y, 5406) ‖Jy〈invoice〉.0K ‖

∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ Jy(w′).0K)))
= S3

−→l ∃x, y.
(
! {x:y} ‖ Jx(inv).0K ‖ Jy〈invoice〉.0K ‖

∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ Jy(w′).0K)))
= S4

−→l S5

−→l ∃x, y.
(
! {x:y} ‖ tt ‖ tt ‖

∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ Jy(w).0K)))
= S6

S′ −→l ∃x, y.
(
! {x:y} ‖ Jx(inv).0K ‖ Jy〈invoice〉.0K) = S′1

−→l S
′
2

−→l ∃x, y.
(
! {x:y} ‖ tt ‖ tt

)
= S′3

Notice that we have left out the expansion of the term Jx(inv).0K ‖ Jy〈invoice〉.0K in
both S′1 and S4. Moreover, for simplicity, we have omitted the shapes of S5 and S′2.

We can see that R is a weak o-barbed bisimulation. Now, to prove S ∼=π OR
l JP ′18K

we need to show that for each Dπ ORC-context there exists a weak o-barbed bisimula-
tion that makes the processes equivalent. Def. 2.32 ensures that contexts can only
be formed with Dπ ORC-processes. Hence, we need to only check processes that ad-
d/consume constraints that may in turn trigger new process reductions. To see this
point, consider process S6: a context that adds the (inconsistent) constraint l1 = l2
would wrongly trigger a behavior excluded by the source reduction of Q into Q′.
One key point in our formal development concerns excluding this possibility (see
Def. 4.2). 4

The Shape of Translated Programs

We now introduce so-called process enablers for π OR; intuitively, they represent all the
necessary endpoint connections for an π OR process to reduce.

Definition 4.11 (Enablers for π OR Processes). Let P be a π OR process. We say that the
vectors of variables x̃, ỹ enable P if there is some P ′ such that (νx̃ỹ)P −→ (νx̃ỹ)P ′.

The enablers of a process lead to an π OR evaluation context E[−] = (νx̃ỹ)(−) (cf.
Def. 2.12). The translation of context E[−] is so common that we introduce the fol-
lowing notation for it:

Notation 4.12. Let E[−] = (νx̃ỹ)(−) be an π OR context, as in Def. 2.12. We will write

Chapter 4. Encoding π OR in lcc 130

Cx̃ỹ[−] to denote the lcc translation of E:

JE[−]K def
= ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ −
)

We restrict our attention to well-typed programs (Not. 2.21). Programs encom-
pass “complete” protocol implementations, i.e., processes that contain all the parties
and sessions required in the system. Considering programs is convenient because
their syntax facilitates reasoning about their behavior. The first invariant of our trans-
lation concerns the shape of translated π OR programs:

Lemma 4.13 (Translated Form of a Program). Let P be a well-typed π OR program (cf.
Not. 2.21). Then JP K ≡ Cx̃ỹ[JR1K ‖ · · · ‖ JRnK]
where n ≥ 1 and x1, . . . , xn ∈ x̃, y1, . . . , yn ∈ ỹ. Note that eachRi, 1 ≤ i ≤ n is a pre-redex
(Def. 2.19) or a conditional process in P .

Proof. Follows directly from Def. 3.14 and Fig. 4.2.

Junk Processes

It is common for translations to induce junk processes that do not add any meaningful
(source) behavior to translated processes. In our setting, junk processes behave like
tt, modulo ∼=π OR

l . Junk can be characterized syntactically: they result as leftovers of
the translation of conditionals and branching constructs.

Definition 4.14 (Junk). Let P and J be lcc processes. Also, let b be a boolean and
li, lj be two distinct labels. We say that J is junk, if it belongs to the following gram-
mar:

J, J ′ ::= ∀ε((b = ¬b)→ P) | ∀ε((lj = li)→ P) | tt | J ‖ J ′

The following statements will explain why junk processes cannot introduce any
observable behavior in translated processes. This entails showing that for any junk J ,
J ∼=π OR

l tt. The proof is divided in three statements: (1) we show that no constraint in
the session constraint system (Def. 4.1) allows a junk process to reduce; (2) we show
that junk processes cannot reduce and that O

D
π

OR (J) = O

D
π

OR (tt); finally, (3) we

prove that J and tt are behaviorally equivalent under anyDE-context (cf. Def. 2.32).

Lemma 4.15. Let J be junk. Then: (1) J 6 τ−→l (and) (2) there is no c ∈ C (cf. Def. 4.1)
such that J ‖ c τ−→l.

Proof. We prove each item individually. All of them follow by induction on the struc-
ture of J . For details see App. B.1.

Lemma 4.16 (Junk Observables). For every junk process J and every Dπ ORC-context
C[−], we have that:

1. ODπ

OR (J) = ∅ (and)

Chapter 4. Encoding π OR in lcc 131

2. ODπ

OR (C[J]) = O

D
π

OR (C[tt]).

Proof. Weprove each item separately. Each item follows by induction on the structure
of J . For details see App. B.1

Lemma 4.17 (Junk Behavior). For every junk J , every Dπ ORC-context C[−], and every

process P , we have C[P ‖ J] ≈π OR
l C[P].

Proof. By coinduction, i.e., by exhibiting a weak o-barbed bisimulation containing
(C[P ‖ J], C[P]). For details see App. B.1.

Corollary 4.18. For every junk process J (cf. Def. 4.14) and every lcc process P , we have
P ‖ J ∼=π OR

l P .

Cor. 4.18 follows directly from Lem. 4.17 and Def. 2.34. Also, notice that non-
trivial junk processes only appear as a byproduct of the translation of branching/s-
election processes and conditionals; other forms of synchronization do not generate
junk. This is shown in the following lemma:

Lemma 4.19 (Occurrences of Junk). Let R be a redex (Def. 2.19).

1. If R = x / lj .P | y . {li : Qi}i∈I , with j ∈ I then: J(νxy)RK τ−→
3

l ∃x, y.
(
! {x:y} ‖JP K ‖ JQjK ‖ J), where J =

∏
i∈I′
∀ε(lj = li → JQiK), with I ′ = I \ {j}, and

∃x, y.
(
! {x:y} ‖ JP K ‖ JQjK ‖ J) ∼=π OR

l ∃x, y.
(
! {x:y} ‖ JP K ‖ JQjK).

2. If R = b? (P1) : (P2), b ∈ {tt, ff}, then JRK τ−→l JPiK ‖ J , i ∈ {1, 2} with
J = ∀ε(b = ¬b→ JPjK), j 6= i, and JPiK ‖ J ∼=π OR

l JPiK.
3. If R = x〈v〉.P | y(z).Q then J(νxy)RK τ−→

2

l
∼=π OR

l ∃x, y.
(JP K ‖ JQ{v/z}K ‖ J) with

J = tt.

4. If R=x〈v〉.P |∗ y(z).Q then J(νxy)RK τ−→
2

l
∼=π OR

l ∃x, y.
(JP K‖JQ{v/z}K‖J∗ y(z).P K‖

J
)
with J = tt.

Proof. Each item follows from the translation definition (cf. Def. 4.4 and Fig. 4.2).
Items (1) and (2) refer to reductions that induce junk (no junk is generated in Items
(3) and (4)); those cases rely on the definition of weak o-barbed congruence (cf.
Def. 4.3) and Cor. 4.18. For details see App. B.1.

4.3.2 Operational Completeness
Below, we present the operational completeness result for J·K. Notice that no further
machinery is required for the proof.

Theorem 4.20 (Completeness for J·K). Let J·K be the translation in Def. 4.4. Also, let P
be a well-typed π OR program. Then, if P −→∗ Q then JP K τ==⇒l

∼=π OR
l JQK.

Chapter 4. Encoding π OR in lcc 132

Proof. By induction on the length of the reduction −→∗, with a case analysis on the
last applied rule. The base case is whenever P −→0 P , and it is trivially true sinceJP K τ==⇒l JP K. For the inductive step, assume by IH, that P −→∗ P0 −→ Q and thatJP K τ==⇒l

∼=π OR
l JP0K. We then have to prove that JP0K τ==⇒l

∼=π OR
l JQK. There are nine

cases since cases for Rules (RES), (PAR) and (STR) are immediate by IH.We only detail
the case for Rule bREPLc as all the other cases are similar. For additional details see
App. B.2.
Rule bREPLc:

1. Assume P0 = (νxy)(x〈v〉.P ′ | ∗ y(z).P ′′ | S), with S collecting all the pro-
cesses that may contain x and y. Notice that by typing, S can only contain
(replicated) input processes on y.

2. By (1) P0 −→ (νxy)(P ′ | P ′′{v/z} | ∗ y(z).P ′′ | S) = Q using Rule bREPc.
3. By definition of J·K:

JP0K = ∃x, y.(!{x:y} ‖ (snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖
!∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K) ‖ JSK)

≡ ∃x, y.
(
!{x:y} ‖ (snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖
∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K)) ‖
!∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K) ‖ JSK)

4. Let R = !∀z2, w(snd(w, z2) ⊗ {w:y}) → (rcv(y, z2) ‖ JP ′′K)). By using the
rules of structural congruence and reduction of lcc the following transi-
tions can be shown:JP0K ≡ ∃x, y.(!{x:y} ⊗ snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖

∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K)) ‖ R ‖ JSK)
τ−→l ∃x, y.

(
!{x:y} ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖ rcv(y, v) ‖JP ′′{v, x/z2, w}K) ‖ R ‖ JSK)

≡ ∃x, y.
(
!{x:y} ⊗ rcv(y, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖JP ′′{v, x/z2, w}K ‖ R ‖ JSK)

τ−→l ∃x, y.
(
!{x:y} ‖ JP ′{y/z1}K ‖ JP ′′{v, x/z2, w}K ‖ R ‖ JSK)

5. By Fig. 4.2:

∃x, y.
(
!{x:y} ‖ JP ′{y/z1}K ‖ JP ′′{v, x/z2, w}K ‖ R ‖ JSK)

= ∃x, y.
(
!{x:y} ‖ JP ′K ‖ JP ′′{v/z2}K ‖ R ‖ JSK)

since w 6∈ fv(P ′′) and z1 6∈ fv(P ′′)
6. Finally, observe that:JQK = J(νxy)(P ′ | P ′′{v/z} | ∗y(z).P ′′ | S)K

= ∃x, y.
(
(!{x:y}‖JP ′K‖JP ′′{v/z2}K‖R ‖ JSK))

Chapter 4. Encoding π OR in lcc 133

4.3.3 Operational Soundness
In this section we prove that J·K is operationally sound. Since this proof is rather
involved, we first present the statement and sketch the proof informally. Then, we
develop all the details.
Theorem 4.21 (Soundness for J·K). Let J·K be the translation in Def. 4.4. Also, let P
be a well-typed π OR program. For every S such that JP K τ==⇒l S there are Q, S′ such that
P −→∗ Q and S τ==⇒l S

′ ∼=π OR
l JQK.

We shall refer to the class of lcc processes that is induced by J·K as target terms (cf.
Def. 4.7). Thus, Thm. 4.21 will ensure that target terms never exhibit behavior that
can not be attributed to some π OR process.

The proof of operational soundness requires additional technical machinery. The
main challenge is to precisely identify which π OR process is beingmimicked at a given
point, and then to prove that this representation does not add undesired behaviors.
To tackle this issue, we draw inspiration from [PN12], which characterizes transla-
tions semantically by defining pre-processing and post-processing steps, according
to the effect they have over translated source terms and the simulation of the behavior
of the source language.

Wewill characterize lcc processes semantically, via complete and output observables
(cf. Def. 4.2). Then, to analyze translated processeswewill define sets of immediate ob-
servables, which will enable us to characterize both translated processes and so-called
intermediate redexes resulting from them (cf. Def. 4.25). These new observables will
only contain barbs up to structural congruence, rather than to τ -transitions. Given a
redexR, its set of intermediate redexes is denoted {[R]}, with elements denoted LRMkx̃ỹ .

Since the proof of operational soundness requires several auxiliary results, we
first give a high-level description of the proof argument before presenting the proof
in full detail.

Proof Sketch for Thm. 4.21

We rely crucially on two lemmas (Lem. 4.33 and Lem. 4.34), which show how the
shape of π OR processes can be inferred from their corresponding lcc translated pro-
cess, via immediate observables (cf. Def. 4.22).

We also use several properties of target terms (cf. Def. 4.7). This is achieved by
comparing the constraint stores of target terms after a τ -transition (cf. Not. 4.29). We
use the fact that target terms have a specific shape (cf. Def. 4.30). Using Lem. 4.31, by
recognizing the shape of the constraint store we identify an originating lcc process.
Notice that junk will be removed via Cor. 4.35.

More in details, the proof of Thm. 4.21 is by induction on n, the length of the
reduction JP K τ==⇒l S1. The base case (n = 0) is immediate; for the inductive step
(n > 0) we proceed as follows:

(1) Since n ≥ 1, there exists a target term S0 such that JP K τ==⇒l S0 −→l S1.

(2) By IH, there exist Q0 and S′0 such that P −→∗ Q0 and S0
τ==⇒l S

′
0, with S′0 ∼=

π OR
lJQ0K. Then, by Lem. 4.48, the sequence of transitions S0

τ==⇒l S
′
0 is executing

actions that correspond to closing labels in the labeled semantics in Fig. 4.7.

Chapter 4. Encoding π OR in lcc 134

(3) By Lem. 4.30, we have that S0 = Cx̃ỹ[S
′
1 ‖ · · · ‖ S′n ‖ J], where S′i = JRiK or

S′i = LRiMkx̃ỹ for some Ri, k ∈ {1, 2, 3}.

(4) We analyze the transition S0 −→l S1 in Item (1). By Item (3), S0 has a specific
shape and so will S1. There are then two possible shapes for the transition, de-
pending on whether one or two components evolve (we ignore junk processes
involved, thanks to Lem. 4.19):

(a) Cx̃ỹ[S
′
1 ‖ · · · ‖ S′h ‖ · · · ‖ S′n] −→l Cx̃ỹ[S

′
1 ‖ · · · ‖ S′′h ‖ · · · ‖ S′n]

(b) Cx̃ỹ[S
′
1 ‖ · · · ‖ S′h1

‖ · · · ‖ S′h2
‖ · · · ‖ S′n] −→l Cx̃ỹ[S

′
1 ‖ · · · ‖ S′′h1

‖ · · · ‖
S′′h2
‖ · · · ‖ S′n].

(5) In both cases, Lem. 4.33 and Lem. 4.34 will allow us to identify which source
reduction (in Q0) is being partially simulated by S0 −→l S1. (It is ‘partial’
because an π OR reduction is mimicked by at least two transitions in lcc.) Hence,
we can characterize the π OR process Q for which Q0 −→ Q.

(6) We are left to show the existence of S′1, given that S0 −→l S1 and S0
τ==⇒l S

′
0

(Items (1) and (2), resp.). This follows from Lem. 4.47, which is a diamond
property for lcc processes induced by so-called closing and opening labeled the
transitions (cf. Def. 4.41) and the shape of S0 identified in Item (3), which is
preserved in S1 by Item (4). These facts combined ensure that the same tran-
sition from S0 to S1 can take place from S′0. Therefore, there is an S′1 such that
S′0 −→l S′1 and that the same transitions from S0 to S′0 can be made by S1.
Therefore, S1

τ==⇒l S
′
1.

(7) Finally, since S′0 ∼=
π OR
l JQ0K (IH, Item (2)) and by the reduction and transition

identified in Items (5) and (6), resp., we can infer that S′1 ∼=
π OR
l JQK.

Using this proof sketch as a guide, we now introduce all the ingredients of the proof.

Invariants for Translated Pre-Redexes and Redexes

In this section we introduce invariants for translated pre-redexes and redexes. First,
we introduce the set of immediate observables of an lcc process. Intuitively, this
denotes the current store of a process (i.e., all the constraints that can be consumed
in a single transition).

Definition 4.22 (ImmediateObservables of an lccProcess). LetP be an lccprocess
and C be a set of constraints. The set of immediate observables of P up to C, denoted
IC(P), is defined in Fig. 4.4.

Note that the immediate observables are defined over a subset of lcc processes.
We leave out processes that are not induced by the translation, such as !(P ‖ P) or
!(P +P). The definition is parametric in C, which wewill instantiate with the setD⋆

π OR
of complete observables (cf. Def. 4.2).

Wewill analyze the translation using so-called invariants, i.e., properties that hold
for every target term. Based on source π OR processes, we will define these invariants

Chapter 4. Encoding π OR in lcc 135

IC(c) def
= {c}, if c ∈ C

IC(∀x̃(c→ P))
def
= ∅

IC(P +Q)
def
= IC(P) ∪ IC(Q)

IC(P ‖ Q)
def
= IC(P) ∪ IC(Q)

IC(∃z̃.
(
P
)
)
def
= {∃z̃.c | c ∈ IC(P)}

IC(!P) def
=

∅ if P = ∀x̃(c→ P)

{c} if P = c

undefined otherwise

Figure 4.4: Immediate observables in J·K (cf. Def. 4.22).

bottom-up, starting from translations of pre-redexes (i.e., a prefixed process that does
not contain parallel composition at the top-level, cf. Def. 2.19), redexes, and translated
programs. The first invariant will clarify how the immediate observables of the trans-
lation of some pre-redex P gives information about the nature of P itself. Notice that
in the results below we use Not. 2.24.

Lemma 4.23 (Invariants of J·K for Pre-Redexes and the Inaction). Let P be a pre-redex
or the inactive process in π OR. Then the following properties hold:

1. If I
D⋆

π

OR (JP K) = {snd(x, v)} then P = x〈v〉.P1, for some P1.

2. If I
D⋆

π

OR (JP K) = {sel(x, l)} then P = x / l.P1, for some P1.

3. If I
D⋆

π

OR (JP K) = {tt} then P = 0.

4. If I
D⋆

π

OR (JP K) = ∅ then P = � y(z).P1 or P = x.{l1 : Pi}i∈I , for some Pi. Moreover,JP K 6 τ−→l.

Proof. By assumption P = 0 or P is a pre-redex (Def. 2.19): P = x〈v〉.P1, P = x/l.P1,
P = y(z).P1, P = ∗y(z).P1 or P = x . {l1 : Pi}i∈I . Given these six possible forms for
P , we then check the immediate observables (cf. Def. 4.22) of their lcc translations
(cf. Fig. 4.2):

I
D⋆

π

OR (Jx〈v〉.P1K) = {snd(x, v)} I

D⋆

π

OR (Jx(y).P1K) = ∅

I
D⋆

π

OR (Jx / l.P1K) = {sel(x, l)} I

D⋆

π

OR (J∗x(y).P1K) = ∅

I
D⋆

π

OR (J0K) = {tt} I

D⋆

π

OR (Jx . {l1 : Pi}i∈IK) = ∅

This way, the thesis holds.

Chapter 4. Encoding π OR in lcc 136

When immediate observables do not provide enough information on the shape of
a pre-redex (cf. Lem. 4.23(4)), we can characterize the minimal parallel context that
induces immediate observables:

Lemma 4.24 (Invariants of J·K for Input-Like Pre-Redexes). Let P be a pre-redex such
that I

D⋆

π

OR (JP K) = ∅. Then one of the following holds:

1. If JP K ‖ sel(x, lj)⊗ {y:x} τ−→l S then bra(y, lj) ∈ I
D⋆

π

OR (S) andP = y.{li : Pi}i∈I ,

with j ∈ I .

2. If JP K ‖ snd(x, v)⊗ {y:x} τ−→l S then rcv(y, v) ∈ I
D⋆

π

OR (S) and P = � y(z).P1.

Proof. Using the previous definitions. See App. B.3 for details.

We now define the set of intermediate lcc redexes of a communicating redex (cf.
Def. 2.19). Intuitively, these are lcc processes obtained through the transitions of a
target term:

Definition 4.25 (Intermediate Redexes). LetR be a communicating redex in π OR en-
abled by x̃, ỹ. The set of intermediate lcc redexes of R, denoted {[R]}, is defined as
follows:

{[x〈v〉.P |y(z).Q]} def= {rcv(y, v) ‖ ∀z(rcv(z, v)⊗ {z:x} → JP K) ‖ JQ{v/z}K}
{[x〈v〉.P | ∗ y(z).Q]} def= {rcv(y, v) ‖ ∀z(rcv(z, v)⊗ {z:x} → JP K) ‖ JQ{v/z}K ‖J∗y(w).QK}

{[x / l.P |y . {li : Qi}i∈I]}
def
= {bra(y, lj) ‖ ∀z(bra(z, lj)⊗ {z:x} → JP K) ‖
∀ε(lj = lj → JQjK) ‖ J,JP K ‖ ∀ε(lj = lj → JQjK) ‖ J,
bra(y, lj) ‖ ∀z(bra(z, lj)⊗ {z:x} → JP K) ‖ JQjK ‖ J |
J as in Def. 4.14}

Observe that the set of intermediate redexes is a singleton, except for the transla-
tion of selection and branching. We now introduce a convenient notation for these
redexes:

Notation 4.26. Wedenote the elements of {[R]} as LRMkx̃ỹ , with k ∈ {1, 2, 3} as in Fig. 4.5.

This notation aims to clarify the behavior of intermediate redexes, particularly in
the case of the selection and branching. This will becomemuchmore apparent in the
following invariant, which describes how translated redexes interact.

Lemma 4.27 (Invariants for Redexes and Intermediate Redexes). Let R be a redex
enabled by x̃, ỹ, such that (νx̃ỹ)R −→ (νx̃ỹ)R′. Then one of the following holds:

1. If R ≡S v? (P1) : (P2) and v ∈ {tt, ff}, then J(νx̃ỹ)RK τ−→l
∼=π OR

l (νx̃ỹ)JPiK, with
i ∈ {1, 2}.

Chapter 4. Encoding π OR in lcc 137

LRM1x̃ỹ def
=

rcv(y, v) ‖ ∀z(rcv(z, v)⊗ {z:x} → JP K) ‖JQ{v/x}K if R = x〈v〉.P | y(z).Q

rcv(y, v) ‖ ∀z(rcv(z, v)⊗ {z:x} → JP K) ‖JQ{v/x}K ‖ J∗y(w).QK if R = x〈v〉.P | ∗ y(z).Q

bra(y, lj) ‖ ∀z(bra(z, lj)⊗ {z:x} → JP K) ‖
∀ε(lj = lj → JQjK) ‖ J if R = x / l.P | y . {li : Qi}i∈I

LRM2x̃ỹ def
=

{JP K ‖ ∀ε(lj = lj → JQjK) ‖ J if R = x / l.P | y . {li : Qi}i∈I
undefined otherwise

LRM3x̃ỹ def
=

bra(y, lj) ‖
∀z(bra(z, lj)⊗ {z:x} → JP K) ‖ JQjK ‖ J if R = x / l.P | y . {li : Qi}i∈I

undefined otherwise

Figure 4.5: Elements in the set of intermediate redexes for J·K (cf. Not. 4.26)

Cx̃ỹ[LRM2x̃ỹ]
J(νx̃ỹ)RK Cx̃ỹ[LRM1x̃ỹ] S ∼=π OR

l J(νx̃ỹ)R′K
Cx̃ỹ[LRM3x̃ỹ]

τ

τ

τ

τ τ

Figure 4.6: Lem. 4.27(3).

2. IfR ≡S x〈v〉.P | � y(w).Q, then J(νx̃ỹ)RK −→l≡ Cx̃ỹ[LRM1x̃ỹ] −→l
∼=π OR

l J(νx̃ỹ)R′K.
3. If R ≡S x / lj .P | y . {li : Qi}i∈I , with j ∈ I , then we have the reductions in Fig. 4.6.

Proof. This proof proceeds by using the translation (cf. Fig. 4.2) the lcc semantics
(cf. Fig. 2.5). For details see App. B.3.

The following corollary states that every intermediate redex reduces to some tar-
get term; it follows directly from Lem. 4.27 and Def. 4.25.

Corollary 4.28. For every intermediate redex S ∈ {[R]} (cf. Def. 4.25), there exist some π OR
process R′ and k ∈ {1, 2} such that S −→k

l JR′K and (νx̃ỹ)R −→ (νx̃ỹ)R′.

We now introduce some useful notation to be used in later proofs. In particular,
we introduce shorthands for the set of immediate observables of a target term.

Notation 4.29. We define the following conventions:

• IS will be a short-hand notation for the set I
D⋆

π

OR (S) (cf. Def. 4.22).

• By a slight abuse of notation, we will write cz̃ ∈ IS instead of ∃z̃.c ∈ IS .

Chapter 4. Encoding π OR in lcc 138

Notice that this notation conveniently captures the constraints that are consumed
as a result of a τ -transition. In turn, such consumed constraints will allow us to rec-
ognize which π OR process is simulated by the translation. In particular, observe that
every τ -transition of a target term modifies the constraint store (and the immediate
observables) in a specific way: it will either (i) generate new constraints (if the tran-
sition is induced by the translation of conditionals and labeled choices) or (ii) con-
sume some existing constraints (if the transition is induced by other kinds of source
synchronizations). While case (i) will be formalized by Lem. 4.33, case (ii) will be
covered by Lem. 4.34.

Invariants for Translated Well-Typed Programs

The following lemma will allow us to determine the syntactic structure of a given
target term. It states that any target term corresponds to the parallel composition
of the translation of processes, intermediate redexes and junk, all enclosed within a
context that provides the required co-variable constraints. Given a program P , we
say that Rk is a (pre)redex reachable from P if P −→∗ (νx̃ỹ)(Rk | R), for some R.

Lemma 4.30. Let P be a well-typed program. If JP K τ==⇒l S then

S = Cx̃ỹ[U1 ‖ · · · ‖ Un ‖ J]

where n ≥ 1, J is some junk, and for all i ∈ {1, . . . , n}we have Ui = tt or one the following:

1. Ui = JRkK, where Rk is a conditional redex (cf. Def. 2.19) reachable from P ;

2. Ui = JRkK, where Rk is a pre-redex reachable from P ;

3. Ui ∈ {[Rk | Rj]} (cf. Def. 4.25), where redex Rk | Rj is reachable from P .

Proof. By induction on the length k of the reduction τ==⇒l. For details seeApp. B.4

The next lemma provides two insights: first, it gives a precise characterization
of a target term whenever constraints are being added to the store and there is no
constraint consumption. Second, it captures the fact that τ -transitions consume one
constraint at a time.

Lemma 4.31. Let P be a well-typed π OR program. Then, for every S, S′ such that JP K τ==⇒l

S
τ−→l S

′ one of the following holds:

(a) IS ⊆ IS′ (cf. Not. 4.29) and one of the following holds:

1. S ≡ Cx̃ỹ[Jb? (P1) : (P2)K ‖ U] and S′ = Cx̃ỹ[JPiK ‖ U], with i ∈ {1, 2} ;
2. S ≡ Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM1x̃ỹ ‖ U] and S′ = Cx̃ỹ[Ly / lj .P ′ | x . {li :
Qi}i∈IM3x̃ỹ ‖ U];

3. S ≡ Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM2x̃ỹ ‖ U] and S′ = Cx̃ỹ[JP ′K ‖ JQjK ‖ U].

(b) IS 6⊆ IS′ and |IS \ IS′ | = 1.

Proof. We first use Lem. 4.30 to characterize every parallel sub-process Ui of S; then,
by a case analysis on the shape of the Ui that originated the transition S τ−→l S

′ it is
shown how each case will fall under either (a) or (b). For details see App. B.4.

Chapter 4. Encoding π OR in lcc 139

Notice that the uniqueness of the consumed constraints is ensured by the typing
of the π OR program P . In particular, for every constraint snd(x, v), rcv(x, v), sel(x, l),
and bra(x, l) that is being added to the store in parallel, subject x can only appear once.
This follows from the fact that typing ensures that target terms do not contain output
races. For the translation, the absence of output races in source terms implies that
at any given point during execution there can only be a single constraint snd(x, v) or
sel(x, l) to be consumed by an abstraction. This abstraction in turn, will only generate
a single constraint rcv(y, v) or bra(y, l), respectively.
Proposition 4.32. Let γ ∈ {rcv, snd, sel, bra} be a predicate as in Fig. 4.1 andm be a value
or label. If S is a target term (cf. Def. 4.7) then S ≡ Cx̃ỹ[c1 ‖ · · · ‖ cn ‖ Q] with n ≥ 1,
whereQ only contains abstractions. Furthermore, for every i, j ∈ {1, . . . , n} such that i 6= j,
ci = γ(x1,m1), and cj = γ(x2,m2), it holds that x1 6= x2.
Proof. The first part of the statement follows immediately by applying the structural
congruence of lcc in S. The second part of the proof is by contradiction. We assume
that S ≡ Cx̃ỹ[c1 ‖ · · · ‖ cn ‖ Q], where Q only contain abstractions and that there
exist i, j ∈ {1, . . . , n} such that i 6= j, ci = γ(x1,m1), cj = γ(x2,m2), and x1 = x2. We
proceed by a case analysis on γ; there are four cases, we only show the cases γ = snd
and γ = rcv.
Suppose that γ = snd. By assumption, S ≡ Cx̃ỹ[c1 ‖ · · · ‖ snd(x, v1) ‖ · · · ‖
snd(x, v2) ‖ · · · ‖ cn ‖ Q]; moreover, by Def. 4.7, S must come from the translation of
a well-typed term. By Fig. 4.2, it must be the case that:

S ≡ Cx̃ỹ[c1 ‖ · · · ‖ Jx〈v1〉.P1K ‖ · · · ‖ Jx〈v2〉.P2K ‖ · · · ‖ cn ‖ Q′]
for some Q′ that does not contain the abstractions used to build the translationsJx〈vk〉.PkK, k ∈ {1, 2}. This implies, by Fig. 4.2, that S comes from an π OR process
that contains two outputs on the same channel x in parallel. This contradicts the
well-formedness assumption that follows from Thm. 3.15 is violated, finishing the
proof.
Suppose that γ = rcv. The proof has the same structure as the one above. The only
difference is that rather than the translation of output processes, we must consider
intermediate redexes (cf. Fig. 4.5). Similarly as above, we then will find that the
well-formedness assumption induced by typing is violated, thus reaching a contra-
diction.

As already discussed, in mimicking the behavior of an π OR process, the constraint
store of its corresponding target process in lcc may either add or consume con-
straints:

• Lem. 4.33, given below, covers the case where an lcc transition adds informa-
tion to the store: by Lem. 4.31(a) the target termmust then correspond to either
the translation of a conditional redex or to an intermediate redex of a branch-
ing/selection interaction.

• Lem. 4.34 covers the case where the lcc transition consumes information in the
constraint store (cf. by Lem. 4.31(b)).

As such, Lem. 4.33 and Lem. 4.34 cover the complete spectrum of possible transitions
for target terms.

Chapter 4. Encoding π OR in lcc 140

Lemma 4.33 (Invariants of Target Terms (I): Adding Information). Let P be a well-
typed π OR program. For anyS, S′ such that JP K τ==⇒l S

τ−→l S
′ and IS ⊆ IS′ (cf. Not. 4.29)

one of the following holds, for some U :

1. S ≡ Cz̃[Jb? (P1) : (P2)K ‖ U ‖ J1] and S′ = Cz̃[JPiK ‖ ∀ε(b = ¬b → Pj) ‖ U ‖ J1]
with i, j ∈ {1, 2}, i 6= j;

2. JP K τ==⇒l S0 ≡ Cx̃ỹ[{x:y} ‖ Jx / lj .P ′ ‖ y . {li Qi}i∈IK ‖ U ‖ J1] and either:

(a) All of the following hold:
(i) S0

τ−→l Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM1x̃ỹ ‖ U ‖ J1] τ−→l S,
(ii) S = Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM2x̃ỹ ‖ U ‖ J1] (and)
(iii) S′ = Cx̃ỹ[JP ′K ‖ JQjK ‖ U ‖ J1 ‖ J2].

(b) All of the following hold:
(i) S0

τ−→l S = Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM1x̃ỹ ‖ U ‖ J1],
(ii) S′ = Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM3x̃ỹ ‖ U ‖ J1] (and)
(iii) S′

τ−→l Cx̃ỹ[JP ′K ‖ JQjK ‖ U ‖ J1 ‖ J2].
where J2 =

∏
k∈I\{j} ∀ε(lj = lk → JPkK).

Proof. By induction on the length of the transition τ==⇒l
τ−→l. For detail see App. B.4.

We state our next invariant. Notice that Lem. 4.31(b) clarifies the behavior of the
immediate observables (cf. Def. 4.22) in a single transition whenever a constraint has
been consumed.

Lemma 4.34 (Invariants of Target Terms (II): Consuming Information). Let P be
a well-typed π OR program. For any S, S′ such that JP K τ==⇒l S

τ−→l S
′ and IS 6⊆ IS′ the

following holds, for some U :

1. If IS \ IS′ = {snd(x1, v)kx̃ỹ} then all the following hold:

(a) S ≡ Cx̃ỹ[{x1:y1} ‖ Jx1〈v〉.P1 | � y1(z).P2K ‖ U];
(b) S′ = Cx̃ỹ[Lx1〈v〉.P1 | � y1(z).P2M1x̃ỹ ‖ U];

(c) S′
τ−→l Cx̃ỹ[JP1 | P2{v/z}K ‖ S′′ ‖ U], where S′′ = ∗ Jy(z).P2K or S′′ = tt.

2. If IS \ IS′ = {rcv(x1, v)kx̃ỹ} then there exists S0 such that JP K τ==⇒l S0
τ−→l S and

all of the following hold:

(a) S0 ≡ Cx̃ỹ[{x1:y1}m ‖ Jy1〈v〉.P1 | � x1(z).P2K ‖ U];
(b) S = Cx̃ỹ[Ly1〈v〉.P1 | � x1(z).P2M1x̃ỹ ‖ U];
(c) S′ = Cx̃ỹ[JP1 | P2{v/z}K ‖ S′1 ‖ U], where S′1 = ∗ Jy(z).P2K or S′1 = tt.

3. If IS \ IS′ = {sel(x1, lj)kx̃ỹ} then all of the following hold:

(a) S ≡ Cx̃ỹ[{x1:y1} ‖ Jx1 / l.P1 | y1 . {li : Pi}i∈IKU];

Chapter 4. Encoding π OR in lcc 141

(b) S′ = Cx̃ỹ[Lx1 / l.P1 | y1 . {li : Pi}i∈IM1x̃ỹ ‖ U];

(c) S1
τ−→

2

l
∼=π OR

l Cx̃ỹ[JP1 | PjK ‖ U ′], with U ′ ≡ U ‖∏h∈I ∀ε(lh = lj → JQhK).
4. If IS \ IS′ = {bra(x, lj)kx̃ỹ}, then there exists S0 ≡ Cx̃ỹ[{x:y} ‖ Jx / lj .Q | y .
{li Qi}i∈IK ‖ U] such that JP K τ==⇒l S0 and either:

(a) All of the following hold:
(i) S0

τ−→l Cx̃ỹ[Ly / lj .Q | x . {li : Qi}i∈IM1x̃ỹ ‖ U]
τ−→l S,

(ii) S = Cx̃ỹ[Ly / lj .Q | x . {li : Qi}i∈IM3x̃ỹ ‖ U] (and)
(iii) S′ = Cx̃ỹ[{x:y} ‖ JQ | QjK ‖ U ′].

(b) All of the following hold:
(i) S0

τ−→l Cx̃ỹ[Ly / lj .P | x . {li : Qi}i∈IM1x̃ỹ ‖ U] ≡ S,
(ii) S′ = Cx̃ỹ[Ly / lj .P | x . {li : Qi}i∈IM2x̃ỹ ‖ U] (and)
(iii) S′

τ−→l Cx̃ỹ[{x:y} ‖ JP | QjK ‖ U ′].
with U ′ ≡ U ‖

∏
h∈I ∀ε(lh = lj → JQhK).

Proof. By induction on the transition τ==⇒l
τ−→l. For details see App. B.4.

By combining previous results we obtain the following corollary, which allows us
to remove junk processes from any target term.

Corollary 4.35. Let P be a well-typed π OR program. If JP K τ==⇒l S then there exist S′ and
J such that S = Cx̃ỹ[S

′ ‖ J] ∼=π OR
l Cx̃y[S

′] .

Proof. Since P is well-typed, by Lem. 4.13, JP K = Cx̃ỹ[JP ′K]. By applying Lem. 4.33
and Lem. 4.34, we know that for every S, such that JP K τ==⇒l S it holds that S =
Cx̃ỹ[S

′ ‖ J], where S′ = U1 ‖ · · · ‖ Un, n ≥ 1, with Ui = JRiK for some π OR pre-redex
Ri or Ui = LRiMkx̃ỹ , for some π OR pre-redex Ri and k ∈ {1, 2, 3}. Finally, by Cor. 4.18,
we can conclude that Cx̃ỹ[S

′ ‖ J] ∼=π OR
l Cx̃y[S

′].

A Diamond Property for Target Terms

Proving soundness for our translation involves proving a sort of diamond property over
target terms. First, we present how our translation captures the nondeterminism al-
lowed by typing in π OR.
Example 4.36. Let us recall process P17 from Ex. 4.6, which is well-typed:

P17 = (νxy)(x〈v1〉.Q1 | ∗ y(z1).Q2 | ∗ y(z2).Q3)

this process is not confluent if Q2 6= Q3, since there are two possible reductions:

P17 −→ (νxy)(Q1 | Q2{v1/z1} | ∗ y(z2).Q3 | ∗ y(z1).Q2)

P17 −→ (νxy)(Q1 | ∗ y(z1).Q2 | Q3{v1/z2} | ∗ y(z2).Q3)

Chapter 4. Encoding π OR in lcc 142

Its translation is as follows:

JP7K = Cxy[snd(x, v1) ‖ ∀z′
(
rcv(z′, v1)⊗ {x:z′} → JQ1K) ‖

!∀z1, w
(
snd(w, z1)⊗ {y:w} → rcv(y, z1) ‖ JQ2K) ‖

!∀z2, w′
(
snd(w′, z2)⊗ {y:w′} → rcv(y, z2) ‖ JQ3K)]

and the following transitions are possible:

JP17K −→l Cxy[∀z′
(
rcv(z′, v1)⊗ {x:z′} → JQ1K) ‖

rcv(y, v1) ‖ JQ2K{v1/z1} ‖ !∀z2, w′(snd(w′, z2)⊗ {y:w′} → JQ3K) ‖
!∀z1, w

(
snd(w, z1)⊗ {y:w} → JQ2K)]JP17K −→l Cxy[∀z′

(
rcv(z′, v1)⊗ {x:z′} → JQ1K) ‖

!∀z1, w
(
snd(w, z1)⊗ {y:w} → JQ2K) ‖ rcv(y, v1) ‖ JQ3K{v2/z2} ‖

!∀z2, w′
(
snd(w′, z2)⊗ {y:w′} → JQ3K)]

Notice that they unequivocally correspond to the following intermediate processes,
respectively:

∃x, y.
(
! {x:y} ‖ Lx〈v1〉.Q1 | ∗ y(z1).Q2M1xy ‖ J∗ y(z2).Q3K) = S1

∃x, y.
(
! {x:y} ‖ Lx〈v1〉.Q1 | ∗ y(z2).Q3M1xy ‖ J∗ y(z1).Q2K) = S′1

In this case, the intermediate process corresponds to a ‘committed’ state in which
there is only one process that can consume constraint snd(y, v1), which forces the
translation to finish the synchronization in the translation of the correct source pro-
cess. 4

Our diamond property concerns τ -transitions originating from intermediate pro-
cesses from the same target term (cf. Def. 4.7). Informally speaking, this property,
given by Lem. 4.48, confirms that τ -transitions originated from intermediate pro-
cesses that reach the translation of some π OR process do not preclude the execution of
translated terms. First, we define a notation for distinguishing τ -transitions:

Definition 4.37 (Labeled τ -Transitions for J·K Target Terms). Let S be a target term
(cf. Def. 4.7). Also, let {IO, SL, RP, CD, IO1, RP1, SL1, SL2, SL3} be a set of labels ranged
over by α, α1, α2, α

′, We define labeled transition α−→l by the rules in Fig. 4.7. We
assume that U = U1 ‖ · · · ‖ Un with n ≥ 0.

Notation 4.38. We will write, e.g., α(x, y) to denote a named transition as in the pre-
vious definition. Moreover, for transitions due to a conditional expressions (without
endpoints), we will write CD(−).

This notation serves to distinguish transitions depending on the action that orig-
inates it. For example, a transition simulates the first part of a synchronization be-
tween endpoints x, y will be denoted IO(x,y)−−−−−→l; the completion of such synchroniza-
tion is represented by transition IO1(x,y)−−−−−→l. An example follows:

Chapter 4. Encoding π OR in lcc 143

bIOc Cx̃ỹ[Jx〈v〉.P1K ‖ Jy(z).P2K ‖ U]
IO(x,y)−−−−−→l Cx̃ỹ[Lx〈v〉.P1 | y(z).P2M1xy ‖ U]

bRPc Cx̃ỹ[Jx〈v〉.P1K ‖ J∗ y(z).P2K ‖ U]
RP(x,y)−−−−−→l Cx̃ỹ[Lx〈v〉.P1 | ∗ y(z).P2M1xy ‖ U]

bSLc Cx̃ỹ[Jx / lj .P1K ‖ Jy . {li : Pi}i∈IK‖U]
SL(x,y)−−−−−→l Cx̃ỹ[Lx / lj .P1 | y . {li : Pi}i∈IM1xy ‖U]

bCDTc Cx̃ỹ[Jtt? (P1) : (P2)K ‖ U]
CD(−)−−−−→l Cx̃ỹ[JP1K ‖ ∀ε(tt = ff → JP2K) ‖ U]

bCDFc Cx̃ỹ[Jff? (P1) : (P2)K ‖ U]
CD(−)−−−−→l Cx̃ỹ[JP2K ‖ ∀ε(ff = tt → JP1K) ‖ U]

bIO1c Cx̃ỹ[Lx〈v〉.P1 | y(z).P2M1xy ‖ U]
IO1(x,y)−−−−−→l Cx̃ỹ[JP1K ‖ JP2K{v/z} ‖ U]

bRP1c Cx̃ỹ[Lx〈v〉.P1 | ∗ y(z).P2M1xy ‖ U]
RP1(x,y)−−−−−→l Cx̃ỹ[JP1K ‖ JP2K{v/z} ‖ J∗ y(z).P2K ‖ U]

bSL1c Cx̃ỹ[Lx / lj .P |y . {li : Pi}i∈IM1xy ‖U]
SL1(x,y)−−−−−→l Cx̃ỹ[Lx / lj .P1 |y . {li : Pi}i∈IM2xy ‖U]

bSL2c Cx̃ỹ[Lx / lj .P |y . {li : Pi}i∈IM1xy ‖U] SL1(x,y)−−−−−→l Cx̃ỹ[Lx / lj .P1 |y . {li : Pi}i∈IM3xy ‖U]

bSL3c
J =

∏
i∈I\{j}∀ε(lj = li → bra(y, lj) ‖ JPiK)

Cx̃ỹ[Lx / lj .P | y . {li : Pi}i∈IM2xy ‖ U]
SL2(x,y)−−−−−→l Cx̃ỹ[JP K ‖ JPjK ‖ J ‖ U]

bSL4c
J =

∏
i∈I\{j}∀ε(lj = li → bra(y, lj) ‖ JPiK)

Cx̃ỹ[Lx / lj .P | y . {li : Pi}i∈IM3xy ‖ U]
SL3(x,y)−−−−−→l Cx̃ỹ[JP K ‖ JPjK ‖ J ‖ U]

Figure 4.7: Labeled Transitions for J·K (cf. Def. 4.37).

Example 4.39. Recall process P18 from Ex. 4.10:

P18 = (νxy)(x / buy. x〈5406〉. x(inv).0 | y . {buy : y(w).y〈invoice〉.0, quit : y(w′).0})

Using the notation in Def. 4.37, it is possible to express the transitions of JP18K as
follows:

JP18K SL(x,y)−−−−−→l ∃x, y.
(
! {x:y} ‖ bra(y, buy) ‖
∀u1(bra(u1, buy)⊗ {x:u1} → snd(x, 5406) ‖

∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K)) ‖
∀ε(buy = buy→ ∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖Jy〈invoice〉.0K)) ‖
∀ε(buy = quit→ ∀w2, w

′(snd(w2, w
′)⊗ {w:y} → rcv(y, w′) ‖Jy(w′).0K)))

SL1(x,y)−−−−−→l ∃x, y.
(
! {x:y} ‖ snd(x, 5406) ‖
∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K) ‖
∀ε(buy = buy→ ∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖Jy〈invoice〉.0K)) ‖
∀ε(buy = quit→ ∀w2, w

′(snd(w2, w
′)⊗ {w:y} →

Chapter 4. Encoding π OR in lcc 144

rcv(y, w′) ‖ Jy(w′).0K)))
SL2(x,y)−−−−−→l ∃x, y.

(
! {x:y} ‖ snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x:u2} →Jx(inv).0K) ‖
∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖ Jy〈invoice〉.0K) ‖
∀ε(buy = quit→ ∀w2, w

′(snd(w2, w
′)⊗ {w:y} → rcv(y, w′) ‖Jy(w′).0K)))

IO(x,y)−−−−−→l ∃x, y.
(
! {x:y} ‖ ∀u2(rcv(u2, 5406)⊗ {x:u2} → Jx(inv).0K) ‖ rcv(y, w) ‖Jy〈invoice〉.0K ‖
∀ε(buy = quit→ ∀w2, w

′(snd(w2, w
′)⊗ {w:y} → rcv(y, w′) ‖Jy(w′).0K)))

IO1(x,y)−−−−−→l ∃x, y.
(
! {x:y} ‖ Jx(inv).0K ‖ Jy〈invoice〉.0K ‖
∀ε(buy = quit→ ∀w2, w

′(snd(w2, w
′)⊗ {w:y} → rcv(y, w′) ‖Jy(w′).0K)))

4

The following lemma asserts that the labeled lcc transitions correspond with
lcc τ -transitions. Thus, this result allows us to state that labeled transitions and τ -
transitions are interchangeable.

Lemma 4.40. Let S be a target term (cf. Def. 4.7) and x, y be endpoints. Then, S τ−→l S
′ if

and only if S α(x,y)−−−−→l S
′ where α ∈ {IO, SL, RP, CD, IO1, RP1, SL1, SL2, SL3}.

Proof. We prove both sides:

⇒) By Cor. 4.35, S = Cx̃ỹ[U1 ‖ · · · ‖ Un], with Ui = JRiK for some pre-redex Ri

(cf. Def. 2.19). We take then an arbitrary Ui, i ∈ {1, . . . , n}. We apply a case
analysis on Ui. There are 11 cases corresponding to each possible shape of Ui.
We only show three cases; the rest are similar:

Case Ui = Jx〈v〉.P1K: We distinguish two sub-cases that depend on whether
there exists Uj such that Uj = Jy(z).P2K and x ∈ x̃, y ∈ ỹ or not. The
latter case is vacuously true, as there would not be any transition to check.
We show the former case:
Sub-case ∃Uj .(Uj = Jy(z).P2K ∧ x ∈ x̃, y ∈ ỹ):

(1) S ≡ Cx̃ỹ[Jx〈v〉.P1K ‖ Jy(z).P2K ‖ U1 ‖ · · · ‖ Un] by Assumption.
(2) S

τ−→l Cx̃ỹ[Lx〈v〉.P1 | y(z).P2M1x̃ỹ ‖ U1 ‖ · · · ‖ Un] = S′ by applying
Rule (C:SYNC) from Fig. 2.5, (1), and Assumption.

(3) S
IO1(x,y)−−−−−→l S

′ by Def. 4.37, (1), and (2).
Case Ui = Jx(y).P1K: Symmetric to the previous case, as Uj = Jy〈v〉.P2K.
Case Ui = Lx〈v〉.P1 | y(z).P2M1x̃ỹ :

Chapter 4. Encoding π OR in lcc 145

(1) S ≡ Cx̃ỹ[Lx〈v〉.P1 | y(z).P2M1x̃ỹ ‖ U1 ‖ · · · ‖ Un] by Assumption.
(2) S

τ−→l Cx̃ỹ[JP1K ‖ JP2K{v/z} ‖ U1 ‖ · · · ‖ Un] = S′ by applying Rule
(C:SYNC) from Fig. 2.5, (1), and Assumption.

(3) S
IO1(x,y)−−−−−→l S

′ by Def. 4.37, (1), and (2).

⇐) This direction proceeds by applying a case analysis on label α(x, y). Each case
then will proceed by applying Rule (C:SYNC) in Fig. 2.5 and showing that the
transition yields the correct process.

We further categorize labels in opening and closing labels. Formally:

Definition 4.41 (Opening and Closing Labels). Consider the set of labels defined
in Def. 4.37. We will say thatO = {IO, SL, RP, SL1} is the set of opening labels and write
ω to refer to its elements. Similarly, we will call C = {IO1, RP1, CD, SL2, SL3} the set of
closing labels and write κ to refer to its elements.

Intuitively, a transition with an opening label always goes to an intermediate pro-
cess, whereas a closing label leads to the translation of a π OR process. Notice that label
CD does not have intermediate processes, but rather goes directly into the translation
of the continuation; this is why it is considered a closing label itself. Similarly, label
SL1 is opening because it reaches an intermediate process, rather than a translation.
Now we introduce some notation for dealing with sequences of labels:

Notation 4.42.

• We will write γ(x̃ỹ) to denote finite sequences α1(x1, y1), . . . , αm(xn, yn), with
n,m ≥ 1.

• We will write S γ(x̃ỹ)=====⇒l S′ only if there exist target terms S1, . . . , Sm such
that S α1(x1,y1)−−−−−−→l S1

α2(x2,y2)−−−−−−→l · · ·Sm−1
αm(xn,yn)−−−−−−−→l Sm = S′ and γ(x̃ỹ) =

α1(x1, y2), . . . , αm(xn, yn).

• Given γ(x̃ỹ), we will write α(x, y) ∈ γ(x̃ỹ) to denote that α(x, y) is in the se-
quence γ(x̃ỹ).

• Given γ(x̃ỹ), we will write γ(x̃ỹ) \ αi(xj , yj) to denote the sequence obtained
from γ(x̃ỹ) by removing αi(xj , yj).

• Given γ(x̃ỹ), we will say that γ(x̃ỹ) is an opening (resp. closing) sequence if
every α ∈ γ(x̃ỹ) is an opening (resp. closing) label (cf. Def. 4.41).

In general, we need to recognize when a synchronization starts and when it ends
in the translation. The intuition is that an opening label starts a synchronization and
a closing label ends it by reaching the translation of some π OR program. We capture
these complete synchronizations in the following definition:

Definition 4.43 (Complete Synchronizations). Let S0 be a target term such that
S0

γ(x̃ỹ)=====⇒l S1. Then we have:

Chapter 4. Encoding π OR in lcc 146

1. If there exist γ1(x̃ỹ) and γ2(x̃ỹ) such that either:

• γ(x̃ỹ) = γ1(x̃ỹ)IO(x, y)γ2(x̃ỹ)IO1(x, y) or
• γ(x̃ỹ) = γ1(x̃ỹ)IO(x, y)γ2(x̃ỹ)RP1(x, y)

then we say that γ(x̃ỹ) is a complete synchronization with respect to IO(x, y).

2. If there exist γ1(x̃ỹ) and γ2(x̃ỹ) such that either:

• γ(x̃ỹ) = γ1(x̃ỹ)RP(x, y)γ2(x̃ỹ)RP1(x, y)

• γ(x̃ỹ) = γ1(x̃ỹ)RP(x, y)γ2(x̃ỹ)IO1(x, y)

then we say that γ(x̃ỹ) is a complete synchronization with respect to RP(x, y).

3. If there exist γ1(x̃ỹ), γ2(x̃ỹ) and γ3(x̃ỹ) such that either:

• γ(x̃ỹ) = γ1(x̃ỹ)SL(x, y)γ2(x̃ỹ)SL1(x, y)γ3(x̃ỹ)SL2(x, y)

• γ(x̃ỹ) = γ1(x̃ỹ)SL(x, y)γ2(x̃ỹ)SL1(x, y)γ3(x̃ỹ)SL3(x, y)

then we say that γ(x̃ỹ) is a complete synchronization with respect to SL(x, y).

4. If there exist γ1(x̃ỹ) and γ2(x̃ỹ) such that either:

• γ(x̃ỹ) = γ1(x̃ỹ)SL1(x, y)γ2(x̃ỹ)SL2(x, y) or
• γ(x̃ỹ) = γ1(x̃ỹ)SL1(x, y)γ2(x̃ỹ)SL3(x, y)

then we say that γ(x̃ỹ) is a complete synchronization with respect to SL1(x, y).

5. If there exists γ1(x̃ỹ) such that γ(x̃ỹ) = γ1(x̃ỹ)CD(−) then we say that γ(x̃ỹ) is a
complete synchronization with respect to CD(−).

The case of the conditional redexes is ‘unique’ in our setting: it is the only one
whose translation needs a single lcc step to reach the translation of its continua-
tion. Therefore, we consider every conditional transition a complete synchronization.
Some examples of complete synchronizations follow:

Example 4.44. Consider the following target terms:

S1 = Cx̃ỹ[Jx1〈v〉.P1K ‖ Jy1(z).y2 . {li : Qi}i∈IK ‖ Jx2 / l.QK]
S2 = Cx̃ỹ[Jx1〈v〉.P1K ‖ Jy1(z).P2K ‖ Jy1(z′).P3K]
S3 = Cxy[Lx / lj .P1 | y . {li : Pi}i∈IM1xy]
S4 = Cx̃ỹ[Jx1〈v〉.P1K ‖ J∗ y1(z).P2K]

The following transitions are complete synchronizations with respect to the first label
in the sequence for processes S1, S2, and S3:

S1
IO(xy)−−−−→l Cx̃ỹ[Lx1〈v〉.P1 | y1(z).x2 . {li : Qi}i∈IM1xy ‖ Jx2 / l.QK]
IO1(xy)−−−−−→l Cx̃ỹ[JP1K ‖ Jx2 . {li : Qi}i∈IK{v/z} ‖ Jx2 / l.QK]

S2
IO(xy)−−−−→l Cx̃ỹ[Lx1〈v〉.P1 | y1(z).P2M1xy ‖ Jy1(z′).P3K]

Chapter 4. Encoding π OR in lcc 147

IO1(xy)−−−−−→l Cx̃ỹ[JP1K ‖ JP2K{v/z} ‖ Jy1(z′).P3K]
S3

SL1(xy)−−−−−→l Cxy[Lx / lj .P1 | y . {li : Pi}i∈IM3xy]
SL3(xy)−−−−−→l Cxy[JP1K ‖ JQjK]

ProcessS4 allows us to explain an interesting observation about the labeled semantics
introduced for our translation. In particular, consider that:

S4 ≡ Cx̃ỹ[Jx1〈v〉.P1K ‖ Jy1(z).P2K ‖ J∗ y1(z).P2K]
which means that there are two possible labeled transitions for S4:

S4
RP(x,y)−−−−−→l Cx̃ỹ[Lx1〈v〉.P1 | ∗ y1(z).P2M1xy] = S′4

S4
IO(x,y)−−−−−→l Cx̃ỹ[Lx1〈v〉.P1 | y1(z).P2M1xy ‖ J∗ y1(z).P2K] = S′′4

Then it is possible to show that S′4 ≡ S′′4 and that each process can complete the
synchronization by taking either an IO1(x, y) label or an RP1(x, y) label, reaching the
same process:

S′4
IO1(x,y)−−−−−→l Cx̃ỹ[JP1K ‖ JP2K{v/z} ‖ J∗ y1(z).P2K]

S′4
RP1(x,y)−−−−−→l Cx̃ỹ[JP1K ‖ JP2K{v/z} ‖ J∗ y1(z).P2K]

S′′4
IO1(x,y)−−−−−→l Cx̃ỹ[JP1K ‖ JP2K{v/z} ‖ J∗ y1(z).P2K]

S′′4
RP1(x,y)−−−−−→l Cx̃ỹ[JP1K ‖ JP2K{v/z} ‖ J∗ y1(z).P2K]

4

Using complete synchronizations, we can then describe the open labels of a se-
quence of transitions:

Definition 4.45 (Open Labels of a Sequence of Transitions). Let P be a well-typed
π OR program such that JP K = S0

γ(x̃ỹ)=====⇒l Sn, with n = |γ(x̃ỹ)|. We define the open
labels of γ(x̃ỹ), written open(γ(x̃ỹ)), as the longest sequence β1 . . . βm (with m ≤ n)
that preserves the order in γ(x̃ỹ) and such that for every βi (with 1 ≤ i ≤ m):

(1) βi = αj , for some opening label αj ∈ γ(x̃ỹ);

(2) there is not a subsequence γ(x̃ỹ) that is a complete synchronizationwith respect
to βi (cf. Def. 4.43).

Then, we define the complementary execution sequence of an opening label, which
intuitively provides the missing transition labels such that the transition produces a
complete synchronization.

Definition 4.46 (Complementary Execution Sequence). Let ω be any opening label.
We say that the complementary execution sequence ofω, writtenω↓, is defined as follows:

IO(xy)↓ = IO1(xy) RP(xy)↓ = RP1(xy)

Chapter 4. Encoding π OR in lcc 148

JP K S0 S

Q0 JQ0K S′0 S′′0 S′

Q

∗∗

IH

l

γ0(x̃ỹ)
lAssump. l

αn+1

lAssump.

l

γ
′0 (x̃

ỹ
)

l
IH

J·K

∗

∼=π

OR

l

IH l

αn+1

l

l

γ
′0 (x̃

ỹ
)

l

l

αn+1↓

∼=
π OR
l

Figure 4.8: Diagram of the proof of Lem. 4.48. The dotted arrows represent the re-
ductions and equivalences that must be proven.

SL(xy)↓ = SL1(xy)SL2(xy) SL1(xy)↓ = SL2(xy)

Furthermore, let S1
γ(x̃ỹ)=====⇒l S2 be transition sequence such that open(γ(x̃ỹ)) =

ω1 . . . ωn, with n ≥ 1. We define γ(x̃ỹ)↓ as ω1↓ . . . ωn↓.

The following lemma provides a diamond property for opening and closing tran-
sitions. It states that closing actions do not interfere with opening transitions.

Lemma 4.47. Let S be a target term such that S ω−→l S1 and S γ(x̃ỹ)=====⇒l S2, where γ(x̃ỹ)
is a closing sequence (cf. Not. 4.42). Then, there exists S3 such that S1

γ(x̃ỹ)=====⇒l S3 and
S2

ω−→l S3.

Proof. By induction on the length n of |γ(x̃ỹ)|. For details see App. B.5.

The next lemma will show that every target term obtained from a translated pro-
gram can reach the translation of a π OR program just by closing the remaining open
communications in the target term.

Lemma4.48. For everywell-typedπ OR programP and for every sequence of labels γ(x̃ỹ) such
that JP K γ(x̃ỹ)=====⇒l S, there exist Q, S′, and γ′(x̃ỹ) such that P −→∗ Q and S γ′(x̃ỹ)=====⇒l S

′,
with γ′(x̃ỹ) = γ(x̃ỹ)↓ (cf. Def. 4.46). Moreover, JQK ∼=π OR

l S′.

Proof. By induction on |γ(x̃ỹ)| and a case analysis on the last label of the sequence.
The base case is immediate since JP K γ(x̃ỹ)=====⇒l JP K and P −→∗ P . The proof for the
inductive hypothesis can be seen in Fig. 4.8. The dotted arrows are the reductions
that must be proven to exist. For details see App. B.5.

Chapter 4. Encoding π OR in lcc 149

Proof of Operational Soundness

Having detailed all the ingredients required in the proof of operational soundness,
we repeat the statement of Thm. 4.21 (given in Page 133) and detail its proof, which
formalizes the sketch discussed in § 4.3.3:

Theorem 4.21 (Soundness for J·K). Let J·K be the translation in Def. 4.4. Also, let P
be a well-typed π OR program. For every S such that JP K τ==⇒l S there are Q, S′ such that
P −→∗ Q and S τ==⇒l S

′ ∼=π OR
l JQK.

Proof. By induction on k, the length of the reduction JP K τ==⇒l S, followed by a case
analysis on the constraints that may have been consumed in the very last reduction.

Base Case: Then JP K τ==⇒l JP K. The thesis follows from the reflexivity of ∼=π OR
l , sinceJP K ∼=π OR

l JP K.
Inductive Step: Assume JP K τ==⇒l S0 −→l S (with k− 1 steps between JP K and S0).

By IH, there exist Q0 and S′0 such that P −→∗ Q0 and S0
τ==⇒l S

′
0
∼=π OR

l JQ0K.
Observe that by combining the IH and Lem. 4.48, we have that the sequence
S0

τ==⇒l S
′
0 contains only closing labels. We must prove that there exist Q and

S′ such that P −→∗ Q and S
τ==⇒l S

′ ∼=π OR
l JQK. We analyze IS0

and IS (cf.
Def. 4.22) according to two cases: IS0

⊆ IS and IS0
6⊆ IS , which use Lem. 4.33

and Lem. 4.34, respectively:

Case IS0
⊆ IS : By Lem. 4.33 there are two sub-cases depending on the shape

of S0:
Sub-case 1: S0 ≡ Cx̃ỹ[Jb? (Q1) : (Q2)K ‖ U], b ∈ {tt, ff}, for some U .

By Lem. 4.33 and inspection on the translation definition (Fig. 4.2), it
must be the case that Q0 ≡S (νx̃ỹ)(b? (Q1) : (Q2) | R), for some R. We
distinguish two sub-subcases, depending on b:
Sub-subcase b = tt: We proceed as follows:
(1) S0

τ==⇒l S
′
0 ≡ Cx̃ỹ[Jtt? (Q1) : (Q2)K ‖ U ′], for some U ′ By IH.

(2) S′0
∼=π OR

l JQ0K = Cx̃ỹ[Jtt? (Q1) : (Q2)K ‖ JRK] by IH.
(3) S0 −→l Cx̃ỹ[JQ1K ‖ ∀ε(tt = ff→ JQ2K) ‖ U] = S by Lem. 4.33.
(4) S0 −→l S

τ==⇒l Cx̃ỹ[JQ1K ‖ ∀ε(tt = ff → JQ2K) ‖ U ′] = S′ by
(3), (1).

(5) S′0 −→l
∼=π OR

l Cx̃ỹ[JQ1K ‖ U ′] ∼=π OR
l S′ by Fig. 2.5, Cor. 4.35, and

(4).
(6) JQ0K −→l

∼=π OR
l Cx̃ỹ[JQ1K ‖ JRK] = W by (2), Fig. 2.5, and apply-

ing Cor. 4.35.
(7) S′ ∼=π OR

l W = Cx̃ỹ[JQ1K ‖ JRK] by (2),(5), and Lem. 4.47 with
S = S0, S1 = S, S2 = JQ0K.

(8) Q0 −→ (νx̃ỹ)(Q1 | R) = Q by applying Rule bIFTc from Fig. 2.1
(9) JQK = Cx̃ỹ[JQ1K ‖ JRK] =W by Fig. 4.2, (8), and (6).

Chapter 4. Encoding π OR in lcc 150

(10) S′ ∼=π OR
l JQK by (7), and (9).

Sub-subcase b = ff: This case is analogous to the one above.
Sub-case 2: By Lem. 4.33, there is a W such that W −→h

l S0 with h ∈
{1, 2}, where:

W = Cx̃ỹ[Jx / lk.Q′ | x . {lh : Qh}h∈IK ‖ U]

for some U . We distinguish cases according to h:
Sub-subcase h = 2:
(1) S0 ≡ Cx̃ỹ[Lx / lk.Q′ | x . {lh : Qh}h∈IM2x̃ỹ ‖ U] by Lem. 4.33.
(2) Q0 = (νx̃ỹ)(Q′ | Qk | R) by (1) and IH.
(3) S0

τ==⇒l
∼=π OR

l Cx̃ỹ[JQ′ | QkK ‖ U ′] = S′0 by IH, Fig. 4.2, and
Cor. 4.35.

(4) S′0
∼=π OR

l JQ0K = Cx̃ỹ[JQ′K ‖ JQkK ‖ JRK] by IH, (3) and (2).
(5) S0 −→l Cx̃ỹ[JQ′ | QkK ‖ ∏

h∈I\{k}
∀ε(lk = lh → JQhK) ‖ U] = S by

Fig. 2.5 and (1).
(6) S0 −→l S

τ==⇒l
∼=π OR

l S′0 = S′ by (5), (3), and Lem. 4.47 with
S = S0, S1 = S, S2 = JQ0K.

(7) Q0 −→∗ Q0 = Q by Fig. 2.1.
(8) S′ ∼=π OR

l JQK by (6), (7), and (4).
Sub-subcase h = 1:
(1) S0 ≡ Cx̃ỹ[Lx / lk.Q′ | x . {lh : Qh}h∈IM1x̃ỹ ‖ U] by Lem. 4.33.
(2) Q0 = (νx̃ỹ)(Q′ | Qk | R) by (1) and Assumption.
(3) S0

τ==⇒l
∼=π OR

l Cx̃ỹ[JQ′ | QkK ‖ U ′] = S′0 by IH, Fig. 4.2, and
Cor. 4.35.

(4) S′0
∼=π OR

l JQ0K = Cx̃ỹ[JQ′K ‖ JQkK ‖ JRK] by IH, (3), and (2).
(5) S0 −→l Cx̃ỹ[Lx / lk.Q′ | x . {lh : Qh}h∈IM3x̃ỹ ‖ U] = S by Fig. 2.5.

(6) S −→l
∼=π OR

l Cx̃ỹ[JQ′ | QkK ‖ U]
τ==⇒l Cx̃ỹ[JQ′ | QkK ‖ U ′] = S′ by

Fig. 2.5, Cor. 4.35, and (3).
(7) S0 −→l S

τ==⇒l
∼=π OR

l S′0 = S′ by (5), (6), and Lem. 4.47, (3)
with S = S0, S1 = S, S2 = JQ0K.

(8) Q0 −→∗ Q0 = Q by Fig. 2.1.
(9) S′ ∼=π OR

l JQK by (7), (8), and (4).
Case IS0

6⊆ IS : By Lem. 4.34 we distinguish sub-cases depending on the con-
straints in IS0 \ IS . By Prop. 4.32, constraints are unique and therefore,
IS0 \IS correctly accounts for the specific consumed constraint. There are
four cases, as indicated by Lem. 4.34:
Sub-case snd(x, v) ∈ IS0

\ IS : By Lem. 4.34 we have, for some U :
(a) S0 ≡ Cx̃ỹ[{x:y} ‖ Jx〈v〉.Q1 | � y(z).Q2K ‖ U].
(b) S ≡ Cx̃ỹ[Lx〈v〉.Q1 | � y(z).Q2M1x̃ỹ ‖ U].

Chapter 4. Encoding π OR in lcc 151

We distinguish cases depending on � y(z).Q2 (cf. Not. 2.24):
Sub-subcase � y(z).Q2 = y(z).Q2: We proceed as follows:
(1) S0

τ==⇒l Cx̃ỹ[{x:y} ‖ Jx〈v〉.Q1 | y(z).Q2K ‖ U ′] = S′0 by IH.
(2) S′0

∼=π OR
l J(νx̃ỹ)(x〈v〉.Q1 | y(z).Q2 | R)K = JQ0K by IH.

(3) S0 −→l S −→l Cx̃ỹ[JQ1 | Q2{v/z}K ‖ U] by (a), (b), and Fig. 2.5.
(4) S

τ==⇒l Cx̃ỹ[JQ1 | Q2{v/z}K ‖ U ′] = S′ by (3) and (1).
(5) S′0 −→2

l Cx̃ỹ[JQ1 | Q2{v/z}K ‖ U ′] = S′ by (1), Fig. 2.5, and (4).
(6) JQ0K −→2

l J(νx̃ỹ)(Q1 | Q2{v/z} | R)K =W by (2) and Fig. 2.5.
(7) S′ ∼=π OR

l W by (2), (5), and Lem. 4.47 with S = S0, S1 = S, S2 =JQ0K.
(8) Q0 −→ (νx̃ỹ)(Q1 | Q2{v/z} | R) = Q by applying Rule bCOMc

from Fig. 2.1.
(9) W = JQK by (8) and (6).

(10) S′ ∼=π OR
l JQK by (7) and (9).

Sub-subcase � y(z).Q2 = ∗ y(z).Q2: Similar to the case above, using
Rule bREPLc instead of Rule bCOMc.

Sub-case rcv(x, v) ∈ IS0
\ IS : By Lem. 4.34, there exists:

W = Cx̃ỹ[Jx〈v〉.Q1 | � y(z).Q2K ‖ U]

such that W −→l S0. We distinguish cases depending on � y(z).Q2

(cf. Not. 2.24):
Sub-subcase � y(z).Q2 = y(z).Q2: We proceed as follows:
(1) S0 ≡ Cx̃ỹ[Lx〈v〉.Q1 | � y(z).Q2M1x̃ỹ ‖ U] by Lem. 4.34.
(2) Q0 = (νx̃ỹ)(Q1 | Q2{v/z} | R) by (1).
(3) S0

τ==⇒l Cx̃ỹ[JQ1 | Q2{v/z} | RK ‖ U ′] = S′0 by (1), Fig. 2.5, and
IH.

(4) S′0
∼=π OR

l JQ0K by IH.
(5) S0 −→l Cx̃ỹ[JQ1 | Q2{v/z} | RK ‖ U] = S by Fig. 2.5.
(6) S0 −→l S

τ==⇒l S
′
0 = S′ by (5), (3), and Lem. 4.47 with S = S0,

S1 = S, S2 = JQ0K.
(7) Q0 −→∗ Q0 = Q by Fig. 2.1.
(8) S′ ∼=π OR

l JQK (6), (7), and (4).
Sub-subcase � y(z).Q2 = ∗ y(z).Q2: Similar as above.

Sub-case sel(x, l) ∈ IS0
\ IS : As above.

Sub-case bra(x, l) ∈ IS0
\ IS : As above.

We have proven that the translation is name invariant (cf. Thm. 4.8), compo-
sitional (cf. Thm. 4.9), operationally complete (cf. Thm. 4.20), and operationally
sound (Thm. 4.21). Considering this, we may now state that J·K is a valid encoding,
according to Def. 2.3.

Chapter 4. Encoding π OR in lcc 152

Corollary 4.49. The translation 〈J·K, ϕJ·K〉 (cf. Def. 4.4) is a valid encoding (cf. Def. 2.3).

Proof. Direct consequence of Thm. 4.8, Thm. 4.9, Thm. 4.20 and Thm. 4.21.

4.4 Timed Patterns Revisited: J·K
In this section we recall the timed patterns introduced in § 1.6 and show that we can
represent the request-response timeout pattern, themessages in a time-frame pattern, and
the action duration pattern by using the encoding J·K (cf. Fig. 4.2). In § 4.4.1 we give an
overview of the ingredients needed to represent these patterns using the encoding.
In § 4.4.2, § 4.4.3, and § 4.4.4 we present the request-response timeout pattern, the
messages in a time-frame pattern, and the action duration pattern. Finally, in § 4.4.5,
we conjecture that the repeated constraint pattern (cf. § 1.6) is not representable
using the encoding.

4.4.1 Overview: Exploiting Compositionality via Decompositions
Our goal is to use the encoding J·K to show that lcc can be used as a foundation for
the unified view we advocate. As shown before, the encoding satisfies correctness
properties that ensure that source specifications in π OR can be represented in lcc and
that their behavior is preserved (cf. Cor. 4.49). In this section we are interested in us-
ing the encoding J·K to represent requirements that may appear in message-passing
components but are not explicitly representable in π OR. An example of such require-
ments is: “an acknowledgment message ACK should be sent (by the server) no later than
three time units after receiving the request message REQ”. As mentioned above, this kind
of behavior is not straightforwardly representable in π OR. In fact, using π OR we could
only represent the interaction in the previous requirement as a request-acknowledgment
handshake:

Ph = (νxy)(x〈REQ〉.x(z).0 | y(z′).y〈ACK〉.0) (4.3)
In the process, x represents the channel endpoint used by the client, while y repre-
sents the channel endpoint of the server. The client sends REQ and then awaits for
ACK, which is sent by the server.

To represent requirements such as the onementioned above using J·K, the key idea
is to consider encoded terms as “code snippets” which can be used inside a larger
lcc specification. Then, because of the correctness properties of the encoding, these
snippets represent processes that will execute correct communication behavior. For
example, we could write the following lcc process using JPhK:

Q = ∀ε
(
month(m) = january→ JPhK)

Process Q checks that the current month (stored in some variable m) is january and
only when this constraint is true it executes the behavior in JPhK. The operational cor-
respondence property of the encoding ensures that the behavior ofQ corresponds to
that of the source process Ph, provided that the constraint is satisfied (cf. Thm. 4.20
and Thm. 4.21). This idea is useful to represent communication behavior that de-
pends on contextual information, i.e., information external to the program.

Chapter 4. Encoding π OR in lcc 153

Notice thatQ uses the encoding of the complete process Ph. Still, in some cases it
is desirable to represent constraints over the prefixes of Ph, rather than the complete
π OR process itself. For example, to represent a timed requirement we could think of a
π OR extension that allows to write:

P ′h = (νxy)(x〈REQ〉.x3(z).0 | y(z′).y〈ACK〉.0) (4.4)

where x3(z).0 intuitively says that the input action should take place within three
time units of the output action. This establishes a timed requirement connecting two
different communication actions.

To enable the specification of processes such as P ′h using our encoding, it is con-
venient to consider π OR processes that have been decomposed in such a way that every
action (i.e., prefix) appears in an independent parallel process. Such a decomposi-
tion should preserve the order in which actions are executed (as dictated by session
types). In this way, the compositionality property of the encoding gives us control
over specific parts of the translated π OR process, allowing us to insert constraints on
the translated prefixes (cf. Thm. 4.9).

Such decompositions have been studied as trios processes andminimal session types
[Par00, APV19]. The idea is to transform a π-calculus process P into a different (but
equivalent) process formed only by trios, i.e., sequential processes with at most three
prefixes (i.e., α.β.γ.0). Each trio is in charge of emulating a specific prefix of P ; these
trios must interact in such a way that every sub-term is executed at the right time, i.e.,
the causal order of interactions in P is preserved. Building upon this idea, the work
onminimal session types considers processes that are typable with session types that
describe a single action followed by end.

We do not intend to study in depth decompositions for π OR; rather, we shall use
these ideas to generate processes inwhich each prefix is represented by a parallel sub-
process, and where the causal order of the initial process is preserved. Then, using
the compositionality guarantees of Thm. 4.9, we obtain an appropriate granularity
for the analysis of code snippets (obtained from trios) in lcc specifications.

For the sake of illustration, let us consider the decomposition of well-typed pro-
grams from the finite fragment of π OR without selection and branching (i.e., output,
input, restriction, parallel composition, and inaction). This decomposition is based
on the work presented in [Par00, APV19]. Since the idea of trios processes requires
polyadic communication, we shall assume the following shorthands:

x〈ṽ〉.P = x〈v1〉.x〈vn〉.P (|ṽ| = n ∧ n ≥ 1)

x(ỹ).P = x(y1).x(yn).P (|ỹ| = n ∧ n ≥ 1)

We also use functions size(·) and size(·) that return the size of process P and type T ,
respectively (cf. Fig. 4.9).
Remark 4.50. We decompose only well-typed programs (cf. Not. 2.21). Thm. 3.15
ensures that for every program P to be decomposed, P = (νx1y1) . . . (νxnyn)Q,
with n ≥ 0. Moreover, typability ensures there exists a context Γ = {x1 : T1, y1 :
T1, . . . , xn : Tn, yn : Tn} such that Γ ` Q. Finally, for simplicity we shall also assume
no restriction (νx′y′) occurs in Q.

Using the auxiliary functions in Fig. 4.9, we define the following decomposition
function:

Chapter 4. Encoding π OR in lcc 154

size(P) =

1 + size(Q) if P = x〈v〉.Q or P = x(y).Q

1 + size(Q1) + size(Q2) if P = Q1 | Q2

size(Q) if P = (νxy)Q

1 if P = 0

size(T) =

1 + size(T ′) if T = q!T.T ′ or T = q?T.T ′

1 if T = bool

0 if T = end

Figure 4.9: Size of a process (resp. type) in the finite fragment of π OR.

P Bk
ũ(P) Side Conditions

xi,j〈v〉.Q
ck(ũ1xi,j ũ2).xi,j〈ṽ〉.dk+1〈ũ1ũ2〉.0 |
Bk+1

ũ1ũ2\ṽ(Q{xi,j+1/xi,j})

ũ = ũ1xi,j ũ2
i ∈ {1, . . . , n}
j ∈ {1, . . . ,m}

xi,j(y).Q
ck(ũ1xi,j ũ2).xi,j(yz̃).dk+1〈ũ1ũ2yz̃〉.0 |
Bk+1

ũ1ũ2yz̃
(Q{xi,j+1/xi,j})

ũ = ũ1xi,j ũ2
i ∈ {1, . . . , n}
j ∈ {1, . . . ,m}

P | Q
ck(ũ1ũ2).dk+1〈ũ1〉.dl+1〈ũ2〉.0 |
Bk+1

ũ1
(Q1) | Bl+1

ũ2
(Q2)

l = k + size(Q1)
fvπ(Q1) ∈ ũ1
fvπ(Q2) ∈ ũ2

0 ck(ũ).0

Figure 4.10: Breakdown function for the processes in the finite fragment of π OR.

Definition 4.51 (Decomposition). Let P = (νx1y1) . . . (νxnyn)Q be a well-typed
program in the finite fragment of π OR and Γ = {x1 : T1, y1 : T1, . . . , xn : Tn, yn : Tn}
be a context such that Γ ` Q. The decomposition of P , denoted D(P), is defined as

D(P) = (ν c̃d̃)(νũ)(d1〈ũ〉.0 | B1
ũ(Q{w̃

′/w̃}))

where:

(1) ũ = x̃1ỹ1 . . . x̃nỹn, w̃ = x1y1 . . . xnyn, and w̃′ = x1,1y1,1 . . . xn,1yn,1.

(2) x̃i = xi,1 . . . xi,m and ỹi = yi,1 . . . yi,m withm = size(Ti) for every i ∈ {1, . . . ,m}.

(3) c̃ = c1 . . . cr and d̃ = d1 . . . dr with r = size(P).

(4) Bk
ũ(P) is defined inductively over the finite fragment of π OR as in Fig. 4.10.

Let us now analyze the decomposition of Ph obtained from Def. 4.51. We shall
use this decomposition to represent the timed behavior required by P ′h. Let ũ =

Chapter 4. Encoding π OR in lcc 155

x1,1x1,2y1,1y1,2, ũx = x1,1x1,2, and ũy = y1,1y1,2.

D(Ph) = (νc1d1)(νc2d2)(νc3d3)(νc4d4)(νc5d5)

(νc6d6)(νc7d7)(νx1,1y1,1)(νx1,2y1,2)

(d1〈ũ〉.0 | c2(ũx).x1,1〈REQ〉.d3〈x1,2〉.0 |
c3(x1,2).x1,2(z).d4〈z〉.0 | c4(w).0 |
c5(ũy).y1,1(z

′).d6〈z′y1,2〉.0 |
c6(z

′y1,2).y1,2〈ACK〉.d7〈z′〉.0 | c7(w).0 |
c1(ũ).d2〈ũx〉.d5〈ũy〉.0)

(4.5)

It can be shown that D(Ph) is typable by using the appropriate environments. The
intuitive argument for this is that there are no shared variables and each pairs of
co-variables implement complementary behaviors by the definition of the decom-
position (cf. Def. 4.51). It is also important to notice the way in which the parallel
sub-processes in D(Ph) implement the individual prefixes of Ph. For instance:

• x〈REQ〉 is represented by c2(ũx).x1,1〈REQ〉.d3〈x1,2〉.0.

• x(z) is represented by c3(x1,2).x1,2(z).d4〈z〉.0.

• 0 is represented by c4(w).0.

The subprocesses of the decompositionD(Ph) that do not correspond to a prefix inPh

are used as auxiliary processes that trigger the prefix representations. It can be shown
that D(Ph) preserves the causal order of the source specifications [Par00]. Using the
semantics in Fig. 2.1:

D(Ph) −→ (νc1d1)(νc2d2)(νc3d3)(νc4d4)(νc5d5)

(νc6d6)(νc7d7)(νx1,1y1,1)(νx1,2y1,2)

(c2(ũx).x1,1〈REQ〉.d3〈x1,2〉.0 | c3(x1,2).x1,2(z).d4〈z〉.0 | c4(w).0 |
c5(ũy).y1,1(z

′).d6〈z′y1,2〉.0 | c6(z′y1,2).y1,2〈ACK〉.d7〈z′〉.0 |
c7(w).0 | d2〈ũx〉.d5〈ũy〉.0)

−→2 (νc1d1)(νc2d2)(νc3d3)(νc4d4)(νc5d5)

(νc6d6)(νc7d7)(νx1,1y1,1)(νx1,2y1,2)

(x1,1〈REQ〉.d3〈x1,2〉.0 | c3(x1,2).x1,2(z).d4〈z〉.0 | c4(w).0 |
y1,1(z

′).d6〈z′y1,2〉.0 | c6(z′y1,2).y1,2〈ACK〉.d7〈z′〉.0 | c7(w).0)
−→3 (νc1d1)(νc2d2)(νc3d3)(νc4d4)(νc5d5)

(νc6d6)(νc7d7)(νx1,1y1,1)(νx1,2y1,2)

(x1,2(z).d4〈z〉.0 | c4(w).0 | y1,2〈ACK〉.d7〈z′〉.0 | c7(w).0) −→3 0

An interesting aspect of using a decomposition such as the one in Def. 4.51 is that
we can prove that JD(Ph)K −→∗l∼=π OR

l J0K. This follows from the operational corre-
spondence property of the encoding (cf. Thm. 4.20 and Thm. 4.21). Taking this into
account, we can use the parallel sub-processes in P ′′h and place them inside lcc pro-
cesses allowing them to specify features that are not available for π OR processes. Let us

Chapter 4. Encoding π OR in lcc 156

now define some shorthands for each one of the parallel sub-processes representing
prefixes in P ′′h :

D1 = c2(ũx).x1,1〈REQ〉.d3〈x1,2〉.0
D2 = c3(x1,2).x1,2(z).d4〈z〉.0
D3 = c5(ũy).y1,1(z

′).d6〈z′y1,2〉.0
D4 = c6(z

′y1,2).y1,2〈ACK〉.d7〈z′〉.0
Also, let R represent all the remaining parallel sub-processes that appear in D(Ph).
Applying the encoding J·K (cf. Fig. 4.2) toP ′′h and thanks to its compositionality prop-
erty (cf. Thm. 4.9) we have that:JD(Ph)K = Cx̃ỹ[JD1K ‖ JD2K ‖ JD3K ‖ JD4K ‖ JRK] (4.6)
with Cx̃ỹ[·] and where x̃ỹ corresponds to a sequence containing all the variables ini-
tialized in P ′′h (cf. (4.5)).

With the additional control earned by using the decomposition, we can circum-
vent the issues introduced by the lack of constructs for sequentiality in lcc. We can
also use the code snippets generated by JD(Ph)K to build an lcc process that specifies
communication behavior that depends on timing constraints. For example, to repre-
sent the behavior required inP ′h (cf. (4.4)); i.e., “an acknowledgment message ACK should
be sent (by the server) no later than three seconds after receiving the request message REQ”
we could use the following process. Assume the existence of a clock u that controls
the execution of D2 as shown below:

Q1 = Cx̃ỹ[JD1K ‖ ∀ε(clock(u) ≤ 3→ JD2K) ‖ JD3K ‖ JD4K ‖ JRK]
ProcessQ1 represents a variant of JD(Ph)Kwhere processD2 appears guarded by the
constraint clock(u) ≤ 3. The function clock(u) obtains the timed elapsed in u. The
process above enforces the deadline of three seconds by suspending JD2K in case the
timing constraint is not met.

Using the ideas presented above we shall now develop lcc representations of the
timed patterns in § 1.6.

4.4.2 Request-Response Timeout
The request-response timeout pattern in § 1.6 is a generalization of the protocol im-
plemented by process Ph in (4.3). In this section we shall use the encoding in Fig. 4.2
to represent the generalized version of this pattern, as it was presented in § 1.6. We
first recall the pattern descriptions from both the client and server side:
(a) Server side: After receiving a message REQ from A, B must send the acknowledg-

ment ACK within t time units.

(b) Client side: After sending a message REQ to B, A must be able to receive the ac-
knowledgment ACK from B within t time units.

We now present a process that represents this pattern. For this, we use a more
general version of Ph in (4.3), annotated to informally describe the timing require-
ments of the pattern:

Pr = (νxy)(x〈REQ〉.x(z).Q1 | y(z).y〈ACK〉︸ ︷︷ ︸
t

.Q2) (4.7)

Chapter 4. Encoding π OR in lcc 157

where the time elapsed between the reception of the request and the acknowledgment
must not exceed t time units.

We now present a decomposition for Pr, following Def. 4.51. Assume that R con-
tains the breakdown of processes Q1 and Q2—they are not needed in this example.

D(Pr) = (νũ)(D1 | D2 | D3 | D4 | R) (4.8)

where ũ can be obtained from Def. 4.51 and each of the parallel sub-processes Di

(i ∈ {1, 2, 3, 4}) represents a prefix in Pr, as given below:

D1 = c2(ũx).x1,1〈REQ〉.d3〈ũx \ x1,1〉.0
D2 = c3(ũx \ x1,1).x1,2(zz̃1).d4〈ũxzz̃1 \ x1,1x1,2〉.0
D3 = c5(ũy).y1,1(z

′z̃2).d6〈ũyz′z̃2 \ y1,1〉.0
D4 = c6(ũyz

′z̃2 \ y1,1).y1,2〈ACK〉.d7〈ũyz′z̃2 \ y1,1y1,2〉.0

By applying the encoding J·K and thanks to Thm. 4.9 (i.e., compositionality), we
can use the translations of every Di (i ∈ {1, 2, 3, 4}) inside an lcc process that repre-
sents the request-response timeout pattern:

Q1 = Cũ[JD1K ‖ ∀ε(clock(x) ≤ t→ JD2K) ‖ JD3K ‖ JD4K ‖ JRK]
where ũ can be obtained by following Def. 4.51.

It is also possible to add additional behavior to process Q1. For example, we can
use the nondeterministic construct from lcc to signal that the process reduces to a
failure whenever clock(u) > t:

Q2 = ∃x̃ỹ.
(JD1K ‖ (∀ε(clock(u) ≤ t→ JD2K) + ∀ε(clock(u) > t→ Qf)) ‖JD3K ‖ JD4K ‖ JRK)

In this case, whenever clock(u) > t, the process reduces to a process Qf which rep-
resents the actions that must be taken in case the timing constraint is not met (i.e., a
failure protocol). For example, ifQf represents an error process, the behavior would
be reminiscing of the input operators with deadlines presented in [BMVY19], which
also reduce to a failure whenever the deadline is not met.

Observe that thanks to the operational correspondence property of the encoding
(cf. Thm. 4.20 and Thm. 4.21), process Q2 satisfies the behavior of its source term,
provided that the timing constraint is met.

4.4.3 Messages in a Time-Frame
We first recall the messages in a time-frame pattern, as it was presented in § 1.6:

(a) Interval: A is allowed to send B at most k messages, and at time intervals of at
least t and at most r time units.

(b) Overall time-frame: A is allowed to send B at most kmessages in the overall time-
frame of at least t and at most r time units.

Chapter 4. Encoding π OR in lcc 158

To represent these two variants of the pattern using J·K, we first present two π OR
processes, annotated to indicate the timing constraints:

Pti = (νxy)(x〈M1〉.x〈︸ ︷︷ ︸
t1

M2〉.x〈︸ ︷︷ ︸
t1

M3〉.x〈︸ ︷︷ ︸
t1

M4〉.Px | Py) (4.9)

Pto = (νxy)(x〈M1〉.x〈M2〉.x〈M3〉.x〈M4〉︸ ︷︷ ︸
t2

.Px | Py) (4.10)

Process Pti and Pto differ on their timing constraints (i.e., the annotations below each
process). They both send four messages that must be received by some Py (which
we leave unspecified, as it is not central in this example). Process Pti is meant to
represent the interval pattern, in which we require there to be at least t1 time units
between each message. On the other hand, process Pto represents the overall time-
frame pattern in which all the four messages must be sent in an overall time of t2 time
units. In this example we use clock(u1) and clock(u2) to represent the time elapsed in
clocks u1 and u2, respectively.

Before presenting a possible lcc specification, we consider the decompositions of
D(Pti) and D(Pto) (cf. Def. 4.51). Assume that Rx contains all the processes related
to the breakdownofPx and thatRy contains all the processes from the decomposition
related to the breakdown ofPy . The sequence ũ can be derived by followingDef. 4.51.

D(Pto) = D(Pti) = (νũ)(D1 | D2 | D3 | D4 | Rx | Ry) (4.11)

where processes Di (i ∈ {1, 2, 3, 4}) correspond to:

D1 = c2(ũx).x1,1〈M1〉.d3〈ũx \ x1,1〉.0
D2 = c3(ũx \ x1,1).x1,2〈M2〉.d4〈ũx \ x1,1x1,2〉.0
D3 = c4(ũx \ x1,1x1,2).x1,3〈M3〉.d5〈ũx \ x1,1x1,2x1,3〉.0
D4 = c5(ũx \ x1,1x1,2x1,3).x1,4〈M4〉.d6〈ũx \ x1,1x1,2x1,3x1,4〉.0

By applying the encoding J·K and thanks to its compositionality (cf. Thm. 4.9):

JD(Pti)K = JD(Pto)K = Cx̃ỹ[JD1K ‖ JD2K ‖ JD3K ‖ JD4K ‖ JRxK ‖ JRyK]
We now represent the variants of the timed pattern above (i.e., (a) and (b)) using
the encoding J·K:
(1) Interval: This variant of the pattern requires that for every sent message, the

next message is sent with a delay of at least t1 time units. This means that we
want to guard the snippets obtained with the decomposition in such a way that
the processes are suspended until the interval t1 has passed:

Q1 = Cx̃ỹ[JD1K ‖ ∀ε(clock(u1) > t1 → JD2K ‖ rst(u1) ‖
∀ε
(
clock(u1) > t1 → JD3K ‖ rst(u1) ‖
∀ε
(
clock(u1) > t1 → JD4K ‖ rst(u1) ‖
∀ε
(
clock(u1) > t1 → JRxK)))) ‖ JRyK]

Chapter 4. Encoding π OR in lcc 159

where constraint rst(u1) tells the store that clock u1 must be reset. Process Q1

consists of nested abstractions. Each abstraction is used to make the next syn-
chronization wait until the delay is satisfied. To achieve this, we guard each ab-
straction with constraint clock(u1) > t1. In this way, we ensure that the process
representing each prefix is delayed accordingly. We also ensure that whenever
the timing constraint is met, the clock is reset to allow for the time to count from
the start once again.

(2) Overall Time-Frame: This variant of the pattern can be represented by changing
the timing constraint inQ1 to clock(u2) ≤ t2 and by not resetting the clock inside
every ask process:

Q2 = Cx̃ỹ[∀ε
(
clock(u2) ≤ t2 → JD1K ‖ ∀ε(clock(u2) ≤ t2 → JD2K ‖

∀ε
(
clock(u2) ≤ t2 → JD3K ‖ ∀ε(clock(u2) ≤ t2 → JD4K ‖ rst(u2))) ‖

∀ε
(
clock(u2) ≤ t2 → JRxK))) ‖ JRyK]

The overall time of the communications can be checked because we only reset
the clock at the end of the complete interaction.

Remark 4.52. Similarly to the lcc representation of the request-response timeout, it
is possible to use non-determinism in lcc to extend the behavior of these lcc imple-
mentations. Moreover, bothQ1 andQ2 preserve the behavior of their source process,
assuming that all the timing constraints are satisfied. This is because of the opera-
tional correspondence property of the encoding (cf. Thm. 4.20 and Thm. 4.21).

4.4.4 Action Duration
We recall the action duration timed pattern as described in § 1.6.
(a) The time elapsed between two actions of the same participant Amust not exceed

t time units.
Using π OR, we can use the following process to represent the action duration pattern
by annotating with the appropriate timing constraints:

Pa = (νxy)(x〈M1〉.x〈M2〉︸ ︷︷ ︸
t

.Px | Py) (4.12)

where we require that there are no more than t time units between the first output
and the second one. We also require that the time-frame is 0 ≤ clock(u) ≤ t. The
decomposition is obtained by applying Def. 4.51 to Pa. As with the previous pattern,
assume that Rx and Ry gather all the processes obtained from the decomposition
of Px and Py . The most important prefixes obtained from the decomposition are
described below:

D1 = c2(ũx).x1,1〈M1〉.d3〈ũx \ x1,1〉.0
D2 = c3(ũx \ x1,1).x1,2〈M2〉.d4〈ũx \ x1,1x1,2〉.0

We can then apply the encoding J·K and its compositionality property (cf. Thm. 4.9)
to obtain: JD(Pa)K = Cx̃ỹ[JD1K ‖ JD2K ‖ JRxK ‖ JRyK]

Chapter 4. Encoding π OR in lcc 160

Similarly to the previous two patterns, we use linear abstractions to ensure that JD2K
is only executed within 0 and t time units:

Q1 = Cx̃ỹ[JD1K ‖ ∀ε(clock(u) ≤ t→ JD2K) ‖ JRyK ‖ JRyK]
Above, constraint clock(u) ≤ t guards the execution of JD2K. This means that this
process can only execute if the time constraint is satisfied. Notice that it is also pos-
sible to consider time-frame different from 0 ≤ clock(u) ≤ t by using constraint
t′ ≤ clock(u) ≤ t in the linear abstraction, where t′ represents the lower bound of
of the time-frame. As with the previous patterns, the operational correspondence
property of the encoding ensures that the behavior is preserved, assuming that the
timing constraints are met.

4.4.5 Repeated Constraint: Discussion
We first recall the pattern description as given in § 1.6:

(a) A must send (and unbounded number of) messages to B every t time units.

This pattern induces infinite behavior as it requires an unbounded number of mes-
sages to be received within some time-frame. Unfortunately, this implies that the
repeated constraint pattern cannot be expressed as a well-typed π OR program (cf.
§ 3.1.1). To understand why, let us consider the following untyped π OR process:

Pc = (νloop1loop2)(νxy)(loop1〈loop1〉.0 | ∗ loop2(z).(x〈M1〉.loop1〈z〉.0)︸ ︷︷ ︸
t

| Py) (4.13)

This process corresponds to the encoding of recursion that uses name passing and
replication [AGPV06]. Intuitively, endpoints loop1 and loop2 are used to iteratewhen-
ever M1 is received. The most important thing to notice about Pc is that it has output
races. Therefore, this process will be ruled out by the type system in § 3.1.1. Since
Pc is untyped, its encoding does not satisfy the correctness criteria. Therefore, we
cannot guarantee that JPcK will preserve the desired behavior. Because of this, we
conjecture that it is not possible to represented the repeated constraint pattern using
the encoding.

5
Encoding πE in lccp

In this chapter we present a translation from πE into lccp. In § 5.1 we formalize a
secure constraint system, used by lccp, as well as formally defining the translation.
We then prove that the translation is name invariant and compositional (cf. Def. 2.3)
in § 5.2. In § 5.3, we prove that the translation is both operationally complete and
sound. In this section we summarize our correctness results and conclude that the
translation is a valid encoding (cf. Def. 2.3). We conclude with § 5.4, where we show
that our translation is well-typed with respect to the type system in § 3.3.

5.1 The Translation
In this section we present a translation from πE into lccp. The translation uses similar
ideas to the ones presented in § 4.1. In § 5.1.1 we present a constraint system aimed
at modeling session with security primitives such as public keys, private keys, and
encryption. Then, in § 5.1.2, we first instantiate the behavioral equivalences required
in Def. 3.102(2), before formally introducing the new translation: J·Kf .
5.1.1 A Constraint System For Secure Sessions
In the presence of abstractionswith local information (cf. § 3.3), processesmay query
the constraint store about local and global constraints. We must avoid publishing
local information (e.g., session identifiers, encryption keys, nonces) in the (global)
constraint store. To this end, the translation J·Kf relies on a security constraint system
that combines local and global information with cryptographic primitives. This is
another instantiation of Def. 2.27, which builds upon similar constraint systems given
in [OV08b, OV08a, HL09]:

Chapter 5. Encoding πE in lccp 162

Definition 5.1 (Security Constraint System). Let Σ and ∆ be the function symbols
and predicates given in Fig. 5.1. The security constraint system is the tuple 〈S,Σ∪∆,`S
〉, where S is the set of all constraints obtained by using linear operators !, ⊗, and ∃
over the functions of Σ and predicates of ∆, and where `S is given by the rules in
Fig. 2.4, extended with the non-logical axioms in Fig. 5.2.

We comment on the signatures for functions and predicates given in Fig. 5.1,
which differ from those in Fig. 4.1 in several respects. First, Σ includes functions
for handling encryption (used to model session initiation) and tuples: given a loca-
tion n as an (unrestricted) argument, functions p, r, and s return the public, restricted
(i.e., private), and symmetric key of n, respectively. We use k to range over function
identifiers p, r, and s and write k−1 to denote inverse of k, defined as s−1 = s and
p−1 = r, as expected. Function enc(k;m) returns message m encrypted with a key
k, which is restricted. Decryption is enabled via entailment/deduction in the con-
straint system (Fig. 5.2). Lastly, function tupj(ε; x̃)models a tuple of j (unrestricted)
elements (j ≥ 1). As usual in first-order logic, we will recursively define terms to be
variables, functions applied to variables and function applied to other terms.

As before, predicates in ∆ are used to represent session communication; in this
case, we exploit the distinction between restricted and unrestricted variables. We re-
quire another set of predicates, different from those in Fig. 4.1 (we use different type
font styles to highlight the differences). Predicate snd(x; y) takes two arguments: a
(restricted) session key and an unrestricted message. That is, while the communi-
cation subject should be private to the session, its associated communication object
can be publicly available. Predicate rcv(x, y; ε) models the acknowledgment of snd,
and contains the session key and the value. In this case, both subject and object are
restricted. Predicates sel and bra model communication of a label object. Predicate
{x:y} declares x, y as co-variables; both endpoints are restricted. Novelties with re-
spect to the predicates in Fig. 4.1 are locρ(ε;x), ch(x; ε), and out(ε;m). While predicate
locρ(ε;x) asserts that the (unrestricted) location x is in the (unrestricted) set of loca-
tions ρ, predicate ch(x; ε) declares x as a channel. Finally, predicate out(ε;m) indi-
cates that a messagem has been sent through a public, potentially insecure medium;
it is used to model service agreement during session establishment.

The following notation will be useful in processes.

Notation 5.2. We shall write function enc(k;x) as {x}k. Similarly, we shall write tuple
tupn(ε;x1, . . . , xn), with n ≥ 1 as 〈x1, . . . , xn〉.

We now comment on the entailment rules given in Fig. 5.2. Rule (E:LOC) is used
to verify that a location belongs to a set ρ: if the location is known (out(ε;n)) and it
belongs to a set ρ then we can obtain predicate locρ(ε;n). Rule (E:COV-COMM) states
that the co-variable constraint is commutative. Rule (E:COV) relates the two end-
points, known only to the participants of that session: it states that given an endpoint
id ch(x; ε) and the co-variable constraint, we may obtain the id for the other endpoint
y. Rule (E:ENC) allows us to encode a message x with a given key y. Rule (E:DEC)
expresses that the output of any function of known output values can be inferred
using the right key. Rule (E:TUP) allows us to create an n-tuple from a sequence of
n-messages. Rule (E:KEY) gives the key of a message. Rules (E:PROJ1) and (E:PROJ2)
handle tuples: while Rule (E:PROJ1) allows us to project individual elements, discard-

Chapter 5. Encoding πE in lccp 163

Σ ::= p(ε;n) | r(ε;n) | s(ε;n) | enc(k;m) | tupj(ε; x̃)
∆ ::= snd(x; y) | rcv(x, y; ε) | sel(x; l) | bra(x, l; ε) | {x:y} |

locρ(ε;x) | ch(x; ε) | out(ε;x)

Figure 5.1: Security constraint system: Function and predicate symbols (cf. Def. 5.1).

(E:LOC)
c `S out(ε;n) n ∈ ρ

c `S locρ(ε;n)

(E:COV-COMM)
c `S {x:y}
c `S {y:x}

(E:COV)
c `S ch(x) c `S {x:y} x 6= y

c `S ch(y)
(E:ENC)
c `S out(ε;x) c `S out(ε; k)

c `S out(ε; enc(k;x))

(E:DEC)
k ∈ {s, p} c `S out(ε; k−1(x)) c `S out(ε; enc(k(x);m))

c `S out(ε;m)⊗ out(ε; enc(k(x);m))

(E:TUP)
∀i ∈ {1, . . . , j}. c `S out(ε; ei)
c `S out(ε; tupj(ε; e1, . . . , ej))

(E:KEY)
c `S out(ε;x) k ∈ {s, p, r}

c `S out(ε; k(x))

(E:PROJ1)
c `S out(ε; tupj(ε; e1, . . . , ei, . . . , ej))

c `S out(ε; ei)

(E:PROJ2)
c `S out(ε; tupj(ε; e1, . . . , ei, . . . , ej))

c `S out(ε; ei)⊗ out(ε; tupj(ε; e1, . . . , ej))

Figure 5.2: Security constraint system: non-logical axioms (cf. Def. 5.1).

ing the remaining elements, Rule (PROJ2) allows to project any element of the tuple
while preserving the remaining tuple elements.

5.1.2 Mapping πE Processes Into lccp Processes
Before formally presenting J·Kf , we would like to define the setsD and E , required to
instantiate the barbed congruence required in Def. 3.102(2). Similarly to J·K, we first
characterize a set of output and complete observables. The main differences from
Def. 4.2 are: (1) the addition of constraint ∃z̃.out(ε; t), where t is a term, and (2) the
distinction between restricted/unrestricted variables in each predicate.
Definition 5.3 (Complete and Output Observables for πE). Let S be the security
constraint system in Def. 5.1. We define the set DπE of output observables of J·Kf as
follows:

DπE

def
= {∃z̃.snd(x; v) | x, v ∈ Vπ ∧ x ∈ z̃ ∧ (v ∈ z̃ ∨ v 6∈ Vπ)}

∪ {∃z̃.sel(x; l) | x ∈ Vπ ∧ l ∈ Bπ ∧ x ∈ z̃} ∪ {∃z̃.out(ε; t) | t is a term in S}

Chapter 5. Encoding πE in lccp 164

We also define D⋆
πE
, the complete observables of J·Kf , by extending DπE as follows:

D⋆
πE

def
= DπE ∪ {tt} ∪ {∃z̃.rcv(x, y; ε) | x ∈ Vπ \ {y} ∧ x ∈ z̃}

∪ {∃z̃.bra(x, l; ε) | x ∈ Vπ ∧ l ∈ Bπ ∧ x ∈ z̃}
∪ {∃z̃.locρ(ε;x) | x ∈ Vπ ∧ ρ ⊆ Ωπ ∧ x ∈ z̃}

∪ {∃z̃.ch(x; ε) | x ∈ Vπ ∧ x ∈ z̃}

Notice that constraint ∃z̃.out(ε; t)will also appear in the set of output observables.
This is a sensible choice, as these constraints represent the main form of synchroniza-
tion during session establishment. Considering this, we can then state that: D = DπE

and E = S. Using the previous fact, we can now introduce the precise instances of
Def. 2.33 and Def. 2.34, required for Def. 3.102(2).

Definition 5.4 (Weak O-Barbed Bisimilarity and Congruence). We define weak o-
barbed bisimilarity and weak o-barbed congruence for lccp processes as follows:

1. Weak o-barbed bisimilarity, denoted ≈πE
l , arises from Def. 2.33 as the weak

DπES-barbed bisimilarity.

2. Weak o-barbed congruence, denoted ∼=πE
l , arises from Def. 2.34 as the weak

DπES-barbed congruence.

We now define the translation of πE into lccp. One of the challenges associated to
a translation of session establishment is that the use of abstractions over constraints
containing only unrestricted predicates enables any external process to abstract (pri-
vate) session keys. To solve this issue, our translation of session establishment in-
cludes an explicit authentication protocol: theNeedham-Schroeder-Lowe (NSL) pro-
tocol [Low96]. The translation is defined next; it is parameterized by a set of pairs of
co-variables, denoted f .

Definition 5.5 (Translation of πE into lccp). Let LπE = 〈πE,−→N,≡S〉 and Llccp =
〈lccp,−→l,∼=πE

l 〉. We define the translation fromLπE intoLlccp as the pair 〈J·Kf , ϕJ·Kf 〉,
where:

(a) J·Kf is the process mapping defined in Fig. 5.3.

(b) ϕJ·Kf is defined as the identity, as in Def. 4.4(b) .

Before providing detailed intuitions regarding the translation, we first comment
on the main differences between J·Kf and J·K (cf. Fig. 4.2). In a nutshell, these dif-
ferences concern concern the authentication protocol for session establishment and
local information:

(1) Session establishment follows the NSL protocol. A process request starts by
creating a fresh endpoint (x) and sending a tuple containing the service name
a, a nonce w and the location where the requester resides (n). The tuple is
encrypted using the public key of the location of the requested service (m).
The requested service then creates a fresh endpoint (y) and receives an en-
crypted tuple, containing a,w and n. Notice that it is necessary to decrypt this

Chapter 5. Encoding πE in lccp 165

J[am
〈x
〉.P

]n
K fde

f
=
∃w
,x
.(out

(ε
;{
〈a
,w
,n
〉}

p(
m

)
)
‖
∀y

(out
(ε
;r
(n
))
;
ou
t(
ε;
{〈
a
,w
,y
,m
〉}

p(
n
)
)→

ou
t(
ε;
{〈
a
,w
,x
,y
〉}

p(
m

)
)
‖
!{
x
:y
}
‖
JPK f

∪
{x

:y
}))

(w
,y
6∈
fv
(P

))

J[∗aρ
(y
).
P
]m
K fde

f
=

!(∃y.(∀z,
n
(out

(ε
;r
(m

))
;
ou
t(
ε;
{〈
a
,z
,n
〉}

p(
m

)
)
⊗

lo
c ρ
(ε
;n

)→
ou
t(
ε;
{〈
a
,z
,y
,m
〉}

p(
n
)
)
‖

∀u
(o
u
t(
ε;
r(
m
))
;
ou
t(
ε;
{〈
a
,w
,y
,u
〉}

p(
m

)
)→

JPK f
∪
{y

:u
}
)))

(z
,n
6∈
fv
(P

))

Jx〈v
.P
〉K fde

f
=

sn
d(
x
;v
)
‖
∀ε
(c
h
(x
;ε
)
;
{x

:f
x
}
⊗
ch

(f
x
;ε
)
⊗

rc
v(
f x
,v
;ε
)
→
JPK f

)

Jx(y
).
P
K fde

f
=
∀y

(ch(x
;ε
)
;
{x

:f
x
}
⊗
ch

(f
x
;ε
)
⊗

sn
d(
f x
;y
)
→

rc
v(
x
,y
;ε
)
‖
JPK f

)
Jx/

l i
.P
K fde

f
=

se
l(x

;l
)
‖
∀ε
(c
h
(x
;ε
)
;
{x

:f
x
}
⊗
ch

(f
x
;ε
)
⊗

br
a(
f x
,l
;ε
)→

JPK f
)

Jx.
{l

i:
P
i}

i∈
I
K fde

f
=
∀l
(ch(x

;ε
)
;
{x

:f
x
}
⊗
ch

(f
x
;ε
)
⊗

se
l(f

x
;l
)→

br
a(
x
,l
;ε
)‖

∏
1
≤
i≤

n

∀ε
(t
t
;
l
=
l i
→
JP iK f

))
Jv?(

P
):
(Q

)K fde
f

=
∀ε
(tt

;
v
=

tt
→
JPK f

) ‖∀
ε(tt

;
v
=

ff
→
JQK f

)
JP|

Q
K fde

f
=
JPK f

‖
JQK f

J∗x(
y
).
P
K fde

f
=

!Jx(y
).
P
K f

J(νx
y
)P
K fde

f
=
∃x
,y
.(
! {
x
:y
}
‖
JPK f

∪
{x

:y
})

J0K f
de
f

=
tt

Fi
gu

re
5.
3:

Tr
an

sla
tio

n
fr
om

π
E
to

lc
cp

(c
f.

D
ef
.5

.5
).

W
e
us

e
f x

to
de

no
te
f
(x
).

Chapter 5. Encoding πE in lccp 166

tuple to extract location n. This is represented by the guard being constraint
out(ε; {〈a, z, n〉}p(m)) ⊗ locρ(ε;n), which verifies that the location is indeed al-
lowed to access the service, and that the encrypted tuple has the correct struc-
ture and content. Subsequently, the requested service encrypts (using the pub-
lic key of n) and sends a tuple containing the nonce w, endpoints x, y and its
own location (m), as well as its own service name a. Lastly, the requester re-
ceives, decodes, and sends back endpoints x, y together with the nonce w and
service name a, in a tuple encoded using the public key of m to acknowledge
that it has received them, thus declaring that x, y will indeed be co-variables.
Notice that to unequivocally refer to a nonce, we will write nc, instead of using
the conventions for variables in lcc (i.e., x, y, w, . . .).

(2) Abstractions in lccp use local information and secure patterns. Within session
communications, we require the knowledge of being a channel to be private
(ch(x; ε)). This is used in conjunction with the public constraint {x:fx} to avoid
interferences. Generated after session establishment, co-variable constraints are
collected in the set f . This is explicit in the translations of (νxy)P and the ses-
sion establishment constructs. In Fig. 5.3, fx represents the co-variable of x
recorded in f . Also, we assume that if {x:y} ∈ f then fx = y and fy = x.

Before presenting an illustrative example, we give some more intuitions regarding
the translation itself. Below, we comment on all the translated constructs:

• The translation of the request construct [am〈x〉.P]n can be understood as “low-
level implementation”, which exposes more details about the session establish-
ment protocol used (in this case NSL). Intuitively, the translation:

J[am〈x〉.P]nKf = ∃w, x.
(
out(ε; {〈a,w, n〉}p(m)) ‖ (p1)

∀y
(
out(ε; r(n)) ; out(ε; {〈a,w, y,m〉}p(n))→ (p2)
out(ε; {〈a,w, x, y〉}p(m)) ‖ ! {x:y} ‖ JP Kf∪{x:y})) (p3)

can be seen as a three-part process in which the first part (p1) corresponds to
sending the require service name a, a nonce w, and the location n of the client.
This correspond to the first step described above for the NSL protocol. The
second part (p2) is then awaiting for an encrypted message which will then
be decrypted using the private key for location m. In the final part(p3), an ac-
knowledgment message is sent, as the new endpoints are created (i.e., !{x:y}).
The condition w, y 6∈ fv(P) ensures that the variables introduced by the trans-
lation do not clash with the ones already present in the source.

• The translation of the acceptance construct, which declares a service is then as
expected: the complementary of the request translation:

J[∗ aρ(y).P]mKf = !
(
∃y.

(
∀z, n

(
out(ε; r(m)) ;

out(ε; {〈a, z, n〉}p(m))⊗ locρ(ε;n)→ (p1)
out(ε; {〈a, z, y,m〉}p(n)) ‖ (p2)
∀u(out(ε; r(m)) ; out(ε; {〈a,w, y, u〉}p(m))→

Chapter 5. Encoding πE in lccp 167

JP Kf∪{y:u}))) (p3)

In the lccp process above, the first part p1 receives the message of a client, veri-
fies that the location of the client is authorized and proceeds to the second part
(p2). In this part, a message containing the fresh channel endpoint y is sent,
which then must be acknowledged by the client. In the final part p3, the trans-
lation receives the channel endpoint from the client, and the service can start.

• The translations of output and input are similar to the ones in Fig. 4.2. The only
difference is in the fact that channel endpoints are now restricted information
(i.e., out(x; ε)). Hence, we use function f to carry the necessary information
about co-variables which must be propagated inductively in the translation.

• The translations for all the other constructs use a similar structure as in Fig. 4.2,
considering the caveat regarding channels, mentioned above.

Example 5.6. Let P be the πE process
[
ai2〈x〉.P1

]i1 | [∗ aρ(y).P2

]i2 , with i1 ∈ ρ. Pro-
cess P represents a service a that resides in i1 and is requested by a client at i2. The
translation of P is as follows:JP Kf = ∃nc1, x.

(
out(ε; {〈a, nc1, i1〉}p(i2)) ‖
∀z1

(
out(ε; r(i1)) ; out(ε; {〈a, nc1, z1, i2〉}p(i1))→

out(ε; {〈a, nc1, x, z1〉}p(i2)) ‖ ! {x:z1} ‖ JP1Kg0∪{x:z1}))
‖ !∃y.

(
∀z2, w

(
out(ε; r(i2)) ; out(ε; {〈a, z2, w〉}p(i2))⊗ locρ(w; ε)→
out(ε; {〈a, z2, y, i2〉}p(w)) ‖
∀z3(out(ε; r(i2)) ; out({ε; 〈a, z2, y, z3〉}p(i2))→JP2Kg0∪{z3:y})))

Notice that our translation captures all the steps required to implement the NSL
protocol. The first τ -transition is as follows:JP Kf −→l ∃nc1, x, y.

(
∀z1

(
out(ε; r(i1)) ; out(ε; {〈a, nc1, z1, i2〉}p(i1))→

out(ε; {〈a, nc1, x, z1〉}p(i2)) ‖ ! {x:z1} ‖ JP1Kg0∪{x:z1})
‖ out(ε; {〈a, nc1, y, i2〉}p(i1))
‖ ∀z3(out(ε; r(i2)) ; out({ε; 〈a, nc1, y, z3〉}p(i2))→JP2Kg0∪{z3:y}))

‖ !∃y.
(
∀z2, w

(
out(ε; r(i2)) ; out(ε; {〈a, z2, w〉}p(i2))⊗ locρ(w; ε)→
out(ε; {〈a, z2, y, i2〉}p(w))

‖ ∀z3(out(ε; r(i2)) ; out({ε; 〈a, z2, y, z3〉}p(i2))→JP2Kg0∪{z3:y})))
= S1

Observe that an encrypted tuple containing the service name a, the nonce nc1, and
the location of the requesting client is first exchanged; this transition also relies on
Rule (SCL:7) (cf. Def. 2.28), to extend the scope of both the nonce being sent (nc1)
and the soon-to-be-established endpoints (x, y). Notice also that the service has been
replicated. The next transition follows:

S1 −→l ∃nc1, x, y.
(
out(ε; {〈a, nc1, x, y〉}p(i2)) ‖ ! {x:y} ‖ JP1Kg0∪{x:y}

Chapter 5. Encoding πE in lccp 168

‖ ∀z3(out(ε; r(i2)) ; out({ε; 〈a, nc1, y, z3〉}p(i2))→JP2Kg0∪{z3:y}))
‖ !∃y.

(
∀z2, w

(
out(ε; r(i2)) ; out(ε; {〈a, z2, w〉}p(i2))⊗ locρ(w; ε)→
out(ε; {〈a, z2, y, i2〉}p(w))

‖ ∀z3(out(ε; r(i2)) ; out({ε; 〈a, z2, y, z3〉}p(i2))→JP2Kg0∪{z3:y})))
= S2

Above, the requested service a sends to the client an encrypted tuple containing its
name, the nonce nc1, the endpoint name it will use (y), and its location. We now
have:

S2 −→l ∃x, y.
(
! {x:y} ‖ JP1Kg0∪{x:y} ‖ JP2Kg0∪{x:y})

‖ !∃y1.
(
∀z2, w

(
out(ε; r(i2)) ; out(ε; {〈a, z2, w〉}p(i2))⊗ locρ(w; ε)→

out(ε; {〈a, z2, y1, i2〉}p(w))

‖ ∀z3(out(ε; r(i2)) ; out({ε; 〈a, z2, y1, z3〉}p(i2))→JP2{y1/y}Kg0∪{z3:y1})
))

In the final step, the client answers back by sending an encrypted tuple containing:
the service name a, the nonce nc1, and the two newly created endpoints x, y. Note
that α-renaming is applied to enforce substitution on the replicated service, as in
Rule bSESTRc. 4

5.2 Static Correctness
We establish the correctness of J·Kf : πE → lccp, in the sense of Def. 2.3. We mostly
build upon the approach in § 4.2. In this we address name invariance and composi-
tionality criteria.

Theorem 5.7 (Name Invariance for J·Kf). LetN be an πE network. Also, let σ and x be a
substitution satisfying the renaming policy for J·Kf (Def. 5.5(b)) and a variable in lcc, resp.
Then JNσKf = JNKfσ′, where ϕJ·Kf (σ(x)) = σ′(ϕJ·Kf (x)) and σ = σ′.

Proof. By induction on the structure of N . Both the base case and inductive step are
immediate.

Before stating our compositionality result, we define the evaluation contexts for
networks. Notice that there was no need for them to be defined before this point.

Definition 5.8 (Contexts for πE). The syntax of evaluation contexts in πE is given by
the following grammar, where N is an πE network and ‘−’ represents a hole:

D ::= − | D | N | N | D

Notice that we do not consider the restriction operator as an evaluation context.
This is because it is not possible to fill the hole with an arbitrary network. We now
state compositionality with respect to the parallel composition operator:

Chapter 5. Encoding πE in lccp 169

Theorem 5.9 (Compositionality for J·Kf). LetN be an πE network. Also, letD[−] be an
πE evaluation context (cf. Def. 5.8). Then we have: JD[N]Kf = JDKf [JNKf].
Proof. By induction onD[−] and a case analysis on N . The proof is immediate, since
by Def. 5.8 evaluation contexts D[−] can only be parallel contexts and the definition
of J·Kf is homomorphic with respect to parallel composition.

5.3 Operational Correspondence
In this section we present the prove that J·Kf is both operationally sound and com-
plete. The work in here builds on the methodology developed in § 4.3. In § 5.3.1
we present preliminary observations required for the proof of both soundness and
completeness. Finally, in § 5.3.2, and § 5.3.3 we present each proof, respectively.

5.3.1 Preliminaries
The Shape of Closed Networks

Here we state results about the shape of translated closed networks. We formalize
the notion of starting and runtime networks, informally introduced earlier.

Definition 5.10 (Starting and Runtime Network). We will say that a network N is
starting whenever N = 0 or N = N1 | . . . | Nn, n ≥ 1 and for every i ∈ {1, . . . , n},
Ni = [an〈x〉.P]m or Ni = [∗ aρ(x).Q]m. Otherwise, we will call N a runtime network.

We now characterize the shape of closed networks (Not. 3.40). We rely on the
following statement:

Lemma 5.11 (Shape of a Closed Network). For every closed networkN , we haveN ≡S

(νx̃ỹ)P |M , whereM is a starting network and P is a process.

Proof. By induction on the structure ofN . The base cases areN = 0,N = [an〈x〉.P]m,
N = [∗ aρ(x).Q]m andN = (νx̃ỹ)P and they are immediate by≡S. The inductive step
N = N1 | N2 proceeds as follows:

(1) N1 = (νx̃1ỹ1)P1 |M1 (IH).

(2) fv(N1) = ∅ (Def. 5.10, (1)).

(3) N2 = (νx̃2ỹ2)P2 |M2 (IH).

(4) fv(N2) = ∅ (Def. 5.10, (3)).

(5) N ≡S ((νx̃1x̃2ỹ1ỹ2)(P1 | P2) |M1 |M2 = (νx̃ỹ)P |M , with x̃ỹ = x̃1x̃2ỹ1ỹ2,
P = P1 | P2 andM =M1 |M2 (Applying ≡S to N , (3),(4)).

The previous statement allows us to observe and work with a general shape for
closed networks, which will be handy in the proof of operational soundness. Next,
we introduce a notation for characterizing closed networks contextually.

Chapter 5. Encoding πE in lccp 170

Definition 5.12 (Closed Network Context). We will write H[−1,−2] to represent
a class of contexts with two holes, one for processes and one for starting networks
(denoted −1 and −2, respectively), defined as follows:

H[−1,−2] = (νx̃ỹ)−1 | −2

Notice that the two holes in contextH[−1,−2] represent the two “parts” of a net-
work: one composed only of processes (denoted−1) and another that will be a start-
ing network (denoted−2). We will now introduce a notation analogous to Not. 4.12,
to denote the lccp translation of H :

Notation 5.13. Let H[−1,−2] = (νx̃ỹ)(−1) | −2 be a context as in Def. 5.12. We will
write JHx̃ỹK[−1,−2] to denote the lccp translation of H :

JH[−1,−2]Kf def
= ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ −1

)
‖ −2

Having defined a general shape for runtime networks, we now concentrate on
initialized networks, a specific class of runtime networks from which no new sessions
can be established. First, we characterize session establishment steps with a series of
labeled arrows:

Notation 5.14 (Establishment Steps). Let N be a closed network.

• Whenever N −→N N
′ with Rule bSESTRc (cf. Fig. 3.3) we will write N est−−→ N ′,

to denote a so-called establishment steps. We write est−−→∗ to denote the reflexive-
transitive closure of est−−→.

• Accordingly, we will write N 6 est−−→, whenever there is not a reduction with
Rule bSESTRc.

• Also, we will write N est−−→k N ′, k ≥ 0 to say that N evolves into N ′ by estab-
lishing k sessions (i.e., Rule bSESTRc has been applied k times).

• We will also write N ¬est−−−→ N ′ whenever N reduces to N ′ with a rule different
than Rule bSESTRc.

We will then prove that every closed network can establish a finite number k of
sessions, bounded by the number of requests in a process. First, we define potentially
satisfied requests:

Definition 5.15 (Potentially Satisfied Requests). Let N = H[P,M] be a well-typed
closed network (cf. Not. 3.40). We will say that request N0 = [am〈x〉.P]n in N is
potentially satisfied if N0 occurs in M and if there exists a service [∗ aρ(y).Q]m in M
such that [am〈x〉.P]n | [∗ aρ(y).Q]m is a network redex (Def. 3.39).

Lemma 5.16 (Finite Session Establishments). For every well-typed closed network N
with k ≥ 0 potentially satisfied requests (cf. Def. 5.15), there exists a sequence N est−−→k N ′,
such that N ′ 6 est−−→.

Chapter 5. Encoding πE in lccp 171

Proof. By induction on the maximum number k of sessions that can be established in
N . Notice that k will also be the number of requests in N (cf. Def. 5.15), which will
be reduced whenever a session is established.

(1) N = H[P,M] with P a process andM initial (By Lem. 5.11).

(2) M = N1 | . . . | Nn, n ≥ 1 (By Def. 5.10 to (1)).

(3) ∀i ∈ {1, . . . , n}.(Ni = [an〈x〉.P]m ∨Ni = [∗ aρ(x).Q]m) (By Def. 5.10)

(4) We apply induction on the number k of potentially satisfied requests in N :

Base Case: Whenever k = 0. By Def. 5.15, there are no potentially satisfied
requests in N and therefore, N 6 est−−→ and thus, N ′ = N .

Inductive Step: Assume that there are k ≥ 1 potentially satisfied requests in
N . Then, by IH there existsN0 such thatN est−−→k N0 andN0 6

est−−→. We now
prove for k + 1 potentially satisfied requests. By Def. 5.15 and (3) there
exists Ni, Nj i, j ∈ {1, . . . , n} in M (i.e., M = Ni | Nj |M ′ for some M)
such that Ni = [∗ aρ(y).P1]

m, Nj = [am〈x〉.P2]
n and Ni | Nj is a network

redex. We then proceed as follows:
(i) H[P,M] = H[P,Ni | Nj |M ′] (By (1), Def. 5.15).
(ii) H[P,M]

est−−→1 H[P | (νxy)(P1 | P2), Ni |M ′] (Rule bSESTRc to (i)).
(iii) H[P | (νxy)(P1 | P2), Ni |M ′] has k + 1 − 1 = k potentially satisfied

requests (By (ii)).
(iv) H[P | (νxy)(P1 | P2), Ni |M ′]

est−−→k N ′ 6 est−−→ (IH, (3)).

The previous lemma establishes that any well-typed closed network is either ini-
tialized, or can become initialized. This is relevant because an initialized πE net-
work behaves exactly as an π well-typed program. In fact, the following corollary
(which follows from Lem. 5.16) states that the reductions of an initialized network
can only originate in its process part (for all establishment steps have been already
performed):

Corollary 5.17. For every well-typed closed initialized network N :

1. N 6 est−−→.

2. If N −→N N
′ then N = H[P,M] and N = H[P ′,M].

We now restrict our attention to well-typed closed networks (Not. 3.40), whose
specific shape facilitates reasoning about their behavior. In particular, this will allow
us to reuse definitions and results used for J·K to prove both completeness and sound-
ness. We will now proceed to establish the first invariant of translated πE networks:

Lemma 5.18 (Translated Form of a Closed Network). Let N be a well-typed closed
network. Then

JNKf = JHx̃ỹK[JR1Kf1 ‖ · · · ‖ JRkKfk , JM1Kg1 ‖ · · · ‖ JMrKgr]

Chapter 5. Encoding πE in lccp 172

where: (i) k ≥ 0; (ii) each Ri, 0 ≥ i ≥ k is a process pre-redex (cf. Def. 3.39) or Ri = 0;
(iii) eachMj , 1 ≥ j ≥ r is a network pre-redex (cf. Def. 3.39) orMj = 0.
Proof. By induction on the structure of N . There are four base cases corresponding
to N = 0, N = (vxy)P , N = [an〈x〉.P]m and N = [aρ(x).Q]m. All of them are
immediate, by the definition of J·Kf (Fig. 5.3). The inductive step follows by IH and
applying ≡S to the sub-processes obtained by IH.

Junk Processes

The translation presented here, J·Kf , is similar to J·K and so it generates junk (cf.
Def. 4.14). For the sake of completeness, next we define junk processes, denoted J :
the main difference with respect to the junk generated by J·K is the presence of local
information in πE abstractions. Nevertheless, this local information is simply tt:
Definition 5.19 (Junk in πE). Let P and J be lccp processes. Also, let b ∈ {tt, ff}
and li, lj be two distinct labels. We say that J is junk, if it belongs to the following
grammar:

J, J ′ ::= ∀ε
(
tt ; (b = ¬b)→P

) | ∀ε(tt ; (lj = li)→P
) | tt | J ‖ J ′

We now state the main properties of junk processes induced by J·Kf (and their
corresponding interactions), as we did for J·K.
Lemma 5.20 (Junk Invariants). Let J be a junk process. Then the following holds:

1. J 6 τ−→l.

2. There is no c ∈ S (cf. Def. 5.1) such that J ‖ c τ−→l.

3. For every DπES-context C[−]:

(a) ODπE (J) = ∅ and
(b) ODπE (C[J]) = ODπE (C[tt]).

4. For every DπES-context C[−], and every process P , we have C[P ‖ J] ≈πE
l C[P].

Proof. We prove each item.
1. By induction on the structure of J . All cases proceed directly from the seman-

tics of lccp.

2. By induction on the structure of J . Observe that the constraint system inDef. 5.1
does not introduce any c capable of deducing the required guards for the pro-
cess to execute a τ -transitions.

3. Both items proceed by induction on the structure of J .

4. By coinduction, using the same relation shown in the proof of Lem. 4.17.

The corollary below will allow us to remove junk, via ∼=πE
l , from both processes

and from outside the scope of a restriction, at the level of networks.
Corollary 5.21. For every junk process J (cf. Def. 5.19) and every lccp process P , P ‖
J ∼=πE

l P .

Chapter 5. Encoding πE in lccp 173

Intermediate and Named Transitions

We now introduce intermediate redexes and characterize the kind of reductions that
appear in translated networks. First, we start by defining target terms in lccp: the
main difference with respect to Def. 4.7 is that instead of well-typed π processes, we
will consider well-typed closed networks (cf. Not. 3.40).

Definition 5.22 (Target Terms for J·Kf). Target terms is the set of lccp processes that
is induced by the translation of well-typed closed πE networks and is closed under
τ -transitions:

{S | JNKf τ==⇒l S and ∃Φ.(Φ `N N)}

We shall use S, S′, . . . to range over target terms.

Translating session establishment constructs in lccp introduces further interme-
diate steps and processes. To capture them, we extend the intermediate redexes de-
fined for J·K (cf. Def. 4.25). To do this, we will reuse Def. 4.11 by saying that a closed
runtime network H[P,M] is enabled by x̃, ỹ if and only if they enable process P .

Definition 5.23 (Intermediate Redexes for J·Kf). LetR be a communicating process
redex in πE (cf. Def. 3.39) enabled by x̃, ỹ or a communicating network redex. Also,
let J be as in Def. 5.19 and f be a set of co-variable constraints. The set of intermediate
lccp redexes of R, denoted {[R]}fx̃ỹ , is defined in Fig. 5.4.

We now introduce the analogue of Not. 4.26 for J·Kf . We slightly abuse notation
and write LR, fMkx̃ỹ by stating that whenever R is a network redex (cf. Def. 3.39) it is
enabled by any pair of vectors x̃, ỹ. Notice that a network redex does not need to be
enabled, as it can reduce without enclosing restrictions.

Notation 5.24. We will denote the elements of set {[R]} as LR, fMkx̃ỹ , with k ∈ {1, 2, 3}
as in Fig. 5.5.

Finally, we define labeled transitions for J·Kf , aswedid for J·K inDef. 4.37. Thiswill
be useful to distinguish which kind of behavior is being mimicked by the translated
term.

Definition 5.25 (Labeled τ -Transitions for J·Kf Target Terms). Let S be a target term
(cf. Def. 5.22). Also, let

{IO, SL, RP, CD, IO1, RP1, SL1, SL2, SL3, SE, SE1, SE2}

be a set of labels, ranged over by α, α1, α2, α
′, We define the labeled transition

α−→l by the rules in Fig. 5.6.

The upper part of Fig. 5.6 contains rules which are very similar to the ones in
Fig. 4.7; the lower part shows four extra rules, required to account for session es-
tablishment. Indeed, since the set of labels given in Def. 5.25 extends the set de-
fined in Def. 4.37 with labels SE, SE1, and SE2, we have three corresponding rules for
them (Rules bSEc, bSE1c, and bSE2c, respectively). Another new rule in Fig. 5.6 is
Rule bCOMPc, which enables the parallel composition of closed networks.

Notation 5.26 (Labeled Transitions). We shall use the following convenient notations:

Chapter 5. Encoding πE in lccp 174

{[x
〈v
〉.P
|y

(z
).
Q
]}f x̃

ỹ

de
f

=
{r

cv
(y
,v
;ε
)
‖
∀ε
(ch(x

;ε
)
;
{f

x
:x
}
⊗
ch

(f
x
;ε
)
⊗

rc
v(
f x
,v
;ε
)
→
JPK f

) ‖J
Q
{v
/z
}K f}

{[x
〈v
〉.P
|
∗
y
(z
).
Q
]}f x̃

ỹ

de
f

=
{r

cv
(y
,v
;ε
)
‖
∀ε
(ch(x

;ε
)
;
{f

x
:x
}
⊗
ch

(f
x
;ε
)
⊗

rc
v(
f x
,v
;ε
)
→
JPK f

) ‖J
Q
{v
/
z
}K f‖

J∗y(w
).
Q
K f}

{[x
/
l.
P
|y

.
{l

i
:
Q

i}
i∈

I
]}f x̃

ỹ

de
f

=
{ b

ra
(y
,l

j
;ε
)
‖
∀ε
(ch(x

;ε
)
;
{x

:f
x
}
⊗
ch

(f
x
;ε
)
⊗

br
a(
f x
,l

j
;ε
)
→
JPK f

) ‖∀
ε(tt

;
l j
=
l j
→
JQ jK

f

) ‖J
,

br
a(
y
,l

j
;ε
)
‖
∀ε
(ch(x

;ε
)
;
{x

:f
x
}
⊗
ch

(f
x
;ε
)
⊗

br
a(
f x
,l

j
;ε
)→

JPK f
) ‖J

Q
j
K f‖

J
,

JPK f
‖
∀ε
(t
t
;
l j
=
l j
→
JQ jK

f
)
‖
J
}

{[[ai 2 〈
x
〉.P

1

] i 1 |
[∗aρ

(y
).
P
2

] i 2]}f x̃
ỹ

de
f

=
{∃
n
c 1
,x
,y
.(∀z 1

(out
(ε
;r
(i

1
))
;
ou
t(
ε;
{〈
a
,n
c 1
,z

1
,i

2
〉}

p(
i 1
)
)→

ou
t(
ε;
{〈
a
,n
c 1
,x
,z

1
〉}

p(
i 2
)
)
‖

!{
x
:z

1
}
‖
JP 1K

f
∪
{x

:z
1
}) ‖o

u
t(
ε;
{〈
a
,n
c 1
,y
,i

2
〉}

p(
i 1
)
)
‖

∀z
3
(o
u
t(
ε;
r(
i 2
))
;
ou
t(
{ε
;〈
a
,n
c 1
,y
,z

3
〉}

p(
i 2
)
)
→

JP 2K
f
∪
{z

3
:y
}
)) ‖J

[∗aρ
(z
).
P
2
{z
/
y
}] i 2 K

f
,

∃n
c 1
,x
,y
.(out

(ε
;{
〈a
,n
c 1
,x
,y
〉}

p(
i 2
)
)
‖
!{
x
:y
}
‖
JP 1K

f
∪
{x

:y
}
‖

∀z
3
(o
u
t(
ε;
r(
i 2
))
;
ou
t(
{ε
;〈
a
,n
c 1
,y
,z

3
〉}

p(
i 2
)
)→

JP 2K
f
∪
{z

3
:y
})
) ‖J

[∗aρ
(z
).
P
2
{z
/y
}] i 2 K

f
}

Fi
gu

re
5.
4:

In
te
rm

ed
ia
te

re
de

xe
sf

or
J·K f(

cf
.D

ef
.5

.2
3)

Chapter 5. Encoding πE in lccp 175

LR,f
M1 x̃

ỹ
de
f

=

 rc
v(
y
,v
;ε
)
‖
∀ε
(ch(x

;ε
)
;
{f

x
:x
}
⊗
ch

(f
x
;ε
)
⊗

rc
v(
f x
,v
;ε
)
→
JPK f

) ‖
JQ{v

/z
}K f

if
R
=
x
〈v
〉.P
|y

(z
).
Q

rc
v(
y
,v
;ε
)
‖
∀ε
(ch(x

;ε
)
;
{f

x
:x
}
⊗
ch

(f
x
;ε
)
⊗

rc
v(
f x
,v
;ε
)
→
JPK f

) ‖
JQ{v

/z
}K f‖

J∗y(w
).
Q
K f

if
R
=
x
〈v
〉.P
|
∗
y
(z
).
Q

br
a(
y
,l

j
;ε
)
‖
∀ε
(ch(x

;ε
)
;
{x

:f
x
}
⊗
ch

(f
x
;ε
)
⊗

br
a(
f x
,l

j
;ε
)→

JPK f
) ‖

∀ε
(tt

;
l j
=
l j
→
JQ jK

f

) ‖J
if
R
=
x
/
l.
P
|y

.
{l

i
:
Q

i}
i∈

I

∃n
c 1
,x
,y
.(∀z 1

(out
(ε
;r
(i

1
))
;
ou
t(
ε;
{〈
a
,n
c 1
,z

1
,i

2
〉}

p(
i 1
)
)→

ou
t(
ε;
{〈
a
,n
c 1
,x
,z

1
〉}

p(
i 2
)
)
‖
!{
x
:z

1
}
‖
JP 1K

f
∪
{x

:z
1
}) ‖

ou
t(
ε;
{〈
a
,n
c 1
,y
,i

2
〉}

p(
i 1
)
)
‖

∀z
3
(o
u
t(
ε;
r(
i 2
))
;
ou
t(
{ε
;〈
a
,n
c 1
y
,z

3
〉}

p(
i 2
)
)→

JP 2K
f
∪
{z

3
:y
}
)) ‖J

[∗aρ
(z
).
P
2
{z
/y
}] i 2 K

f

if
R
=
[ai 2 〈

x
〉.P

1

] i 1 |[
∗a

ρ
(y
).
P
2

] i 2
un

de
fin

ed
,

ot
he

rw
ise

LR,f
M2 x̃

ỹ
de
f

=

 ∀ε
(ch(x

; ε
)
;
{ x

: f
x
}
⊗
ch

(f
x
; ε
)
⊗

br
a (
f x
,l

j
; ε
)
→
J PK f

) ‖
br

a(
y
,l

j
;ε
)
‖
JQ jK

f
‖
J

if
R
=
x
/
l.
P
|y

.
{l

i
:
Q

i}
i∈

I

∃n
c 1
,x
,y
.(out

(ε
;{
〈a
,n
c 1
,x
,y
〉}

p(
i 2
)
)
‖
!{
x
:y
}
‖
JP 1K

f
∪
{x

:y
}
‖

∀z
3
(o
u
t(
ε;
r(
i 2
))
;
ou
t(
{ε
;〈
a
,n
c 1
,y
,z

3
〉}

p(
i 2
)
)
→

JP 2K
f
∪
{z

3
:y
})
) ‖J

[∗aρ
(z
).
P
2
{z
/y
}] i 2 K

f

if
R
=
[ai 2 〈

x
〉.P

1

] i 1 |[
∗a

ρ
(y
).
P
2

] i 2
un

de
fin

ed
,

ot
he

rw
ise

LR,f
M3 x̃

ỹ
de
f

=

{ JPK f
‖
∀ε
(t
t
;
l j
=
l j
→
JQ jK

f
)
‖
J

if
R
=
x
/
l.
P
|y

.
{l

i
:
Q

i}
i∈

I

un
de

fin
ed

,
ot
he

rw
ise

Fi
gu

re
5.
5:

N
ot
at
io
n
fo
rt

he
in
te
rm

ed
ia
te

re
de

xe
so

fJ·K f
(c

f.
N
ot
.5

.2
4)

.

Chapter 5. Encoding πE in lccp 176

bI
O
c
JH x̃ỹ

K[Jx〈
v
〉.
P
1
K f‖

Jy(z)
.P

2
K f,M

]
IO

(x
,y

)
−−
−−

−→
l
JH x̃ỹ

K[Lx〈
v
〉.
P
1
|y

(z
).
P
2
,f
M1 x

y
,M

]

bR
Ec

JH x̃ỹ
K[Jx〈

v
〉.
P
1
K f‖

J∗y(
z
).
P
2
K f,M

]
RP

(x
,y

)
−−
−−

−→
l
JH x̃ỹ

K[Lx〈
v
〉.
P
1
|∗

y
(z
).
P
2
,f
M1 x

y
,M

]

bS
Lc

JH x̃ỹ
K[Jx

/
l j
.P

1
K f‖

Jy.
{l

i
:
P
i
} i

∈
I
K f,M

]
SL

(x
,y

)
−−
−−

−→
l
JH x̃ỹ

K[Lx
/
l j
.P

1
|y

.
{l

i
:
P
i
} i

∈
I
,f
M1 x

y
,M

]

bC
D
Tc

JH x̃ỹ
K[Jtt

?
(P

1
)
:(
P
2
)K f,M

]
CD

(−
)

−−
−−
→

l
JH x̃ỹ

K[JP 1
K f‖

∀ε
(tt

;
tt

=
ff

→
JP 2K

f

) ,M
]

bC
D
Fc

JH x̃ỹ
K[Jff

?
(P

1
)
:(
P
2
)K f,M

]
CD

(−
)

−−
−−
→

l
JH x̃ỹ

K[JP 2
K f‖

∀ε
(tt

;
ff

=
tt

→
JP 1K

f

) ,M
]

bI
O
1c
JH x̃ỹ

K[Lx〈
v
〉.
P
1
|y

(z
).
P
2
,f
M1 x

y
,M

]
IO

1
(x

,y
)

−−
−−

−→
l
JH x̃ỹ

K[JP 1
K f‖

JP 2K
f
{v
/
z
},
M

]

bR
E1

c
JH x̃ỹ

K[Lx〈
v
〉.
P
1
|∗

y
(z
).
P
2
,f
M1 x

y
,M

]
RP

1
(x

,y
)

−−
−−

−→
l
JH x̃ỹ

K[JP 1
K f‖

JP 2K
f
{v
/
z
}
‖
J∗y(

z
).
P
2
K f,M

]

bS
L1

c
JH x̃ỹ

K[Lx
/
l j
.P

|y
.
{l

i
:
P
i
} i

∈
I
,f
M1 x

y
,M

]
SL

1
(x

,y
)

−−
−−

−→
l
JH x̃ỹ

K[Lx
/
l j
.P

|y
.
{l

i
:
P
i
} i

∈
I
,f
M2 x

y
,M

]

bS
L2

c
JH x̃ỹ

K[Lx
/
l j
.P

|y
.
{l

i
:
P
i
} i

∈
I
,f
M1 x

y
,M

]
SL

1
(x

,y
)

−−
−−

−→
l
JH x̃ỹ

K[Lx
/
l j
.P

|y
.
{l

i
:
P
i
} i

∈
I
,f
M3 x

y
,M

]

bS
L3

c
J
=

∏ i∈
I
\{

j
}
∀ ε
(tt

;
l j

=
l i
→

br
a(
y
,l

j
)
‖
JP iK f

)
JH x̃ỹ

K[Lx
/
l j
.P

|y
.
{l

i
:
P
i
} i

∈
I
,f
M2 x

y
,M

]
SL

2
(x

,y
)

−−
−−

−→
l
JH x̃ỹ

K[JP
K f‖

JP jK
f
‖
J
,M

]

bS
L4

c
J
=

∏ i∈
I
\{

j
}
∀ε
(tt

;
l j

=
l i
→

br
a(
y
,l

j
)
‖
JP iK f

)
JH x̃ỹ

K[Lx
/
l j
.P

|y
.
{l

i
:
P
i
} i

∈
I
,f
M3 x

y
,M

]
SL

3
(x

,y
)

−−
−−

−→
l
JH x̃ỹ

K[JP
K f‖

JP jK
f
‖
J
,M

]

bC
O
M

Pc
JH w̃ 1

z̃
1
K[P,

N
]

α −→
l
JH w̃ 2

z̃
2
K[P′ ,

N
′]

JH x̃w̃
1
ỹ
z̃
1
K[P‖

Q
,M

‖
N
]

α −→
l
JH x̃w̃

2
ỹ
z̃
2
K[P′

‖
Q
,M

‖
N

′]

bS
Ec

JH x̃ỹ
K[P,

J[an 〈
x
〉.
P
1
]m
K f‖

J[∗a
ρ
(y
).
P
2
]n
K f]

SE
(a

)
−−

−→
l
JH x̃ỹ

K[P,
L[an 〈

x
〉.
P
1
]m

|[
∗
a
ρ
(y
).
P
2
]n
,f
M1 x

y
]

bS
E1

c
JH x̃ỹ

K[P,
L[an 〈

x
〉.
P
1
]m

|[
∗
a
ρ
(y
).
P
2
]n
,f
M1 x

y
]

SE
1
(a

)
−−

−−
→

l
JH x̃ỹ

K[P,
L[an 〈

x
〉.
P
1
]m

|[
∗
a
ρ
(y
).
P
2
]n
,f
M2 x

y
]

bS
E2

c
JH x̃ỹ

K[P,
L[an 〈

x
〉.
P
1
]m

|[
∗
a
ρ
(y
).
P
2
]n
,f
M2 x

y
]

SE
2
(a

)
−−

−−
→

l
JH x̃x

ỹ
y
K[P|

JP 1|
P
2
K f∪{x

:y
}
,J[∗a

ρ
(y
).
P
2
]n
K f]

Fi
gu

re
5.
6:

La
be

le
d
tra

ns
iti

on
sf

or
tra

ns
la
te
d
lc
cp

pr
oc

es
se

s(
cf
.D

ef
.5

.2
5)

.

Chapter 5. Encoding πE in lccp 177

1. Given variables x, y, we will write α(x, y) to stand for any α 6∈ {SE, SE1, SE2}.
Whenever α ∈ {SE, SE1, SE2}, we will write α(a), for some service name a.

2. We will write CD(−) to denote a conditional transition, as no variables nor ser-
vice names are needed.

3. Extending Not. 4.42, we will write γ(x̃ỹ, ã) to denote a sequence of labels where
x̃ỹ is a vector of variables (representing labeled transitions related to intra-
session communication) and ã is a vector of service names (representing la-
beled transitions related to session establishment).

4. We will write γ1(x̃1ỹ1, ã1)γ2(x̃2ỹ2, ã2) to denote the concatenation of two se-
quences of labels.

5. In writing γ(x̃ỹ, ã), vectors x̃ỹ and ã can be empty (denoted “−”): wewill write
γ(x̃ỹ,−) to denote a sequence of labeled transitions that does not include actions
of session establishment (SE, SE1, SE2). Similarly, wewill write γ(−, ã) to denote
a sequence of labeled transitions that only includes actions of session establish-
ment.

The following lemma asserts that whenever the translation of an initialized net-
work executes an action different from session establishment, then only the process
part of the translated network changes.

Lemma 5.27. For every well-typed closed initialized network N = H[P,M], if

JNKf γ(x̃,ỹ,−)=======⇒l S

then S = JHx̃ỹK[S′, JMKf∪{x̃:ỹ}].
Proof. By induction on JNKf γ(x̃,ỹ,−)=======⇒l S and a case analysis on label α(x, y) in the
last transition. Since we consider a sequence without session initiation, then α is not
a session establishment label (i.e., SE, SE1, SE2), and therefore, JMKf∪x̃ỹ remains the
same, which follows from Def. 5.25.

The translation of an initialized network cannot perform a labeled transition that
corresponds to session establishment (i.e., SE(a), SE1(a), SE2(a)).

Lemma 5.28. IfN is a well-typed, initialized and closed network then JNKf 6 α(a)−−−→l for any
service name a.

Proof. By contradiction, we proceed as follows:

(1) N is well-typed, initialized and closed (Assumption).

(2) JNKf α(a)−−−→l for some service name a (Assumption).

(3) We distinguish cases depending on whether α(a) = SE(a), α(a) = SE1(a) or
α(a) = SE2(a). The latter two are vacuously true, as the translation of a network
cannot yield an intermediate process. The former follows:

Chapter 5. Encoding πE in lccp 178

(i) JNKf SE(a)−−−−→l for some service name a (Assumption)
(ii) N = H[P,M] (Lem. 5.11, Def. 5.12, (1)).

(iii) N 6 est−−→ (Cor. 5.17, (1)).
(iv) N 6−→N with Rule bSESTRc (Not. 5.14, (iii)).
(v) M 6≡S [a

n〈x〉.Q1]
m | [∗ aρ(x).Q2]

n |M ′ for someM ′ such that

[an〈x〉.Q1]
m | [∗ aρ(y).Q2]

n

is a network redex (Fig. 3.3, (iv)).
(vi) JNKf = JHx̃ỹK[JP Kf , J[an〈x〉.Q1]

mKf ‖ J[∗ aρ(y).Q2]
nKf] (Def. 5.25, (ii)).

(vii) M ≡S [an〈x〉.Q1]
m | [∗ aρ(y).Q2]

n with [an〈x〉.Q1]
m | [∗ aρ(y).Q2]

n a net-
work redex (By (vi), Fig. 5.3).

(viii) We have reached a contradiction in (vii), (iii).

Transforming Translated Terms Into lcc via Erasure

As hinted before, translations J·K (cf. Fig. 4.2) and J·Kf (cf. Fig. 5.3) are very similar,
in particularwhen it comes to initialized networks, which can only perform actions of
intra-session communication (Lem. 5.28). The erasure function below connects these
translations: it target terms induced by J·Kf into target terms induced by J·K.
Definition 5.29 (Erasure). The erasure function δ(·) : lccp → lcc is defined induc-
tively in Fig. 5.7.

Notice that erasure is a partial function; we will now give an example of how it
works.

Example 5.30. Let us consider runtime network N = (νxy)(x〈v〉.P | y(z).Q). We
have:

JNKf = ∃x, y.
(
! {x:y} ‖ snd(x; v) ‖
∀ε(ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ rcv(fx, v; ε)→JP Kf) ‖
∀z

(
ch(y; ε) ; {y:fy} ⊗ ch(fy; ε)⊗ snd(fy; z)→rcv(y, z; ε) ‖ JQKf))

Using the erasure function δ(·) in Def. 5.29, we would obtain:

δ(JNKf) = ∃x, y.(! {x:y} ‖snd(x, v) ‖ ∀w1({x:fx} ⊗ rcv(w1, v)→ δ(JP K{w1/fx})) ‖
∀z, w2

(
{y:fy} ⊗ snd(w2; z)→ rcv(y, z) ‖ δ(JQK{w2/fy})

))
which corresponds to J(νxy)(x〈v〉.P | y(z).Q)K, up to α-conversion. 4

As a sanity check, we prove the correctness of δ(·), in the form of an operational
correspondence result:

Chapter 5. Encoding πE in lccp 179

δ(c)
def
=

! δ(d), if c = ! d

tt, if c = tt

{x:y}, if c = {x:y}
snd(x, v), if c = snd(x; v)
rcv(x, v), if c = rcv(x, v; ε)
sel(x, l), if c = sel(x; l)
bra(x, l), if c = bra(x, l; ε)
undefined, otherwise

δ(∀z̃
(
c ; d→P

)
)
def
=

∀ε
(
d→ δ(P)

)
if c = tt

∀w
(
rcv(w, v)⊗ {w:x} →
δ(P{w/z})

) if c=ch(x; ε)⊗ {z:x} ⊗ rcv(z, v; ε)
∀y, w

(
snd(w, y)⊗ {w:x} →
δ(P{w/z})

) if c=ch(x; ε)⊗ {z:x} ⊗ snd(z; y)
∀w

(
bra(w, l)⊗ {w:x} →
δ(P{w/z})

) if c=ch(x; ε)⊗ {z:x} ⊗ bra(z, l; ε)
∀l, w

(
sel(w, l)⊗ {w:x} →
δ(P{w/z})

) if c=ch(x; ε)⊗ {z:x} ⊗ sel(z; l)

undefined, otherwise

δ(P ‖ Q)
def
= δ(P) ‖ δ(Q) δ(∃x.

(
P
)
)
def
= ∃x.

(
δ(P)

)
δ(!P)

def
= ! δ(P)

Figure 5.7: Erasure function for lccp processes (cf. Def. 5.29).

Lemma 5.31. For every well-typed initialized closed network N = H[P,M] such that

P = (νx1, y1)P1 | . . . | (νxnyn)Pn

the following holds (k ≥ 0):

1. If JP K γ(x̃ỹ,−)−−−−−→k
l S1 then JP Kf γ(x̃ỹ,−)−−−−−→k

l S2 and δ(S2) = S1.

2. If JP Kf γ(x̃ỹ,−)−−−−−→
k

l S then JP K γ(x̃ỹ,−)−−−−−→k
l δ(S).

Proof. We prove each statement individually. Both cases proceed by induction on the
length of the transition. For details see App. C.1.

Finally, we show that it is possible to reduce ¬est−−−→ reductions (cf. Not. 5.14) to π OR
reductions:

Lemma 5.32. Let N be a well-typed closed network such that N = H[P,M], whereH is as
in Def. 5.12. Then, the following holds:

1. If N ¬est−−−→M thenM = H[P ′,M], for some P such that P −→ P ′.

2. If P −→ P ′ thenH[P,M]
¬est−−−→ H[P ′,M].

Chapter 5. Encoding πE in lccp 180

Proof. Immediate, since by Def. 5.12 P = (νx̃ỹ)P ′ and by Def. 3.36, P ′ contains only
π processes.

5.3.2 Operational Completeness
Having established a formal relation between J·Kf and J·K, we now prove complete-
ness for J·Kf . Intuitively, the proof proceeds by induction on the πE reduction and a
case analysis on the last taken step. By leveraging on Lem. 5.31, cases not related to
session establishment can be reduced to Thm. 4.20.

Theorem 5.33 (Completeness for J·Kf). Let J·Kf be the translation in Def. 5.5. Also, let
N be a well-typed closed πE network . Then, if N −→∗N M then JNKf τ==⇒l

∼=πE
l JMKg , with

f ⊆ g.

Proof. By induction on the reduction N −→∗N M with a case analysis on the applied
rule. The base case is immediate; for the inductive step, we assume, by IH, N −→∗N
N0 −→N M , for some N0 and that JNKf τ==⇒l

∼=πE
l JN0Kh, with h ⊆ f . By assumption,

Lem. 5.11 and Def. 5.12, N0 = H[P,N ′0] for some process P and a starting network
N ′0. We will then analyze two cases depending on the reduction:

N0
¬est−−−→M : We consider all the possibilities that do not correspond to session es-
tablishment. Since JN0Kf = JHx̃ỹK[JP Kf ′ , N ′0], and since N0

¬est−−−→ M , M =

H[P ′, N ′0]. Then, we must prove that JHx̃ỹK[JP Kf ′ , N ′0]
τ==⇒l JHx̃ỹK[JP ′Kf ′ , N ′0].

By Lem. 5.31(2) and Lem. 5.32(2), this reduces to prove that if P −→ P ′ then
δ(JP Kf) τ==⇒l δ(JP ′Kf), which follows from Thm. 4.20.

N0
est−−→ M : As follows:

Case bSESTRc: We have:
(1) JNKf τ==⇒l

∼=πE
l JN0Kg0 , f ⊆ g0 (IH).

(2) N0 −→N M with Rule bSESTRc (Assumption).
(3) N0 =

[
ai2〈x〉.P1

]i1 | [∗ aρ(y).P2

]i2 (By (2)).
(4) M = (νxy)(P1 | P2) |

[
∗ aρ(y).P2

]i2 (Rule bSESTRc to (3)).
(5) By definition of J·K (Fig. 5.3) and the semantics of lccp:

JN0Kg0 = ∃nc1, x.
(
out(ε; {〈a, nc1, i1〉}p(i2)) ‖
∀z1

(
out(ε; r(i1)) ; out(ε; {〈a, nc1, z1, i2〉}p(i1))→

out(ε; {〈a, nc1, x, z1〉}p(i2)) ‖ ! {x:z1} ‖JP1Kg0∪{x:z1})) ‖
!∃y.

(
∀z2, w

(
out(ε;r(i2)); out(ε;{〈a, z2, w〉}p(i2))⊗locρ(w; ε)→

out(ε; {〈a, z2, y, i2〉}p(w)) ‖
∀z3(out(ε; r(i2)) ; out({ε; 〈a, z2, y, z3〉}p(i2))→JP2Kg0∪{z3:y})))

τ−→l∃nc1, x, y.
(
∀z1

(
out(ε; r(i1)); out(ε; {〈a, nc1, z1, i2〉}p(i1))→

Chapter 5. Encoding πE in lccp 181

out(ε; {〈a, nc1, x, z1〉}p(i2)) ‖ ! {x:z1} ‖JP1Kg0∪{x:z1}) ‖
out(ε; {〈a, nc1, y, i2〉}p(i1)) ‖
∀z3(out(ε; r(i2)) ; out({ε; 〈a, nc1, y, z3〉}p(i2))→JP2Kg0∪{z3:y})) ‖

!∃y.
(
∀z2, w

(
out(ε; r(i2)) ;

out(ε; {〈a, z2, w〉}p(i2))⊗ locρ(w; ε)→
out(ε; {〈a, z2, y, i2〉}p(w)) ‖

∀z3(out(ε; r(i2)) ; out({ε; 〈a, z2, y, z3〉}p(i2))→JP2Kg0∪{z3:y})))
τ−→l ∃nc1, x, y.

(
out(ε; {〈a, nc1, x, y〉}p(i2)) ‖ ! {x:y} ‖JP1Kg0∪{x:y} ‖
∀z3(out(ε; r(i2)); out({ε; 〈a, nc1, y, z3〉}p(i2))→JP2Kg0∪{z3:y})) ‖

!∃y.
(
∀z2, w

(
out(ε; r(i2)) ;

out(ε; {〈a, z2, w〉}p(i2))⊗ locρ(w; ε)→
out(ε; {〈a, z2, y, i2〉}p(w)) ‖

∀z3(out(ε; r(i2)) ; out({ε; 〈a, z2, y, z3〉}p(i2))→JP2Kg0∪{z3:y})))
τ−→l ∃x, y.

(
! {x:y} ‖ JP1Kg0∪{x:y} ‖ JP2Kg0∪{x:y}) ‖

!∃y.
(
∀z2, w

(
out(ε; r(i2)) ;

out(ε; {〈a, z2, w〉}p(i2))⊗ locρ(w; ε)→
out(ε; {〈a, z2, y, i2〉}p(w))

‖ ∀z3(out(ε; r(i2)); out({ε; 〈a, z2, y, z3〉}p(i2))→JP2Kg0∪{z3:y})))
∼=πE

l J(νxy)(P1 | P2) |
[
∗ aρ(y).P2

]i2Kg0∪{x:y} = JMKg0∪{x:y}
(6) g0 ⊆ g0 ∪ {x:y} (Def. of ⊆).

5.3.3 Operational Soundness
In this section we prove that translation J·Kf is operationally sound. Following the
same scheme that in § 4.3.3, we first state the property, give a sketch of the proof, and
then provide the details. It is important to notice that some of the results developed
for proving the soundness of J·Kwill help into simplifying some aspects of the proof
for J·Kf . The following labeled soundness statement, defined in terms of the transitions
introduced in Def. 5.25, will serve as an important stepping stone towards the main
soundness result, given in Thm. 5.49.

Chapter 5. Encoding πE in lccp 182

JNKf S

N0 JN0Kg0 S0 S1

N ′ JN ′Kg S′

∗
est

∗

(Cor. 5.37)

l
γ(x̃1ỹ1, ã1)

l

(Assump.)

∗
¬

est
∗

(Lem. 5.46)

J·Kg0 ∼=πE
l (Cor. 5.37) l

γ(x̃1ỹ1,−)
l

(Lem. 5.45(2))l

γ
1 (−

, ã)

l

γ(−̃, a1)γ1(−, ã)

l

γ2(w̃z̃,−)

l

(Lem. 5.46)

J·Kg ∼=πE
l (Lem. 5.46)

(Lem. 5.45(1))

(Lem. 5.45(3))

Figure 5.8: Diagram of the proof of labeled soundness for J·Kf (cf. Lem. 5.34).

Lemma 5.34 (Labeled Soundness for J·Kf). Let J·Kf be the translation in Def. 5.5. Also,
letN be a well-typed closed πE network. For every S such that JNKf γ(x̃1ỹ1,ã1)========⇒l S there is
an N ′ such that N −→∗ N ′ and S γ′(x̃2ỹ2,ã2)=========⇒l

∼=πE
l JN ′Kg , with f ⊆ g.

Proof Outline for Lem. 5.34

We give a high-level description of our proof for Lem. 5.34, pointing to results to be
introduced later on. First, we will show that the translation of any closed networkN
can reach the translation of an initialized network (cf. Def. 5.10). This is the content of
Lem. 5.39 andLem. 5.45. Then, since an initialized network is, in essence, an π process
together with zero or more services that cannot be invoked anymore, we may use
Lem. 5.46 to show that an initialized network satisfies operational correspondence.
More in details, the proof is as depicted in Fig. 5.8, with the following steps:

(1) By assumption, JNKf γ(x̃1ỹ1,ã1)========⇒l S.

(2) Lem. 5.45(1)will ensure there is anS0 and a transition JNKf γ(−,ã1)γ1(−,ã)===========⇒l S0

such that S0 cannot transition anymore (i.e., S0 6
α(a)−−−→l, for any a).

(3) Cor. 5.37 ensures there is an initialized network N0 such that N est−−→k N0 6
est−−→,

for some k ≥ 0, and JN0Kg0 = S0, for some g0. Notice that JN0Kg0 = S0 impliesJN0Kg0 ∼=πE
l S0.

(4) Lem. 5.45(2) ensures there is an S1 such that S0
γ(x̃1ỹ1,−)========⇒l S1 for some S1.

This sequence of transitions contains all actions in γ not related to session es-
tablishment.

Chapter 5. Encoding πE in lccp 183

(5) Given that S0 is the translation of an initialized network, Lem. 5.46 will en-
sure the existence of S′ and N ′ such that S1

γ2(w̃z̃,−)=======⇒l S
′, N −→∗ N ′, andJN ′Kg ∼=πE

l S′.

(6) Finally, we will use Lem. 5.45(3) to prove that S can reach S1 by performing
actions in γ1(−, ã). This refers to all the session establishment actions that have
not been yet done in S and are not contained in γ(x̃1ỹ1, ã1).

Auxiliary Results

In this section we introduce some auxiliary results, useful for proving soundness.
First, we prove that the translation of every well-typed closed network can reach a
process S in which no more session establishment actions can be mimicked.

Lemma 5.35. For everywell-typed closed networkN there existsS such that JNKf γ(−,ã)=====⇒l

S and S 6 α(a)−−−→l for any service name a.

Proof. Follows from completeness (Thm. 5.33). Since N is a well-typed closed net-
work, by Lem. 5.16 there is an N ′ such that N est−−→∗ N ′ 6 est−−→. Thus, by Thm. 5.33,
there is an S such that JNKf γ(−,ã)=====⇒l S and S ∼=πE

l JN ′Kg . Thus, by Def. 5.25, S will
not be able to mimic further session establishment actions.

We now prove that the translation of every closed network N can evolve into the
translation of an initialized network N ′ reachable from N .

Lemma 5.36. Let N be a well-typed closed network. If JNKf γ(−,−,ã)=======⇒l S and S 6 α(a)−−−→l

for any service name a, then there exists N ′ such that N est−−→∗ N ′ 6 est−−→ and JN ′Kg = S with
f ⊆ g.

Proof. We proceed by induction on the maximum number of sessions k that can be
established from N . For details see App. C.2.

From Lem. 5.35 and Lem. 5.36, the following corollary asserts that for the transla-
tion of every well-typed closed network N there exists a source term S that will cor-
respond to the encoding of the initialized networkN ′ obtained fromN

est−−→∗ N ′ 6 est−−→.

Corollary 5.37. For every well-typed closed network N there exist S and N ′ such thatJNKf γ(−,ã)=====⇒l S, S 6
α(a)−−−→l (for any service name a) andN est−−→∗ N ′ 6 est−−→ and JN ′Kg = S

for some g, f ⊆ g.

The following results say that target terms can mimic session establishment ac-
tions independently from other actions, that is, they are not precluded by the repre-
sentation of other kinds of actions.

Lemma 5.38. Let S be a target term (Def. 5.22). If S α(a)−−−→l S1 and S
γ(x̃ỹ,−)======⇒l S2 then

there exists an S3 such that S1
γ(x̃ỹ,−)======⇒l S3 and S2

α(a)−−−→l S3.

Chapter 5. Encoding πE in lccp 184

Proof. Recalling Not. 5.26, there are three cases: (1) α(a) = SE(a), (2) α(a) = SE1(a)
and (3) α(a) = SE2(a). We proceed by induction on k, defined as the length of tran-
sition S γ(x̃ỹ,−)======⇒l S2, together with a case analysis on the label α′(x, y) of the last
action in the transition. For details see App. C.2.

Lemma 5.39. Let S be a target term. If S γ1(−,ã)======⇒l S1 and S γ2(x̃ỹ,−)=======⇒l S2 then there
exists an S3 such that S1

γ2(x̃ỹ,−)=======⇒l S3 and S2
γ1(−,ã)======⇒l S3.

Proof. By induction on S γ1(−,ã)======⇒l S1. The base case is immediate from Lem. 5.38.
Similarly, the inductive step proceeds by applying the IH and applying Lem. 5.38 to
the result.

The following two properties establish that session establishment actions can be
“swapped” in the context of a sequence of labeled transitions. As a result, any se-
quence of labeled transitions can be rearranged so as to promote session establishment
transitions at the beginning of the sequence.

Lemma 5.40. Let S be a target term. If S γ(x̃ỹ,−)α(a)γ0(x̃0ỹ0,ã0)=================⇒l S1 then
S

γ1(x̃ỹ,−)α(a)γ2(x̃ỹ,−)γ0(x̃0ỹ0,ã0)========================⇒l S1, where γ1(x̃ỹ,−)γ2(x̃ỹ,−) = γ(x̃ỹ,−).
Proof. By induction on k, the length of sequence γ(x̃ỹ,−), coupled with a case anal-
ysis on the last label α′(x, y) in γ(x̃ỹ,−). For details see App. C.2.

Lemma 5.41. Let N be a well-typed closed network. If JNKf γ(x̃ỹ,ã)======⇒l S then

JNKf γ(−,ã)γ(x̃ỹ,−)===========⇒l S

Proof. By induction on the length k of sequence ã.
Base Case: k = 1. The proof will follow directly from Lem. 5.40.

By assumption, JNKf γ1(x̃1ỹ1,−)α(a)γ2(x̃2ỹ2,−)===================⇒l S, with
γ(x̃, ỹ,−) = γ1(x̃1ỹ1,−)γ2(x̃2ỹ2,−)

Then, by Lem. 5.40, JNKf α(a)γ1(x̃1ỹ1,−)γ2(x̃2ỹ2,−)===================⇒l S.

Inductive Step: k > 1. The IH lets us assume that if the length of ã is k > 1 then
we can promote session establishment actions at the beginning of the sequence
(i.e., |ã| = k ∧ JNKf γ(x̃ỹ,ã)======⇒l S0 implies JNKf γ(−,ã)γ(x̃ỹ,−)===========⇒l S0). We need
to prove that if a new transition with α(a) = SE(a) or α(a) = SE1(a) is executed,
then the property holds (i.e., JNKf γ1(x̃1ỹ1,ã1)α(a)γ2(x̃2ỹ2,ã2)===================⇒l S, γ(x̃ỹ, ã) =
γ1(x̃1ỹ1, ã1)γ2(x̃2ỹ2, ã2)). By IH, we can promote the sequence γ1(−, ã1), ob-
taining JNKf γ1(−,ã1)γ1(x̃1ỹ1,−)α(a)γ2(x̃2ỹ2,ã2)=========================⇒l S. By Lem. 5.40, we can pro-
mote α(a), obtaining JNKf γ1(−,ã1)α(a)γ1(x̃1ỹ1,−)γ2(x̃2ỹ2,ã2)=========================⇒l S and finally, by
IH, we can promote γ2(−, ã2), obtaining

JNKf γ1(−,ã1)α(a)γ2(−,ã)γ1(x̃1ỹ1,−)γ2(x̃2ỹ2,−)==============================⇒l S

Chapter 5. Encoding πE in lccp 185

which is what we wanted to prove.

The following lemma states that if a target term S (cf. Def. 5.22) executes a se-
quence of session establishment actions γ(−, ã) that ends in an lccp process S1 that
cannot mimic any other session establishment actions, then all the session establish-
ment actions possible from S are already included in γ(−, ã).

Lemma5.42. LetS be a target term. IfS γ(−,ã)=====⇒l S1,S1 6
α(a)−−−→l for any a, andS

α1(a1)−−−−−→l

S2, for some S2, α1(a1), then α1(a1) ∈ γ(−, ã).

Proof. By contradiction. We distinguish three cases: (1) α1(a1)=SE(a1), (2) α1(a1)=
SE1(a1), and (3) α1(a1)=SE2(a1). We only show the proof for (1), as (2) and (3) are
similar:

(1) S
γ(−,ã)=====⇒l S1 ∧ S1 6

α(a)−−−→l (Assumption).

(2) ∃S2, α1(a1).(S
SE1(a1)−−−−−→l S2) (Assumption).

(3) α1(a1) 6∈ γ(−, ã) (Assumption).

(4) S=JHx̃ỹK[S0, J[a1n〈x〉.Q1]
m | [∗ a1ρ(x).Q2]

nKf ‖ S′0] (Def. 5.25, (2)).

(5) S1=JHx̃ỹK[S0, J[a1n〈x〉.Q1]
m | [∗ a1ρ(x).Q2]

nKf ‖ S′′0] (Def. 5.25, (1),(3),(4)).

(6) S1
SE1(a1)−−−−−→l JHx̃ỹK[S0, L[a1n〈x〉.Q1]

m | [∗ a1ρ(y).Q2]
n, fM1xy ‖ S′′0] (Def. 5.25,

(5)).

(7) We have a reached a contradiction: (6) contradicts (1).

The following two result imply a kind of “diamond lemma” for session establish-
ment actions with respect to other actions. Recall that by extending Not. 4.42 we will
write γ(x̃ỹ,−)\αi(xj , yj) to denote the sequence obtained from γ(x̃ỹ,−) by removing
αi(xj , yj).

Lemma 5.43. Let S be a target term. If S α(a)−−−→l S1 and S γ(−,ã)=====⇒l S2 such that
S2 6

α(a1)−−−−→l for any service name a1, then S1
γ(−,ã)\α(a)=========⇒l S2.

Proof. By induction on the length k of transition S γ(−,ã)=====⇒l S2. The base case is k =
1, which is vacuously true. In this case, the only possible α(a) is SE2(a). This occurs
because otherwise (i.e., α(a) = SE(a) or α(a) = SE1(a)) there would exist a sequence
of transitions that allow to finish the session establishment. For the inductive step,
assume k > 1. Thus, we distinguish cases between α(a) = SE(a), α(a) = SE1(a) and
α(a) = SE1(a). Each case concludes using Lem. 5.42 to show that α(a) is included in
the sequence.

Chapter 5. Encoding πE in lccp 186

Lemma 5.44. Let S be a target term. If S γ1(−,ã1)=======⇒l S1 and S γ2(−,ã2)=======⇒l S2 such that
S2 6

α(a′)−−−−→l for any service name a′, then S1
γ2(−,ã2)\γ1(−,ã1)=============⇒l S2.

Proof. By induction on k, the length of transition S
γ1(−,ã1)=======⇒l S1. The base case

is k = 0 and follows immediately. For the inductive step, we use both the IH and
Lem. 5.43.

The following lemma allows us to rearrange the transitions emanating from the
translation of a well-typed closed network: we may execute first all actions concern-
ing session establishment. This leads to the translation of an initialized network, and
does not interferes with any other action.

Lemma 5.45. Let N be a well-typed closed network. If JNKf γ(x̃ỹ,ã)======⇒l S then there exist
S0, S1, ã1, and γ1 such that

1. JNKf γ(−,ã)γ1(−,ã1)===========⇒l S0 and S0 6
α(a)−−−→l for any service name a.

2. S0
γ(x̃ỹ,−)======⇒l S1; and

3. S γ1(−,ã1)=======⇒l S1.

Proof. Directly from the definitions:

(1) By Assumption, JNKf γ(x̃ỹ,ã)======⇒l S.

(2) By Lem. 5.41 and (1), ∃S′.(JNKf γ(−,a)=====⇒l S
′ γ(x̃ỹ)=====⇒l S).

(3) By Cor. 5.37 and (1), JNKf γ0(−,ã0)=======⇒l S0 for some S0, γ0(−, ã0) and S0 6
α(a0)−−−−→l

for any a0.

(4) Applying Lem. 5.44 with S = JNKf , S1 = S′, S2 = S0 to (3), JNKf γ(−,ã)=====⇒l

S′
γ1(−,ã1)=======⇒l S0, where γ1(−, ã1) = γ0(−, ã0) \ γ(−, ã).

(5) Applying Lem. 5.39 with S = S′, S1 = S0, S2 = S, and S3 = S1, we have that
∃S1.S0

γ(x̃ỹ,−)======⇒l S1 ∧ S
γ1(−,ã1)=======⇒l S1.

We now prove that soundness holds for initialized networks; this follows from
Lem. 5.31 and Lem. 5.32, which uses erasure (cf. Def. 5.29) to reduce the proof to the
soundness property of J·K (cf. Thm. 4.21):

Lemma 5.46. LetN be a well-typed closed initialized network. If JNKf γ(x̃1ỹ1,−)========⇒l S then
there existN1,S1, and γ′(x̃2ỹ2,−) such thatN ¬est−−−→ N1 andS

γ′(x̃2ỹ2,−)========⇒l S1
∼=πE

l JN1Kg
with f ⊆ g.

Proof. Directly from the definitions, using the labels in Def. 5.25:

Chapter 5. Encoding πE in lccp 187

(1) N
¬est−−−→ (Cor. 5.17).

(2) N = H[P,M], ` P (Def. 5.12, assumption).

(3) SE(a), SE1(a) 6∈ γ(x̃1ỹ1,−) for any service name a (Lem. 5.28, (1)).

(4) JNKf = JHx̃ỹK[JP Kf , JMKf] ((2), Fig. 5.3).

(5) JNKf γ(x̃1ỹ1,−)========⇒l JHx̃ỹK[S′, JMKf] (Lem. 5.27).

(6) J(νx̃ỹ)P K γ(x̃1ỹ1)======⇒l δ(S
′) (By Lem. 5.31(2), (5)).

(7) ∃R,S0.(P −→∗ R∧ δ(S′)
γ′(x̃2ỹ2)=======⇒l

∼=π OR
l S0 ∧R ∼=

π OR
l δ(S′)) (Thm. 4.21, (2)).

(8) ∃N1.(N
¬est−−−→ N1 = H[R,M]) (Lem. 5.32(2)).

(9) J(νx̃ỹ)P Kf γ′(x̃2ỹ2,−)========⇒l
∼=πE

l S′0 ∧ δ(S′0) = S0 (By Lem. 5.31(1), (7)) .

(10) JHx̃ỹK[JP Kf , JMKf] γ′(x̃2ỹ2,−)========⇒l JHx̃ỹK[S′0, JMKf] = S1 (Thm. 5.9, (9)).

(11) JH[R,M]Kf ∼=πE
l S1 (Congruence property of ∼=πE

l , (8), (10)).

Proof of Operational Soundness

Finally, we repeat the labeled soundness statement of Lem. 5.34 and present its proof:

Lemma 5.34 (Labeled Soundness for J·Kf). Let J·Kf be the translation in Def. 5.5. Also,
letN be a well-typed closed πE network. For every S such that JNKf γ(x̃1ỹ1,ã1)========⇒l S there is
an N ′ such that N −→∗ N ′ and S γ′(x̃2ỹ2,ã2)=========⇒l

∼=πE
l JN ′Kg , with f ⊆ g.

Proof. We derive the proof as follows:

(1) N is a well-typed closed network (Assumption)

(2) JNKf γ(x̃1ỹ1,ã1)========⇒l S (Assumption).

(3) ∃γ1(−, ã), S0.(JNKf γ(−,ã1)γ1(−,ã)===========⇒l S0) and S0 6
SE(a)−−−−→l nor S0 6

SE1(a)−−−−→l, for any
a (Lem. 5.45 to (1), (2)).

(4) S0
γ(x̃1ỹ1,−)========⇒l S1, for some S1 (Lem. 5.45, (1), (2)).

(5) S
γ1(−,ã)======⇒l S1 (Lem. 5.45 to (1), (2)).

(6) There exists N0 such that N est−−→k N0 6
est−−→ and S0 = JN0Kg0 , for some k and

f ⊆ g0 (Cor. 5.37 to (1)).

(7) N0 is a well-typed closed network (Lem. 3.38 to (6)).

Chapter 5. Encoding πE in lccp 188

(8) There exist S′ and N ′ such that S0
γ(x̃1ỹ1,−)========⇒l S1 implies that S1

γ2(w̃z̃,−)=======⇒l

S′ for some γ2(w̃z̃,−), such that N0 −→∗ N ′ and JN ′Kg ∼=πE
l S′ with g0 ⊆ g

(Lem. 5.46 to (7), (4) S0 = JN0Kg0).
(9) From(9)we can conclude that γ′(x̃2ỹ2, ã2) = γ1(−, ã)γ2(w̃z̃,−),S

γ′(x̃2ỹ2,ã2)=========⇒l

S′ and N −→∗N N ′ where JN ′Kg ∼=πE
l S′ and f ⊆ g ((5),(6)).

While informative, labeled soundness is not yet enough to prove operational cor-
respondence in the sense of Def. 2.6. This is because Lem. 5.34 does not use the stan-
dard semantics we assume for lccp (i.e., τ -transitions). We now develop some aux-
iliary results to obtain an unlabeled version of Lem. 5.34.

The following lemma ensures that a transition in the labeled semantics α−→l im-
plies a transition in the standard semantics τ−→l.

Lemma 5.47. Let S be a target term such that one of the following hold: S α(x,y)−−−−→l S
′, or

S
α(a)−−−→l S

′, or S α(−)−−−−→l S
′. Then S τ−→l S

′

Proof. By applying a case analysis on label α. Each case proceeds by applying Rule
bC:SYNCLOCc, presented in § 3.3 and showing that the transition yields the correct
process.

Next, we state the converse of the previous lemma, which will allow us to prove
the desired operational correspondence statement:

Lemma 5.48. Let S be a target term such that S τ−→l S
′. Then one of the following holds:

(1) S α(x,y)−−−−→l S
′, or (2) S α(a)−−−→l S

′, or (3) S α(−)−−−−→l S
′.

Proof (Sketch). The proof follows closely the argument given in the one for Lem. 4.40.
First, byDef. 5.22, theremust exist awell-typed closed networkN such that JNKf τ==⇒l

S. Thus, we must show that for every S= JHx̃ỹK[U1 ‖ · · · ‖ Un ‖ J,W1 ‖ · · · ‖ Wm] (
with n,m ≥ 1), every Ui andWj (with 1 ≤ i ≤ n and 1 ≤ j ≤ m) satisfy one of the
following and J is some junk (cf. Def. 5.19):
(1) Ui = JRkKf , where Rk is a conditional process redex reachable from N ;

(2) Ui = JRkKf , where Rk is a process pre-redex reachable from N ;

(3) Ui ∈ {[Rk | Rj]}fx̃ỹ , where process redex Rk | Rj is reachable from N ;

(4) Wi = JNkKf , where Nk is a network pre-redex reachable from N ;

(5) Wi ∈ {[Nk | Nr]}fx̃ỹ , where network redex Nk | Nr is reachable from N .
(Recall that the terminology for redexes is given in Def. 3.39.) The proof of the pre-
vious statement, similar to the one presented for Lem. 4.30, follows by induction on
the length of the transition JMKf τ==⇒l S (i.e., the transition that originated target
term S from some πE well-typed closed network M). Next, we prove the lemma by
applying a case analysis on the arbitrary Ui andWj that originated the transition in
the inductive step. We finish the proof by showing that the transitions taken from Ui

andWj must necessarily correspond to some labeled transition.

Chapter 5. Encoding πE in lccp 189

With the previous statement and using the labeled soundness result in Lem. 5.34,
we may finally state our soundness property:

Theorem 5.49 (Soundness for J·Kf). Let J·Kf be the translation in Def. 5.5. Also, let N
be a well-typed closed πE network. For every target term S such that JNKf τ==⇒l S there is
an N ′ such that N −→∗ N ′ and S τ==⇒l

∼=πE
l JN ′Kg , with f ⊆ g.

Proof. Since S is a target term, by Lem. 5.48, it must be the case that JNKf γ(x̃ỹ,ã)======⇒l

S, for some γ, x̃, ỹ, ã. Then, by Lem. 5.34, there exists N ′ such that N −→∗ N ′

and S
γ(x̃1x̃2,ã)=======⇒l

∼=πE
l JN ′Kg with f ⊆ g. Finally, since by Lem. 5.47 every labeled

sequence corresponds to a τ -transition, S τ==⇒l
∼=πE

l JN ′Kg .
As a consequence of the presented properties, we can conclude that J·Kg is name

invariant (cf.Thm. 5.7), compositional (cf. Thm. 5.9), sound (cf. Thm. 5.49), and
complete (cf. Thm. 5.33). Therefore, we may state that the translation is a valid en-
coding (cf. Def. 2.3).

Corollary 5.50. Translation 〈J·Kf , ϕJ·Kf 〉 is an encoding (Def. 2.3).

5.4 Secure Types and the Translation
Our final correctness property for the translation is typabilitywith respect to the type
system in § 3.3. The goal of this property is to ensure that our translation does not
allow abstractions on restricted variables, ensuring the absence of information leaks.

Theorem 5.51 (Typability of J·Kf). For every well-typed closed networkN , the derivation
`⋄ JNKf holds.

Proof. By induction on the structure of N . See App. C.3 for details.

The above theorem attests that our encoding adheres to a robust interpretation of
restriction and scope extrusion, provided a disciplined used of patterns (following
the signature in Fig. 5.1). By using secure patterns in our encoding J·Kf , we effectively
limit the power of linear abstractions with local information, so as to avoid careless
or malicious information leaks related to non-abstractable variables. Furthermore,
we have shown that our translation does not allow information leaks related to non-
abstractable variables (cf. Thm. 5.51).

We believe that lccp and our encoding allow us to isolate and analyze the secu-
rity protocols required to implement the session establishment stage. Indeed, it is
possible to think of variants of the translation in Fig. 5.3 where different protocols for
secure session establishment are used. This would enable us to study the different
properties of these security protocols, using lccp.

6
Conclusions and Related Work

In this chapter we present the overall conclusions and related work for the two trans-
lations presented in Part II. In § 6.1 we give some concluding remarks and discuss
some of the highlights of our translation; in § 6.2 we give some related work.

6.1 Concluding Remarks
We have presented two encodings of session π-calculi into lcc, a declarative process
model based on the ccp paradigm. Our first encoding, in Ch. 4, concerns π OR, the ses-
sion π-calculus in § 3.1.1. The second encoding, given in Ch. 5, considers as source
language πE, a conservative extension of π OR with constructs for session establish-
ment (cf. § 3.1.3); the target language is lccp (cf. § 3.3), the extension of lcc with
abstractions with local information. Our encodings are insightful because lcc and
π OR are very different: lcc is declarative, whereas π OR is operational; communication
in lcc is asynchronous, based on a shared memory, whereas communication in π OR
is point-to-point, based on message passing. Our encodings reconcile these differ-
ences, and explain precisely how to simulate the operational behavior of π OR (and πE)
using declarative features in lcc (and lccp). Both of the encodings presented here
use the same principle: they “decouple” point-to-point communication in π OR (and
πE) by exploiting synchronization on two constraints. Remarkably, because lcc treats
constraints as linear, consumable resources we can correctly represent well-typed π OR
(and πE) processes that should feature linear behavior—communication actions gov-
erned by session types must occur exactly once. Thus, linearity sharply arises as the
common trait in our expressiveness results. Besides the aforementioned advantages,
our second encoding exhibits another contribution of our work, namely a type sys-
tem for lccp processes that enforces secure abstractions, thus addressing an anomaly
of known abstraction-based representations of scope extrusion in the π-calculus. We
address the correctness of both translations via an abstract notion of encoding that

Chapter 6. Conclusions and Related Work 191

follows [Gor10].
The strong correctness properties thatwe establish for our encodings demonstrate

that lcc and lccp can both provide a unified account of operational and declara-
tive requirements in message-passing programs. Because of the differences between
lcc and π OR, we have adopted some of the encodability criteria by Gorla in [Gor10],
namely name invariance, compositionality, and operational correspondence. In particular,
our encoding enjoys the exact same formulation of operational correspondence de-
fined in [Gor10]. These correctness properties guarantee that the behavior of source
terms is preserved and reflected appropriately by target terms.

The correctness properties of our encoding hold for π OR (and πE) processes that
arewell-typed. Types not only allowus to concentrate on ameaningful class of source
processes; they also allow us to address the differences between π OR and lcc, already
mentioned. In fact, well-typed π OR processes have a syntactic structure that can be
precisely characterized and is stable under reductions. Moreover, the compositional
nature of our encoding ensures that this structure is retained by translated lcc pro-
cesses (target terms) and turns out to be essential in analyzing their behavior. In this
analysis, we reconstructed the behavior of source processes via the constraints that
their corresponding target terms consume or add to the store during reductions. As
such, this reconstruction is enabled by observables induced by the semantics of lcc.
By combining information about the syntactic structure and the observable behavior
of target terms, we were able to establish several invariant properties which are in
turn central to prove operational correspondence, in particular soundness.

It is worth emphasizing that well-typed session π-calculus processes can contain
rather liberal forms of non-deterministic behavior. In π, this is enabled by unre-
stricted types—see § 2.2. In contrast, lcc (and by extension lccp) can represent more
limited forms of non-determinism. To cope with these differences the type system
for π OR was designed to correctly capture the kind of processes that lcc can faithfully
represent. At the heart of our type system is the notion of output race, enabled by
allowing output actions on the same channel in parallel. These actions are allowed
in π (cf. § 2.2), but disallowed for source π OR processes. As such, our type system
is a critical ingredient when proving both operational soundness and completeness.
We conjecture that the machinery we have introduced here can be adapted to prove
operational soundness when source processes are well-typed using the type system
in § 2.2. We leave this interesting open question for follow-up work.

As application of our results and approach, we have shownhow to use the first en-
coding (cf. Ch. 4) to represent relevant timed patterns in communication protocols,
as identified byNeykova et al. [NBY14] (cf. § 1.6). Such timedpatterns are commonly
found in several practical applications. Hence, they serve as a valuable validation for
our approach. Indeed, thanks to operational correspondence and compositionality,
encodings of π OR processes can be used as “black boxes” whose behavior correctly
mimics the source terms. These boxes can be plugged inside lcc contexts to obtain
specifications that exhibit features that are not easily representable in π OR. This way,
we can analyze message-passing programs in the presence of partial and contextual
information.

Finally, our second encoding features a low-level implementation of the session
establishment phase of πE. Although this implementation relies on the NSL authenti-
cation protocol, thanks to the way in which our completeness and soundness results

Chapter 6. Conclusions and Related Work 192

were proven, it would not be difficult to “factor out” the session establishment phase
so as to extend our results to translations that rely on different authentication pro-
tocols. In the same vein, we do not foresee any difficulty to extend our correctness
results to a variant of πE with nested sessions, which we have left out for the sake for
simplicity.

6.2 Related Work
Our developments build upon the spirit of previous works by the current authors
[LOP09, HL09]. However, because of the substantial technical differences (notably,
the presence of linearity) our results cannot be derived from those in [LOP09] (which
developed encodings of session π-calculi in utcc) nor in [HL09] (which presented a
type system for utcc).

A key difference with respect to [LOP09] is the ccp language considered (lcc
here, utcc in [LOP09]): this is crucial because, as already discussed, thanks to the
linear abstractions in lcc, our encodings of π OR and πE, presented in Ch. 4 and Ch. 5,
are rather compact and satisfy tight operational correspondences. We also improve
on expressiveness: since utcc is a deterministic calculus, the encoding in [LOP09]
cannot capture non-deterministic behavior (as required for session establishment).
In contrast, exploiting linearity, our encoding captures non-deterministic session es-
tablishment and the non-determinism derivable using unrestricted types in π OR (cf.
§ 3.1.1). Fig. 4.3 gives a process encodable in our approach but not in [LOP09]. We
have shown that the linearity of lcc naturally matches the linear communication in
π OR. In utcc abstractions are persistent, and so the encoding in [LOP09] is more in-
volved and its operational correspondence is harder to establish. Intuitively, rep-
resenting linear input prefixes with persistent abstractions causes difficulties at sev-
eral levels. Neither the anomaly of abstraction-based interpretations of scope extru-
sion/restriction or the use of type system for secure abstractions to limit abstraction
expressiveness are addressed in [LOP09]. The type system in [HL09] (defined for
utcc) and the one in § 3.3 are similar in spirit, but not in details: moving to lcc and
considering linearity requires non-trivial modifications.

Haemmerlé [Hae11] gives an encoding of an asynchronous π-calculus into lcc,
and establishes operational correspondence for it. Since his encoding concerns two
asynchronous models, this operational correspondence is rather direct. Monjaraz
and Mariño [MM12] encode the asynchronous π-calculus into Flat Guarded Horn
Clauses. They consider compositionality and operational correspondence issues, as
we do here. In contrast to [Hae11,MM12], herewe consider a session π-calculuswith
synchronous communication, which adds challenges in the encoding and its associ-
ated correctness proofs. The developments in [Hae11,MM12] are not concernedwith
the analysis of message-passing systems in general, nor with session-based concur-
rency in particular.

The relationship between linear logic and session types has been recently clarified.
Caires and Pfenning gave an interpretation of intuitionistic linear logic as session
types, in the style of Curry-Howard [CP10]. Wadler developed this interpretation for
classical linear logic [Wad14]. Giunti and Vasconcelos gave a linear reconstruction of
session types [GV10]; their system is further developed in [Vas12].

Chapter 6. Conclusions and Related Work 193

Loosely related to our work are [BHTY10, CGHL10]. Bocchi et al. [BHTY10]
integrate declarative requirements into multiparty session types by enriching (type-
based) protocol descriptionswith logical assertionswhich are globally specifiedwithin
multiparty protocols and potentially projected onto specifications for local partic-
ipants. Rather than a declarative process model based on constraints, the target
process language in [BHTY10] is a π-calculus with predicates for checking (both
outgoing and incoming) communications. It should be interesting to see if such
an extended session π-calculus can be encoded in lcc by adapting our encoding in
Ch. 4. Also in the context of choreographies, although in a different vein, Carbone
et al. [CGHL10] explore reasoning via a variant of Hennessy-Milner logic for global
specifications.

Several works have aimed at combining declarative and operational descriptions
of services. Works onWeb service contracts have been particularly successful at com-
bining operational descriptions (akin to CCS specifications) and constraints, where
the entailment of a constraint represents the possibility for a service to comply with
the requirements of a requester. In [BM07b, BM11], Buscemi and Montanari de-
velop CC-pi, a constraint language that combines the message-passing communi-
cation model from the π-calculus with operations over a constraint store as in ccp
languages. Analysis techniques for CC-pi processes exploit behavioral equivalences
(open bisimulation [BM08]); logical characterizations of process behavior have not
been studied. A challenge for obtaining such characterizations is CC-pi’s retract con-
struct, which breaks the monotonicity requirements imposed for constraint stores in
the ccp model. We do not know of any attempts on applying session-type analysis
for specifications in CC-pi.

In a similar line of work, Coppo andDezani-Ciancaglini [CD09] present an exten-
sion of the session π-calculus in [HVK98] with constraint handling operators, such
as tells, asks and constraint checks. Session initiation is then bound to the satisfaction
of constraint in the store. The merge of constraints and a session type system guar-
antees bilinearity, i.e., channels in use remain private, and that the communications
proceed according to the order prescribed by the session type. It is worth noticing
that the underlying constraint store in [CD09] is not linear, which can create poten-
tial races among different service providers. A linear treatment of constraints (or a
process construct similar to CC-pi’s retract) is left for future work.

The interplay of constraints and service contracts has been also studied by Busce-
mi et al. [BCDM11]. In their model, service interactions follow three phases: ser-
vice negotiation, commitment and service execution. In a service negotiation phase,
processes agree in fulfilling certain desired behaviors, without guarantee of success.
Once committed, it is guaranteed that the execution of processeswill honor promised
behaviors, and forbidding a service to get stuck (deadlock-freedom). The model
in [BCDM11] uses two languages: a variant of CCS is used as a source language,
where the behavior of services and clients is specified; these specifications are later
compiled to a target language based on CC-pi with no retraction operator, where
constraints guarantee that interactions between clients and services do not deadlock.
We believe that this two-levelmodel could be enriched by the use of linear constraints
similar to the ones studied in lcc and presented in this Ch. 4, thus refining the con-
sumption of resources in the environment.

Thework of Bartoletti et al. [BZ10, BTZ12] promotes contract-oriented computing

Chapter 6. Conclusions and Related Work 194

as a novel vision for the runtime enforcement of service behaviors. The premise is that
in scenarioswhere third-party components can be used but not inspected, verification
based on (session) types becomes a challenge. Contracts exhibit promises about the
expected runtime behavior of each component; they can be used to establish new ses-
sions (contract negotiation) and to enforce that components abide to their promised
behavior (honesty). The calculus for contracting processes is based on PCL, a propo-
sitional contract logic that includes a contractual form of implication [BZ10]; this en-
ables to express multiparty assume-guarantee specifications where services only en-
gage in a communication once there are enough guarantees that their requirements
will be fulfilled. PCL is used as the underlying constraint system for the contract
language used in [BZ10], a variant of ccp with name-passing primitives. In its ac-
companying Technical Report [BZ09], the authors analyze the expressive power of
the contract calculus with respect to the synchronous π-calculus, establishing name-
invariance, compositionality and operational correspondence, as we do here. In later
developments [BTZ12] the authors introduceCO2, a generic framework for contract-
oriented computing. A characterization of contracts as processes and as formulas in
PCL has been developed.

PART III
SESSION-BASED CONCURRENCY
AND SYNCHRONOUS REACTIVE

PROGRAMMING

7
Encoding π R in ReactiveML

In this chapterwepresent a translation fromπ R (§ 3.1.2) intoReactiveML(cf. § 2.4). In
§ 7.1 we present the translation, denoted J·Kgf . In § 7.2, show that the translation satis-
fies name invariance (cf. Def. 2.3(2)) and compositionality (cf. Def. 2.3(2)). In § 7.3,
we show that the translation satisfies operational correspondence (cf. Def. 2.3(3,4)
and Def. 2.6(3’)) and summarize our correctness results by demonstrating that the
translation is both a valid and refined encoding (cf. Def. 2.3, and Def. 2.6). A high-
light from this translation is the fact that it yields runnable ReactiveML code. For
instance, the translation JP Kgf of some π R process P can be run as a ReactiveML pro-
gram by compiling the following ReactiveML expression:

let process program = JP Kgf in run program
and running it in a computer. Furthermore, thanks to the correctness properties of
the translation, we can guarantee that the execution of the program above preserves
the behavior of the π R process. This chapter concludes in § 7.4 by showing examples
of the timed patterns in § 1.6 represented with the translation.

7.1 The Translation
The translation from π R into ReactiveML uses valued signals as channels carrying
messages. We also borrow inspiration from [DGS12] and use a continuation-passing
style to preserve both the linearity and value polymorphism characteristics of π-cal-
culus channels. In this sense, π R channels are translated as signals that can only be
used once. Thus, these signals also carry fresh signals which will be used in ensuing
interactions. A key difference between the translation presented here and the one
in [CAP17] is that we introduce a new ‘kind’ of signal for synchronization purposes.
In this sense, valued signals that represent channels will be called channel signals and
signals that do not carry a value (i.e., pure signals) will be called handshake signals.

Chapter 7. Encoding π R in ReactiveML 197

1 2 3 4 5 6 7 8 9 10 11 12 13

s

h

as

ah

(a) Program handshake1.
1 2 3 4 5 6 7 8 9 10 11 12 13

s

h

as

ah

(b) Program handshake2.

Figure 7.1: Behavior of the programs in Ex. 7.1.

Handshake signals induce a synchronization mechanism that allows for outputs
to be preserved throughout several instants, until the message is received by some
input. This is useful to correctly translate processes such as:

(νxy)(νwz)(x〈v1〉.P1 | w〈v2〉.P2 | z(u1).y(u2).P3)

Above, subprocessw〈v2〉.P2 must “wait” until the outermost synchronization has oc-
curred for its interaction to be enable. Since signal emission in RML is asynchronous,
we need a mechanism that allows processes to wait until their signals have been ac-
knowledged before executing their continuation. This is done by defining two RML
programs, called handshake processes, that mediate the synchronization between the
translated output and input processes:

Ho(s, t, h,Q)
def
= do loop (emit s t; pause) until h→ Q (7.1)

Hi(s, h, tx, R)
def
= do emit h when s; await s(tx) in R (7.2)

In expression Ho(s, t, h,Q), signal s with a tuple of values t is continuously emitted
until it is detected and signal h is emitted by some other process. The emission of h
triggers the continuation Q in the next instant. Analogously, process Hi(s, h, tx, R)
emits handshake signal h whenever s has been emitted. Notice that sub-expression
do emit h when s is used to detect the signal and emit h, whereas await s(tx) in R is
used to extract the tuple of values contained in s by storing it in a tuple of variables
tx. Continuation R is executed at the next instant.

Example 7.1. To better understand the intuitive behavior of expressions Ho(·) and
Hi(·), let us consider the following two ReactiveML programs:

let rec process handshake1 =

(pause ;Ho(s, t, h, emit ah)) ‖ (pause ;Hi(s, h, tx, emit as));

run handshake1
in run handshake1
let rec process handshake2 =

(pause ;Ho(s, t, h, emit ah)) ‖ (pause ; pause ; pause ;Hi(s, h, tx, emit as));

run handshake2
in run handshake2

Chapter 7. Encoding π R in ReactiveML 198

Whose intuitive behavior are described by the timing diagrams in Fig. 7.1. Program
handshake1 illustrates how the handshake delays the continuations until the next in-
stant. In Fig. 7.1a, we observe that no signals are emitted in the first instant. Then,
once signal s is emitted, signal h is also emitted in response. In the next time instant
both as and ah are emitted. The recursion continues in an infinite loop.

Program handshake2 illustrates how Ho(·) continues emitting s until h is present
(see Fig. 7.1b). In the figure, s is emitted in instant 2 and continues to be emitted
until instant 4 when signal h is detected. As with handshake1, the execution of the
continuations is delayed until the next instant. 4

The translation in [CAP17] uses a renaming function (ranged over by f, f ′, . . .) to
mimic the structure of session protocols. Modeling a handshaking mechanism in the
translation requires adding a second renaming function (ranged over by g, g′, . . .).
We write fx and gx as shorthand notations for f(x) and g(x).

Renaming functionsmust satisfy somewell-formedness conditions, described be-
low.

Definition 7.2 (Well-defined Renaming Functions). We will say that the renaming
function f is well-defined if it satisfies the following properties:

1. f : Us → Ur;

2. f(tt) = tt and f(ff) = ff.

We shall assume that renaming functions are always well-defined functions, un-
less otherwise stated.

Remark 7.3. Our results apply to well-typed programs (cf. Not. 2.21). This influences
the definition of well-formed renaming functions: if we were to consider any process
P , instead of a program, we would require both f and g to be defined for all the free
variables of P . Otherwise, the translation of P would be ill-defined. Whenever we
do not consider programs, we explicitly require this condition.

We now define the translation from π R into RML. For this we consider the formal
languages defined in Def. 3.100(3) and Def. 3.102(3).

Definition 7.4 (Translating π R into RML). Given two well-defined renaming func-
tions f and g, we define a translation Lπ R into LRML, written 〈J·Kgf , ψJ·Kgf 〉, where:

1. J·Kgf : π R → RML is as in Fig. 7.2.

2. ψJ·Kgf (x) = x, i.e., every variable in π R is mapped to the same variable in RML.

In writing JP Kgf we shall assume that the renamings of f occur first than those of g.

We discuss the most interesting cases in Fig. 7.2:

• The output process x〈v〉.P is translated using the handshake process Ho(·) in
(7.1). Expanding its definition, we obtain:

signal x′, hx′ in

(do loop (emit fx (fv, gv, x
′, hx′); pause) until gx → JP Kg,{x′←hx′}

f,{x←x′})

Chapter 7. Encoding π R in ReactiveML 199

Jx〈v〉.P Kgf def
= signal x′, hx′ in Ho

(
fx, (fv, gv, x

′, hx′), gx, JP Kg,{x′←hx′}
f,{x←x′}

)
Jx(y).P Kgf def

= Hi

(
fx, gx, (y, hy, w, hw), JP Kg,{w←hw,y←hy}

f,{x←w,y←y}
)

J∗x(y).P Kgf def
= let rec process repl α βg

f =

do emit gα when fα;
await fα(y, hy, w, hw)

in run β
g,{w←hw,y←hy}
f,{α←w,y←y} ‖ run (repl α βg,{w←hw,y←hy}

f,{α←w,y←y})

in run (repl x process JP Kgf)Jx / l.P Kgf def
= signal x′, hx′ in Ho

(
fx, (l, x

′, hx′), gx, JP Kg,{x′←hx′}
f,{x←x′}

)
Jx . {li : Pi}i∈IKgf def

= Hi

(
fx, gx, (l, w, hw), match l with li → JPiKg,{w←hw}

f,{x←w}
)

Jv? (P) : (Q)Kgf def
= if v then (pause ; JP Kgf) else (pause ; JQKgf)J(νxy)P Kgf def
= signal w, hw in JP Kg,{x←hw,y←hw}

f,{x←w,y←w}JP | QKgf def
= JP Kgf ‖ JQKgfJ0Kgf def
= ()

Figure 7.2: Translation from π R to RML (Def. 7.4).

There are two fresh signals: x′ is used for ensuing communications and hx′ is
used for ensuing handshakes. The translation uses a loop that constantly emits
signal fx with tuple (fv, gv, x′, hx′) as a value. In it, fv and gv denote the image
of value v in each renaming function. Notice that, by Def. 7.2, fv and gv only
become relevant when v is a channel or a variable (not a ground value). The
loop keeps emitting fx until handshake signal gx is emitted by a corresponding
input on x. At that point, the translation of P is executed by first renaming x as
x′ and then by assigning hx′ as the handshake signal for x′.

• The translation of the input process x(y).P goes hand-by-hand with the trans-
lation of output, using handshake process Hi(·) (cf. (7.2)). Expanding its def-
inition:

do emit gx when fx; await fx(y, hy, w, hw) in JP Kg,{w←hw,y←hy}
f,{x←w,y←y}

The translationwaits until signal fx is emitted by a corresponding output. Once
that occurs, signal gx is emitted to acknowledge that an input will occur in the
current instant. Subsequently, the tuple (y, hy, w, hw) is instantiated with the
parameters extracted from the tuple contained fx: variables w and hw bind the
signals to be used in ensuing communications, whereas y and hy bind the vari-
ables that will be substituted by fv and gv , respectively. The translation of the
continuation is executed in the next instant using the received parameters.

• Another interesting translation is that of the replicated input ∗x(y).P . Observe
thatwe use the same handshakemechanism for input. For readability purposes

Chapter 7. Encoding π R in ReactiveML 200

we expand this handshake mechanism.

let rec process repl α βg
f =

do emit gα when fα;
await fα(y, hy, w, hw)

in run β
g,{w←hw,y←hy}
f,{α←w,y←y} ‖ run (repl α βg,{w←hw,y←hy}

f,{α←w,y←y})

in run (repl x process JP Kgf)
Recursive process repl receives a variable α and a process β as parameters. Vari-
able α denotes the channel endpoint x, and βg

f denotes the translation of the
continuation P (with its respective renaming functions f and g). Intuitively,
repl generates a copy of itself that is executed in parallel only at the next instant.
Whenever signal fα is detected, signal gα is emitted, and the continuations are
activated in the next instant with the necessary renamings updated in g and f .

• The translations of selection and branching are similar to the ones of output
and input. The only differences are self-explanatory in Fig. 7.2. The conditional
v? (P) : (Q) is translated by adding a pause before processes P and Q, aiming
to preserve the main invariant of our translation: an action will be executed
in a single instant. The translation of the restriction operator unifies channel
endpoints on a single signal by renaming both endpoints with the same signal
w. Moreover, when translating (νxy)P , we create a handshake signal hw to
enforce the synchronization of the translations of communicating processes.
Finally, the parallel composition operator is translated homomorphically. For
clarity, we silently expandHi(·) andHo(·) in all the examples below.

We provide a detailed example of the application of Fig. 7.2:

Example 7.5. Let us consider the following well-typed program:

P1 = (νx1x2)(νy1y2)(x1〈y2〉.y1〈tt〉.0 | x2(u).u(u′).0)

whose step-by-step translation is:

JP1Kgf = J(νx1x2)(νy1y2)(x1〈y2〉.y1〈tt〉.0 | x2(u).u(u′).0)Kgf
= signal x, y, hx, hy in Jx1〈y2〉.y1〈tt〉.0 | x2(u).u(u′).0Kg′

f ′ (7.3)

= signal x, y, hx, hy in Jx1〈y2〉.y1〈tt〉.0Kg′

f ′ ‖ Jx2(u).u(u′).0Kg′

f ′ (7.4)
= signal x, y, hx, hy in

signal x′, hx′ in

do (loop (emit f ′x1
(f ′y2

, g′y2
, x′, h′x′); pause))

until g′x1
→ Jy1〈tt〉.0Kg′′

f ′′ ‖ (7.5)
do emit g′x2

when f ′x2
; await f ′x2

(u, hu, z, hz) in Ju(u′).0)Kĝf̂
= signal x, y, hx, hy in

signal x′, hx′ in

do loop (emit f ′x1
(f ′y2

, g′y2
, x′, hx′); pause)

Chapter 7. Encoding π R in ReactiveML 201

until g′x1
→ signal y′, hy′

in do loop (emit f ′′y1
(f ′′tt, g

′′
tt, y

′, hy′); pause) (7.6)
until g′′y1

→ () ‖
do emit g′x2

when f ′x2
; await f ′x2

(u, hu, z, hz) in

do emit ĝu when f̂u; await f̂u(u
′, hu′ , z′, hz′) in ()

We now show how the renaming functions are initialized and updated in each
translation step:

(1) Since fvπ(P1) = ∅, we let f = {(tt 7→ tt), (ff 7→ ff)} and g = {(tt 7→
tt), (ff 7→ ff)}.

(2) We declare fresh signals x, y, hx, hy . Briefly, signal x “unifies” endpoints x1
and x2, and signal y unifies y1 and y2. Signals hx and hy are the respective
handshake signals for x and y. Then, we update functions f and g accordingly:
f ′ = f, {x1 ← x, x2 ← x, y1 ← y, y2 ← y} and g′ = {x1 ← hx, x2 ← hx, y1 ←
hy, y2 ← hy}.

(3) We translate the parallel composition operator ‘ | ’. Notice that f ′ and g′ are
carried unchanged in both parallel processes.

(4) Each parallel process updates the functions individually. Thus, we will have
that:

f ′′ = f ′, {x← x′} g′′ = g′, {x′ ← hx′}

f̂ = f ′, {y ← z, u← u} ĝ = g′, {z ← hz, u← hu}

Finally, we show the execution of the translated process, using the semantics of RML:

JP1Kgf 7−→signal y′, hy′ in do (loop (emit y (tt, tt, y′, hy′); pause)) untilhy→ ()‖
do emit hy when y; await y(u′, hu′ , z′, hz′) in ()

7−→() ‖ ()

4

Remark 7.6. Notice that the well-definedness condition on renaming functions (cf.
Def. 7.2) is preserved during the translation. Indeed, by definition, the translation
only adds new pairs or updates the image of a variable in the domain of the renaming
function.

In the following example, we analyze the semantics of the RML expressions gen-
erated by J·Kgf (cf. Fig. 7.2). We also use this example to show how signal declarations
disappear during a RML execution.

Example 7.7. Consider the following well-typed process:

P2 = (νx1x2)(νy1y2)(x1〈tt〉.0 | x2(z1).y2(z2).0 | y1〈tt〉.0) (7.7)

and consider the translation in Fig. 7.2:

JP2Kgf = signal x, y, hx, hy in

Chapter 7. Encoding π R in ReactiveML 202

signal x′, hx′ in do loop (emit x (tt, tt, x′, hx′); pause) until hx → () ‖Jx2(z1).y2(z2).0Kg′

f ′ ‖
signal y′, hy′ in do loop (emit y (tt, tt, y′, hy′); pause) until hy → ()

7−→ () ‖ Jy2(z2).0Kg′′

f ′′ ‖ do loop (emit y (tt, tt, y′, hy′); pause) until hy → ()

7−→ () ‖ () ‖ ()

where f and g only contain the identity mapping for tt and ff and where f ′ =
f, {x1 ← x, x2 ← x, y1 ← y, y2 ← y}, and g′ = g, {x1 ← hx, x2 ← hx, y1 ← hy, y2 ←
hy}. Notice that we do not expand f ′′ and g′′: they can be derived by following the
definitions.

Notice that every big-step reduction of RML in the translation reaches a state
which has the same ‘capabilities’ as the source process (i.e., two synchronizations
can be executed). This invariant is preserved due to the handshake signals, which
disallow signal emissions from output translations to be lost. Observe that the one of
the parallel subprocesses in the big-step reduction sequence above corresponds to:

S = do loop (emit y1 (tt, tt, y′1, hy′
1
); pause) until hy1

→ ()

By inspection, it is possible to see that S corresponds to the translation of an output
operator (sans the required signal declarations). Indeed, although S has the same
capabilities as the translation of an output, it is not syntactically equal to such trans-
lation. This syntactic difference is introduced by the semantics of RML. This is a key
insight for proving operational correspondence, as we will need to account for the
missing signal declarations. 4

7.2 Static Correctness
Name invariance (cf. Def. 2.3(2)) states that an encoding should preserve substitu-
tions. To prove this property in J·Kfg , we consider the fact that substitutions in π R op-
erate over variables. Therefore, both channels and values may be substituted. Since
renaming function also substitutes variables in the translation, they should some-
how be reflected in the name invariance statement. We formalize this by introducing
a function composition � that merges renaming functions and substitutions. Intu-
itively, � merges a renaming function and a substitution by adding the pairs corre-
sponding to the variables to be substituted, mapped to their intended image to the
renaming functions. After presenting this definition, we state our name invariance
property.

Definition 7.8 (Composition of Renaming Functions). Let f : Us → Ur and σ :
Vs → Us be a substitution function in π R . We define a composition operator � such
that

f � σ ={(u 7→ u′) | ∀x ∈ (dom(f) ∩ dom(σ)).(u = σ(x) ∧ u′ = f(x))}∪

{(u 7→ u′) | ∀(u 7→ u′) ∈ f.(u 6∈ dom(σ))}

We extend this composition operator to renaming function g as expected.

Chapter 7. Encoding π R in ReactiveML 203

Theorem7.9 (Name Invariance for J·Kgf). For everyπ R processP , substitutionσ, and any
f and g such that fvπ(P) ⊆ dom(f) and fvπ(P) ⊆ dom(g), it holds that JPσKg⊙σf⊙σ = JP Kgfσ′
for some σ′.
Proof. By induction on the structure of P . The proof has one base case and eight
inductive cases. The base case is whenever P = 0 and is immediate. Moreover,
since all the inductive cases are similar, we only show P = x〈v〉Q. We distinguish
four sub-cases that depend on x, v ∈ dom(σ): (1) x, v ∈ dom(σ), (2) x, v 6∈ dom(σ),
(3) x ∈ dom(σ), v 6∈ dom(σ), (4) x 6∈ dom(σ), v ∈ dom(σ). We prove the first one as
the other are similar. First, assume that σ(x) = ẋ and σ(v) = v̇:
(1) dom(f) = dom(g) ⊇ fvπ(P) (Assumption)
(2) f(tt) = tt and f(ff) = ff (Assumption)
(3) x〈v〉.Qσ = ẋ〈v̇〉.(Qσ) (Def. of

substitution)
(4) (ẋ 7→ fx), (v̇ 7→ fv) ∈ f � σ (Def. 7.8)
(5) (ẋ 7→ gx), (v̇ 7→ gv) ∈ g � σ (Def. 7.8)

(6)
JPσKf⊙σg⊙σ = signal x′, c′ in

do loop (emit fẋ (fv̇, gv̇, x
′, c′); pause)

until gẋ → JQσKg⊙σ,{x′←c′}
f⊙σ,{ẋ←x′}

(Fig. 7.2 to (3),
(1))

(7)
JP Kfg = signal x′, y′ in

do loop (emit fx (fv, gv, x1, y1); pause) until gx

→ JQKg,{x←x′}
f,{x←x′}

(Fig. 7.2, (3),
(1))

(8) f � σ, {x← x′} = f, {x← x′} � σ (Def. 7.8, (4))
(9) g � σ, {x′ ← c′} = g, {x′ ← c′} � σ (Def. 7.8, (5))

(10) ∃σ′.(JQKg,{x′←c′}
f,{x←x′} σ

′ = JQσKg⊙σ,{x′←c′}
f⊙σ,{ẋ←x′} (By IH and (8),

(9))
(11) JPσKf⊙σg⊙σ = JP Kfgσ′ (By (10), (6),

(7))

Compositionality for J·Kgf is rather straightforward, as our translation is homomor-
phic to both the parallel composition operator and restriction (which is translated to
signal declaration in RML).
Theorem 7.10 (Compositionality for J·Kgf). LetP andE[·] be a π R process and an evalua-
tion context (cf. Def. 2.12), respectively. Then, for every f and g such that fvπ(P) ⊆ dom(f)

and fvπ(P) ⊆ dom(g), it holds that JE[P]Kgf = JEKgf [JP Kg′

f ′

]
, for some f ′ and g′.

Proof. By induction on the structure of P and a case analysis on E[·]. There is one
base case and eight inductive cases. The proofs are straightforward, therefore, we
only show two:
Base Case: Whenever P = 0. There are three Sub-cases depending on the grammar

in Def. 2.12, we only show whenever E = [·] | R, for any R.
(1) E[P] = 0 | R (Assumption)
(2) JE[P]Kgf = () ‖ JRKgf for any f and g (Fig. 7.2)
(3) JEKgf [J0Kgf] = () ‖ JRKgf for any f and g (Fig. 7.2, (2))
(4) JEKgf [JP Kgf] = JE[P]Kgf (By (2),(3))

Chapter 7. Encoding π R in ReactiveML 204

Inductive Step: There are eight inductive cases, corresponding to each possible pro-
cessP , each onewith three sub-cases corresponding to each possible evaluation
context E. We only show whenever P = x〈v〉.P and E = [·] | R, any R:
(1) E[P] = x〈v〉.P | R (Assumption)
(2) JE[P]Kgf = Jx〈v〉.P Kgf ‖ JRKgf for any f and g (Fig. 7.2, (1))
(3) JEKgf [JP Kgf] = Jx〈v〉.P Kgf ‖ JRKgf for any f and g (Fig. 7.2)
(4) JEKgf [JP Kgf] = JE[P]Kgf (By (2),(3))

7.3 Operational Correspondence

7.3.1 Considerations
As mentioned in § 3.1.2, big-step semantics such as the one given to RML are not
compatible with the reduction semantics of π R .

1. Signal declaration against restriction: Signal declaration in RML is not a static en-
tity, as it is the case for restriction π R . In RML for example, RML expression
signal x in pause ; e evolves to e in a single big-step reduction. On the other
hand, in π R , restrictions are static entities that are carried throughout the execu-
tion. For example, if (νxy)P has any possible reduction, using Rule bRESc (cf.
Fig. 2.1), it can be seen that (νxy)P −→ (νxy)Q. Nonetheless, this issue can
be tackled in RML by showing that signal declarations can be ‘inserted’ after a
big-step reduction without affecting the process behavior.

2. Big-steps are not reduction steps: InRML, a big-step reduction does not correspond
to single synchronization. Indeed, a single big-step reduction for a translated
process executes several synchronizations (as it corresponds to a time instant).
This situation is different fromπ R where a single reduction step corresponds to a
single synchronization step. We tackle this issue byusing the big-step semantics
for π R (cf. § 3.1.2).

Signal Declaration Against Restriction

In translations it is not uncommon to find intermediate processes, which indicate an
execution state in which the translation has not yet completely simulated the source
process. In a correct translation, it must be proven that intermediate processes con-
verge to a correctly translated source process.

In our setting, there are no proper intermediate processes. Rather, there are inter-
mediate states in which all the channel and handshake signals have been declared.
This fact can be observed by recalling P2 in Ex. 7.7:

P2 = (νx1x2)(νy1y2)(x1〈tt〉.0 | x2(z1).y2(z2).0 | y1〈tt〉.0)

we showed that the big-step semantics of RML allow for the following transitions
(assuming that fx1

= x1, gx1
= c1, and fy1

= y1, gy2
= c2):

JP2Kgf = signal x1, y1, c1, c2 in

Chapter 7. Encoding π R in ReactiveML 205

signal x′1, c
′
1 in do loop (emit x1 (tt, gtt, x

′
1, c
′
1); pause) until c1 → () ‖Jx2(z1).y2(z2).0Kg1f1 ‖

signal y′1, c
′
2 in do loop (emit y1 (tt, gtt, y

′
1, c
′
2); pause) until c2 → ()

7−→() ‖ Jy2(z2).0Kg′
1

f ′
1
‖ do loop (emit y1 (tt, gtt, y

′
1, c
′
2); pause) until c2→ ()

= R1

7−→() ‖ () ‖ ()=R2

From here, observe thatR1 6↪→R J(νx1x2)(νy1y2)(y2(z2).0 | y1〈tt〉.0)Kgf , which is what
we expected. In fact, R1 ↪→R Jy2(z2).0K ‖ S, where:

S = do loop (emit y1 (tt, tt, y′1, c
′
2); pause) until c2 → ()

Nonetheless, observing the RML processes, we can see that
signal y′1, c

′
2 in S = Jy1〈tt〉.0Kg1f1

for some g1 and some f1. Furthermore, it is also possible to observe that:

signal y1, c2 in Jy2(z2).0Kg′

f ′ ‖ signal y′1, c′2 in S

= J(νx1x2)(νy1y2)(y2(z2).0 | y1〈tt〉.0)Kg′

f ′

for some f ′ and g′. Notice that it is possible to obtain the desired translation by adding
appropriate signal declarations to replace the ones that were executed. In particular,
since our results are restricted to well-typed programs, we can recognize which sig-
nals are missing by using the free variables of the translated process. For example,
fv(R1) = {y1, y′1, c′2, c2}, which means that we need to declare the signals appropri-
ately in the process, as done above. We will say that any target term whose signals
have been initialized is called an initialized translation.

Big-Steps are Not Reduction Steps

A single big-step reduction in J·Kgf simulates several reduction steps in π R . To address
this discrepancy we shall use the big-step semantics for π R given in § 3.1.2. This
semantics correctly matches the execution of a big-step reduction in RML. Let us
start by presenting an example:
Example 7.11. Consider the process
P3 = (νxy)(νwz)(νx1y1)(x〈z〉.w〈tt〉.0 | y(w′).w′(w′′).0 | x1〈v1〉.0 | y1(z1).0) (7.8)

A possible reduction is:
P3 −→ (νxy)(νwz)(νx1y1)(x〈z〉.w〈tt〉.0 | y(w′).w′(w′′).0 | 0 | 0)

Using the big-step semantics of RML, it can be shown that the translation exhibits the
following behavior in a single big-step reduction:JP3Kgf 7−→ Jw〈tt〉.0Kg1f1 ‖ Jz(w′′).0Kg1f1 ‖ () ‖ ()
Which corresponds to more than a single reduction in π R :

P3 −→2 (νxy)(νwz)(νx1y1)(w〈tt〉.0 | z(w′′).0 | 0 | 0)
4

Chapter 7. Encoding π R in ReactiveML 206

Proof Outline

Below we state two operational correspondence statements that must be proven to
ensure this translation is indeed an encoding. The first one encompasses the oper-
ational soundness and completeness of valid encodings (cf. Def. 2.3), and uses the
big-step semantics of π R (cf. § 3.1.2). The second one corresponds to the operational
correspondence statement of refined encodings (cf. Def. 2.6), and uses the reduction
semantics in Fig. 2.1 for π R . Notice that it will be shown later that Thm. 7.13 can be
derived from the semantic correspondence (cf. Lem. 3.35) and Thm. 7.12.
Theorem 7.12 (ValidOperational Correspondence). LetP be a well-typed π R program
(cf. Not. 2.21). Also, let f and g be renaming functions. Then, the following properties hold:

1. Completeness: For every Q such that P ↪↪→→∗ Q, it holds that JP Kgf 7−→∗. JQKg′

f ′ ,
for some f ′ and g′.

2. Soundness: For every RML process S such that JP Kgf 7−→∗ S, there exists Q such
that P ↪↪→→∗ Q and S . JQKg′

f ′ , for some f ′ and g′.

Theorem 7.13 (Refined Operational Correspondence). Let P be a well-typed π R pro-
gram (cf. Not. 2.21). Also, let f and g be renaming functions. Then, the following properties
hold:

1. Completeness: For every Q such that P −→∗ Q, then there exists Q′ such thatJP Kgf 7−→∗. JQ′Kg′

f ′ and Q −→∗ Q′, for some f ′ and g′.

2. Soundness: For every RML process S such that JP Kgf 7−→∗ S, there exists Q such
that P −→∗ Q and S . JQKg′

f ′ , for some f ′ and g′.
Before presenting a proof outline, we briefly discuss about the two key insights

that make up the proof. They are enumerated below.
(1) It can be shown that for every target term S there exists a signal declaration

context Dx̃ such that S . JP Kgf (cf. Def. 2.42) for some well-typed program P .

(2) It can be shown that for every well-typed program P such that P ↪↪→→ P ′ (cf.
Def. 3.31), then JP Kgf 7−→. JP ′Kgf and vice versa.

We now give an outline of the proof. First, we sketch the necessary auxiliary
lemmas; then, we discuss how these lemmas are used to prove Thm. 7.13. We first
focus on syntactically characterizing target terms since they exhibit concrete syntac-
tical characteristics. Using these characterizations we proceed to prove Thm. 7.13(1)
and then Thm. 7.13(2). Details follow:
(1) First, Lem. 7.15, Def. 7.16 and Cor. 7.17 are used to characterize the syntactic

structure of translated pre-redexes and characterizing the target terms that can
be obtained from a single RML big-step reduction (so-called initialized transla-
tions).

(2) Lem. 7.19 shows that it is possible to add the missing signal declarations on ini-
tialized translations of pre-redexes and conditionals, obtaining a RML expres-
sion that corresponds exactly to the translation of the source π R process.

Chapter 7. Encoding π R in ReactiveML 207

(3) Lem. 7.20 is used to characterize the shape of the translation of well-typed pro-
grams, which is useful when dealing with target terms.

(4) Lem. 7.23 shows that the translations of enabled redexes (cf. Def. 7.21) evolves,
in a single RML big-step reduction, to the translation of a process that can be
obtained by reducing source process; i.e., if R is a redex and (νxy)R −→, thenJ(νxy)RKgf 7−→↪→R JR′Kg′

f ′ for some f ′, g′ and (νxy)R −→ (νxy)R′.

(5) Lem. 7.27 generalizes the results in Item (4) to the translation of well-typed
programs.

Using these results we prove the operational completeness and operational sound-
ness results to demonstrate Thm. 7.13:

Completeness: The proof proceeds by induction on the length of the big-step reduc-
tion P ↪↪→→∗ P ′. The base case is immediate. The inductive step follows from
the conjunction of Lem. 7.28 and the IH. In Lem. 7.28 we show that a single
π R big-step reduction (cf. Def. 3.31) can be matched by a single RML big-step
reduction.

Soundness: The proof of operational soundness has the following structure: first,
Thm. 7.30 shows that every RML big-step reduction of a translated process can
be matched by multiple π R reductions (i.e., −→∗). Then, we prove that if a
single RML big-step reduction is matched by multiple π R reductions, then it
must be the case that the same single RML big-step reduction ismatched by a π R
big-step reduction (cf. Lem. 7.31). Finally, we prove completeness by applying
induction on the number of RML steps (cf. Cor. 7.32).

Auxiliary Results

Some auxiliary results and definitions follow. We first formalize the notion of target
term for J·Kgf :
Definition 7.14 (Target Terms). We define target terms as the set of RML expressions
that are induced by the translation J·Kgf ofwell-typed π R programs and is closed under
7−→: {S | JP Kgf 7−→ S and ` P}. We shall use S, S′, . . . to range over target terms.

We then show that the translation of a pre-redex or inaction process either exe-
cutes a RML big-step reduction to the encoding of itself or to some RML expression
that can only reduce to itself:

Lemma 7.15. For every pre-redex or inaction π R processP (cf. Def. 2.19) it holds that either
(1) JP Kgf 7−→ JP Kgf or (2) there exists some target term S such that JP Kgf 7−→ S 7−→∗ S.

Proof (Sketch). We prove each item individually. In each item we apply Fig. 7.2 to P
andwe conclude by using the rules in the semantics ofRML in Fig. 2.8 for the resulting
target term JP Kgf .

We now introduce the initialized translation of a pre-redex and the inaction pro-
cess. Notice that conditionals such as v? (P1) : (P2) do not have an initialized transla-
tion.

Chapter 7. Encoding π R in ReactiveML 208

init(JP Kgf) def
=

JP Kgf if P = 0, P = x(y).Q or
P = x . {li : Qi}i∈I

do (loop (emit fx (m, gm, x
′, c′); pause))

until gx → JQKg,{x′→c′}
f,{x→x′}

if P = x〈m〉.Q

do (loop (emit fx (m,x′, c′); pause))

until gx → JQKg,{x′→c′}
f,{x→x′}

if P = x / m.Q

do emit gx when fx;

await fx(y, hy, w, hw) in

run process JQKg,{w←hw,y←hy}
f,{α←w,y←y} ‖

run J∗x(y).QKg,{w←hw,y←hy}
f,{α←w,y←y}

if P = ∗x(y).Q

Figure 7.3: Initialized Translations.

Definition 7.16 (Initialized Translations). Let P be a π R pre-redex (cf. Def. 2.19) or
the inaction process. The initialized translation of P , written init(JP Kgf), is given in
Fig. 7.3.

Using Lem. 7.15 and Def. 7.16, we can prove the following corollary by applying
a case analysis on P :

Corollary 7.17. For every π R pre-redex P , JP Kgf 7−→ init(JP Kgf) 7−→∗ init(JP Kgf).
We now introduce some useful notation for renaming functions whenever they

are applied to sequences of variables:

Notation 7.18. Let f be a renaming function and x be a sequence of variables x1 . . . xn
with n ≥ 1. The following notation will be used throughout Chapters 7 and 8.

• We write fx̃ to denote the sequence formed by fx1 . . . fxn .

• Assuming another renaming function f ′, we write fx̃f ′x̃ to denote the concate-
nation of the sequences fx̃ and f ′x̃.

• Assuming another sequence of variables x̃′ such that |x̃′| = |x̃|, wewrite f, {x̃←
x̃′} to refer to the update f, {x1 ← x′1, . . . , xn ← x′n}.

• We use the same notation for renaming function g.

Using the previous notation and lemmas we can prove the existence of signal
declaration contexts (cf. Def. 2.40) for the initialized translations of pre-redexes:

Lemma 7.19. For every π R pre-redex or inaction process P and every target term S, it holds
that S = init(JP Kgf) implies that either:

1. S = JP Kgf (or)

Chapter 7. Encoding π R in ReactiveML 209

2. there exists a declaration context Dx̃ such that Dx̃[S] = JP Kgf , for some g and f and
x̃ = (fv(S) ∩ fv(JP Kfg)) \ (ran(f) ∪ ran(g)).

Proof. By applying a case analysis on S. For details see App. D.1.

We now show that the syntactic shape of well-typed π R programs induces a con-
crete structure in the syntax of translated processes:

Lemma 7.20. For every well-typed π R program (νx̃ỹ)P (cf. Not. 2.21), and any well-
defined renaming functions f and g (cf. Def. 7.2), it holds that:

J(νx̃ỹ)P Kgf = signal z̃c̃ in (JP1Kg1f1 ‖ JP2Kg1f1 ‖ · · · ‖ JPnKg1f1)
where n ≥ 1, every Pi, 1 ≤ i ≤ n is either a pre-redex (cf. Def. 2.19) or Pi = v? (Q1) : (Q2),
and f1 = f, {x̃← z̃, ỹ ← z̃} and g1 = g, {x̃← c̃, ỹ ← c̃}, with |z̃| = |c̃| = |x̃| = |ỹ| ≥ 1.

Proof. Assume (νx̃ỹ)P is a well-typed π R program. Then, by Cor. 3.34 applied to P ,
we obtain P ≡S (νx̃ỹ)(P1 | P2 | . . . | Pn). Finally, apply Fig. 7.2:

J(νx̃ỹ)(P1 | P2 | . . . | Pn)Kgf = signal z̃c̃ in (JP1Kg1f1 ‖ JP2Kg1f1 ‖ · · · ‖ JPnKg1f1)
which is what we wanted to prove.

Up until this point we have characterized the dynamic behavior of translated pre-
redexes. We have shown that the translation of pre-redexes have big-step reductions
that cannot be precisely matched by source π R processes (as pre-redexes cannot re-
duce). These big-step reductions correspond to initialized translations. We have also
shown that it is possible to recover the initial translation by adding a harmless con-
text that rebinds the signals being declared. In the sequel, we focus on analyzing the
behavior of translated π R programs, rather than pre-redexes. We first introduce some
auxiliary definitions:

Definition 7.21 (Enablers for π R Processes). Let P be an π R process. We say that the
sequence of variables x̃, ỹ enable P if there is some P ′ such that (νx̃ỹ)P −→ (νx̃ỹ)P ′.

Enablers allow us to refer to the specific sequence of variables and co-variables
that enable π R processes to reduce. Following our previous results, it is expected that
enablers are ‘lost’ in a big-step reduction from a translated π R process.

Example 7.22. Let R = x〈v〉.P | y(z).Q. Assuming that v ∈ {tt, ff}, then R is en-
abled by x, y. Thus, (νxy)R −→ (νxy)(P | Q{v/z}). Therefore,

J(νxy)RKgf = signal w, hw in Jx〈v〉.P Kg,{x←hw,y←hw}
f,{x←w,y←w} ‖ Jy(z).QKg,{x←hw,y←hw}

f,{x←w,y←w}

Using the big-step semantics of RML it is possible to show that:

J(νxy)RKgf 7−→ JP Kg′

f ′ ‖ JQ{v/z}Kg′

f ′

for some unimportant f ′, g′. Notice that the declaration signal w, hw in . . . disap-
pears in the transition. Therefore, to recover the translation it is necessary to insert a
signal declaration context Dz̃ which rebinds the lost signal declarations. 4

Chapter 7. Encoding π R in ReactiveML 210

The following lemma proves that whenever a redex reduces, it is possible to find
the necessary signals to define a signal declaration context (cf. Def. 2.40) that recovers
the translation of the enablers of said redex.

Lemma 7.23. Let R be a well-typed π R redex enabled by x̃, ỹ. If J(νx̃ỹ)RKgf 7−→ S then
there exists R′ such that (νx̃ỹ)R −→ (νx̃ỹ)R′ and the following holds:

1. S ↪→R JR′Kg′

f ′ for some f ′, g′ such that x̃ỹ ∈ dom(f ′) and x̃ỹ ∈ dom(g′) and

2. there exists Dz̃ such that Dz̃[S] ≡α J(νx̃ỹ)R′Kg′

f ′ for some z̃.

Proof. By a case analysis on the possible redexes. For every case we first show Item
(1) and then Item (2) (for details see App. D.1).

We now fully characterize target terms. The following lemma shows that a trans-
lated π R program either reduces to an initialized translation or to the translation of
some π R program.

Lemma 7.24. Let P = (νx̃ỹ)(P1 | . . . | Pn), n ≥ 1 be a well-typed π R program. Then, the
following holds: for every S such that JP Kgf 7−→∗ S, it holds that (1) S = S1 ‖ · · · ‖ Sm,
m ≥ n, (2) there exists P ′ = (νx̃ỹ)(P ′1 | . . . | P ′m) such that P −→∗ P ′ and (3) for every
1 ≤ i ≤ m there exist f ′, g′ such that either:

1. Si ↪→R init(JP ′i Kg′

f ′), for some pre-redex P ′i or

2. Si ↪→R JP ′i Kg′

f ′ , such that P ′i is a pre-redex, P ′i = v? (Q1) : (Q2), or P ′i = 0.

Proof. By Cor. 3.34, for every 1 ≤ i ≤ n, Pi is a pre-redex or Pi = v? (P ′i) : (P
′′
i). We

apply induction on the length r of transition JP Kgf 7−→∗ S. The base case is JP Kgf 7−→∗JP Kgf , which is immediate. For details on the inductive step see App. D.1.

As a corollary from Lem. 7.19 and Lem. 7.24 we have that:

Corollary 7.25. Let P = (νx̃ỹ)(P1 | . . . | Pn), n ≥ 1 be a well-typed π R process. Then,
for every S such that JP Kfg 7−→∗ S, it holds that (1) S = S1 ‖ · · · ‖ Sm, m ≥ n, (2) there
exists P ′ = (νx̃ỹ)(P ′1 | . . . | P ′m) such that P −→∗ P ′ and (3) for every 1 ≤ i ≤ m, there
exist a, possible empty, declaration context Dz̃i and some renaming functions f ′ and g′ such
that:

Dz̃1 [S1] ‖ · · · ‖ Dz̃m [Sm] ↪→R JP ′1Kg′

f ′ ‖ · · · ‖ JPmKg′

f ′

From Lem. 7.23(2), we know that there exists a declaration context for the process
obtained by the big-step reduction of a translated redex. This context contains all the
necessary signal declarations to recover the translation of any process reachable from
the source process. We can generalize this result to well-typed programs, as shown
below. We first introduce an auxiliary lemma and then state this fact.

Lemma 7.26. Let P be a well-typed program. Then, fvπ(P) = fv(JP Kgf) = ∅.
Proof. By induction on the structure of P . All the cases are immediate.

Chapter 7. Encoding π R in ReactiveML 211

Lemma 7.27. Let P = (νx̃ỹ)(P1 | . . . | Pn), n ≥ 1 be a well-typed program. For every
S such that JP Kgf 7−→∗ S, it holds that (1) S = S1 ‖ · · · ‖ Sm, m ≥ n, (2) there exists
P ′ = (νx̃ỹ)(P ′1 | . . . | P ′m) such that P −→∗ P ′ and (3) there exist signal declaration
contexts (cf. Def. 2.40) Dz̃, Dz̃1 , . . . , Dz̃m and renaming functions f ′ and g′ such that:

Dz̃[Dz̃1 [S1] ‖ · · · ‖ Dz̃m [Sm]] ↪→R J(νx̃ỹ)(P ′1 | . . . | P ′m)Kg′

f ′

Proof. From Cor. 7.25 it follows that:

∃Dz̃1 , . . . , Dz̃m .(Dz̃1 [S1] ‖ · · · ‖ Dz̃m [Sm] ↪→R JP ′1Kg′

f ′ ‖ · · · ‖ JP ′mKg′

f ′) (7.9)
P −→∗ (νx̃ỹ)(P ′1 | . . . | P ′m) (7.10)

To prove the existence of Dz̃ , we proceed by induction on the number of enabled
redexes. Notice that typability and Thm. 3.28 will ensure that it is not possible for
multiple Si reacting to the same signal being emitted:

Base Case: There are r = 0 enabled redexes in P . If there are no enabled redexes,
then P 6−→. Then, by Lem. 7.24, JP Kgf 7−→ S1 ‖ · · · ‖ Sm, m ≥ n, where
for every 1 ≤ i ≤ m, process Si is either the encoding of an initialized pre-
redex (cf. Def. 7.16), a pre-redex, a conditional process or the inaction process.
Furthermore, by (1) and (2):

Dz̃1 [S1] ‖ · · · ‖ Dz̃m [Sm] ↪→R JP1Kg′

f ′ ‖ · · · ‖ JPmKg′

f ′

and since P 6−→, then m = n. Therefore from Lem. 7.26, we conclude that to
obtain Dz̃ , we need to close all the remaining free variables appropriately. For
this, we take the sequence z̃ = fx̃gx̃ and conclude the proof.

Inductive Step: Assume r > 1 enabled redexes in P . We prove that when adding
a new enabled redex, it is possible to find the necessary contexts. This follows
from Lem. 7.23 and IH.

7.3.2 Operational Completeness
For proving operational completeness we must first show that a single π R big-step
reduction is matched by a single RML big-step reduction.

Lemma 7.28. Let P be a well-typed π R program. Then, for every P ′ such that P ↪↪→→ P ′, it
holds that JP Kgf 7−→. JP ′Kg′

f ′ for some f ′ and some g′.

Proof. By Cor. 3.34, P = (νx̃ỹ)(P1 | . . . | Pn), n ≥ 1 and for every 1 ≤ i ≤ n, Pi is
either a pre-redex (cf. Def. 2.19) or a conditional process. We proceed by induction
on the number n of processes in P :

Base Case: Whenever n = 1. There are seven cases corresponding to all five pre-
redexes, inaction and conditional process. The former two are immediate, since
by Fig. 2.1, there are no reductions for individual pre-redexes or inaction. The
case for P1 = b? (Q1) : (Q2) is also immediate since by Fig. 2.8, J(νx̃ỹ)(b? (Q1) :

Chapter 7. Encoding π R in ReactiveML 212

(Q2))Kgf 7−→. JQiKgf , i ∈ {1, 2}, depending on b ∈ {tt, ff}. Similarly, we
have that (νx̃ỹ)(b? (Q1) : (Q2)) −→ Qi, depending on b (Rules bIFTc or bIFFc
in Fig. 2.1).

Inductive Step: Whenever n > 1. Assume that P = (νx̃ỹ)(P1 | . . . | Pn−1) and we
need to show that the property holds whenever we add a new pre-redex, inac-
tion or conditional process Pn. In all these cases f ′ = f and g′ = g.

IH: If (νx̃ỹ)(P1 | . . . | Pn−1) ↪↪→→ (νx̃ỹ)(P ′1 | . . . | P ′n−1) then

J(νx̃ỹ)(P1 | . . . | Pn−1)Kgf 7−→. J(νx̃ỹ)(P ′1 | . . . | P ′n−1)Kg′

f ′

for some f ′, g′.

We proceed by a case analysis on Pn. There are seven cases. Cases Pn = 0
and Pn = b? (Q1) : (Q2) are immediate as there is no interaction with other Pi,
1 ≤ i ≤ n−1. Whenever Pn is pre-redex, there are five cases, which are similar.
We will only show one Pn = x〈v〉.Q as all the other cases are similar:

Case Pn = x〈v〉.Q: There are two cases: Whenever there exists 1 ≤ i ≤ n − 1
such thatPi = y(z).R and (νx̃ỹ)(Pn | Pi) is an enabled redex (cf. Def. 7.21)
orwhenever suchPi does not exist. Notice that by typability and Thm. 3.28
if such Pi exists, it is unique (cf. Def. 3.27).
Case ∃Pi = y(z).R: LetM = (νx̃ỹ)(P1 | . . . | y(z).R | . . . | Pn−1).
(1) ` P (Assumption)
(2) P =(νx̃ỹ)(P1 | . . . |y(z).R | . . . |Pn−1 |x〈v〉.Q) (Assumption)
(3) P ↪↪→→P ′

P ′=(νx̃ỹ)(P ′1 | . . . |R{v/z}| . . . | P ′n−1 |Q)
(By Def. 3.31,
(2))

(4) M ↪↪→→M ′

M ′=(νx̃ỹ)(P ′1 | . . . | y(z).R | . . . | P ′n−1)
(By (1),
Def. 3.31, (2))

(5) JMKgf 7−→. JM ′Kg′

f ′ , for some f ′, g′ (IH, (4))
(6) JP Kgf 7−→. JP ′Kg′

f ′ for some f ′, g′ ((4), Fig. 2.8,
Lem. 7.27)

Case ¬∃Pi = y(z).R: The proof follows by IH and Lem. 7.27. Notice that
there is no process to await the signal emitted by Pn. Therefore, there
is no synchronization.

Having proving this correspondence, we can now prove that the translation is
operationally complete for ↪↪→→ (Thm. 7.12(2)).

Theorem 7.29 (Refined Completeness for J·Kgf). Let P be a well-typed π R program.
Then, for every Q such that P ↪↪→→∗ Q, it holds that JP Kgf 7−→∗. JQKg′

f ′ , for some f ′ and
some g′.

Proof. By induction on the length of P ↪↪→→∗ P ′. The base case is immediate. The
inductive step follows from the conjunction of the IH and Lem. 7.28.

Chapter 7. Encoding π R in ReactiveML 213

7.3.3 Operational Soundness
For proving the soundness property, we first require proving Thm. 7.13(2).

Theorem 7.30 (Valid Soundness). For every well-typed π R program P and every RML
process S such that JP Kgf 7−→∗ T , there exists P ′ such that P −→∗ P ′ and S . JP ′Kg′

f ′ , for
some f ′ and some g′.

Proof. Follows directly from Lem. 7.27.

We nowprove that whenever there is a correspondence between a single RML big-
step reduction of a translated π R process and multiple reduction steps in π R , then the
sequence of steps must necessarily be a single π R big-step reduction (cf. Def. 3.31).

Lemma 7.31. Let P, P ′ be well-typed programs and f and g, be well-defined renaming func-
tions (cf. Def. 7.2). Then, if JP Kgf 7−→. JP ′Kg′

f ′ , for some f ′ and some g′, and P −→∗ P ′, it
holds that P ↪↪→→ P ′.

Proof. By Cor. 3.34, P = (νx̃ỹ)(P1 | . . . | Pn), n ≥ 1 and for every 1 ≤ i ≤ n, Pi is
either a pre-redex (cf. Def. 2.19) or a conditional process. We proceed by induction
on the number n of processes in P :

Base Case: Whenever n = 1. There are seven cases corresponding to all five pre-
redexes, inaction and conditional process. The former two are immediate, since
by Fig. 2.1, there are no reductions for individual pre-redexes or inaction. The
case for P1 = b? (Q1) : (Q2) is also immediate since, by Fig. 2.8, J(νx̃ỹ)(b? (Q1) :
(Q2))Kgf 7−→. JQiKgf , i ∈ {1, 2}, depending on b ∈ {tt, ff}. Similarly, we have
that (νx̃ỹ)(b? (Q1) : (Q2)) −→ Qi, depending on b (Rules bIFTc or bIFFc), which
implies, by Def. 3.31, that P ↪↪→→ P ′.

Inductive Case: Assume n ≥ 1.

IH: If J(νx̃ỹ)(P1 | . . . | Pn−1)Kgf 7−→. J(νx̃ỹ)(P ′1 | . . . | P ′m)Kg′

f ′ , for some f ′
and some g′, withm ≥ n and

(νx̃ỹ)(P1 | . . . | Pn−1) −→∗ (νx̃ỹ)(P ′1 | . . . | P ′m)

then (νx̃ỹ)(P1 | . . . | Pn−1) ↪↪→→ (νx̃ỹ)(P ′1 | . . . | P ′m)

We show that whenever we add a new process Pn in P , the property still holds.
The proof proceeds by a case analysis on Pn. There are seven cases correspond-
ing to all five pre-redexes, inaction and conditional process. The inaction pro-
cess is immediate, as well as the conditional, which proceed by IH and using
the semantics in Fig. 2.8 and Rule bBIG-STEPc in Def. 3.31.
Whenever we add a pre-redex, there will be two cases: (1) whenever Pn can
synchronize with another Pi, 1 ≤ i ≤ n − 1, and (2) whenever such synchro-
nization cannot occur. Case (2) follows immediately by IH, as we do not in-
troduce any reduction. In Case (1), the proof is straightforward by identify-
ing the synchronization Rule (i.e., bCOMc, bSELc, bREPc) that can occur with the
added Pn. Then, by well-formedness (cf. Def. 3.27), adding Pn does only in-
duces a unique redex. Thus, we can show that (νx̃ỹ)(P1 | . . . | Pn−1 | Pn) ↪↪→→

Chapter 7. Encoding π R in ReactiveML 214

(νx̃ỹ)(P ′1 | . . . | P ′n−1 | P ′n) is a valid application of Rule bBIG-STEPc. Finally, it
can be shown that

J(νx̃ỹ)(P1 | . . . | Pn−1 | Pn)Kgf 7−→. J(νx̃ỹ)(P ′1 | . . . | P ′n−1 | P ′n)Kg′

f ′

by using the semantics in Fig. 2.8.

Thm. 7.12(2) follows as a corollary from Thm. 7.30 and Lem. 7.31, by applying in-
duction on the number of transitions in JP Kgf 7−→∗ T . Similarly, Thm. 7.13(1) follows
from the composition of Lem. 3.35(2) and Thm. 7.12(1).

Corollary 7.32 (Refined Soundness for J·Kgf). For every well-typed π R program P and
every RML process S such that JP Kgf 7−→∗ S, there exists P ′ such that P ↪↪→→∗ P ′ and
S . JP ′Kg′

f ′ , for some f ′ and some g′.

Corollary 7.33 (Refined Completeness). For every Q such that P −→∗ Q there exists
Q′ such that JP Kgf 7−→. JQ′Kg′

f ′ and Q −→∗ Q′ for some f ′ and g′.

We now prove that operational correspondence holds for translation J·Kgf . We
prove a valid operational correspondence, used to demonstrate the translation is a valid
encoding (cf. Def. 2.3) and a refined operational correspondence, used to show that
the translation is a refined encoding (cf. Def. 2.6).

Theorem 7.12 (ValidOperational Correspondence). LetP be a well-typed π R program
(cf. Not. 2.21). Also, let f and g be renaming functions. Then, the following properties hold:

1. Completeness: For every Q such that P ↪↪→→∗ Q, it holds that JP Kgf 7−→∗. JQKg′

f ′ ,
for some f ′ and g′.

2. Soundness: For every RML process S such that JP Kgf 7−→∗ S, there exists Q such
that P ↪↪→→∗ Q and S . JQKg′

f ′ , for some f ′ and g′.

Proof. Follows from Thm. 7.29 and Cor. 7.32.

Theorem 7.13 (Refined Operational Correspondence). Let P be a well-typed π R pro-
gram (cf. Not. 2.21). Also, let f and g be renaming functions. Then, the following properties
hold:

1. Completeness: For every Q such that P −→∗ Q, then there exists Q′ such thatJP Kgf 7−→∗. JQ′Kg′

f ′ and Q −→∗ Q′, for some f ′ and g′.

2. Soundness: For every RML process S such that JP Kgf 7−→∗ S, there exists Q such
that P −→∗ Q and S . JQKg′

f ′ , for some f ′ and g′.

Proof. Follows from Cor. 7.33 and Thm. 7.30.

We now summarize the correctness results to ensure that our translation is indeed
an encoding. In the case of J·Kgf , we have that the translation is both a valid and refined
encoding—see Def. 2.3 and Def. 2.6.

Chapter 7. Encoding π R in ReactiveML 215

Theorem 7.34 (RML Encodes π R). Consider the languages Lπ R , L∗π R , and LRML as they
were given in Def. 3.100(3,4) and Def. 3.102(3), respectively. Then, the following holds:

(1) Translation 〈J·Kgf , ψJ·Kgf 〉, which maps Lπ R into LRML is a refined encoding, according
to Def. 2.6.

(2) Translation 〈J·Kgf , ψJ·Kgf 〉, which maps L∗
π R into LRML is a valid encoding according to

Def. 2.3.

Proof. Numeral (1) follows from Thm. 7.9, Thm. 7.10, and Thm. 7.13. Numeral (2)
follows from Thm. 7.9, Thm. 7.10, and Thm. 7.12.

7.4 Timed Patterns Revisited: J·Kgf
In this section we present a ReactiveML representation of the timed patterns in § 1.6
using J·Kgf . In § 7.4.1 we present an overview of the ideas needed to develop these
representations in the encoding. In § 7.4.2 we discuss the request-response timeout
pattern; in § 7.4.3, the messages in a time-frame pattern, and in § 7.4.4 we present the
action duration pattern in RML. Finally, we present the repeated constraint pattern
in ReactiveML (see § 7.4.5).

7.4.1 Overview: Exploiting Compositionality via Decompositions
To use the encoding J·Kgf to represent timed and reactive features we shall follow the
same ideas developed in § 4.4.1. Our goal is to show that, similarly to lcc, it is possible
to use ReactiveML as a foundation for a unified view ofmessage-passing programs in
which features such as timed and reactive behavior can be analyzed. Summarizing,
there are two key insights for our approach:

(1) Encoded processes can be used as “code snippets”: Thanks to the compositionality
property of our translation (cf. Thm. 7.10), it is possible to use encoded pro-
cesses as code snippets in RML programs. Moreover, thanks to the operational
correspondence property, these code snippets will preserve the behavior in-
herited from their source π R terms (cf. Thm. 7.12 and Thm. 7.13). This ensures
that the ReactiveML programs created using the translations preserve the de-
sired behavior up to certain conditions that depend on the context in which the
snippets are used.

(2) Process decompositions give more control over the generated programs: Using a pro-
cess decomposition function for π R processes such as the one in Def. 4.51 allows
us to gain more control over the code snippets obtained from the encoding. In
this way, we can describe timed and reactive features in a more granular way
than the descriptions we would obtain by considering exclusively encodings of
processes that are not decomposed.

As an example of this approach, let us consider process Ph in (4.3):

Ph = (νxy)(x〈REQ〉.x(z).0 | y(z).y〈ACK〉.0)

Chapter 7. Encoding π R in ReactiveML 216

This process can be typed in π R , as there are no races in it.
Now, assume that wewould like to represent the fact that the accept-request com-

munication inPh can only occurwhenever some event has been emitted; for example,
an scenario for this situation could be a program in which Ph is only enabled after
an event error has occurred. In this case, we could use the following ReactiveML
expression:

await error in JPhKgf
where renaming functions f and g can be obtained as shown in Fig. 7.2. It would also
be possible to think of more involved programs. For example, we could also describe
a ReactiveML expression in which both the parallel subprocesses of Ph depend on
different events to be activated (e.g., error1 and error2):

Dx̃[await error1 in Jx〈REQ〉.x(z).0Kgf ‖ await error2 in Jy(z).y〈ACK〉.0Kgf]
where x̃ = x and functions f and g can be obtained by following Fig. 7.2.

Because of the operational correspondence property of J·Kgf (cf. Thm. 7.13 and
Thm. 7.12), the RML snippets from the encoding will preserve the behavior intended
for Ph, provided that the events are present. In this sense, the encoding allow us to
represent requirements that may appear in message-passing programs, but are not
explicitly representable in π R .

To represent the timed patterns in § 1.6, we shall lift the decomposition D(·) in
Def. 4.51 to π R . Notice that we can do this without adding more details because there
are no differences between the syntax from π OR and π R processes.

7.4.2 Request-Response Timeout
The request-response timeout enforces quality of service by requiring a strict deadline
on the acknowledgment of request messages (cf. § 1.6). From the server side, the
specification of the request-response timeout pattern is:

(a) Server side: After receiving a message REQ from A, B must send the acknowledg-
ment ACK within t time units.

Before giving an RML representation we first introduce a π R process annotated to
represent the specification. For this we can reuse Pr in (4.7):

Pr = (νxy)(x〈REQ〉.x(z).Q1 | y(z).y〈ACK〉︸ ︷︷ ︸
t

.Q2)

where the time elapsed between the reception of the request and the acknowledgment
must not exceed t time units. Similarly, we can also reuse the decomposition in § 4.4.2
to obtain:

D(Pr) = (νũ)(D1 | D2 | D3 | D4 | R)

where ũ can be obtained by applying Def. 4.51 and each of the parallel sub-processes

Chapter 7. Encoding π R in ReactiveML 217

Di (i ∈ {1, 2, 3, 4}) is given below:

D1 = c2(ũx).x1,1〈REQ〉.d3〈ũx \ x1,1〉.0
D2 = c3(ũx \ x1,1).x1,2(zz̃1).d4〈ũxzz̃1 \ x1,1x1,2〉.0
D3 = c5(ũy).y1,1(z

′z̃2).d6〈ũyz′z̃2 \ y1,1〉.0
D4 = c6(ũyz

′z̃2 \ y1,1).y1,2〈ACK〉.d7〈ũyz′z̃2 \ y1,1y1,2〉.0

To represent timed patterns in RML it is important to understand that the notion
of time in synchronous reactive programming languages is logical—i.e., time units
in RML are flexible. Therefore, when considering the timing constraint imposed by
the pattern we will use events, rather than the time units of RML themselves. We first
consider the encoding ofD(Pr), which thanks to the compositionality property of the
encoding (cf. Thm. 7.10) is as follows:

JD(Pr)Kgf = Dz̃[JD1Kg1f1 ‖ JD2Kg1f1 ‖ JD3Kg1f1 ‖ JD4Kg1f1 ‖ JRKg1f1]
whereDz̃[−] is as in Def. 2.40, z̃ can be derived by following the rules in Fig. 7.2. Sim-
ilarly, the renaming functions f1 and g1 can be obtained by following the translation.

We can then build an RML program that represents the request-response timeout
pattern by using the preemption construct do (e1) until t → (e2). Intuitively, this
construct indicates that whenever the timeout signal t is present and the internal ex-
pression e1 has not terminated, the failure must be reported. Using the code snippets
obtained from JD(Pr)Kgf we have:

e1 = Dz̃[do (JD1Kg1f1 ‖ do (JD2Kg1f1) until t→ (emit error) ‖ JD3Kg1f1 ‖JD4Kg1f1 ‖ JRKg1f1) until error→ (ef)]

This program is obtained by placing the code snippets inside the body of a preemp-
tion construct that awaits signal error. This signal can only be emitted whenever the
preemption construct that contains the code snippet JD2Kg1f1 detects the timeout signal
t. Expression ef is a placeholder that represents the RML expression that is executed
after a failure. Thanks to the operational correspondence property of the translation
(cf. Thm. 7.13 and Thm. 7.12) we can ensure that e1 preserves the behavior of Pr,
provided that the timing constraints are met.

7.4.3 Messages in a Time-Frame
We consider the two variants of this timed pattern (cf.§ 1.6): (a) the first one enforces
time intervals between messages, and (b) the second one enforces the overall time-
frame in which a number of messages must be sent. We reuse the ideas developed in
§ 4.4.3. Hence, we consider processes Pti (cf. (4.9)) and Pto (cf. (4.10)):

Pti = (νxy)(x〈M1〉.x〈︸ ︷︷ ︸
t1

M2〉.x〈︸ ︷︷ ︸
t1

M3〉.x〈︸ ︷︷ ︸
t1

M4〉.Px | Py)

Pto = (νxy)(x〈M1〉.x〈M2〉.x〈M3〉.x〈M4〉︸ ︷︷ ︸
t2

.Px | Py)

Chapter 7. Encoding π R in ReactiveML 218

As in § 4.4.3, Pti represents the interval pattern and Pto, the overall time-frame pat-
tern. The informal requirements for each variant of the pattern are: (a) the par-
ticipant using endpoint x on Pti can only send messages with at least t1 time units
between them, and (b) the participant in endpoint x on Pto can send at most four
messages in a at most t2 time units. We use the same decomposition as in § 4.4.3.
Hence,

D(Pto) = D(Pti) = (νũ)(D1 | D2 | D3 | D4 | Rx | Ry)

where processes Di (i ∈ {1, 2, 3, 4}) correspond to:

D1 = c2(ũx).x1,1〈M1〉.d3〈ũx \ x1,1〉.0
D2 = c3(ũx \ x1,1).x1,2〈M2〉.d4〈ũx \ x1,1x1,2〉.0
D3 = c4(ũx \ x1,1x1,2).x1,3〈M3〉.d5〈ũx \ x1,1x1,2x1,3〉.0
D4 = c5(ũx \ x1,1x1,2x1,3).x1,4〈M4〉.d6〈ũx \ x1,1x1,2x1,3x1,4〉.0

and where Rx and Ry correspond to all the processes obtained from the decompo-
sition of Px and Py , respectively (cf. Def. 4.51). Now, by applying the encoding (cf.
Fig. 7.2) and because of its compositionality property (cf. Thm. 7.10):

JD(Pto)Kgf = JD(Pti)Kgf = Dz̃[JD1Kg1f1 ‖ JD2Kg1f1 ‖ JD3Kg1f1 ‖ JD4Kg1f1 ‖ JRxKg1f1 ‖ JRyKg1f1]
where z̃, f1, and g1 can be derived using Fig. 7.2 (they are not needed for this exam-
ple). The variants of the messages in a time-frame pattern can then be represented
as follows:
(a) To represent the interval variant of the messages in a time-frame pattern we

make use of the await construct of RML which can be used to suspend the pro-
cess until a signal is present. Hence, we obtain the following RML expression:

e1 = Dz̃[JD1Kg1f1 ‖
await t1 in (JD2Kg1f1 ‖

await t1 in (JD3Kg1f1 ‖
await t1 in JD4Kg1f1)) ‖JRxKg1f1 ‖ JRyKg1f1]

Above, we make use of a nested sequence of awaiting constructs to represent
each delay. In particular, whenever signal t1 is emitted for the first time, trans-
lation JD2Kg1f1 becomes active in the next time instant (i.e., t1 + 1). Then, the
second await blocks the execution of JD3Kg1f1 until t1 is emitted again. Similarly
for JD4Kg1f1 .

(b) To represent the second variant of the pattern we use the do/until construct. In
particular, we place the parallel sub-processes of the encoded decomposition
inside the body of a do/until construct that tests for errors, represented by sig-
nal error. We also use a do/until process to check that the timing constraint is
satisfied; if it is not, we emit error:
e2 = Dz̃[do (do (JD1Kg1f1 ‖ JD2Kg1f1 ‖ JD3Kg1f1 ‖ JD4Kg1f1) until t2 → (emit error) ‖JRxKg1f1 ‖ JRyKg1f1) until error→ (Pf)]

Chapter 7. Encoding π R in ReactiveML 219

In both of the RML programs above, the operational correspondence property of the
encoding guarantees that the behavior of the π R process is preserved (cf. Thm. 7.13
and Thm. 7.12).

7.4.4 Action Duration
The action duration timed pattern enforces the time elapsed between two actions of
the same participant. We recall (4.12):

Pa = (νxy)(x〈M1〉.x〈M2〉︸ ︷︷ ︸
t

.Px | Py)

Whose decomposition can be obtained by using Def. 4.51 and contains the following
processes:

D1 = c2(ũx).x1,1〈M1〉.d3〈ũx \ x1,1〉.0
D2 = c3(ũx \ x1,1).x1,2〈M2〉.d4〈ũx \ x1,1x1,2〉.0

Notice that as with the previous decompositions, we assume that Rx and Ry gather
all the processes that are obtained from the decomposition of Px and Py , respectively.
Then, by applying the encoding and its compositionality property (cf. Thm. 7.10),
we have that:

JD(Pa)Kgf = Dz̃[JD1Kg1f1 ‖ JD2Kg1f1 ‖ JRxKg1f1 ‖ JRyKg1f1]
where z̃, f1, and g1 are obtained as indicated by Fig. 7.2.

To represent this pattern, we make use of do/until expressions again. Intuitively,
we let JD1Kg1f1 execute unchanged, but we place JD2Kg1f1 inside the body of a do/until
expression. This ensures that if the communication is not finished before signal t is
emitted, an error signal is emitted:

e1 = Dz̃[do (JD1Kg1f1 ‖ do (JD2Kg1f1) until t→ (emit e) ‖ JRxKg1f1 ‖JRyKg1f1) until e→ (Pf)]

Notice that the operational correspondence property of J·Kgf (cf. Thm. 7.13 and
Thm. 7.12) ensures that e1 preserves the behavior of Pa, provided that the timing
constraints are satisfied.

7.4.5 Repeated Constraint
In § 4.4.5, we argued that J·K (cf. Ch. 4) was unable to model the repeated constraint
pattern due to the incompatibility of lcc with the flexibility of unrestricted types in
π (cf. § 2.2 and § 3.1.1). In this section we show that it is possible for RML to model
this specification pattern.

Let us recall process Pc in (4.13). This process outputs message M1 an unbounded
amount of times, provided that Py implements the necessary receptors.

Pc = (νloop1loop2)(νxy)(loop1〈loop1〉.0 | ∗ loop2(z).(x〈M1〉.loop1〈z〉.0)︸ ︷︷ ︸
t

| Py)

Chapter 7. Encoding π R in ReactiveML 220

The first thing to notice is that this process is not a typable π R process since it induces
races. Therefore, we cannot encode this behavior by simply decomposing Pc. Rather,
we would like to use the expressiveness of RML to encode the desired behavior. We
do this by using the recursion expressions of RML. Intuitively, the behavior of Pc

above is that of a process that sends a message constantly, provided that there are
receptors. To model such behavior in RML, we could use the encoding Jx〈M1〉.0Kgf ,
which represents a single output. Assuming that g and f are correctly defined (cf.
Def. 7.2), we could then use the following RML expression:

let rec process seq α = do (α; pause ; (seq α)) until t→ (Pf) in run seq Jx〈M1〉.0Kgf
The process aboveworks by generating a sequence of outputs, inwhich each encoded
output has to be executed in sequence with respect to the previous one. Notice that
this can be done in ReactiveML because of the sequence operator that allows to exe-
cute any pair of RML expressions in sequence. This behavior, coupledwith the timing
checks that allow the internal body of the recursion to exit in case of a timeout signal
t represent the repeated constraint pattern.

8
Encoding aπ in RMLq

This chapter introduces a correct translation from aπ into RMLq. In § 8.1 we present
the translation and give intuitions on key formalizations. In § 8.2, we prove that the
translation satisfies the static properties required by Def. 2.3. In § 8.3, we prove the
operational correspondence property of the translation and summarize the correct-
ness results for the translation, showing that it is both a valid and refined encoding
(Def. 2.3 and Def. 2.6, respectively).

8.1 The Translation
In the communication model of aπ, interaction is represented by pairing every end-
point with an output and an input queue. Briefly, the input queue is in charge of
receiving messages intended for a given endpoint k, whereas the output queue is in
charge of transmitting the messages from k to the input queue of its complementary
endpoint k (cf. § 3.2 for details).

Our intention is then to represent the communication mechanism of aπ using the
queues and big-step semantics introduced for RMLq (cf. § 3.4). To achieve this, and
because queues and expression in RMLq are separate entities (i.e., the queues are
contained in states, which are not expressions), we require the translation to distin-
guish between aπ queue processes and non-queue processes (i.e., processes that live
in aπ⋆). Rather than using general aπ processes, the new translation will be defined
for well-typed programs in aπ (cf. Def. 3.72). The reason is twofold: (1) we are
mainly interested in translating well-behaved programs, which in turn ensures well-
behavedRMLqprograms (in terms of communication between processes) and (2) the
distinction between queue and non-queue processes becomes clearer, as presented in
Lem. 3.73.

Making an explicit distinction between queue and non-queue processes (i.e., aπ⋆

Chapter 8. Encoding aπ in RMLq 222

I(k)
def
= let rec process I α =

(present ackk
o? (emit ackk

i ; await α(y, z) in (put y ki); run I z) : (run I α)
in run I k

O(k)
def
= let rec process O α =

signal α′, α′ in isEmpty ko; emit ackk
o ;

(present ackk
i ? (emit α ((pop ko), α′); pause ; run O α′) : (run O α)

in run O k

Figure 8.1: Components of RMLq handler processes (Def. 8.1)

processes) allows us to present a two-layered translation between aπ and RMLq. On
one hand, we have the aπ⋆ processes which interact with their local queues instan-
taneously. These processes can be directly translated into RMLq expressions without
further insight. On the other hand, queue processes require amore careful approach.
Namely, considering the structure of RMLq configurations, a queue will require two
different steps for translation: (1) the actual values inside the aπ queue must be in-
stantiated in a RMLq state, and (2) an expression dealingwith queue synchronization
must be defined to allow actual communication between processes. These controller
processes are denominated handler process and are defined below:

Definition 8.1 (Handler Process). Given k̃ = {k1, . . . , kn}, the handler processH(k̃)
is defined as:

signal ãck
kj

i , ãck
kj
o in

∏
j∈{1,...,n}

I(kj) ‖ O(kj)

where I(k) and O(k) are as in Fig. 8.1.

Given an endpoint k, a handler defines processes I(k) andO(k) as its components.
Handler components are in charge of managing communication between input and
output queues from complementary endpoints. As with J·Kgf , endpoints are trans-
lated as signals. We use notation s to refer to the complementary signal of s and let
s = s.

Intuitively, interactions between handler components for complementary end-
points occurs in pairs (i.e., I(k) with O(k) and I(k) with O(k)). Each pair takes
control over one of the signals k or k for the communication, avoiding emissions on
the same signal. Fig. 8.2 clarifies this by showing the communication direction in a
synchronization between handlers for complementary endpoints x and x.

Each handler component is defined as a recursive expression, where parameter α
denotes the signal used for communication exclusively during that instant. In the first
iteration of the handler, this signal is named after the endpoint said handler controls
k, but this namemay be replaced after further iterations. It is important to notice that
in defining handler components, endpoint k plays a two-fold role:

(a) First, as mentioned above, k is the name of the signal used in the first iteration
of the handler component execution (i.e., run O k and run I k).

Chapter 8. Encoding aπ in RMLq 223

I(x) O(x)

ackxo , x

ackxi

O(x) I(x)

ackxo , x

ackxi

Figure 8.2: Handshake direction and signals used in handler components.

(b) Second, k is fixed in some of the terms that make up the internal body of the
recursion. In particular, name kwill be fixed in the names of signals ackki , ackko ,
ackki , and ackko , as these signals will remain unchanged during the handler ex-
ecution.

To understand why some of the signals in handler components remain intact,
while others change it is important to highlight that, as with RML, signals are not
polymorphic in RMLq. Hence, whenever transmitting a value new signals must be
created. On the other hand, signals such as ackki , ackko , ackki , and ackko are pure, in
that they do not transmit any value. Thus, they may remain unchanged during the
execution of a handler component.

Following the same design decisions as in J·Kgf , we let only one synchronization to
occur in a single time unit. Assuming complementary endpoints x and x, interaction
starts by attempting a handshake where both O(x) and I(x) (or vice-versa) must
be ready to communicate. The success or failure of a handshake is determined by
the presence or absence of acknowledgment signals ackxi and ackxo . Subscripts i and o
denote input and output, respectively.

Assuming that a synchronization can occur (i.e., queue xo is not empty), process
O(x) broadcasts ackxo . Then, component I(x) acknowledges the synchronization by
emitting ackxi . Then, O(x) creates two signals: x′ which it keeps for itself and x′, in-
tended for its counterpart I(x). If ready, O(x) sends a pair containing the message
stored at the beginning of its output queue (pop xo) and a the fresh signal x′ to en-
able further actions. Once the pair is received, the value, now stored in variable y, is
enqueued in xi (i.e., the input queue for x). The process is recursively called in the
next instant with the fresh endpoints.

The second component necessary for translating queues into RMLq is properly
instantiating the values contained in an aπ queue into a RMLq state. To achieve this,
we use the following definition:
Definition 8.2. We define δ(·) as a function that maps aπ processes into RMLq states:

δ(k[i : m̃1; o : m̃2]) = {ki : m̃1, ko : m̃2} δ(P | Q) = δ(P) ∪ δ(Q) δ((νx)P) = δ(P)

and as δ(P) = ∅ for every other aπ process.
We are now ready to introduce the translation. Recall the formal languages Laπ ,

andLRMLq given in Def. 3.100(6) andDef. 3.102(4), respectively. Then, the translation
between these two languages is given below.
Definition 8.3 (Translating aπ into RMLq). Let 〈L·M, ψL·M〉 be a translation from Laπ

into LRMLq, where:

Chapter 8. Encoding aπ in RMLq 224

Vx(y).PW def
= let y = pop xi in VPWVx〈v〉.PW def
= put xo v;VPWVx . {li : Pi}i∈IW def
= let y = pop xi inVx / l.PW def
= put xo l;VPW

match l with {li : VPiW}i∈IVP | QW def
= VPW ‖ VQWVb? (P) :(Q)W def
= if b then (VPW) else (VQW)V(νx)PW def
= signal x, x in VPWVµX.PW def
= let rec process αX = VPW in run αXVXW def
= pause ; run αXV0W def
= ()

Figure 8.3: Auxiliary translation from aπ⋆ to RMLq (Def. 8.3).

- ψL·M(k) = k, i.e., every variable in aπ is mapped to the same variable in RMLq.

- L·M : aπ → RMLq is defined for well-formed aπ programs C[P,Q], which are
translated into RMLq configurations as follows:

LC[P,Q]M = 〈signal k̃ in (VPW ‖ H(k̃)) � δ(Q)〉

where ∀k ∈ k̃.(k ∈ fvπ(P | Q)); V·W : aπ⋆ → RMLq is in Fig. 8.3; H(k̃) is in
Def. 8.1; and δ(·) is in Def. 8.2.

As mentioned above, L·M is a two-layered translation in which the first layer, V·W,
deals with aπ⋆ processes, and the second is in charge of the translation of queues.

Two key ideas are at the heart of translation L·M: queues local to processes and com-
positional (queue) handlers. The first of these ideas, rooted in the semantics of aπ (cf.
Def. 3.2), directly concerns the synchronous hypothesis for synchronous languages.
Indeed, since we consider queues ki and ko to be local to endpoint k, communica-
tion between themmust be instantaneous, for such queues should also be local to the
process implementing session k.

The second idea is rooted in the fact that queue handlers effectively separate pro-
cesses/behavior from data/state. As such, it is conceivable to have handlers that have
more functionalities than those of H(k̃). We conjecture that, because of the compo-
sitional nature of the translation in Def. 8.3, these enhanced handlers can then be
plugged into the translation.

We have discussed at length the purpose of process handlers and how communi-
cation appears in L·M. Below, we briefly comment on the first layer of the translation:
mapping V·W, whose goal is to translate aπ⋆ processes in RMLq expressions:

• The output construct x〈v〉.P is translated as expression:

put xo v;VPW
which puts value v into the output queue xo and continues in the same instant
as VPW.

Chapter 8. Encoding aπ in RMLq 225

• Similarly, input process x(y).P is translated as expression:

let y = pop xi in VPW
which binds variable y in VPW. Intuitively, the first value in the input queue xi
is popped and assigned to variable y.

• Selection and branching are modeled similarly. The main difference is in the
matching construct used to model the actual selection. Notice that different
from the J·Kgf , the matching construct is evaluated instantaneously, and thus, all
selections can be resolved on the same instant the label was received.

• The recursion construct in aπ ismodeled as a pause-guarded recursion inRMLq:

let rec process αX = VPW in run αX

where the occurrences of X has been translated as pause ; run αX . The addi-
tional pause goes in accordance with our design decision of dividing commu-
nication in instants. An intended consequence of this decision is the avoidance
of undesired loops of instantaneous expressions, whichmay affect the encoding
correctness.

• Translations for the conditional, inaction, and parallel composition are as ex-
pected.

The full translation L·M creates an RML configuration by composing the RMLq pro-
cess obtained via V·Wwith appropriate handlers and with the state obtained from the
information in aπ queues.

8.2 Static Correctness
The layered structure of L·M implies that static correctness properties (cf. Def. 2.3)
must be proven only for V·W, as substitution occurs only on expressions and we do
not compose configurations.

Taking into account this consideration, it can be said that proving name invari-
ance and compositionality for V·W is less involved that their counterparts for J·Kgf . The
statements are given below:

Theorem 8.4 (Name invariance for V·W). Let P , σ, x be an aπ⋆ process, a substitution,
and a variable in aπ⋆, respectively. Then VPσW = VPWσ.
Proof. By induction on the structure of P . There are eleven cases that are immediate
by applying the IH.

Theorem 8.5 (Compositionality for V·W). Let P , σ, x, and E[·] be an aπ⋆ process, a
substitution, a variable in aπ⋆, and an evaluation context as in Def. 3.45, respectively. ThenVE[P]W = VEW[VPW].
Proof. By induction on the structure of P . There are eleven cases. All of them are
immediate.

Chapter 8. Encoding aπ in RMLq 226

8.3 Operational Correspondence
In this section we prove that translation L·M satisfies operational correspondence. In
particular, we show that the translation satisfies both the operational correspondence
for valid encodings (cf. Def. 2.3), and the operational correspondence for refined
encodings (cf. Def. 2.6).

In § 8.3.1 we discuss on how the considerations previously mentioned in § 7.3.1
appear in the new translation with some examples. Next, in § 8.3.2, we prove that L·M
is operationally complete, and in § 8.3.3 we prove it is operationally sound.

8.3.1 Considerations
Observe that, contrary to the static correctness results (cf. § 8.2), the operational cor-
respondence results for L·M involve RMLq configurations, as indicated by its semantics.

As with J·Kgf , we take into account two important considerations: (1) signal dec-
laration are not persistent, and (2) big-step reductions do not behave as reduction
steps. Although these issues were already presented in § 7.3.1, we would like to dis-
cuss their presence in RMLq.

Persistence of Signal Declarations

The semantic rules of RMLq closely follow those of RML. Hence, it is not surprising
that rule bSIG-DECc for RMLq (cf. Fig. 3.10) consumes the signal names, removing the
declaration in a single big-step reduction. It is the previous what motivates the use of
. (cf. Def. 3.99). Intuitively, the pre-order. uses declaration contexts (cf. Def. 2.40)
to recover the lost signal names to obtain the full encoding of a configuration. As
we will show later, the existence of these declaration contexts can be proven for the
target terms induced by L·M (cf. Lem. 8.13).

Synchronous Semantics of RMLq

The semantics of RMLq are synchronous, as those of RML. Therefore, a single big-step
reduction for a RMLq configuration obtained from the translation L·Mwill correspond
to several steps from aπ. Since we have decided to consider processes interactions
with queues as instantaneous, the correspondence between the semantics of RMLq
and aπ it is not that clear. This is the reason to introduce the big-step semantics of aπ
in § 3.2.7. The following example allow us to understand how the semantics of RMLq
configurations obtained from L·M compared with those of aπ.

Example 8.6. Let us consider the following PI aπ process:

C[P,K(xx)]=(νx)(x〈v1〉.x〈v2〉.x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0 |
x[i : ε, o : ε] | x[i : ε, o : ε])

where:
P = x〈v1〉.x〈v2〉.x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0

K(xx) = x[i : ε, o : ε] | x[i : ε, o : ε]

Chapter 8. Encoding aπ in RMLq 227

The translation is as follows:

LC[P,K(xx)]M = 〈VC[P, 0]W ‖ H(xx) � δ(K(xx))〉
= 〈VC[P, 0]W ‖ H(xx) � {xi : ε, xo : ε, xi : ε, xo : ε}〉

In the process above we have that:

VC[P, 0]W ‖ H(xx) = signal x, x in

put xo v1; put xo v2; let y1 = pop xi in put xo v3; () ‖
let y2 = pop xi in let y3 = pop xi in put xo y3;

let y4 = pop xi in () ‖
I(x) ‖ O(x) ‖ I(x) ‖ O(x))

and Σ = δ(K(xx)) = {xi : ε, xo : ε, xi : ε, xo : ε}. Let us now analyze the big-step
reductions of LC[P,K(xx)]M. In a single big-step reduction we have that:

LC[P,K(xx)]M 79999K〈let y1 = pop xi in put xo v3; () ‖
let y2 = pop xi in let y3 = pop xi in put xo y3;

let y4 = pop xi in () ‖
I ′(x) ‖ O′(x) ‖
I ′(x) ‖ O′(x)) � {xi : ε, xo : v1 · v2, xi : ε, xo : ε}〉 = K1

where I ′(x) = I(x) and I ′(x) = I(x) up-to unfolding and:

O′(x) = isEmpty xo; emit ack
x
o ;

(present ackxi ? (emit x ((pop xo), x′); pause ; run O1 x
′) : (run O1 x)

O′(x) = isEmpty xo; emit ack
x
o ;

(present ackxi ? (emit x ((pop xo), x
′); pause ; run O2 x′) : (run O2 x)

assuming that O1 and O2 correspond to the substitutions induced by the unfolding
of O(x) and O(x). We show the complete sequence of big-step reductions below.

K1 79999K〈let y1 = pop xi in put xo v3; () ‖
let y2 = pop xi in let y3 = pop xi in put xo v2; let y4 = pop xi in () ‖
I ′(x) ‖ O(x′) ‖ I(x′) ‖ O′(x)) � {xi : ε, xo : v2, xi : v1, xo : ε}〉 = K2

K2 79999K〈let y1 = pop xi in put xo v3; () ‖
let y3 = pop xi in put xo v2; let y4 = pop xi in () ‖
I ′(x) ‖ O(x′′) ‖ I(x′′) ‖ O′(x)) � {xi : ε, xo : ε, xi : v2, xo : ε}〉 = K3

K3 79999K〈let y1 = pop xi in put xo v3; () ‖ let y4 = pop xi in () ‖
I ′(x) ‖ O(x′′) ‖ I(x′′) ‖ O′(x)) � {xi : ε, xo : ε, xi : ε, xo : v2}〉 = K4

K4 79999K〈let y1 = pop xi in put xo v3; () ‖ let y4 = pop xi in () ‖
I(x′) ‖ O′(x′′) ‖ I ′(x′′) ‖ O(x′)) � {xi : v2, xo : ε, xi : ε, xo : ε}〉 = K5

K5 79999K〈() ‖ let y4 = pop xi in () ‖

Chapter 8. Encoding aπ in RMLq 228

I ′(x′) ‖ O′(x′′) ‖ I ′(x′′) ‖ O′(x′)) � {xi : ε, xo : v3, xi : ε, xo : ε}〉 = K6

K6 79999K〈() ‖ let y4 = pop xi in () ‖
I(x′) ‖ O(x′′′) ‖ I ′(x′′′) ‖ O′(x′)) � {xi : ε, xo : ε, xi : v3, xo : ε}〉 = K7

K7 79999K〈() ‖ () ‖ I ′(x′) ‖ O′(x′′′) ‖ I ′(x′′′) ‖ O′(x′)) � {xi : ε, xo : ε, xi : v3, xo : ε}〉

where x′ and x′, x′′ and x′′, and x′′′ and x′′′ are fresh signals created by the output
handler components.

In the sequence above, the first big-step reduction (i.e., K to K1) puts v1 and
v2 in queue xo. Next, in the big-step reduction from K1 to K2 only one interaction
occurs: process O′(x) communicates v1 by popping it from the beginning of queue
xo and sending it via signal x to its complementary process I ′(x), which puts it in xi.
Observe that only one synchronization is allowed between a pair of complementary
handlers during each instant.

The big-step reduction from K2 to K3 executes two actions. First, value v1 is
popped from xi and then value v2 is communicated to queue xi. In the big-step
reduction fromK3 toK4, value v2 is popped from xi and stored in y3; then, v2 is put
in queue xo. In the big-step reduction fromK4 toK5, v2 is communicated to xi. Next,
in the big-step reduction that goes from from K5 to K6, v2 is popped from queue xi
and value v3 is put into the output queue xo. The next two big-step reductions finish
the execution of the RMLq process.

The previous big-step reduction sequence, is equivalent to the following reduction
sequence in aπ.

C[P,K(xx)] −→2
A C[P1, x[i : ε, o : v1 · v2] | x[i : ε, o : ε]]

−→A C[P2, x[i : ε, o : v2] | x[i : v1, o : ε]]
−→2

A C[P3, x[i : ε, o : ε] | x[i : v2, o : ε]]
−→2

A C[P4, x[i : ε, o : ε] | x[i : ε, o : v2]]
−→A C[P5, x[i : v2, o : ε] | x[i : ε, o : ε]]
−→2

A C[P6, x[i : ε, o : v3] | x[i : ε, o : ε]]
−→A C[P7, x[i : ε, o : ε] | x[i : v3, o : ε]]
−→A C[0, x[i : ε, o : v3] | x[i : ε, o : ε]]

where:
P1 = P2 = x(y1).x〈v3〉.0 | x(y2).x(y3).x〈y3〉.x(y4).0
P3 = x(y1).x〈v3〉.0 | x(y3).x〈y3〉.x(y4).0
P4 = P5 = x(y1).x〈v3〉.0 | x(y4).0
P6 = 0 | x(y4).0

An important thing to notice is that this reduction sequence cannot be succinctly
expressed using the usual semantics of aπ. This illustrates the need for a big-step
semantics for aπ. 4

Proof Outline

Similarly as with J·Kgf , the main challenge for the operational correspondence proof
lies in the fact that the behavioral semantics of RMLq mimic several reduction steps

Chapter 8. Encoding aπ in RMLq 229

in aπ, and therefore goes faster. Thus, we must prove that our translation is a valid
encoding (cf. Def. 2.3) with respect to the big-step semantics in § 3.2.7, and a re-
fined encoding (cf. Def. 2.6) with respect to the reduction semantics in Fig. 3.5. The
operational correspondence statements follow:
Theorem 8.7 (Valid Operational Correspondence). Let P be a well-typed aπ program.
Then, the following properties hold:

1. Completeness: For every Q such that P Ï→∗ Q, it holds that LP M 7999K∗. LQM.
2. Soundness: For every RMLq process T such that LP M 7999K∗ T , there exists Q such

that P Ï→∗ Q and T . LQM.
Theorem 8.8 (Refined Operational Correspondence). Let P be a well-typed aπ pro-
gram. Then, the following properties hold:

1. Completeness: For every Q such that P −→∗A Q, then there exists Q′ such thatLP M 7999K∗. LQ′M and Q −→∗A Q′.
2. Soundness: For every RMLq process T such that JP Kgf 7999K∗ T , there exists Q such

that P −→∗A Q and T . LQM.
Intuitively, the relation existing between these two theorems can be used aswe did

in § 7.3: Thm. 8.8 can be derived as a consequence from the semantic correspondence
property (cf. Lem. 3.86) and Thm. 8.7.

Moreover, notice that the formal language used in the translation (cf. Def. 8.3)
require the use of pre-order . (cf. Def. 3.99). Similarly, we show that L·M induces a
simplified notion of initialized translations (i.e., analogous to Def. 7.16), only char-
acterized by process handler components I(·) and O(·) (cf. Def. 8.10). In this sense,
we must prove some basic properties regarding process handlers components (cf.
Lem. 8.11 and Lem. 8.12). Briefly, Lem. 8.11 formalizes characterizes the syntactic
shape of process handlers, and Lem. 8.12 proves the existence of the signal declara-
tion contexts required to recover the initial handler; this result is used in both sound-
ness and completeness proofs. The proof outline for operational correspondences
follows:

Operational Completeness: The operational completeness property is comprised of
two main results: the valid completeness result (cf. Thm. 8.15) and a refined
completeness result (cf. Thm. 8.16). Thm. 8.16 is obtained from the composi-
tion of Thm. 8.15 and Lem. 3.86(2). Proving Thm. 8.15 is a bit more delicate.
The lemma heavily relies on Lem. 8.14, which provides all the necessary com-
ponents to prove completeness: (1) it proves that the information of queues is
preserved by the translation, and (2) it proves the existence of the necessary
signal declaration contexts used to validate. and shows that the translation of
aπ⋆ processes is preserved.
The proof of Lem. 8.14 consists of a series of nested inductions: first, on the
length of the big-step reduction P Ï→∗ Q. Then, in the inductive step (i.e.,
big-step reduction P Ï→∗ Q0 Ï→ Q), we apply simultaneous induction on the
length r1 and r2 of reductions Q0 �→ Q′0 ⇀

∗ Q′′0 6⇀. All the generated cases
then proceed by either induction on the aπ process or directly by applying the
definitions.

Chapter 8. Encoding aπ in RMLq 230

Operational Soundness: The proof of operational soundness is very similar to the
one above. There are two results: a valid soundness (cf. Thm. 8.17) and a
more general refined soundness (Thm. 8.18). Briefly, Thm. 8.18 follows from
Lem. 3.86(1) and Lem. 8.13. Aswith completeness, Lem. 8.13 is the cornerstone
for proving Thm. 8.17. It provides the same assurances given by Lem. 8.14—
i.e., it shows that RMLq big-step reductions can be mimicked by the big-step
semantics of aπ.
The proof of Lem. 8.13 proceeds similarly to Lem. 8.14. We proceed by induc-
tion on the length of the big-step reduction LP M 79999K∗ T . We then proceed by
induction on the structure of the processes composing T .

Auxiliary Results

We start by defining target terms for our translation:

Definition 8.9 (Target Terms). We define target terms as the set of RMLq configura-
tions that are induced by the translation L·M of well-typed aπ programs and is closed
under 79999K: {S | JP Kgf 7−→ S and `P }. We shall use S, S′, T, T, . . . to range over
target terms.

We define the notion of initialized handler component; the analogous of Def. 7.16 forL·M. Notice that the notion of initialized translations induced by L·M is simpler than the
one for J·Kgf . This occurs as only handler components I(·) and O(·) generate interme-
diate processes in the translation.

Definition 8.10 (Initialized Handler Component). Let I(x) and O(x), be handler
components for channel x as in Fig. 8.1. The initialized handler components, written
init(I(x)) and init(O(x)), are defined below:

init(I(x)) = I(x)

init(O(x)) = isEmpty xo; emit ack
x
o ;

(present ackxi ? (emit x ((pop xo), x′); pause ; run O1) : (run O2)

where O1 denotes the unfolding of O(x) in O x′ and O2 denotes the unfolding O(x)
in O x.

We proceed to clarify the execution of handler processes. Aswe showbelow, there
are two possible behaviors for them: (1) if a synchronization between the handlers of
complementary processes is possible, then synchronization occurs and the handlers
are now executed on fresh signals, or (2) if no synchronization is possible, then the
process handler component reduces to an initialized handler component.

Lemma 8.11. Let x and x̃ be complementary endpoints. Then, the following holds:

1. If K = 〈signal x, x, ackxi , ackxo , ackxi , ackxo in I(x) ‖ O(x) � xi : h̃1, xo : v · h̃2〉
thenK 7999K 〈I(x′) ‖ O(x′) � xi : h̃1 · v, xo : h̃2〉 = K ′

2. IfK = 〈signal x, x, ackxi , ackxo , ackxi , ackxo in I(x) ‖ O(x) � xi : h̃1, xo : ε〉 then

K 7999K 〈init(I(x)) ‖ init(O(x)) � xi : h̃1, xo : ε〉 = K ′ 7999K∗ K ′

Chapter 8. Encoding aπ in RMLq 231

Proof. We prove each item below:

1. Using the definitions in Fig. 8.1 and the semantics in Fig. 3.9, Fig. 3.10, and
Fig. 3.11. Consider configuration K = 〈signal ackxi , ackxo , ackxi , ackxo in I(x) ‖
O(x) � xi : h̃1, xo : v · h̃2〉. We have the following derivation using the rules in
Fig. 3.9, Fig. 3.10, and Fig. 3.11. The first two rules applied are bSIG-DECc and
bL-PARc:

bL-DONEc, bRECURc, bSIG-Pc, bL-DONEc
bEMITc, bDU-Pc, bL-DONEc, bPUT-Qc

〈I(x) � xi : h̃1〉 79999K 〈I(x) � xi : h̃1 · v〉

bL-DONEc, bRECURc, bSIG-DECc, bL-DONEc,
bNEMPTYc, bL-DONEc, bEMITc, bSIG-Pc,
bL-DONEc, bEMITc, bPOP-Qc, bPAUSEc
〈O(x) � xo : v · h̃2〉 79999K〈O(x) � xo : h̃2〉

K 79999K 〈I(x) ‖ O(x) � xi : h̃1 · v, xo : h̃2〉

2. Using the definitions in Fig. 8.1 and the semantics in Fig. 3.9, Fig. 3.10, and
Fig. 3.11. Consider configuration K = 〈signal ackxi , ackxo , ackxi , ackxo in I(x) ‖
O(x) � xi : h̃, xo : ε〉. The derivation is as follows (see Fig. 3.9). The first two
rules applied are bSIG-DECc and bL-PARc:

bL-DONEc, bRECURc, bSIG-NPc
〈I(x) � xi : h̃〉 79999K 〈init(I(x)) � xi : h̃〉

bL-DONEc, bRECURc, bSIG-DECc,
bL-PARc, bEMPTYc

〈O(x) � xo : ε〉 79999K〈init(O(x)) � xo : ε〉

K 79999K 〈init(I(x)) ‖ init(O(x)) � xi : h̃, xo : ε〉

Furthermore, it can be shown that:

〈init(I(x)) ‖ init(O(x)) � xi : h̃, xo : ε〉

79999K∗ 〈init(I(x)) ‖ init(O(x)) � xi : h̃, xo : ε〉

From the previous statement, it is possible to deduce that initialized output han-
dler components are missing signal declarations to reconstruct the process in Fig. 8.1.
The following result generalizes this fact:

Lemma 8.12. Let H(k̃) be a process handler as in Def. 8.1. Then, if 〈signal k̃ in H(k̃) �
Σ〉 7999K∗ 〈T � Σ′〉 for some Σ′, it holds that:

1. T = T1 ‖ · · · ‖ Tn with n ≥ 1

2. There exists Dz̃, Dz̃1 , . . . , Dz̃n such that

Dz̃[Dz̃1 [T1] ‖ · · · ‖ Dz̃n [Tn]] ≡R signal k̃ in H(k̃)

Proof. By induction on the length m of k̃. The base case is m = 2 since by typing
our translation will not allow handler processes with a single channel. For details see
App. E.1.

Chapter 8. Encoding aπ in RMLq 232

The following auxiliary result is the cornerstone for ensuring that translation L·M
is sound. In a sense, the statement below breaks down the necessary elements for
proving the soundness of our translation.

Lemma 8.13. For everywell-typed aπ programC[P,Q] = (νk̃)(P ‖ Q) the following holds:
If LC[P,Q]M 7999K∗ K, then K = 〈T1 ‖ · · · ‖ Tn ‖ Tn+1 ‖ · · · ‖ Tm � Σ〉, 1 ≤ n ≤ m,
where:

1. There exists R such that P Ï→∗ R = C[P ′, Q′] and Σ = δ(Q′).

2. There exist contexts Dz̃, Dz̃n+1
, . . . , Dz̃m such that: (a) Dz̃[Dz̃n+1

[Tn+1] ‖ · · · ‖
Dz̃m [Tm]] ≡R signal k̃ in H(k̃), and (b) T1 ‖ · · · ‖ Tn = VP ′W.

3. There exist s̃ and s̃′ such that z̃ = s̃s̃′ and 〈Ds̃[T1 ‖ · · · ‖ Tn ‖ Ds̃′ [Dz̃n+1
[Tn+1] ‖

· · · ‖ Dz̃m [Tm]]] � Σ〉 ≡R LC[P ′, Q′]M.
Proof. By induction on the length m of the big-step reduction LC[P,Q]M 79999K∗ K.
The base case is immediate. For details on the inductive case see App. E.1.

We now prove a statement that provides all the necessary ingredients for demon-
strating that our translation is complete. This statements shows that for the transla-
tion of every well-typed aπ program it is possible to obtain a configuration which,
using the corresponding signal declaration environments, corresponds to the trans-
lation of a process reachable from the initial aπ program.

Lemma 8.14. For everywell-typed aπ programC[P,Q] = (νk̃)(P ‖ Q) the following holds:
If C[P,Q] Ï→∗ C[P ′, Q′], then there existsK such that LC[P,Q]M 7999K∗ K where:

1. K = 〈T1 ‖ · · · ‖ Tn ‖ Tn+1 ‖ · · · ‖ Tm � Σ〉, 1 ≤ n ≤ m and Σ = δ(Q′).

2. There exist contexts Dz̃, Dz̃n+1
, . . . , Dz̃m such that: (a) Dz̃[Dz̃n+1

[Tn+1] ‖ · · · ‖
Dz̃m [Tm]] ≡R signal k̃ in H(k̃), and (b) T1 ‖ · · · ‖ Tn = VP ′W.

3. There exist s̃ and s̃′ such that z̃ = s̃s̃′ and 〈Ds̃[T1 ‖ · · · ‖ Tn ‖ Ds̃′ [Dz̃n+1
[Tn+1] ‖

· · · ‖ Dz̃m [Tm]]] � Σ〉 ≡R LC[P ′, Q′]M.
Proof. By induction on the length of big-step reduction C[P,Q] Ï→∗ C[P ′, Q′]. The
base case is immediate. We show the inductive step.

Assume that C[P,Q] Ï→∗ C[P0, Q0] Ï→ C[P ′, Q′]. By IH1 we have that the
statement holds for C[P0, Q0]. We then analyze the big-step reduction C[P0, Q0] Ï→
C[P ′, Q′]. By Def. 3.81, we have that:

C[P0, Q0] �→ C[P0, Q
′
0]⇀

∗ C[P ′0, Q
′′
0] 6⇀

where P ′ = unm(P ′0) and Q′ = unm(Q′′0). By Def. 3.78 we know that �→ corresponds
to several reductions (i.e.,⇁∗). Thus, we proceed by simultaneous induction on the
lengths r1 and r2 of �→ and⇀∗.

Base Case: For the base case we prove the following three cases:

r1 = 0 ∧ r2 = 0: Immediate, as it corresponds to the base case for the initial in-
duction.

Chapter 8. Encoding aπ in RMLq 233

r1 > 0 ∧ r2 = 0: In this case, we have that:

C[P0, Q0] �→ C[P0, Q
′
0] 6⇀

which means there are only queue synchronizations. This means that
P0 cannot contain processes making outputs or selections at top-level, as
these are always enabled. Thus, using the rules in Fig. 3.9, Fig. 3.10, and
Fig. 3.11 we can show that:

LC[P0, Q0]M 79999K T1 ‖ T2 ‖ · · · ‖ Tm
withm ≥ 1 andT1 = LP0M andwe can conclude by presenting an argument
similar to the one for Lem. 8.13.

r1 = 0 ∧ r2 > 0: This case assumes that there are no synchronizations between
queues. We proceed then by induction on the structure of P0, building
derivations similarly to Lem. 8.13.

Inductive Step: The inductive step corresponds to the case where r1 > 0 and r2 > 0.
This case follows by applying the IH for both �→ and Ï→. Then, the results
can be merged to obtain the desired RMLq big-step reduction.

8.3.2 Operational Completeness
Using the previous result we show that our translation is complete. First, we show
that completeness holds the big-step semantics for aπ:

Theorem 8.15 (Valid Completeness for L·M). For every well-typed aπ program P , and
for every process Q, if P Ï→∗ Q then there exists T such that LP M 7999K∗ T and T . LQM.
Proof. Follows as direct consequence of Lem. 8.14. Notice that T . LQM follows from
the existence of signal declaration environments shown in Lem. 8.14.

We cannow thenprove amore general completeness statement for our translation.

Theorem 8.16 (Refined Completeness for L·M). For every well-typed aπ program P and
every process Q, if P −→∗A Q then there exists a RMLq process T and a aπ process Q′ such
that LP M 7999K∗ T , Q −→∗A Q′, and T . LQ′M.
Proof. This is a consequence of Thm. 8.15 and Lem. 3.86(2).

8.3.3 Operational Soundness
The statement of soundness can be proven as it is. However, aiming to keep the
symmetry in the operational correspondence statement, we first prove soundness for
the big-step semantics of aπ. Then, as a consequence, the more general soundness
statement holds.

Theorem 8.17 (Valid Soundness for L·M). For every well-typed aπ program P and every
process Q, if LP M 7999K∗ T then there exist Q such that P Ï→∗ Q and T . LQM.

Chapter 8. Encoding aπ in RMLq 234

Proof. Follows as a direct consequence of Lem. 8.13. Notice that T . LQM follows by
proving the existence of the signal declaration environments as in Lem. 8.13.

Theorem 8.18 (Refined Soundness for L·M). For every well-typed aπ program P and
every process Q, if LP M 7999K∗ T then there exist Q such that P −→∗A Q and T . LQM.
Proof. Follows from the composition of Lem. 3.86(1) and Thm. 8.17.

We conclude this section by proving that L·M is an encoding, following Def. 2.3 and
Def. 2.6. First we state operational correspondence:

Theorem 8.7 (Valid Operational Correspondence). Let P be a well-typed aπ program.
Then, the following properties hold:

1. Completeness: For every Q such that P Ï→∗ Q, it holds that LP M 7999K∗. LQM.
2. Soundness: For every RMLq process T such that LP M 7999K∗ T , there exists Q such

that P Ï→∗ Q and T . LQM.
Proof. Follows directly from Thm. 8.15 and Thm. 8.17.

Theorem 8.8 (Refined Operational Correspondence). Let P be a well-typed aπ pro-
gram. Then, the following properties hold:

1. Completeness: For every Q such that P −→∗A Q, then there exists Q′ such thatLP M 7999K∗. LQ′M and Q −→∗A Q′.
2. Soundness: For every RMLq process T such that JP Kgf 7999K∗ T , there exists Q such

that P −→∗A Q and T . LQM.
Proof. Follows directly from Thm. 8.16 and Thm. 8.18.

Theorem 8.19 (RMLq Encodes aπ). Consider the formal languages Laπ , L∗aπ as presented
in Def. 3.100(5,6) and LRMLq as it was defined in Def. 3.102(4). Then, the following holds:

(1) Translation 〈L·M, ψL·M〉, which maps Laπ into LRMLq is a refined encoding (cf. Def. 2.6).

(2) Translation 〈L·M, ψL·M〉, which maps L∗aπ into LRMLq is a valid encoding (cf. Def. 2.3).

Proof. Numeral (1) follows from Thm. 8.4, Thm. 8.5, and Thm. 8.8. Numeral (2)
follows from Thm. 8.4, Thm. 8.5, and Thm. 8.7.

9
Conclusions and Related Work

In this chapter we present the overall conclusions and related work for the two trans-
lations presented in Part III. In § 9.1 conclude by summarizing our work and dis-
cussing some of the most interesting parts. In § 9.2 we give related work.

9.1 Concluding Remarks
We have presented two encodings of session-based π-calculi into synchronous reactive
programming, a programming paradigm that naturally models timed and reactive be-
havior. We have proven that our encodings are correct, and therefore, we argue that
they can be used to reason about message-passing programs.

The first encoding, in Ch. 7, translates a session π-calculus without races (cf.
§ 3.1.2) into ReactiveML (cf. § 2.4), a synchronous reactive programming language.
An important characteristic of this encoding is that it yields executable ReactiveML
programs and therefore, we believe it can be used in practical settings. It is important
to mention that to generate actual implementations, the encoding must be used as a
code snippet that can be inserted in ReactiveML implementations. Hence, given a
well-typed π R program P we can use its encoding to declare a ReactiveML process:

let process model = JP Kgf in run model

which can then be compiled and run. Moreover, given the correctness properties
proven for J·Kgf , it is expected that the models obtained by the previous procedure
are correctly executed by the ReactiveML compiler. Another highlight of the first
encoding is the fact that it can be used to generate enhanced translations in which we
can extend the capabilities of π R (cf. § 7.4). We conjecture that using this feature
in particular, can enable the integration of session-based concurrency in actual RML
programs featuring declarative, reactive, timed, and contextual behavior.

Chapter 9. Conclusions and Related Work 236

The second encoding has shown that it is also possible to encode an asynchronous
session calculus into a synchronous reactive programming language. In particular,
this encoding shows that it is more natural to consider an asynchronous semantics
for modeling session-based concurrency in SRP. Notice that since signal emission
is a non-blocking construct, a non-blocking output construct can be more faithfully
represented than a synchronous one. In this sense, the operational correspondence
results obtained for the second encoding were derived much more naturally.

It is also important to note that the most important challenge in this encoding
arises from the fact that the semantics of ReactiveML are intrinsically different from
those of process calculi such as π R and aπ. Indeed, the synchronous1 big-step seman-
tics of ReactiveML provide much coarser semantics, than those for π R and aπ. This
fact led to the conception of alternative notions of operational correspondence that
are dependent on the coarseness of the semantics of the source and target languages
(cf. § 2.1). Nonetheless, we also show that it is possible to derive Gorla’s operational
correspondence [Gor10] by using so-called semantic correspondence results (cf. § 2.4.2
and § 3.2.8).

Our encodings are also an improvement with respect to previous works which
extend the π-calculus with either timed or event-based behavior, but not both. Simi-
larly, the fact that our encodings yield runnable ReactiveML programs improves on
the fact that some of these π-calculus extensions lack programming support. Inter-
estingly, since ReactiveML has a well-defined semantics, it already offers a firm basis
for both foundational and practical studies on session-based concurrency.

Besides generalizing the results in [CAP17], our results consider typed source
processes. Although not stated in this work, we do not foresee any problems for
proving type soundness: if P is a well-typed π R process, then JP Kgf is a well-typed RML
expression. We conjecture a similar result for L·M, using the type system herein pre-
sented. On the ReactiveML side, we can exploit the type-and-effect system in [MP14]
to enforce cooperative programs (roughly, programswithout infinite loops). Since J·Kgf
and L·M already produce well-typed, executable ReactiveML expressions, we further
conjecture that they are also cooperative, in the sense of [MP14].

9.2 Related Work
SRPwas introduced in the 1980s [BCE+03] as a way to implement and design critical
real-time systems. Since then, several works have provided solid foundations for SRP
programming languages. In particular, the work on ESTEREL [BG92] and the model
presented in [BdS96] offer foundations for languages such as RML [MP05,MP14] and
ULM [Bou04]. Also worth mentioning are works that relate synchronous languages
to the π-calculus; for instance, the work [Ama07] develops a non-deterministic vari-
ant of the SRPmodel of ESTEREL. The paper [Hal98] offers a survey of synchronous
reactive programming languages, including ESTEREL, LUSTRE [CPHP87], and sev-
eral others.

Session types [HVK98] have been thoroughly studied. Previous works have ex-
tended the foundations of session-based concurrency to include event-based behav-

1Synchronous communication as in the (session) π-calculus should not be confused with the synchronous
programming model of ReactiveML.

Chapter 9. Conclusions and Related Work 237

ior [KYHH16], adaptive behavior [CDV15], and timed behavior [BYY14]. All these
extensions use (variants of) the π-calculus as their base language. A key difference
with ourwork is that we propose an SRP language (i.e., RML) to obtain a natural inte-
gration of some of the aforementioned features. Practical approaches to session types
have resulted in a variety of implementations, including [NT04, YHNN13, SY16].
The paper [ABB+16] offers a recent survey of session types and behavioral types in
practice.

Another relevant implementation is [Pad], a source of inspiration for our work:
it integrates session-based concurrency in the OCaml programming language. As in
our encoding, the implementation in [Pad] uses the notion of continuation-passing
style developed in [DGS12]. A distinguishing feature of our work with respect to
[Pad] is our interest in reactive, timed behaviors, not supported byOCaml, and there-
fore not available in [Pad]. Our current implementation still lacks some features
present in [Pad], such as the integration of duality and linearity-related checks into
the OCaml type system.

Our approach using encodings is related to our prior works on declarative in-
terpretations of session π-calculi [LOP09, CRLP15]. The first of such encodings is
developed in [LOP09], where it is shown that declarative languages can supportmo-
bility in the sense of the π-calculus. The encoding developed in [CRLP15] improves
over [LOP09] by supporting linearity and non-determinism. The works [LOP09,
CRLP15] are related to the present work due to the declarative flavor of SRP. In con-
trast, our reactive encodings yield practical implementations in ReactiveML, which
are not possible in the foundational encodings in [LOP09, CRLP15].

Different from process calculus (and type-based validation techniques), other
approaches to the formal specification and analysis of services use automata- and
graph-based techniques. For instance, thework [FBS04] uses Büchi automata to spec-
ify and analyze the conversation protocols that underlie electronic services.

PART IV
A SYNCHRONOUS REACTIVE
SESSION-BASED CALCULUS

10
Multiparty Reactive Sessions

This chapter differs from the rest in structure and content, as we distance ourselves
from translations and introduce Multiparty Reactive Sessions, a synchronous reactive
process calculus equipped with a session type system based on multiparty session
types. In § 10.1 we introduce MRS. Then, § 10.2 illustrates our approach by means
of the auction example discussed below. In § 10.3, we introduce the syntax and se-
mantics of MRS. We prove that our model is reactive, namely that every reachable
configuration instantaneously converges in a number of steps that is bounded by the
size of the process (Theorem 10.18). Finally, we introduce the type system in § 10.4
and present correctness and time-related properties.

10.1 Introduction
We study the integration of synchronous reactive programming (SRP) [BdS96, MP05,
MPP15b, BMS15] and session-based concurrency [HVK98, YV07, HYC08]. Our goal
is to devise a uniform programming model for communication-centric systems in
which some components are reactive and/or timed. Synchronous reactive program-
ming is a well-established model rooted on a few features: broadcast signals, logical
instants, and event-based preemption. This makes it an ideal vehicle for specifying
and analyzing reactive systems; programming languages based on SRP include Es-
terel [BG92, PBEB07], Céu [SLS+18], and ReactiveML [MP05]. On the other hand,
session-based concurrency is the model induced by session types [YV07, HYC08], a
rich typing discipline for message-passing programs. Session types specify proto-
cols by stipulating the sequence in which messages should be sent/received by par-
ticipants along a channel.

The interplay of message-passing concurrency with time- and event-based re-
quirements is very common. In many protocols, participants are subject to time-

Chapter 10. Multiparty Reactive Sessions 240

related constraints (e.g., “the request must be answered within n seconds”). Also,
protocols may depend, in various ways, on events that trigger run-time adaptations
(e.g., “react to a timeout by executing an alternative protocol”). As a concrete ex-
ample, consider a buyer-seller protocol in which a smart fridge manages groceries on
behalf of a buyer, and only interacts with a supermarket in reaction to some event
(say, “running out of milk”). Another example is an electronic auction, where an auc-
tioneer offers a good for sale and buyers compete for this good by bidding the price
upward. Here, the auctioneer supervises the bidding and decrees the knock-down
price as soon as a standstill is reached. Like a physical auction, the electronic auction
follows amultiparty protocol in whichmessages are broadcast to all participants, but
they are “fetched” only by some of them. Bidders must be able to react in real time
to the offers issued by other bidders and to the auctioneer’s decisions. These two
examples are representative of a wide class of scenarios requiring both:

• the ability of broadcastingmessages that are not fetched by all participants (“or-
phan messages” become the norm rather than the exception) and

• a synchronous preemption mechanism, allowing participants’ behaviors to be
simultaneously reset in reaction to some event.

Unfortunately, existing frameworks based on session types lack these two key
features—they are not expressive enough to model reactive and time-dependent in-
teractions, essential in the two examples above. The framework in [KYHH16] han-
dles contextual information through events, but does not support reactive behavior
nor multiparty protocols. Models such as [BYY14, BCM+15, BMVY19] account for
multiparty protocols with time-related conditions, but do not support reactive and
event-based behaviors. The work [CAP17] integrates SRP and session-based concur-
rency, but it is restricted to binary session types (protocols with two participants).

To address the limitations of current approaches, we propose a new typed frame-
work for multiparty protocols, expressive enough to support reactive, structured
communications. Our framework builds on a new process language dubbed MRS
(Multiparty Reactive Sessions), which combines constructs from (session) π-calculi
with typical features of synchronous reactive languages, namely:

• Logical instants, or simply instants, which are periods in which all components
compute until they cannot evolve anymore (instants are what make SRP “syn-
chronous”);

• Broadcast communication (instead of point-to-point communication);

• A “pause” construct, which suspends execution for the current instant;

• A “watch” construct implementing preemption, which is equippedwith a stan-
dard and an alternative behavior that is triggered in reaction to a given event.
This construct generalizes the exception mechanism provided by many pro-
gramming languages, endowing it with a notion of time.

• Event emission, which is used here simply to control the watch construct.

The operational semantics of MRS is given in a style that is typical of synchronous
languages. A process resides within a configuration with its memory and emitted

Chapter 10. Multiparty Reactive Sessions 241

events. There are two reduction relations on configurations: the first one formalizes
small-step execution within an instant, until the configuration converges, namely sus-
pends or terminates. Suspension occurs when all participants have exercised their
right to send/receive for the current instant, or have reached a “pause” instruction.
The second reduction relation formalizes how a suspended configuration evolves
across different instants.

In more detail, during each instant, every participant can broadcast at most once
and receive at most once from the same sender. This is a sensible requirement to dis-
cipline interaction in a reactive setting with valued messages. Indeed, allowing par-
ticipants to broadcast multiple messages (valued events) in the same instant would
amount to collect all their values at the end of the instant; then, an additional mecha-
nism would be required to handle these “flattened” values and dispatch them in the
expected order to the receivers.

Our semantics for MRS satisfies (bounded) reactivity, a standard soundness prop-
erty of SRP which requires that small-step execution converges to a suspension or
termination point at every instant [MP05]. This property, also called instantaneous
convergence or instant termination in the SRP literature [TS05], is key for a reactive
computation to evolve through a succession of instants and thus proceed as expected.

In session-based concurrency, protocol conformance typically follows from safety
and liveness properties that stipulate how processes adhere to their session types,
namely: session fidelity, communication safety, and (often, although not necessarily)
some progress/deadlock-freedom property. In MRS, we further target the following
two time-related properties:

P1. Output persistence: Every participant broadcasts exactly once during every in-
stant;

P2. Input timeliness: Every unguarded input is matched by an output during the
current instant, if not preceded by another input with equal source and target,
or during the next instant, if not preempted.

Our main contribution is a type system, inspired by multiparty session types
[HYC08], that enforces session fidelity, communication safety, as well as output per-
sistence and input timeliness for MRS processes . One crucial technical challenge
consists in properly handling explicit and implicit pauses in MRS processes. Explicit
(or syntactic) pauses correspond to occurrences of the pause construct in processes.
In contrast, implicit (or semantic) pauses are those induced by the synchronous re-
active semantics between two broadcasts by the same participant, or between two
inputs by the same participant from the same source.

Our type system relies on the usual ingredients of multiparty session types: global
types entirely describe a multiparty protocol; local types stipulate the protocol associ-
ated to each participant; a projection function relates global and local types. However,
because of the interplay between sessions and SRP, these ingredients have rather dif-
ferent definitions in our framework. In particular, we require a new pre-processing
phase over global types called saturation, which complements protocols with implicit
pauses. Unique to our setting, saturation is essential to conduct our static analysis
on MRS processes and, ultimately, to reduce the conceptual gap between SRP and
session-based concurrency.

Chapter 10. Multiparty Reactive Sessions 242

10.2 Two Motivating Examples
We illustrate our typed process model by formalizing the two examples mentioned
in § 10.1. We first present a reactive variant of the well-known Buyer-Seller protocol;
then, we model the Electronic Auction protocol.

10.2.1 A Reactive Buyer-Seller Protocol
Consider a scenario involving three participants: a Smart Fridge (F), aClient (C), and a
Supermarket (S). These participants interact with the following goal: F acts on behalf
of C to purchase groceries from S. Being a smart, autonomous agent, F should react
whenever a low level of groceries is detected, and initiate a protocol with S and C so
as to restore a predefined level of groceries. F should obtain authorization from C
before issuing a purchase order to S.

Before formalizing this protocol as a global type with reactive constructs, we in-
troduce global types informally (a formal description shall be given in § 10.4):

• p↑〈S,Π〉.G denotes a global type inwhich participant p broadcasts amessage of
sort S1 whichwill be fetched by the participants in setΠ; after that, the protocol
continues as specified by G.

• µt.G represents a recursive protocol given byG, which includes occurrences of
variable t.

• Given event ev, we introduce watch ev do G1 else G2 as a reactive, event-de-
pendent global type. This type says that protocol G1 will be executed until
termination or suspension. WhenG1 suspends there are two possibilities: if ev
has not occurred, then the remainder of G1 is invoked again as the governing
protocol in the next instant; otherwise, as a reaction to the occurrence of ev, the
protocol G1 is discarded and G2 is invoked in the next instant.

• pause.G is also peculiar to our reactive, timed setting: it says that all participants
should move to the next instant to execute protocol G.

• end represents the terminated protocol, as usual.

We then have the following global type G, which describes the multiparty protocol
between the fridge, the client, and the supermarket. We use two events, named lf (for
low food) and ok, which stands for a confirmation event:

G = µt1.watch lf do µt2.S↑〈stat, {F}〉.F↑〈stat, {C}〉.C↑〈stat, {F}〉.pause.t2
else

S↑〈stat, {F}〉.F↑〈lst, {C}〉.C↑〈lst, {F}〉.
watch ok do pause.µt3.S↑〈stat, {F}〉.F↑〈stat, {C}〉.C↑〈stat, {F}〉.pause.t3
else

C↑〈stat, {F}〉.F↑〈lst, {S}〉.S↑〈prc, {F}〉.pause.
1Basic types are called “sorts” here, following the terminology introduced byMilner [Mil91] andwidely

adopted in the session type literature.

Chapter 10. Multiparty Reactive Sessions 243

C↑〈stat, {F}〉.F↑〈cc, {S}〉.S↑〈iv, {F}〉.pause.t1

To describe the protocol specified by G, we spell out the instants it involves. We
assume that lf is emitted at time tlf and that ok is emitted at time tok.

Instant t ≤ tlf : the protocol enters the ‘do’ branch of the outermost watch, which is
guarded by event lf, indicating low food levels in the fridge, and it starts execut-
ing a loop. In the body of this loop, S sends a status update (stat) to F indicating
its availability for future purchases; next, F sends an update to C with informa-
tion about the current items in the fridge (say, expiration dates), and C answer
by updating his own status; finally, a pause is reached and the presence of event
lf is checked:

1. If lf has not yet been emitted, then the ‘do’ branch is executed again in the
next instant.

2. If lf is present, then the ‘else’ branch will be executed in the next instant.

Instant tlf + 1: now the ‘else’ branch of the outermost watch is executed: once again,
S updates his status; then, F sends to C a list with grocery items to buy (lst) and
C can update the list with more items. Finally, the ‘do’ branch of the innermost
watch is executed, guarded by event ok, indicating a confirmation. The pause
makes the protocol move to the next instant, ensuring that the event ok may
be immediately accounted for. If ok has not been emitted, then S, F and C keep
issuing their status. Upon the emission of event ok, the innermost watch is
exited and its ‘else’ branch is selected for the next instant.

Instant tok + 1: now the ‘else’ branch of the innermost watch is executed: C updates
his status, F orders the groceries from S and gets back their price. Then the
protocol moves to the next instant.

Instant tok + 2: once again, Cupdates his status, F sends to S the information required
to complete the payment (e.g., credit card number), and S sends back the in-
voice iv to F.

As usual for multiparty session types, the global type G should be projected into
local types for F, S, and C, which will be used to type-check against process imple-
mentations. In MRS, the local types are as follows:

- Local types !S.T and ?(p, S).T , represent output and input. In the former type,
a value of sort S is broadcast and then the type continues as T . In the latter, a
value of sort S is received from participant p; the type then continues as T .

- Local types pause and 〈T1, T2〉ev specify the reactive behavior of participants,
and they are similar to the corresponding constructs for global types.

- Type µt.T represents a recursive type, where t may occur in T .

We write Gb p to denote the local type obtained from the projection of global type G
into participant p. This way, e.g., we have the following local type for C:

Gb C= µt1.〈µt2.?(F, stat).!stat.pause.t2, T 〉lf

Chapter 10. Multiparty Reactive Sessions 244

System = Fridge | SMarket | Client

Fridge = recX1 . watch lf do recX2 . s[F]?(S, x1).s[F]!〈stat〉.s[F]?(C, x2).

if (status(food) = 0) then emit lf. pause. X2 else pause. X2

{s[F]?(s[S], x3).s[F]!〈f̃ood〉.s[F]?(C, x4).

watch ok do pause. recX3 . s[F]?(S, x5).s[F]!〈stat〉.s[F]?(C, x5).X3

{s[F]?(C, x6).s[F]!〈x̃7〉.s[F]?(s[S, x8]).pause.

s[F]?(C, x9).s[F]!〈cc〉.s[F]?(S, x10).X1}}
SMarket = rec Y1 . watch lf do rec Y2 . s[S]!〈stat〉.Y2{watch ok do pause. rec Y3 . s[S]!〈stat〉.Y3

{s[S]?(F, y1).s[S]!〈price(y1)〉.pause. s[S]?(F, y2).s[S]!〈invoice〉.Y1}}
Client = rec Z1 . watch lf do rec Z2 . s[C]?(F, z2).s[C]!〈stat〉.Z2

{s[C]?(F, z4).s[C]!〈z4〉.
watch ok do emit ok. pause. rec Z3 . s[C]?(F, z6).

s[C]!〈stat〉.Z3{s[C]!〈stat〉.Z1}}

Figure 10.1: MRS implementation of the Reactive Buyer-Seller Protocol.

where T =?(F, lst).!lst.〈pause.µt3?(F, stat).!stat.pause.t3, !stat.t1〉ok.
In Fig. 10.1, we show a process implementation of our protocol; it allows us to

introduce some salient constructs in MRS:

- Process s[p]!〈v〉.P represents the broadcast of value v from participant p along
session s; also, s[p]?(q, x).P represents p receiving a message coming from q
along session s.

- Process pause. P suspends for the current instant, and executes P in the next
instant.

- Process emit ev. P emits an event ev, visible by all participants during the cur-
rent instant, and then continues as P within the same instant.

- Process watch ev do P{Q} is defined to correspond with local type 〈T1, T2〉ev .
This process executesP up to termination or suspension. In the former case, the
whole process disappears. When P evolves to P ′ and suspends, there are two
possibilities at the end of the instant, depending on ev: if ev has not occurred
then watch ev do P ′{Q} is executed in the next instant; otherwise, as a reaction
to the occurrence of ev, watch ev doP ′{Q} is discarded andQ is executed in the
next instant.

The protocol implementation in Fig. 10.1 is given by process System, which is
composed of three parallel processes (Fridge, SMarket, and Client), implementing
participants F, S, and C, respectively:

Process Fridge runs a recursive loop while there is enough food: it first receives a
status update from S and broadcasts its own updates (to be received byClient);

Chapter 10. Multiparty Reactive Sessions 245

it also receives and update fromClient. Then, it checks the current level of food:
if there is enough food (status(food) 6= 0), then the status update loop is re-
peated. Otherwise, it emits lf, thus triggering the alternative behavior, which
consists in sending the groceries list (f̃ood) to Client, which in turn should
answer with possible modifications to the list and then confirm the purchase
by emitting ok. The status update loop will execute as long as ok has not oc-
curred; when Client confirms, Fridgewill first receive and status update from
the client and then send the groceries list to SMarket, which will return the to-
tal price. Finally, another status update from the client is received and Fridge
exchanges payment information and invoice with SMarket.

Process SMarket is engaged in the update loopwith Fridge until lf is emitted. Once
this event occurs, the update loop will continue until ok is detected. After con-
firmation, SMarket and Fridge interact to finalize the purchasing protocol.

Process Client is similar, and takes part in the status update loop until Fridge emits
lf. When this occurs, and after having received the groceries list from Fridge,
Client simply resends the list it received without modifications and confirms
the purchase (clearly, more elaborate authorization procedures are possible).
Once SMarket and Fridge have completed the purchase, Client engages again
into the status update loop.

10.2.2 An Electronic Auction Protocol
Wenow formalize the electronic auction protocol sketched in § 10.1. This example ex-
hibits again the distinctive features of MRS: the slicing of computation into instants,
broadcast communication, and the synchronous preemption mechanism. In addi-
tion, it illustrates the specific treatment of recursion in MRS, and it shows how pa-
rameterized recursion may be used to transmit values across instants.

Assuming n bidders (n ≥ 2), the protocol has n + 1 participants: participant A,
which is the Auctioneer, and participants B1, . . . , Bn, which are the Bidders. Bidding
rounds are represented by instants: at the start of each instant, all the bidders send
their new bids to the auctioneer, which responds by broadcasting the new tuple of
bids, whose maximum represents the current price of the good. We suppose that
the starting price of the good is the same for all bidders, i.e., initPricei = initPricej
for any i, j ∈ {1, . . . , n}; we also suppose that each Bidderi has a maximal budget
budgeti and that her initial bid initBidi is such that initPricei < initBidi ≤ budgeti
and initBidi 6= initBidj for i 6= j. Moreover, we assume that each Bidderi bids
up by a fixed amount ∆i such that ∆i 6= ∆j for i 6= j. The two above conditions
initBidi 6= initBidj and ∆i 6= ∆j are used to prevent equal bids from different
bidders, which would make the protocol more involved2. Then, a session s of the
protocol may be described by the Auction process in Fig. 10.2, where σ̃ represents
the tuple (σ1, . . . , σn) and for any such tuple σ̃, the function max(σ̃) is defined by
max(σ̃) = max{σ1, . . . , σn}.

2Since multiparty session protocols are usually deterministic, if equal bids were allowed there should
be some predefined criterion to choose between them. Moreover, in a physical auction all bids must be
different, since they are issued one after the other. The requirement ∆i ̸= ∆j allows this to be mimicked
using simultaneous bids.

Chapter 10. Multiparty Reactive Sessions 246

Auction = Auctioneer | Bidder1 | · · · | Biddern
Auctioneer = watch bis do

(
recX(x̃) . s[A]?(B1, bidi). · · · . s[A]?(Bn, bidn).

if
∧

i∈I(bidi = xi) then emit bis. s[A]!〈b̃id〉.X(b̃id)

else s[A]!〈b̃id〉.X(b̃id)
)
(˜initPrice)

{s[A]!〈max(˜bid)〉.0}
Bidderi = watch bis do

(
rec Zi(zi) . s[Bi]!〈zi〉.s[Bi]?(A, w̃).

if (max(w̃) 6= zi ∧ max(w̃) + ∆i ≤ budgeti) then Zi(max(w̃) + ∆i)

else Zi(zi)
)
(initBidi)

{s[Bi]?(A, z′i).s[Bi]!〈eog〉.0}

Figure 10.2: MRS implementation of the Electronic Auction Protocol.

Note that Auctioneer and the Bidderi have a similar structure: they consist of a
watch statement guarded by the event bis, whose main branch executes a loop and
whose alternative branch does an I/O action and terminates. The event bis (standing
for “bis repetita”) is emitted by Auctioneer to signal that the same tuple of bids has
occurred twice and hence the auction is over.

Supposing event bis is emitted at instant tbis, let us see how instants build up in
our protocol.

Instant t ≤ tbis : At the beginning, all participants enter themain branch of the watch
guarded by event bis, and they start executing a loop. In the body of their loop,
all Bidderi broadcast their new bids (which in the first iteration are just their
initial bids initBidi), and then wait for a new tuple of bids from Auctioneer.
Now, Auctioneer inputs all the new bids from the Bidderi and compares them
with their previous bids (which in the first iteration of Auctioneer are just the
initPricei). If the new bid from each Bidderi is equal to her previous bid, then
a standstill is reached and Auctioneer emits the event bis to trigger the alterna-
tive behavior of all participants at the next instant; then Auctioneer broadcasts
the same tuple of bids (this broadcast is required to match the expectations of
the Bidderi). Otherwise, Auctioneer simply broadcasts the new tuple of bids. In
both cases, Auctioneer suspends before starting the next iteration, because the
semantic rule for recursion inserts a pause before the next occurrence of the re-
cursive call. After the broadcast from Auctioneer, all Bidderi fetch the tuple of
new bids and check that the maximum max(z̃) of this tuple (the best offer so
far) is a bid different from their own, and that their budget allows them to bid
up; if this is the case, they increment max(z̃) by ∆i and suspend; otherwise,
they issue again their previous bid zi and suspend. The execution goes on sim-
ilarly until the tuple of bids reaches a standstill (this is ensured by the fact that
each Bidderi bids upwards by a fixed amount∆i, while not overriding budgeti),
leading eventually to the emission of event bis by Auctioneer. At this point, all
participants are deviated from their main behavior and their alternative behav-

Chapter 10. Multiparty Reactive Sessions 247

ior is triggered at the next instant.

Instant tbis + 1 : NowAuctioneer broadcasts the knock-down price, which is received
by all the Bidderi, who then react by sending an “end of game” message. Note
that, because of our hypotheses, the knock-down price uniquely identifies the
winner.

The global type for the protocol is as follows (see § 10.4 for the local types):

G = watch bis do µt.B1 ↑〈int, {A}〉. · · · . Bn ↑〈int, {A}〉.A↑〈ĩnt, {B1, . . . , Bn}〉.t
else A↑〈int, {B1, . . . , Bn}〉.B1 ↑〈string, ∅〉. · · · . Bn ↑〈string, ∅〉.end

Summing Up. This example illustrates some distinctive features of our framework:

- Messages are valued events which are broadcast, hence they are not consumed
when they are read; instead, they are consumed by the passage of time, since they
are erased at the end of each instant;

- Our typed calculus imposes a strong common structure in protocol partici-
pants; while this may seem contrived, it is the source of the correctness proper-
ties enforced by our type system. For instance, bidders who wish to drop from
the auction still have to issue their last bid until the end of the auction. This is
because the bidders must match the expectations of the Auctioneer, who waits
for a bid from all bidders at each instant since she cannot foresee at which point
they will give up.

- In our calculus, as in most multiparty session frameworks, the set of partici-
pants is fixed and participants cannot dynamically enter or leave a session. It is
possible however that some participants may terminate before the others, and
the output persistence property is only required for nonterminated participants
(although this does not appear in the above example).

Having illustrated informally MRS and its typed system, we now introduce them
formally.

10.3 Our Process Model: MRS
We introduce MRS, our calculus of Multiparty Reactive Sessions. It integrates con-
structs from Synchronous Reactive Programming and from multiparty session π-
calculi.

10.3.1 Syntax
We assume the following basic sets: values (booleans, integers), ranged over by v, v′;
value variables, ranged over by x, y, z; and expressions, ranged over by e, e′. Expres-
sions are built from variables and values via standard operators, and their evalu-
ation is terminating. A set of process variables X,Y, . . . , possibly parameterised by
a tuple of parameters (written in this case as X(x̃) or X(ẽ)), is assumed to define

Chapter 10. Multiparty Reactive Sessions 248

recursive behaviors. We also use two sets that are specific to multiparty session cal-
culi [HYC08, CDPY15]: service names, ranged over by a, b, each of which has an arity
n ≥ 2 (its number of participants), and sessions, denoted by s, s′. A session repre-
sents a particular activation of a service. We use p, q, r to denote generic (session)
participants. In an n-ary session, participants will often be assumed to range over the
natural numbers 1, . . . , n (in particular, we will use this assumption when defining
the operational semantics). We denote by Π a non empty set of participants, and by
Parts the set of participants of session s. Finally, we assume a set of events Events,
ranged over by ev, ev′, which will be used for defining the reactive constructs.

Each n-ary session s has an associated set of session channels {s[1], . . . , s[n]}, one
per participant: channel s[p] is the private channel through which p communicates
with other participants in session s. We also assume a set of channel variables, ranged
over by α, β, γ; we use c to range over both channel variables and session channels.

The syntax of processes, ranged over by P,Q . . . , is given in Fig. 10.4. A new ses-
sion s on the n-ary service a is opened when the initiator ā[n] synchronizes with n
processes of the form a[i](αi).Pi, whose channels αi then get replaced by s[i] in the
body of Pi. (This synchronization will be made precise by our operational seman-
tics.) The initiator ā[n] simply marks the presence of the service a, therefore it has no
continuation behavior. Processes of the form a[i](αi).Pi are called “candidate partic-
ipants” for service a.

Rather than typical point-to-point communication, we consider communication
based on broadcast and directed input. The former is denoted c!〈e〉.P : this is an “undi-
rected output” on c, for it does notmention any intended recipient formessage e. The
latter, denoted c?(p, x).P , represents the input of a message sent by p. For simplicity
we do not consider branching/selection operators here. Constructs for conditional
expressions, parallel composition are standard. and have expected meanings.

With respect to usual calculi for multiparty sessions, the main novelty in MRS is
the addition of three reactive constructs typical of synchronous languages, given on
the bottom right of Fig. 10.4. They are:

• pause. P , which postpones the execution of P to the next instant;

• emit ev. P , which emits event ev in the current instant and then executes P ;

• watch ev do P{Q}, a construct that we call “watch-and-replace”. It executes P
and, in the presence of event ev, it replaces whatever is left of P by Q at the
end of the instant. P andQ are respectively themain behavior and the alternative
behavior of the construct.

Our watching construct is slightly more general than similar constructs in syn-
chronous languages. Without a sequential composition operator–not present inMRS
(nor in most session calculi), but common in synchronous languages–this added
generality is actually needed. Indeed, without sequential composition a watching
statement cannot be followed by another statement; therefore, if we were to use the
standard watch ev doP construct, this would just lead to termination at the end of the
instant in case ev is present.

For recursion we assume the standard guardedness condition, adapted to our lan-
guage:

Chapter 10. Multiparty Reactive Sessions 249

v ::= tt | ff | 1 | . . . (Value)
e ::= x | v | not e |

e and e′ | . . . | f(x1, . . . , xn) (Expression)
u ::= a | s (Service/Session Name)
c ::= α | s[p] (Channel variable/Session channel)
Π ::= {p} | Π ∪ {p} (Set of participants)

m ::= ε | (v,Π) (Message—with set of readers)
M ::= ∅ |M ∪ {c : m} c /∈ dom(M) (Memory)

Figure 10.3: MRS: Syntax of expressions, sessions, channels, messages andmemories.

P ::= ā[n] (Session initiator)
| a[p](α).P (Session participant)
| c!〈e〉.P (Broadcast Output)
| c?(p, x).P (Input)
| if e then P else Q (Conditional)
| P | Q (Parallel)
| 0 (Inaction)
| X(ẽ) (Variable)
| (recX(x̃) . P) (ẽ) (Recursion)
| pause. P (Pause)
| emit ev. P (Emit)
| watch ev do P{Q} (Watch & Replace)

Figure 10.4: MRS: Syntax of processes.

Definition 10.1 (Guardedness). A variableX is guarded in P if it only occurs in sub-
processes c!〈e〉.Q or c?(p, x).Q or emit ev.Q or pause. Q of P .

Note that the syntax of MRS is quite liberal. In particular, it allows processes with
interleaved communications in different sessions, such as s[1]!〈e〉.s′[1]!〈e′〉.P . How-
ever, in the rest of this chapter we focus on processes without session interleaving, and
our technical treatment is developed only for them. The restriction to single sessions
is standard in session calculi, as interleaving introduces inter-session dependencies
that cannot be captured by session types. Moreover, interleaving would raise new
issues in our setting, particularly as regards suspension of configurations involved in
more than one session.

Chapter 10. Multiparty Reactive Sessions 250

10.3.2 Semantics
We present now the semantics of MRS. In SRP, parallel components communicate via
broadcast events, which may be either valued, if they carry some content, or pure. We
call valued events messages, and pure events simply events. To model broadcast com-
munication we assume that all processes share a message set or memoryM , recording
the messages exchanged in ongoing sessions during the current instant, and an event
set E, recording the events emitted during the instant. Both sets are emptied at the
end of each instant.

A memory M is a finite set of named messages c : m, where c is the name of the
channel on which the message was sent, and m is the message content: this content
may be either empty or of the form (v,Π), where v is the carried value andΠ is the set
of current Readers of the value. We will see in the next section why we need to record
the setΠ of readers for non-emptymessages. AmemoryM maybe viewed as a partial
function from channels to messages, whose domain dom(M) = {c | ∃m. c : m ∈M}
is finite.

The session memory Ms of session s has the form
⋃

i∈Parts{s[i] : mi}, where each
s[i] : mi represents the (one-place) output buffer of participant i, which contains the
empty message if participant i has not yet broadcast in the current instant, and a
proper message otherwise. We shall use the following auxiliary notations: M∅s =⋃

i∈Parts{s[i] : ε} andM
∅ = {c : ε | c ∈ dom(M)}. Fig. 10.3 (bottom) summarizes the

notation for memories.
The sets of free names, bound names, and names of a process P , denoted respectively

by fn(P), bn(P), nm(P), are defined as usual. Assuming Barendregt’s convention, no
bound name can occur free, and the same bound name cannot occur in two different
bindings.

The semantics of MRS is defined on configurations. In its simplest form, a con-
figuration is a triple C = 〈P,M,E〉, where P is a process, M is a memory, and E
is a set of events. A configuration may also be restricted with respect to a session
name s, namely have the form (νs)C. Our semantics will not be defined on arbitrary
configurations, but only on those that may occur in the execution of a single session.
Intuitively, these are the configurations that may be reached in zero or more steps
from an initial configuration, as defined below (Def. 10.3). A formal definition of
reachability will be given at the end of this section (Def. 10.4).

We first introduce the notion of sequential and session-closed process:

Definition 10.2 (Sequentiality and Session-Closedness). A process P is said to be
sequential if it is built without the parallel construct | , and session-closed if it is built
without the constructs ā[n] and a[p](α).Q.

An initial configuration represents a state from which a single session may start:

Definition 10.3 (Initial Configuration). A configuration C0 is initial if it is of the
form

C0 = 〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉

where for each i = 1, . . . , n, process Pi is sequential and session-closed, and c ∈
nm(Pi) implies c = αi.

Chapter 10. Multiparty Reactive Sessions 251

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) watch ev do 0{Q} ≡ 0
P ≡ Q ⇒ 〈P,M,E〉 ≡ 〈Q,M,E〉 C ≡ C ′ ⇒ (νs)C ≡ (νs)C ′

Figure 10.5: Structural congruence.

[INIT]
〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉−→(νs)〈P1{s[1]/α1}| . . . |Pn{s[n]/αn},M∅

s , ∅〉

[OUT]
e ↓ v

〈s[p]!〈e〉.P,M ∪{s[p] : ε}, E〉 −→ 〈P,M ∪{s[p] : (v, ∅)}, E〉

[IN]
q /∈ Π

〈s[q]?(p, x).P,M ∪{s[p] : (v,Π)}, E〉 −→ 〈P{v/x},M ∪{s[p] : (v,Π ∪ q)}, E〉

[EMIT]
〈emit ev. P,M,E〉 −→ 〈P,M,E ∪ {ev}〉

[IF-T]
e ↓ tt

〈if e then P else Q,M,E〉 −→ 〈P,M,E〉
[REC]
〈P{ṽ/x̃}{(pause. recX(x̃) . P)/X},M,E〉 −→ 〈P ′,M,E〉 ẽ ↓ ṽ

〈(recX(x̃) . P)(ẽ),M,E〉 −→ 〈P ′,M,E〉

[CONT]
〈P,M,E〉 −→ 〈P ′,M ′, E′〉

〈E [P],M,E〉 −→ 〈E [P ′],M ′, E′〉
[RES]

〈P,M,E〉 −→ 〈P ′,M ′, E′〉
(νs)〈P,M,E〉 −→ (νs)〈P ′,M ′, E′〉

[STRUCT]
C ≡ C′ C′ −→ C′′ C′′ ≡ C′′′

C −→ C′′′

Figure 10.6: Reduction rules for MRS (with Rule [If-F] omitted).

We define two reduction relations on configurations, denoted−→ and ↪→E : while
−→ describes the evolution within an instant, ↪→E describes the evolution from one
instant to the next one.

Reduction is defined modulo a structural congruence ≡, whose rules are given
in Fig. 10.5 and are standard [Mil99]. The reduction relation −→ describes the step-
by-step execution of a configuration within an instant. It is defined by the rules in
Fig. 10.6. Let us discuss some of them.

Rule [Init] describes the initiation of a new session s of service a among n pro-
cesses of the required form. After the initiation, participants share a private session
name s, and the channel variable αp is replaced by the session channel s[p] in each
process Pp.

Rule [Out] allows a sender p to broadcast a message by adding it to the memory,
if p has not already sent a message in the current instant, namely if the output buffer
of p has the form s[p] : ε. In the premise, e ↓ v denotes the evaluation of expression
e to value v. If the message can be added, its content is set to v and its reader set is
initialized to ∅.

Rule [In] allows a receiver q to fetch a message from sender p in the memory, if
there exists one and if q has not already read it, namely if q does not belong to the

Chapter 10. Multiparty Reactive Sessions 252

(PAUSE)

〈pause. P,M,E〉‡

(OUTs)

〈s[p]!〈e〉.P,M ∪ {s[p] : (v,Π)}, E〉‡

(PARs)
〈P,M,E〉 ‡ 〈Q,M,E〉‡

〈P | Q,M,E〉‡

(WATCHs)
〈P,M,E〉‡

〈watch ev do P{Q},M,E〉‡
(INs) 〈s[q]?(p, x).P,M ∪ {s[p] : ε}, E〉‡

(RESTRs)
〈P,M,E〉‡

(νs)〈P,M,E〉‡
(IN2

s)
q ∈ Π

〈s[q]?(p, x).P,M ∪ {s[p] : (v,Π)}, E〉‡

(RECs)
〈P{ṽ/x̃}{(pause. recX(x̃) . P)/X},M,E〉 ‡ ẽ ↓ ṽ

〈(recX(x̃) . P)(ẽ),M,E〉‡
(CONGs)

C ≡ C′ C′‡
C‡

Figure 10.7: Suspension Predicate.

[P]E
def
=

R if P = pause. R

[R]E | [Q]E if P = R | Q
Q if P = watch ev doR{Q}, ev ∈ E and R 6≡ 0
watch ev do [R]E{Q} if P = watch ev doR{Q}, ev /∈ E

P otherwise

Figure 10.8: Reconditioning Function.

(TICK)
(νs)〈P,M,E〉‡

(νs)〈P,M,E〉 ↪→E (νs)〈[P]E ,M
∅, ∅〉

Figure 10.9: Tick transition.

reader set Π of the message. If q can read the message, then its value is substituted
for the bound variable in the continuation process P , and the name q is added to the
reader set Π.

Rule [Rec] inserts a pause before each recursive call, as usual in SRP, in order to
allow at most one loop iteration at each instant and thus prevent the phenomenon
known as instantaneous loop or instantaneous divergence [TS05]. Although parameter-
ized recursion is used in our examples, for the sake of simplicity we will focus on
unparameterized recursion in the rest of the chapter. Including parameters would
have no impact on our results, but it would be tedious to carry them throughout our
technical development.

The evaluation contexts E used in Rule [Cont] are defined by:

E ::= [] | E | P | P | E | watch ev do E{Q}

Note that the watch construct behaves as a static context as far as the reduction re-
lation is concerned: the body of a watch process is executed up to the end of the
instant, disregarding the event ev (which is relevant only for the relation ↪→E across
instants).

To define the tick transition relation ↪→E , we require two additional notions: the
suspension predicate and the reconditioning function.

Chapter 10. Multiparty Reactive Sessions 253

The suspension predicate 〈P,M,E〉‡ (cf. Fig. 10.7) holdswhen all non-terminated
components of P are in one of the following situations:

• wanting to release the control explicitly via a pause. Q instruction;

• wanting to send a message after having already sent a message during the in-
stant;

• awaiting a message from a participant who has not sent anything during the
instant;

• awaiting a second message from the same participant during the same instant.

The reconditioning function (Fig. 10.8) “cleans-up” a processP andprepares it for
the next instant: it erases all guarding pauses from pause. Q processes, and triggers
the alternative behavior Q of all the processes watch ev do P{Q} whose controlling
event ev has been emitted.

The tick relation ↪→E applies only to suspended configurations: it formalizes the
passage of (logical) time and delimits the duration of broadcast by clearing out the
memory and the event environment at the end of each instant. Formally, this relation
is specified by the rule in Fig. 10.9, where [P]E is the reconditioning of P with respect
to E.

As usual, we use −→∗ for the reflexive and transitive closure of −→. We write ;
to denote either −→ or ↪→E , and ;∗ to stand for the reflexive and transitive closure
of ;.

The following definition of reachability characterizes the configurations that may
occur in the execution of a single session.

Definition 10.4 (Reachable Configuration). A configuration C is reachable if there
exists an initial configuration C0 such that C0 ;∗ C.

Proposition 10.5. If C is a reachable configuration that is not initial, then

C = (νs)〈P,M,E〉

and there exist an initial configuration C0 = 〈P0,M0, E0〉 and Pi,Mi, Ei for i = 1, . . . , n
such that C0 ; (νs)〈P1,M1, E1〉; · · ·; (νs)〈Pn,Mn, En〉 = (νs)〈P,M,E〉.

From now on we will focus only on reachable configurations, without explicitly
mentioning it.

10.3.3 Reactivity
In this section, we prove that single sessions are reactive in our calculus, namely
that every instant in their execution terminates. The single-session assumption is
required, as it is well-known that interleaved sessions are subject to deadlock, and
the possibility of deadlock would impair reactivity. On the other hand, it would be
easy to extend our reactivity result to a pool of disjoint sessions evolving in parallel.

Wenow introduce somepreliminary notation. First, wedefine themulti-step tran-
sition relation C ⇒ C ′, together with its decorated variant C⇒n C

′ that keeps track
of the number of execution steps between two configurations within an instant.

Chapter 10. Multiparty Reactive Sessions 254

Definition 10.6 (Multi-Step Transition Relation). The decorated multi-step transition
relation C⇒n C

′ is defined by:

C⇒0 C (C −→ C ′ ∧ C ′⇒n C
′′) ⇒ C⇒n+1 C

′′

Then the multi-step transition relation C ⇒ C ′ is given by:

C ⇒ C ′ if ∃n .C⇒n C
′

Next, we define the notion of instantaneous convergence, which formalizes the
fact that a configurationmay reach a state of termination or suspension in the current
instant.

Definition 10.7 (Instantaneous Convergence). The immediate convergence predicate
is defined by:

〈P,M,E〉 ‡⋎ if 〈P,M,E〉 ‡ ∨ (P ≡ 0)
(νs)〈P,M,E〉 ‡⋎ if 〈P,M,E〉 ‡⋎

Then the instantaneous convergence relation and predicate are given by:

C ⇓ C ′ if C ⇒ C ′ ∧ C ′ ‡⋎ C ⇓ if ∃C ′ . C ⇓ C ′

The annotated variants ⇓n may be defined in the obvious way:

C ⇓n C ′ if C⇒n C
′ ∧ C ′ ‡⋎ C ⇓n if ∃C ′ . C ⇓n C ′

By abuse of notation, if σ = C0 −→ · · · −→ Cn is a computation of C0 and Cn
‡
⋎, we

shall say that the computation σ converges (or converges to Cn).
We proceed now to prove reactivity. In fact, we shall prove a stronger property,

bounded reactivity, which says that every configuration 〈P,M,E〉 instantaneously con-
verges in a number of steps that is bounded by the instantaneous size of process P in
memoryM , denoted sizeM (P). Intuitively, sizeM (P) is an upper bound for the number
of steps thatP can execute during the first instantwhen run inmemoryM . Therefore,
the idea for defining sizeM (P) is that it should not take into account the portion of
P that follows a pause instruction (a “syntactic pause”). Moreover, sizeM (P) should
span at most one iteration of recursive subprocesses, and ignore the alternative be-
havior in watching subprocesses. Finally, in order to account for implicit pauses (or
“semantic pauses”), sizeM (P) should stop countingwhen itmeets an output on chan-
nel c, respectively an input on channel c from participant p, in both process P and
memoryM .

LetM denote the set of memories.

Definition 10.8 (Communications and Fired Channels). For any memoryM ∈M,
we define:

Fired(M)
def
= {(s, p) | ∃ v,Π. s[p] : (v,Π) ∈M}

Comm(M)
def
= {(s, p, q) | ∃ v,Π. (s[p] : (v,Π) ∈M ∧ q ∈ Π)}

Chapter 10. Multiparty Reactive Sessions 255

The above functions allow us to extract useful information from the memory:
Fired(·) identifies the participants that have sent a message in the current instant,
and Comm(·) yields the pairs of participants that have successfully communicated
in the current instant.

Definition 10.9 (Instantaneous Size). The partial function size : (P ×M)→ Nat is
defined inductively by:

sizeM (0) def
= sizeM (X)

def
= sizeM (pause. P)

def
= sizeM (ā[n])

def
= 0

sizeM (emit ev. P)
def
= 1 + sizeM (P)

size∅(a[p](α).P)
def
= 1 + sizeM∅

s
(P{s[p]/α}), for any s

sizeM (s[p]!〈e〉.P) def
=

0, if (s, p) ∈ Fired(M)

1 + sizeM ′(P),where if s[p] : ε ∈M
M ′ =M{s[p] 7→ (val(e), ∅)}

sizeM (s[q]?(p, x).P)
def
=

0,

if s[p] :ε∈M
or (s, p, q) ∈ Comm(M)

1 + sizeM ′(P{v/x}),where if s[p] : (v,Π)∈M ∧ q /∈ Π

M ′ =M{s[p] 7→ (v,Π ∪ q)}

sizeM (if e then P1 else P2)
def
= 1 +max{sizeM (P1), sizeM (P2)}

sizeM (P1 | P2)
def
= sizeM (P1) + sizeM (P2)

sizeM (recX .P)
def
= sizeM (P)

sizeM (watch ev do P{Q}) def
= sizeM (P)

Asmentioned previously, the function sizeM (P) yields a bound for the number of
steps that a configuration 〈P,M,E〉may execute before reaching a state of suspension
or termination. Note that the set of events E is irrelevant for this measure. Indeed,
in our calculus (unlike in other SRP languages), the set of events only plays a role at
the end of instants, and does not affect the reduction relation.

Definition 10.10 (Configuration Instantaneous Size). Function sizeM (P) induces a
function Size(C) on configurations, defined by:

Size(〈P,M,E〉) def
= sizeM (P) Size((νs)C) def

= Size(C)

Although partial (because sizeM (P) is partial), the function Size(C) is always de-
fined for reachable configurations C, as established by the following lemma:

Lemma 10.11. Let C be a reachable configuration. Then Size(C) is defined.

Proof. We distinguish two cases, depending on whether C is initial or reachable in at
least one step.

(1) Let C = 〈P, ∅, ∅〉 where P = a[1](α1).P1 | ... | a[n](αn).Pn | ā[n]. Then it is im-
mediate to see that Size(〈P, ∅, ∅〉) = size∅(P) is defined.

Chapter 10. Multiparty Reactive Sessions 256

(2) Let C = (νs)〈P,M,E〉.There are only two possible cases where sizeM (P) may
not be defined, namely the I/O cases P = s[p]!〈e〉.Q and P = s[q]?(p, x).Q,
when s[p] /∈ dom(M). However, this cannot happen, since C is derived from an
initial configuration

C0 = 〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉

whose first reduction is necessarily of the form:

C0 −→ (νs)〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉 = C1

By definition s[i] ∈ dom(Ms) for each i = 1, . . . , n. Then we may conclude,
since C1 −→∗ C is deduced using rules different from [INIT] and all these rules
preserve dom(Ms).

In the forthcoming proofs, we shall also use the following property:
Property 10.12. For any process P and memoryM :

sizeM (recX .P) = sizeM (P{(pause. recX .P)/X})

Proof. Easy consequence of Def. 10.9, since sizeM (recX .P) = sizeM (P) and for any
process Q, we have sizeM (pause. Q) = 0 = sizeM (X).

Before proving reactivity we will present some auxiliary results. We first prove
that sizeM (P) decreases at each step of execution during an instant:
Lemma 10.13 (Size Reduction During Instantaneous Execution). Let C be a reach-
able configuration. Then:

C −→ C ′ ⇒ Size(C) > Size(C ′)

Proof. We distinguish two cases, depending on whether C is an initial configuration
or not.
(1) Let C = 〈P,M,E〉. Then C −→ C ′ = (νs)〈P ′,M ′, E′〉 is deduced by Rule [INIT].

Here:
C = 〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉

and C ′ = (νs)〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉. Then we may conclude,
since sizeM (P) =

∑n
i=1 sizeM (a[i](αi).Pi) = n +

∑n
i=1 sizeM∅

s
(Pi{s[i]/αi}) =

n+ sizeM∅
s
(P ′) > sizeM∅

s
(P ′).

(2) Let C = (νs)〈P,M,E〉. In this case we have (νs)〈P,M,E〉 −→ (νs)〈P ′,M ′, E′〉
if and only 〈P,M,E〉 −→ 〈P ′,M ′, E′〉, and thus it is enough to prove the fol-
lowing statement:

If (νs)〈P,M,E〉 is reachable then 〈P,M,E〉 −→ 〈P ′,M ′, E′〉 implies sizeM (P) >
sizeM ′(P ′)

To prove this statement we proceed by induction on the inference of the tran-
sition 〈P,M,E〉 −→ 〈P ′,M ′, E′〉, and case analysis on the last rule used in the
inference. For details see App. F.1.

Chapter 10. Multiparty Reactive Sessions 257

We define now a specific notion of guardedness for recursive processes, which
will be used in the proofs of the next two lemmas. In the sequel, a recursive process
will often be referred to as “recursive call” or simply “call”. A recursive call that is
guarded by a pause statement is said to be pause-guarded. Formally:
Definition 10.14 (Pause-Guardedness ofRecursiveCalls). Arecursive call recX .Q
is pause-guarded in process P if it appears within some subprocess pause. P ′ of P . It
is called pause-unguarded in P otherwise.

The following lemma establishes that every reachable configuration 〈P,M,E〉 im-
mediately converges if and only if its size is equal to 0.
Lemma 10.15 (Immediate Convergence of 0-size Configurations). Let C be a reach-
able configuration. Then

(Size(C) = 0) ⇔ C ‡⋎

Proof. Note thatC cannot be an initial configuration, since in this case wewould have
Size(C) > 0. Hence C = (νs)〈P,M,E〉. Since

Size((νs)〈P,M,E〉) = Size(〈P,M,E〉) = sizeM (P)

and (νs)〈P,M,E〉 ‡⋎ ⇔ 〈P,M,E〉 ‡⋎, it is enough to prove the statement for C =

〈P,M,E〉. We prove each side of the biconditional in turn. For details see App. F.1.

There are two reasons why reactivity could fail in our calculus: 1) a process that
loops forever during an instant - what is generally called an instantaneous loop in
SRP [TS05]; 2) a deadlock due to a mismatch between a participant and the mem-
ory: this happens when a participant p in a session s wants to broadcast a message
while the output buffer s[p] : m is not in the memory, or to receive a message from
participant q while the output buffer s[q] : m is not in the memory. Our semantic
rule for recursion is designed to prevent instantaneous loops, and will be the key
for proving Reactivity (Theorem 10.18). The absence of mismatches between partic-
ipants and the memory is guaranteed by the reachability assumption. The following
lemma establishes that reachable configurations are deadlock-free.
Lemma 10.16 (Deadlock freedom). Let C be a reachable configuration. Then

either C ‡⋎ or ∃ C ′ . C −→ C ′

Proof. We distinguish two cases, depending on whether C is an initial configuration
or not.
(1) Let C = 〈P,M,E〉 be an initial configuration. Then there is a reduction C −→

C ′ with C ′ = (νs)〈P ′,M ′, E′〉 deduced by Rule [INIT].

(2) LetC = (νs)〈P,M,E〉. ThenC reduces if and only if 〈P,M,E〉 reduces andC ‡⋎
if and only if 〈P,M,E〉 ‡⋎. Hence it is enough to prove the property for 〈P,M,E〉.
We proceed by induction on the structure of P . Note that the reachability as-
sumption rules out the cases P = X , P = ā[n] and P = a[p](α).Q. For details
see App. F.1.

Chapter 10. Multiparty Reactive Sessions 258

We are now ready to prove two (increasingly strong) reactivity results for reach-
able configurations:

(1) Standard reactivity, which amounts to the convergence of all computations of C
within an instant.

(2) Bounded reactivity, which gives a bound for the number of steps of such con-
verging computations.

Theorem 10.17 (Reactivity). Let C be a reachable configuration. Then C ⇓.

Proof. Every sequence of consecutive reductions from a configuration C must be fi-
nite, given that Size(C) is defined by Lem. 10.11, and it strictly decreases along execu-
tion by Lem. 10.13. Moreover, no derivative of C may be deadlocked, by Lem. 10.16.
Hence the size of the configuration eventually becomes 0 Lem. 10.15.

We proceed now to prove bounded reactivity, namely that every reachable config-
urationC instantaneously converges in a number of steps that is bounded by Size(C).

Theorem 10.18 (Bounded Reactivity). Let C be a reachable configuration. Then

∃n ≤ Size(C) . C ⇓n

Proof. We distinguish two cases, depending on whether C is an initial configuration
or not. For details see App. F.1.

10.4 Types for MRS
In this section we present the session type system for MRS. We show that typability
implies the classical properties of session calculi, namely the absence of communi-
cation errors (communication safety) and the conformance to the session protocol
(session fidelity). Furthermore, our type system enforces the following properties,
which are specific to our synchronous reactive setting and will be discussed in more
detail later:

P1. Output persistence: Every participant broadcasts exactly one message during
every time instant.

P2. Input timeliness: Every unguarded input is matched by an output during the
current instant, if not preceded by another input with equal source and target,
or during the next instant, if not preempted.

10.4.1 Global and Local Types
Our calculus allows multiparty communication [HYC08, CDPY15]. Hence, typing
relies on global types to describe communication protocols and on local types to de-
scribe the contributions of protocol participants.

Chapter 10. Multiparty Reactive Sessions 259

Sorts S ::= bool | int | . . .

Global types G ::= p↑〈S,Π〉.G communication
| pause.G explicit pause
| tick.G implicit pause
| watch ev do G else G global watch
| t recursive variable
| µt.G recursion
| end end

Local Types T ::= !S.T send
| ?(p, S).T receive
| pause.T explicit pause
| tick.T implicit pause
| 〈T, T ′〉ev local watch
| µt.T recursion
| t recursive variable
| end end

Message Types ϑ ::= void | (S,Π)

Figure 10.10: Sorts, Global types, Local types and Message types.

Our type syntax, given in Fig. 10.10, uses sorts, ranged over by S, S′, . . . , global
types ranged over by G,G′, . . . , local types, ranged over by T, T ′, . . . , and type vari-
ables, ranged over by t, t′, Sorts denote basic types such as int and bool and type
variables are used when defining recursive types. We recall that participants are de-
noted by p, q, . . . or by natural numbers. Similarly, sets of participants are denoted by
Π,Π′. A peculiarity of our type system is that for every sort S we assume a default
value dS , representative of the particular basic type S. We present the syntax of both
global and local types below.

Global types:

- Type p ↑ 〈S,Π〉.G represents a participant p broadcasting a message of sort S,
with participants in Π as intended receivers; subsequently, the interaction con-
tinues as specified byG. As a well-formedness condition for the type above, we
require p 6∈ Π.

- Type pause.G stipulates that all participants should jointly move to the next
time instant in order to execute protocol G.

- Type tick.G represents an implicit pause arise from the semantics of processes.
In a sense, it can be said that tick is “runtime” type, which is added dynami-
cally by the saturation function that will be presented in Fig. 10.11.

Chapter 10. Multiparty Reactive Sessions 260

- Type watch ev do G else G′ represents a protocol which has an alternative be-
havior. Intuitively, protocol G is executed until the end of the current instant;
then, if event ev has been emitted, the governing protocol at the next instant
will be G′, otherwise it will be the continuation of G. Note that if G′ becomes
the governing protocol, protocol G is pre-empted.

- Type end represents the terminated protocol.

Local types:

- The send type !S.T indicates the broadcast of a value of sort S, followed by the
behavior described by T .

- The receive type ?(p, S).T describes the reception of a value of sort S sent by
participant p, followed by the behavior described by T .

- The pause type pause.T signals the change of time instant, followed by the be-
havior described by T .

- Type tick.T corresponds to the projection of global ticks.

- The local watch type 〈T, T ′〉ev is meant to be assigned to a participant that be-
haves as specified by type T until the end of instant; then, if event ev has ap-
peared, it will behave according to type T ′, otherwise according to the contin-
uation of T .

We assume recursive types µt.G and µt.T to be contractive (i.e., type variables only
appear under the prefixes). Furthermore, as we have done in previous sections, we
take an equi-recursive view of types, meaning that we do not distinguish between
µt.G (resp. µt.T) and its unfolding G{µt.G/t} (resp. T{µt.T/t}). As a consequence,
we never consider types of the form µt.T in typing rules. Indeed, whenever we
find a type µt.T in a typing rule, we pick another type equal to it (i.e., its unfold-
ing T{µt.T/t}) [Pie02].

Example 10.19. We now present some examples of global and local types that can be
written using the syntax in Fig. 10.10. Assume participants p, q, r:

p↑〈S, {q, r}〉.pause.r↑〈S, {p, q}〉.end pause.r↑〈S, {p, q}〉.end
µt.r↑〈S, {p, q}〉.t µt.pause.t
!S.?(p, S′).end µt.!S.!S′.t

4

Chapter 10. Multiparty Reactive Sessions 261

SR(p↑〈S,Π〉.G′,P)=p↑〈S,Π〉.SR(G′,P ∪ {p}) if p /∈ P
SR(p↑〈S,Π〉.G′,P) =p{1,n} ↑〈S, ∅〉.tick.

p↑〈S,Π〉.SPart(G′)(G
′, {p})

if p ∈ P and
R \ P={p1, . . . , pn}

SR(pause.G′,P)=p{1,n} ↑〈S, ∅〉.pause.SPart(G′)(G
′, ∅) with R \ P={p1, . . . , pn}

SR(tick.G′,P)=p{1,n} ↑〈S, ∅〉.pause.SPart(G′)(G
′, ∅) with R \ P={p1, . . . , pn}

SR(end,P)=p{1,n} ↑〈S, ∅〉.end with R \ P={p1, . . . , pn}

SR(watch ev do G′ else G′′,P) = swatch ev do SR(G′,P)

else SPart(G′′)(G
′′, ∅)

SR(µt.G′, ∅)=µt. SPart(G′)(G
′, ∅)

SR(µt.G′,P)=p{1,n} ↑〈S, ∅〉.tick.µt. SPart(G′)(G
′, ∅) with R \ P={p1, . . . , pn}

SR(t,P)=p{1,n} ↑〈S, ∅〉.pause.t with R \ P={p1, . . . , pn}

Figure 10.11: Saturation of global types.

10.4.2 Projection and Saturation
As usual in multiparty session calculi, global and local types are related by the no-
tion of projection. Intuitively, the projection of a global type G onto its participants
generates the local types for every participant using the information given by G.

In our reactive setting, however, projection requires a pre-processing phase in
which the global type is modified by adding the necessary implicit pauses. As hinted
before, tick represents implicit pauses, which are induced by the semantics, rather
than by a pause explicitly written in the protocol specification. This pre-processing
phase is called saturation and besides adding the necessary implicit pauses, it adds
outputs that may be missing to ensure output persistence.

Before formally introducing saturation and projection, we define some auxiliary
notation. We write Part(G) to represent the set of participants declared inG. We also
find it useful towrite p{1,n} ↑〈S,Π〉.G to abbreviate the global type p1 ↑〈S,Π〉. · · · .pn ↑
〈S,Π〉.G, describing n consecutive broadcasts of messages of the same sort S from
each of the participants p1, . . . , pn to the set of participants inΠ. Moreover, whenever
n = 0, p{1,n} ↑〈S,Π〉.G denotes the global type G.

We now introduce saturation (cf. Fig. 10.11) and projection (cf. Fig. 10.12). As
hinted above, the saturation function makes the global type reflect precisely the slic-
ing into instants of the protocol’s behavior. Intuitively, a global type is saturated as
follows: first, the saturation function identifies the correct instant slicing in the pro-
tocol adding the necessary tick. Next, the function saturates the global type with
outputs, guaranteeing that in each instant all participants broadcast a message (even
if it is not received by anyone). Formally, the function SR(G,P), takes a global type
G , the set of currently active participants, writtenR, and a set that collects the partic-
ipants ofR that have already sent a message in the current instant, denoted P ⊆ R.

Our type systemwill then require saturated projections, which simply stand for the

Chapter 10. Multiparty Reactive Sessions 262

(p↑〈S,Π〉.G′)� q =

!S.(G′ � q) if q = p

?(p, S).(G′ � q) if q ∈ Π,

G′ � q otherwise.

(pause.G′)� q =

{
end if q /∈ Part(G′) ∧ no type variable t occurs in G′

pause.(G′ � q) otherwise.

(tick.G′)� q =

{
end if q /∈ Part(G′) ∧ no type variable t occurs in G′

tick.(G′ � q) otherwise

(watch ev do G1 else G2)� q = 〈G1 � q, G2 � q〉ev

(µt.G′)� q =

{
µt.(G′ � q) if q or any type variable t′ occur in G′

end otherwise
t� q = t end� q = end

Figure 10.12: Projection of global types onto participants.

projection of the saturated global type. Intuitively, the saturated projection of G onto
q, denoted Gb q, yields a local type representing q’s involvement in the protocol de-
scribed by G. It is obtained in two steps: first, G is saturated as described in Fig. 10.11;
then the resulting global type is projected onto q as described in Fig. 10.12:

Gb q= (SPart(G)(G, ∅)� q) (10.1)

To illustrate our definitions of projection and saturation, let us look back at the
auction example of § 10.2.
Example 10.20 (Types for the Auction Process). Recall that the set of participants
of the Auction process is {A, B1, . . . , Bn}, where A represents the Auctioneer and Bi the
process Bidderi (1 ≤ i ≤ n). The global type G is as follows:

G = watch bis do µt.B1 ↑〈int, {A}〉. · · · . Bn ↑〈int, {A}〉.A↑〈ĩnt, {B1, . . . , Bn}〉.t
else A↑〈int, {B1, . . . , Bn}〉.B1 ↑〈string, ∅〉. · · · . Bn ↑〈string, ∅〉.end

Then, the saturated global type G = S(G, ∅) is built according to Fig. 10.11, as follows:

S(G, ∅)= watch bis do µt.B1 ↑〈int, {A}〉. · · · . Bn ↑〈int, {A}〉.A↑〈ĩnt, {B1, . . . , Bn}〉.pause.t
else A↑〈int, {B1, . . . , Bn}〉.B1 ↑〈string, ∅〉. · · · . Bn ↑〈string, ∅〉.end

The only difference with respect to G is the addition of a pause before the recursion
variable t. Finally, the saturated projections of G (i.e., the projections of G) onto par-
ticipants are as follow:

Gb A = 〈µt1.?(B1, int). · · · .?(Bn, int).!ĩnt.pause.t1, !int.end〉bis

Gb Bi = 〈µt2.!int.?(A, ĩnt).pause.t2, ?(A, int).!string.end〉bis

4

Chapter 10. Multiparty Reactive Sessions 263

10.4.3 Type System
Typing judgments for our type system rely on three kinds of typing environments:
standard environments given by Γ,Γ′, session environments ranged over by ∆,∆′, and
message environments denoted by Θ. Standard environments, map variables to sort
types, service names to global types, and process variables to local types. Formally:

Γ ::= ∅ | Γ, x : S | Γ, a : G | Γ, X : T

We write Γ, x : S only if x does not occur in dom(Γ), where dom(Γ) denotes the
domain of Γ, i.e., the set of identifiers occurring in Γ. We adopt the same convention
for Γ, a : G and Γ, X : T .

Session environments assign local types to channels occurring in processes, while
message environments, assign message types (cf. Fig. 10.10) to channels occurring
in memories. More specifically, a message environment assigns to a channel c in the
memory the type ϑ of the message carried by c, namely the type void if no message
has been sent on c, and the type (S,Π) if a message of type S has been sent on c and
has been read by the participants in Π.

The syntax of message types ϑ is given in Fig. 10.10. Then, session and message
environments are formally defined by the following grammars:

∆ ::= ∅ | ∆, c : T Θ ::= ∅ | Θ, c : ϑ
For∆, c : T andΘ, c : ϑwe use the same conventions as for Γ, meaning that a session
environment ∆, c : T (resp. a message environment Θ, c : ϑ) is only well-defined if
c 6∈ dom(∆) (rep. c 6∈ dom(Θ)). Thus, a session environment ∆1,∆2 is only well-
defined if dom(∆1) ∩ dom(∆2) = ∅.

Following the same notation introduced for memories, we write Θ∅ to represent
the message environment obtained from Θ by turning all message types to void.
Intuitively, if Θ types memory M then Θ∅ types memory M∅. Formally, Θ∅ =def⋃

c∈dom(Θ){c : void}.
Below, we give two auxiliary definitions. The first one introduces notations for re-

ferring to session environments that contain only ended behaviors and environments
that contains at least one “live” behavior. The second one defines a way to extract the
“active” participants in the current instant from the memory M and memory envi-
ronment Θ.
Definition 10.21 (Live and Terminated Session Environments). A session environ-
ment ∆ is said to be live if c : T ∈ ∆ implies T 6= end, and terminated if c : T ∈ ∆
implies T = end. Any session environment ∆ may be partitioned in two session
environments ∆live and ∆end defined by:

∆live def
= {c : T ∈ ∆ | T 6= end ∧ T 6= 〈end, T 〉ev}

∆end def
= {c : T ∈ ∆ | T = end ∨ T = 〈end, T 〉ev}

Definition 10.22 (Visible Domain of Memories and Message Environments).
The visible domain of memories and message environments is defined by:

vdom(M) = {c | c : m ∈M ∧ m 6= ε}
vdom(Θ) = {c | c : ϑ ∈ Θ ∧ ϑ 6= void}

Chapter 10. Multiparty Reactive Sessions 264

bSERVICEc Γ, a : G ` a : G bPROCVARc Γ, X : T ` X : S T

Figure 10.13: Typing rules for services and process variables.

bBOOLVALc Γ ` tt, ff : bool bINTVALc Γ ` 1, 2, . . . : int bDVALc Γ ` dS : S

bVARc
Γ, x : S ` x : S

bANDc
Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 and e2 : bool

bSUMc
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Figure 10.14: Typing rules for expressions.

bVOIDMSGc Γ ` c : ε . c : void
bFULLMSGc

Γ ` v : S

Γ ` c : (v,Π) . c : (S,Π)

bEMPTYMEMc Γ ` ∅ . ∅
bMERGEMEMc

Γ `M .Θ Γ ` c : m . c : ϑ

Γ `M ∪ {c : m} .Θ, {c : ϑ}

Figure 10.15: Typing rules for memories.

Our type systemuses three kinds of type judgments. The first one, used for typing
expressions, is defined by the rules in Fig. 10.14 and has the form:

Γ ` e : S

where Γ represents a standard environment, e and expression and S a sort. The sec-
ond one, used for typing memories, is defined by the rules in Fig. 10.15 and has the
form:

Γ `M .Θ

where Θ is a message environment associating a message type with each channel in
M . Finally, the third kind of judgment is used for typing configurations and has the
form:

Γ ` C . 〈∆ �Θ〉

where 〈∆�Θ〉 is called a configuration environment. The reason for using configuration
environments is because the state of the memory directly impact the behavior of the
process. Thus, it becomes necessary for types to have knowledge about the memory
at every point of the typing derivation.

Intuitively, if Γ ` 〈P,M,E〉 . 〈∆ �Θ〉, then ∆ is a session environment typing the
channels of P in memory M , and Θ is a message environment typing the messages
ofM .

Before presenting the typing rules for configurations, we introduce some auxiliary
notions and results. We say that a local type is output granting if the first pause in it

Chapter 10. Multiparty Reactive Sessions 265

(if any) is preceded by an output.

Definition 10.23 (Output-Granting Type). A local type T is output-granting if it sat-
isfies the predicate OG(T) defined by:

OG(T) def
=

tt if T =!S.T ′

OG(T ′) if T =?(p, S).T ′ ∨ T = 〈T ′, T ′′〉ev ∨ T = µt.T ′

ff otherwise

The predicate is extended to session environments by letting OG(∆) if OG(T) for all
c:T in ∆.

We can then show that local types that come from the projection of a saturated
global type are output granting.

Lemma 10.24 (Correctness of Saturation with Respect to OG(T)). Let G be a global
type such that |Part(G)| ≥ 2, p be a participant, and P be a set of participants such that
(1) P ⊆ Part(G), and (2) Part(G) \ P 6= ∅. Then, OG(SPart(G)(G,P) � p) holds for every
p ∈ Part(G) \ P .

Proof. By induction on the structure of G. The base cases are G = end and G = t,
which are vacuously true since |Part(end)| = |Part(t)| = 0. For the inductive step we
assume that the property holds for a global typeG′ and prove the statement for every
type that containsG′ as a sub-expression. There are 5 inductive cases. For details see
App. F.2.

Corollary 10.25 (Projection Implies OG(·)). For any global typeG such that Part(G) ≥
2 and any participant p ∈ Part(G), OG(Gb p) holds.

Proof. The proof follows from Lem. 10.24. Notice that in this case P = ∅, hence
Part(G) \ P = Part(G).

Next, we define the pair composition of session types, which intuitively generates
end or 〈T1, T2〉ev , depending on the value of T1.

Definition 10.26. The pair composition of session types T1 and T2 under event ev, writ-
ten T1 ?ev T2, is defined by:

T1 ?ev T2
def
=

{
T1 if T1 = end

〈T1, T2〉ev otherwise.

Abusing notation, we extend this definition to session environments bywriting∆1?ev
∆2.

Given that our typing rules are defined over session environments and that our
semantics induce suspension points for all processes in parallel inside a configura-
tion, we define functions pause(·) and tick(·) to extract all the suspended sessions of
a session environment.

Chapter 10. Multiparty Reactive Sessions 266

Definition 10.27. Given a session environment ∆, we write pause(∆) to denote the
environment defined as pause(∆)

def
= {c : pause.T | c : T ∈ ∆}. Analogously tick(∆)

denotes the environment defined as tick(∆)
def
= {c : tick.T | c : T ∈ ∆}.

We next introduce generalized types for session channels occurring in configu-
rations. Note that in a configuration, channels may occur on the process side, on
the memory side, or on both sides. Since our semantics allows at most one message
to be sent on each channel during an instant, both our message types and our gen-
eralized types are simpler than those of standard asynchronous multiparty session
calculi [CDPY15]. In particular, in our calculus the syntax of generalized types coin-
cides with that of local types.

Definition 10.28 (Generalized Types). A generalized type T is a local type T or a
send type (extracted from amessage type ϑ) followed by a local type T . Moreover, let
〈∆�Θ〉 be a configuration environment and s[p] ∈ dom(〈∆�Θ〉). Then the generalized
type of s[p] in 〈∆ �Θ〉 is given by:

〈∆ �Θ〉(s[p]) def
=

T if s[p] : T ∈ ∆ ∧ s[p] 6∈ vdom(Θ)

!S. T
if s[p] : (S,Π) ∈ Θ ∧
(s[p] : T ∈ ∆ ∨ (s[p] 6∈ dom(∆) ∧ T = end))

end if s[p] /∈ dom(∆) ∧ s[p] : void ∈ dom(Θ)

undefined otherwise.

The generalized type 〈∆�Θ〉(s[p]) represents the usage of channel s[p] in the con-
figuration environment 〈∆�Θ〉: it is the concatenation of the send type extracted from
the message sent by p in the current instant, if any, with the local type describing the
remaining behavior of p.

Example 10.29 (Generalized Types). We present examples of generalized types be-
low:
Let ∆ = s[1] : end and Θ = ∅. Then 〈∆ �Θ〉(s[1]) = end.

Let ∆ = ∅ and Θ = s[1] : void. Then 〈∆ �Θ〉(s[1]) = end.

Let ∆ = s[1] : end and Θ = s[1] : void. Then 〈∆ �Θ〉(s[1]) = end.

Let ∆ = s[1] :!S.end and Θ = s[1] : void. Then 〈∆ �Θ〉(s[1]) =!S.end.

Let ∆ = s[1] : end and Θ = s[1] : (S,Π). Then 〈∆ �Θ〉(s[1]) =!S.end.

Let ∆ = s[1] :!S.end and Θ = s[1] : (S′,Π). Then 〈∆ �Θ〉(s[1]) =!S′.!S.end.
4

Generalized typesmay be projected on participants (notation T � q), as described
in Fig. 10.16. These projections are anonymous local types (local types where sender
names are omitted), defined as follows:

τ ::= end | !S.τ | ?S.τ | pause.τ | tick.τ | 〈τ, τ ′〉ev | µt.τ | t

Intuitively, the projection of the generalized type 〈∆ �Θ〉(s[p]) on q, namely 〈∆ �
Θ〉(s[p])� q, describes the part of p’s contribution to 〈∆ �Θ〉 that concerns q.

Wemay now define a duality relation ./ between projections of generalized types.
Informally, duality holds when the inputs offered by one side are matched by the

Chapter 10. Multiparty Reactive Sessions 267

(!S.T)� q def
= !S. (T � q) (?(p, S).T)� q def

=

{
?S.(T � q) if q = p,

T � q otherwise.

(pause.T)� q def
= pause.(T � q) (tick.T)� q def

= tick.(T � q)
(〈T1, T2〉ev)� q def

= 〈T1 � q, T2 � q〉ev

(µt.T)� q def
=

{
µt.(T � q) if q occurs in T ∨ any type variable t′ occurs on T

end otherwise
t� q def

= t end� q def
= end

Figure 10.16: Projection of generalized types on participants.

outputs offered by the other side. The requirement is weaker in the other direction,
since outputs do not need to be matched by inputs in a broadcast setting (the actual
receivers may range from none to all participants except the sender). Hence, two
types may be dual although not completely symmetric. In this respect, we depart
from standard session calculi, where the requirement is symmetric for inputs and
outputs. Dual types are expected to have matching explicit and implicit pauses, as
well as matching watching statements, whose types are required to be pairwise dual.

Definition 10.30. The duality relation between projections of generalized types is the
minimal symmetric relation which satisfies:

end ./ end t ./ t τ ./ τ ′ ⇒ µt.τ ./ µt.τ ′ τ ./ τ ′ ⇒ !S.τ ./ ?S.τ ′

τ ./ τ ′ ⇒ !S.τ ./ τ ′ τ ./ τ ′ ⇒ pause.τ ./ pause.τ ′

τ ./ τ ′ ⇒ tick.τ ./ tick.τ ′

〈end, τ〉ev ./ end τ1 ./ τ3 and τ2 ./ τ4 ⇒ 〈τ1, τ2〉ev ./ 〈τ3, τ4〉ev

end ./ τ ⇒ end ./ pause.τ end ./ τ ⇒ end ./ tick.τ

Notice that terminated types may be dual to non terminated ones, due to the
clause T ./ T ′ ⇒ !S.T ./ T ′ and to the last two clauses of the definition. However,
such non terminated types can only be sequences of send types or explicit/implicit
pauses followed by send types, as for instance in end ./ pause.!S.!S′.end.

Example 10.31 (Dual Projections of Generalized Types). We present some exam-
ples of dual generalized types:

(1) Let ∆ = s[1] : !S. end, s[2] :?(1, S).end and Θ = s[1] : void, s[2] : void.
Then 〈∆ �Θ〉(s[1])� 2 = !S.end ./ ?S.end = 〈∆ �Θ〉(s[2])� 1

(2) Let ∆ = s[1] : end, s[2] :?(1, S).end and Θ = s[1] : (S, ∅), s[2] : void.
Then 〈∆ �Θ〉(s[1])� 2 =!S.end ./ ?S.end = 〈∆ �Θ〉(s[2])� 1

(3) Let ∆ = s[1] : end, s[2] :?(1, S).end and Θ = s[1] : (S, {2}), s[2] : void.
Then 〈∆ �Θ〉(s[1])� 2 =!S.end ./ ?S.end = 〈∆ �Θ〉(s[2])� 1

Chapter 10. Multiparty Reactive Sessions 268

(4) Let ∆ = s[1] : !S. end, s[2] :?(1, S).!S′. end and Θ = s[1] : void, s[2] : void.
Then 〈∆ �Θ〉(s[1])� 2 = !S.end ./ ?S.!S′.end = 〈∆ �Θ〉(s[2])� 1
Note that here the mutual projections are dual although not symmetric.

(5) Let
∆ = s[1] :pause.!S1. end, s[2] :pause.?(1, S1).?(3, S3).!S2. end,

s[3] :?(1, S1).pause.!S3. end

and Θ = s[1] : (S1, {2}), s[2] : (S2, ∅), s[3] : (S3, ∅). Then:

〈∆ �Θ〉(s[1])� 2 =!S1.pause.!S1.end

〈∆ �Θ〉(s[2])� 1 =!S2. pause.?S1.!S2. end

〈∆ �Θ〉(s[1])� 3 =!S1.pause.!S1.end

〈∆ �Θ〉(s[3])� 1 =!S3.?S1.pause.!S3. end

〈∆ �Θ〉(s[2])� 3 =!S2.pause.?S3.!S2. end

〈∆ �Θ〉(s[3])� 2 =!S3. pause.!S3. end

4

We are now ready to define coherence of configuration environments. Besides the
usual compatibility condition between the types of participants, our notion of coher-
ence also requires output persistence:

Definition 10.32 (Coherence). A configuration environment 〈∆�Θ〉 is coherent, writ-
ten Co 〈∆ �Θ〉, if:

1. For any s[p] ∈ dom(〈∆ � Θ〉), if s[p] /∈ vdom(Θ) then s[p] : T ∈ ∆live implies
OG(T);

2. For any p, q, if s[p] ∈ dom(∆) ∪ vdom(Θ) and s[q] ∈ dom(∆) ∪ vdom(Θ) then:

〈∆ �Θ〉(s[p])� q ./ 〈∆ �Θ〉(s[q])� p

In Def. 10.32, Condition 2. is the standard duality requirement for any pair of
present participants in 〈∆�Θ〉 (i.e., participants whose session channel in s has some
type in ∆ or a non-void message type in Θ): it essentially requires that p and q make
dual communications offers to each other. Note that any configuration environment
whose domain is a singleton {s[p]} trivially satisfies this condition. Condition 1. is
specific to our calculus and is meant to ensure output persistence: it says that if a
participant has not yet sent amessage in the current instant, then it better do so before
the next suspension point is reached. The fact that the type of p is saturated, with all
suspension points represented by explicit pauses, plays an essential role here.

It is easy to see that the first three configuration environments in Ex. 10.31 are not
coherent, because they violate Condition 1. (while they satisfy Condition 2.). On the
other hand, the last two configuration environments are coherent.

We prove now that any two projections of the same global type have dual mutual
projections:

Lemma 10.33. If (SR(G,P)� p)� q ./ (SR(G,P)� q)� p, P ⊆ P ′, Part(G) ⊆ R ⊆ R′,
P ⊆ R and P ′ ⊆ R′ then (SR′(G,P ′)� p)� q ./ (SR′(G,P ′)� q)� p.

Chapter 10. Multiparty Reactive Sessions 269

Proof. By induction on the structure ofG. There are two base cases and five inductive
cases. For details see App. F.2.

Proposition 10.34. Let G be a global type and p 6= q. Then (Gb p)� q ./ (Gb q)� p.

Proof. By induction on G. For details see App. F.2.

We are now finally ready to introduce the typing rules for configurations. First of
all, wemention that our type system admits the followingweakening and contraction
rules:

bWEAKc
Γ ` C . 〈∆ �Θ〉

Γ ` C . 〈∆, c : end �Θ〉
bCONTRc

Γ ` C . 〈∆, c : end �Θ〉
Γ ` C . 〈∆ �Θ〉

These structural rules will allow us to add and remove fresh channels with empty
behaviors in the session environment. They are included to allow simplifications on
some of the typing rules in Fig. 10.17 and Fig. 10.18, which we briefly describe below:

- Rule bRVARc types a process variable inside a configuration. It asks that envi-
ronment Γ contains the required process variable and that the current memory
is typable.

- Rule bINACTc types a terminated configuration with any session environment
containing only elements of the form c : end or c : 〈end, T 〉ev (condition ∆ =
∆end).

- Rules bMINITc and bMACCc require the standard environment to associate a
global type G with the service identifier a. Moreover, the last premise of Rule
bMACCc guarantees that the type of p’s channel in P is obtained as the p-th
saturated projection of G.

- Rule bCONCc types the parallel composition of two processes with a givenmem-
ory and set of events, provided both components are typablewith suchmemory
and set of events and the obtained session environments have disjoint domains.

- Rule bCRESc types a restricted configuration with the empty configuration en-
vironment provided the session environment of its body is coherent. This is the
only typing rule that requires coherence.

- Rule bEMITc has no effect on types, as event emission only affects the commu-
nication behavior via the watching construct, and the event set is not typed.

- Rule bPAUSEc types a paused configuration, checking that the reconditioned
configuration is well-typed, and requiring that the reconditioned session en-
vironment is output-granting. The latter condition will be required in all rules
for suspended configurations.

- Rule bRECc types recursion, requiring each call to be isolated in its own time
instant. To this end, the type declaration X : pause.T is added to Γ.

Chapter 10. Multiparty Reactive Sessions 270

bRVARc
Γ ` X : pause.T Γ `M .Θ

Γ ` 〈X,M,E〉 . 〈c : pause.T �Θ〉
bINACTc

∆ = ∆end Γ `M .Θ

Γ ` 〈0,M,E〉 . 〈∆ �Θ〉

bMINITc
Γ ` a . G |Part(G)| = n

Γ ` 〈ā[n], ∅, ∅〉 . 〈∅ � ∅〉

bMACCc
Γ ` a . G Γ ` 〈P{s[p]/α},M∅s , ∅〉 . 〈s[p] : Gb p �Θ∅s〉

Γ ` 〈a[p](α).P, ∅, ∅〉 . 〈∅ � ∅〉

bCONCc
Γ ` 〈Pi,M,E〉 . 〈∆i �Θ〉, i = 1, 2

Γ ` 〈P1 | P2,M,E〉 . 〈∆1,∆2 �Θ〉
bCRESc

Γ ` C . 〈∆ �Θ〉 Co 〈∆ �Θ〉
Γ ` (νs)C . 〈∅ � ∅〉

bEMITc
Γ ` 〈P,M,E ∪ ev〉 . 〈∆ �Θ〉

Γ ` 〈emit ev. P,M,E〉 . 〈∆ �Θ〉

bPAUSEc
Γ `M .Θ Γ ` 〈P,M∅, ∅〉 . 〈c : T �Θ∅〉 OG(T)

Γ ` 〈pause. P,M,E〉 . 〈c : pause.T �Θ〉

bRECc

Γ, X : pause.T ` 〈P,M∅, ∅〉 . 〈c : T �Θ∅〉
Γ, X : pause.T ` 〈P,M,E〉 . 〈c : T �Θ〉
Γ ` 〈(recX .P),M,E〉 . 〈c : T �Θ〉

bSENDFIRSTc
Γ ` e : S Γ ` 〈P,M ∪ s[p] : (dS , ∅), E〉 . 〈s[p] : T �Θ, s[p] : (S, ∅)〉

Γ ` 〈s[p]!〈e〉.P,M ∪ s[p] : ε, E〉 . 〈s[p] :!S.T �Θ, s[p] : void〉

bSENDMOREc

Γ `M .Θ Γ ` e : S Γ ` v : S′ OG(T)
Γ ` 〈P,M∅ ∪ s[p] : (dS , ∅), ∅〉 . 〈s[p] : T �Θ∅, s[p] : (S, ∅)〉

Γ ` 〈s[p]!〈e〉.P,M ∪ s[p] : (v,Π), E〉 . 〈s[p] : tick.!S.T �Θ, s[p] : (S′,Π)〉

bRCVFIRSTc
Γ, x : S ` 〈P,M ∪ s[p] : (v,Π ∪ q), E〉 . 〈s[q] : T �Θ, s[p] : (S,Π ∪ q)〉

Γ ` 〈s[q]?(p, x).P,M ∪ s[p] : (v,Π), E〉 . 〈s[q] :?(p, S).T �Θ, s[p] : (S,Π)〉

bRCVMOREc
Γ `M .Θ q ∈ Π Γ ` v : S′ OG(T)

Γ, x : S ` 〈P,M∅ ∪ s[p] : (dS , {q}), ∅〉 . 〈s[q] : T �Θ∅, s[p] : (S, {q})〉
Γ ` 〈s[q]?(p, x).P,M ∪ s[p] : (v,Π), E〉 . 〈s[q] : tick.?(p, S).T �Θ, s[p] : (S′,Π)〉

bRCVNEXTc
Γ, x : S ` 〈P,M ∪ s[p] : (v, {q}), ∅〉 . 〈s[q] : T �Θ, s[p] : (S, {q})〉

Γ ` 〈s[q]?(p, x).P,M ∪ s[p] : ε, E〉 . 〈s[q] :?(p, S).T �Θ, s[p] : void〉

Figure 10.17: Typing rules for configurations (Part 1).

Chapter 10. Multiparty Reactive Sessions 271

bWATCHc

Γ ` 〈P,M,E〉 . 〈s[p] : TP �Θ〉
TP = end ∨ (Γ ` 〈Q,M∅, ∅〉 . 〈s[p] : TQ �Θ∅〉 ∧ OG(TQ))

Γ ` 〈watch ev do P{Q},M,E〉 . 〈s[p] : TP ?ev TQ �Θ〉

bIFc
Γ ` e : bool Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 Γ ` 〈Q,M,E〉 . 〈∆ �Θ〉

Γ ` 〈if e then P else Q,M,E〉 . 〈∆ �Θ〉

Figure 10.18: Typing rules for configurations (Part 2).

- Rule bSENDFIRSTc types the first broadcast by participant p in the current instant
(the fact that it is the first is indicated by the presence of s[p] : ε in the mem-
ory). If S is the sort of the broadcast value, the continuation P is required to be
typable in the memory obtained by replacing s[p] : ε with s[p] : (dS , ∅), where
dS is the default value of sort S. This amounts to say that the continuation P
must be typable in the memory just after the broadcast.

- Rule bSENDMOREc types the broadcast of the value of an expression ewhen the
sender p has already sent some value v in the current instant (as witnessed by
the presence of s[p] : (v,Π) in thememory). In this case, we insert a tick in front
of the send type of s[p], to indicate that the new broadcast will take place at the
next instant. The continuation P must be typable in the refreshed memoryM∅
updated with the new message sent by p, and the reconditioned environment
must be output-granting.

- Rule bRCVFIRSTc is analogous to Rule bSENDFIRSTc: it types an input by receiver
q from sender p if a message sent by p is present in the memory, and this mes-
sage has not been read yet by q (namely, q is not in its set of Readers Π). The
continuation P needs to be typable in the updated memory.

- Rule bRCVMOREc is analogous to Rule bSENDMOREc: it types an input by receiver
q from sender p in case q has already read a message v from p in the current
instant. In this case, a tick is inserted in front of the receive type of channel
s[q]. Again, the reconditioned environment must be output-granting.

- Rule bRCVNEXTc is used to type an input by receiver q from sender p at the start
of a new instant, when no participant has sent any message yet. This rule is
very similar to rule bRCVFIRSTc, except that the output buffer of the sender is
empty, and therefore it is typed with void.

- Rule bWATCHc types the watching construct by creating a pair of types 〈T, T ′〉ev
for each participant. Since the alternative processQmayonly be launched at the
start of a new instant, its session environment is required to be output-granting.

- Rule bIFc requires, as usual in session type systems, that the two branches of the
conditional be typed with the same session environment ∆.

Chapter 10. Multiparty Reactive Sessions 272

10.4.4 Properties of the Type System
The semantic properties P1 and P2 defined previously both rely on subject reduc-
tion (SR). To prove SR, we need some preliminary definitions and results. The first
property we prove ensures that the typing of configurations ensures the typing of
memories:

Lemma 10.35. If Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 then Γ `M .Θ.

Proof. By induction on the height of the typing derivation Γ ` 〈P,M,E〉 . 〈∆ � Θ〉.
For details see App. F.3

Before proving subject reduction we now formalize a notion of reduction for con-
figuration environments. This is needed because because the configuration environ-
ment evolves along execution.

Definition 10.36 (Reduction of Configuration Environments). Let⇒ be the reflex-
ive and transitive relation on configuration environments generated by:

1. 〈∆, s[p] :!S.T �Θ, s[p] : void〉 ⇒ 〈∆, s[p] : T �Θ, s[p] : (S, ∅)〉

2. 〈∆, s[q] :?(p, S).T �Θ, s[p] : (S,Π)〉 ⇒ 〈∆, s[q] : T �Θ, s[p] : (S,Π ∪ {q})〉 with
q /∈ Π

3. 〈∆ �Θ〉 ⇒ 〈∆′ �Θ′〉 implies 〈∆ ?ev ∆
′′ �Θ〉 ⇒ 〈∆′ ?ev ∆′′ �Θ′〉

4. 〈∆ �Θ〉 ⇒ 〈∆′ �Θ′〉 implies 〈∆,∆′′ �Θ〉 ⇒ 〈∆′,∆′′ �Θ′〉

Similarly, we introduce a tick reduction for the configuration environments of sus-
pended configurations. This reduction relation is parameterized by the set of events
E which is used to recondition the watch types.

We now argue that it is important for us to distinguish between implicit and ex-
plicit pauses in our typing, specifically, when aiming to prove a subject reduction
result. In particular, consider

C = 〈E [s[p]?(q, x).s[p]?(r, y).P],M,E〉

with s[r] : (v,Π) ∈ M , p ∈ Π and (νs)C‡. Using the typing rules in Fig. 10.17 and
Fig. 10.18, we can see that:

Γ ` C . 〈∆, s[p] :?(q, S).tick.?(r, S).T �Θ〉

Since C is suspended, the configuration reduces, via a tick transition (cf. Fig. 10.9),
to (νs)D with

D = 〈E [s[p]?(q, x).s[p]?(r, y).P],M∅, ∅〉.

whose typing is:
Γ ` D . 〈∆′, s[p] :?(q, S).?(r, S).T � ∅〉

It is clear that in the above typing judgment, the tick has been deleted. Thus, it is
necessary for us to distinguish between implicit and explicit pauses when defining a
reduction for typing environments, as some of the implicit pauses may be removed.

Chapter 10. Multiparty Reactive Sessions 273

Formally, this situation happens whenever a suspension occurs because of rule (ins)
(cf. Fig. 10.7). We address the deletion of tick, using the trm(·) function defined
in Fig. 10.19. Intuitively, trm(·) parses the local type and recalculates where to put
implicit pauses.

Definition 10.37 (Tick Reduction of Configuration Environments). Let yE be the
parameterized relation on configuration environments generated by:

1. (Pause) 〈pause(∆) �Θ〉 y ∅ 〈∆ �Θ∅〉

2. (Tick) 〈tick(∆) �Θ〉 y ∅ 〈∆ �Θ∅〉

3. (In) Θ = Θ′, s[p] : void implies for any E:
〈s[q] :?(p, S).T � Θ〉 yE 〈s[q] :?(p, S).trm(T)0{p} � Θ

∅〉 where trm(·) is as in
Fig. 10.19

4. (Par) 〈∆i�Θ〉 yE 〈∆′i�Θ′〉, i = 1, 2 implies 〈∆1,∆2�Θ〉 yE 〈∆′1,∆′2�Θ′〉.

5. (Restr) 〈∆ �Θ〉 yE 〈∆′ � Θ′〉 implies 〈∆ \ s � Θ \ s〉 yE 〈∆′ \ s � Θ′ \ s〉.

6. (Watch)
〈∆1 � Θ〉 yE 〈∆′1 � Θ′〉 implies

〈∆1 ?ev ∆2 �Θ〉 yE 〈∆2 � Θ′〉 if ev ∈ E
〈∆1 ?ev ∆2 �Θ〉 yE 〈∆′1 ?ev ∆2 � Θ′〉 if ev /∈ E

We also let 〈∆ �Θ〉 y 〈∆′ � Θ′〉 if there exists E such that 〈∆ �Θ〉 yE 〈∆′ � Θ′〉.
The predicate 〈∆ � Θ〉 yE is defined by 〈∆ � Θ〉 yE if there exist ∆′,Θ such that
〈∆ �Θ〉 yE 〈∆′ � Θ′〉, and the predicate 〈∆ �Θ〉 y is defined similarly.

Note that y is defined also on the environments of suspended subconfigurations,
which cannot perform a tick transition.

Just like processes, local types and session environments should be reconditioned
to properly reflect the reconditioning of processes during tick reductions:

Definition 10.38 (Reconditioning of Local Types and Session Environments). Let
E be a set of events, the reconditioning of a local type H (under E), written [T]E , is
defined as:

[T]E
def
=

T ′ if T = pause.T ′ or T = tick.T ′

T if T = end or T = t
?(p, S).trm(T ′)0{p} if T =?(p, S).T ′

T2 if T = 〈T1, T2〉ev and ev ∈ E
〈[T1]E , T2〉ev if T = 〈T1, T2〉ev and ev 6∈ E

where trm(·) is defined in Fig. 10.19. Given∆, its reconditioning under E is defined
as [∆]E = {c : [T]E | c : T ∈ ∆}.

The following proposition is easy to show, by induction on Def. 10.37:

Proposition 10.39. If 〈∆ �Θ〉 yE 〈∆′ � Θ′〉 then∆′ = [∆]E and Θ′ = Θ∅.

Chapter 10. Multiparty Reactive Sessions 274

trm(T)0Π
def
=

!S.T ′ if T = tick.!S.T ′

!S.trm(T ′)1Π if T =!S.T ′

tick.?(p, S).T ′ if T = tick.?(p, S).T ′ and p ∈ Π

?(p, S).T ′ if T = tick.?(p, S).T ′ and p /∈ Π

?(p, S).trm(T ′)0Π∪{p} if T =?(p, S).T ′ and p /∈ Π

〈trm(T1)0Π, T2〉ev if T = 〈T1, T2〉ev

µt.T ′ if T = µt.T ′

pause.T ′ if T = pause.T ′

end if T = end

trm(T)1Π
def
=

tick.!S.T ′ if T = tick.!S.T ′

tick.?(p, S).T ′ if T = tick.?(p, S).T ′ and p ∈ Π

?(p, S).T ′ if T = tick.?(p, S).T ′ and p /∈ Π

?(p, S).trm(T ′)1Π∪{p} if T =?(p, S).T ′ and p /∈ Π

〈trm(T1)1Π, T2〉ev if T = 〈T1, T2〉ev

µt.T ′ if T = µt.T ′

pause.T ′ if T = pause.T ′

end if T = end

Figure 10.19: trm() function

Definition 10.40 (Mixed Reduction of Configuration Environments). Let
stand for either⇒ or y , and let ∗ be its reflexive and transitive closure.

Hence 〈∆ � Θ〉 ∗〈∆′ � Θ′〉 when 〈∆ � Θ〉 can reduce to 〈∆′ � Θ′〉 via a mixed
sequence of reductions. We prove now that types are preserved under ≡ (i.e., sub-
ject congruence) and substitution. Notice that Rule bWEAKc is necessary for subject
congruence, as it allows to add ended sessions to ∆.
Lemma 10.41 (Subject Congruence). If Γ ` C . 〈∆ � Θ〉 and C ≡ C ′ then Γ ` C ′ .
〈∆ �Θ〉.
Proof. By induction on the definition of structural congruence (cf. Fig. 10.5). For
details see App. F.3.

Lemma 10.42 (Substitution Lemma). If Γ, x : S ` C . 〈∆ � Θ〉 and Γ ` v : S then
Γ ` C{v/x} . 〈∆ �Θ〉.
Proof. By induction on the height of the type derivation. The base cases are rules
bINACTc and bMINITc. The thesis is easily derived observing that x does not occur free
neither in 0 nor in the initiator. See App. F.3 for details on the inductive cases.

Lemma 10.43 (Reduction Lemma). Let Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 and 〈P,M,E〉 −→
〈P ′,M ′, E′〉 via some reduction rule different from [Cont] and [Struct]. Then

〈∆ �Θ〉 ⇒ 〈∆′ �Θ′〉

Chapter 10. Multiparty Reactive Sessions 275

and Γ ` 〈P ′,M ′, E′〉 . 〈∆′ �Θ′〉. Moreover, if 〈∆,∆0 �Θ,Θ0〉 is coherent, then 〈∆′,∆0 �
Θ′,Θ0〉 is coherent.

Proof. By induction on length of the reduction 〈P,M,E〉 −→ 〈P ′,M ′, E′〉, with a case
analysis on the last applied rule. For details see App. F.3.

To prove subject reduction, we first need to prove that tick reduction for config-
uration environments preserves duality and that suspension preserves typing. This
is useful for ensuring that the semantics given to environment configurations works
correctly.

Lemma 10.44 (Tick Reduction of Configuration Environments Preserves Duality).
If 〈∆�Θ〉 yE 〈∆′ �Θ′〉 then∆′ = [∆]E , dom(∆′) ⊆ dom(∆) andΘ′ = Θ∅. Moreover, if
〈∆�Θ〉 satisfies duality then also 〈∆′�Θ′〉 satisfies duality and for any s[p], s[q] ∈ dom(∆′),
if s[p] : Tp ∈ ∆ and s[q] : Tq ∈ ∆ , then 〈∆ �Θ〉(s[p])� q ./ 〈∆ �Θ〉(s[q])� p if and only if
[Tp]E � q ./ [Tq]E � p.

Proof. By induction on the definition of y . There is only one basic case, correspond-
ing to Rule (Pause). For details see App. F.3.

Lemma 10.45 (Suspension Lemma). Let 〈P,M,E〉‡ and Γ ` 〈P,M,E〉.〈∆�Θ〉. Then
we have that 〈∆ �Θ〉 y 〈[∆]E �Θ∅〉 and Γ ` 〈[P]E ,M∅, ∅〉 . 〈[∆]E �Θ∅〉. Moreover, if
〈∆ �Θ〉 is coherent then 〈[∆]E �Θ∅〉 is coherent.

Proof. By induction on the definition of 〈P,M,E〉‡. The basic cases correspond to
the suspension rules (pause), (outs), (ins) and (in2s), and the inductive cases to rules
(pars), (watchs) and (recs). For details see App. F.3.

We can now finally prove the subject reduction theorem. As most of our previous
results, this theorem deals only with reachable configurations. Let ;+ denote the
transitive closure of the relation ;.

Theorem 10.46 (Subject Reduction). Let C be a reachable configuration and C ;+ C ′.
If Γ ` C . 〈∆ � Θ〉 then Γ ` C ′ . 〈∆′ � Θ′〉 and 〈∆ � Θ〉 ∗〈∆′ � Θ′〉 for some ∆′,Θ′.
Moreover if 〈∆ �Θ〉 is coherent then 〈∆′ �Θ′〉 is coherent.

Proof. By induction on the length n of the reduction sequence ;+. For detail see
App. F.3.

10.5 Time-Related Properties
In this section we prove that our type system enforces some desirable “real-time”
properties. More precisely, we prove that any configuration that is reachable from an
initial configuration and complies with a global type G (the notion of G-compliance
will be made precise below) satisfies the following properties:

P1. Output persistence: Every participant broadcasts exactly once during every in-
stant;

Chapter 10. Multiparty Reactive Sessions 276

P2. Input timeliness: Every unguarded input is matched by an output during the
current instant, if not preceded by another input with equal source and target,
or during the next instant, if not preempted.

To formalise Property P1, we first define the auxiliary property of output readiness
for reachable configurations of the formC = (νs)〈P,M∅, ∅〉, which states that all par-
ticipants occurring in P perform a broadcast during the current instant. Intuitively, a
reachable configuration C = (νs)〈P,M∅, ∅〉 represents the state of a running session
at the start of an instant (or more precisely, before any message exchange or event
emission within an instant).

Definition 10.47 (OutputReadiness). Areachable configurationC = (νs)〈P,M∅, ∅〉
is output-ready if whenever C ⇓ (νs)〈P ′,M ′, E′〉, then s[p] ∈ vdom(M ′) for every
s[p] ∈ nm(P).

Note that only the participants p whose behavior is nonterminated at the begin-
ning of the instant (condition s[p] ∈ nm(P)) are required to perform an output before
the end of the instant (condition s[p] ∈ vdom(M ′)). Then, output persistence for such
configurations essentially amounts to requiring output readiness at every instant.
For an initial configuration 〈Q, ∅, ∅〉, output persistence amounts to requiring output
readiness for any configuration (νs)〈P,M∅, ∅〉 such that 〈Q, ∅, ∅〉;+ (νs)〈P,M∅, ∅〉.

Definition 10.48 (Output Persistence). A reachable configuration C is output-per-
sistent if whenever C ;∗ (νs)〈P,M,E〉 ⇓ (νs)〈P ′,M ′, E′〉, then s[p] ∈ vdom(M ′) for
every s[p] ∈ nm(P).

Again, only nonterminated participants p at the beginning of the last instant (con-
dition s[p] ∈ nm(P)) are required to perform an output. For instance, our auction
protocol (cf. § 10.2) satisfies output persistence although the terminated participant
Forwarder does not output anything during the last instant.

We now formalize Property P2, which again rests on an auxiliary property de-
fined only on reachable configurations of the form C = (νs)〈P,M∅, ∅〉, called input
readiness.

Definition 10.49 (Input Readiness). A reachable configuration C = (νs)〈P,M∅, ∅〉
is input ready if whenever C ⇓ (νs)〈E [s[q]?(p, x).P ′],M ′, E′〉, then s[p] ∈ vdom(M ′).

Observe that s[p] ∈ vdom(M ′) implies s[p] : (v,Π ∪ {q}) ∈ M ′ for some v,Π.
Namely, qmust have read a message from p in the current instant, otherwise the final
configuration would not be suspended.

Input timeliness amounts to input readiness at every instant. For an initial con-
figuration C, input timeliness amounts to requiring input readiness for the configu-
rations derivable from C.

Definition 10.50 (Input Timeliness). A reachable configuration C is considered in-
put timely if whenever C ;∗ (νs)〈E [s[q]?(p, x).P],M,E〉 ⇓ (νs)〈P ′,M ′, E′〉 then
s[p] ∈ vdom(M ′).

Example 10.51.
C=〈(νs)(s[1]?(2, x).s[1]?(2, y).0 |s[2]!〈v〉.s[2]!〈v〉.0),Ms, ∅〉 is input timely
C ′ = 〈(νs)(s[1]?(2, x).0 | pause. s[2]!〈v〉.0),Ms, ∅〉 is not satisfy input timely

Chapter 10. Multiparty Reactive Sessions 277

Indeed, in C the expectations of the two participants are dual and “well-timed”:
their first communication takes place in the first instant and their second communi-
cation takes place in the second instant.

In C ′, on the other hand, participant 1 is ready to receive a message from partic-
ipant 2 in the first instant, and entitled to do so because she hasn’t read previously
from participant 2, but there is no available message from participant 2 in the first
instant. In fact, C is G-compliant whereas C ′ is not even typable. 4

Observe that if Γ ` C = 〈P,M∅, ∅〉 . 〈∆ � Θ〉, the coherence of the configuration
environment 〈∆ �Θ〉 is not sufficient to ensure input timeliness of (νs̃)C, because of
the possibility of circular dependencies. Indeed, duality is a binary property which
does not exclude n-ary circular dependencies such as that of the following process,
which is reminiscent of the dining philosophers deadlock:

R = s[1]?(2, x).s[1]!〈v1〉.0 | s[2]?(3, y).s[2]!〈v2〉.0 | s[3]?(1, z).s[3]!〈v3〉.0 (10.2)

Note that the configuration (νs)C = νs〈R,M∅s , ∅〉 is not deadlocked but livelocked in
MRS. Indeed, as shown in § 10.3.3, MRS is deadlock-free: thanks to our semantic
rule (ins) (cf. Fig. 10.7), all potential deadlocks due to missing messages are turned
into livelocks. In fact, it is easy to see that (νs)C = νs〈R,M∅s , ∅〉 does not satisfy input
timeliness, because all participants are waiting for each other. Since the configuration
is reconditioned to itself at the following instant, it gives rise to a livelock.

In order to obtain input timeliness (and thus livelock-freedom), we need to re-
quire that the types of all participants be projections of the same saturated global type in
the initial configuration of the session. We first define what it means for a configura-
tion to implement a session specified by a saturated global typeG. From now on, we
will consider only saturated global types. As a consequence we will use the standard
projection � defined in Fig. 10.12 and not the saturated projection b .

Definition 10.52 (G-Compliant Configuration). Let G be a saturated global type. A
reachable configuration C = (νs)〈P,M,E〉 is G-compliant if there exist∆,Θ such that
Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 and 〈∆ �Θ〉(s[p]) = G� p for every p ∈ Part(G).

The key property for proving both output persistence and input timeliness is the
absence of circular dependencies in G-compliant configurations. The proof makes
use of two flattening functions Φ(G) and Φ(T) on saturated global and local types.
These functions extract from a type the sequence of I/O communications occurring
in the first instant, forgetting about recursion and selecting the principal behavior in
watch types.

Definition 10.53 (Flattening). The flattening functions Φ(G) and Φ(T) are defined in
Fig. 10.20.

Since Φ(G) is again a global type, it can be projected on participants. It is easy to
see that:

Lemma 10.54. Φ(G)� p = Φ(G� p)
Proof. By induction on G.

We can now prove thatG-compliant configurations are free of circular dependen-
cies such as that exhibited by the three-philosopher process (cf. Ex. 10.2).

Chapter 10. Multiparty Reactive Sessions 278

Φ(p↑〈S,Π〉.G) def
= p↑〈S,Π〉.Φ(G)

Φ(pause.G)
def
= Φ(tick.G)

def
= Φ(t) def

= Φ(end)
def
= end

Φ(watch ev do G else G′)
def
= Φ(µt.G) def

= Φ(G)

Φ(!S.T)
def
=!S.Φ(T)

Φ(?(p, S).T)
def
=?(p, S).Φ(T)

Φ(pause.T)
def
= Φ(tick.T)

def
= Φ(t) def

= Φ(end)
def
= end

Φ(〈T, T ′〉ev) def
= Φ(µt.T) def

= T

Figure 10.20: Flattening of saturated global and local types.

Lemma 10.55 (Absence of Circular Dependencies). Let C = (νs)〈P,M,E〉 be a G-
compliant configuration, and let {p1, . . . , pn} ⊆ Part(G), with n ≥ 2. If s[pi] /∈ vdom(M)
for all i ∈ {1, . . . , n}, then there cannot exist E1, . . . , En such that:

C ≡ 〈E1[s[p1]?(p2, x1).P1],M
∅, ∅〉

C ≡ 〈E2[s[p2]?(p3, x2).P2],M
∅, ∅〉

...
C ≡ 〈En[s[pn]?(p1, xn).Pn],M

∅, ∅〉

(10.3)

Proof. By contradiction. Assume the situation described in (10.3). By hypothesis C
is G-compliant, hence Γ ` 〈P,M,E〉. 〈∆�Θ〉 and 〈∆�Θ〉(s[pi]) = G� pi for every pi.
From s[pi] /∈ vdom(M) it follows that s[pi] /∈ vdom(Θ), thus 〈∆ �Θ〉(s[pi] = ∆(s[pi]).
Therefore for all i ∈ {1, . . . , n}we have:

∆(s[pi]) = G� pi (10.4)

Observe now that C ≡ 〈Ei[s[pi]?(p(i+1) mod n, xi).Pi],M,E〉 implies that for some Ti

Φ(∆(s[pi])) =?(p(i+1) mod n, Si).Φ(Ti) (10.5)

Pick now an arbitrary k ∈ {1, . . . , n}. It follows that

Φ(G)� pk = Φ(G� pk) (by Lem. 10.54)
= Φ(∆(s[pk])) (by (10.4))
=?(p(k+1) mod n, Sk).Φ(Ti) (by (10.5))

This means that Φ(G) is of the form:

Φ(G) = σk.p(k+1) mod n ↑〈Sk,Πk〉.Φ(Gk) (10.6)

where σk is a possibly empty sequence of communications not involving pk and not
involving p(k+1) mod n as a sender, and pk ∈ Πk. This implies:

Φ(G)� p(k+1) mod n = σ′k.!Sk.T

where σ′k is the projection of σk on p(k+1) mod n Now there are two possible cases:

Chapter 10. Multiparty Reactive Sessions 279

(1) σ′k is the empty sequence. Then

Φ(G)� p(k+1) mod n =!Sk.T

6=?(p(k+2) mod n, Sk+1).T
′ (by (10.5))

= Φ(∆(s[p(k+1) mod n])) (by Lem. 10.4)
= Φ(G� p(k+1) mod n) (by Lem. 10.54)

This inequality contradicts Lem. 10.54.

(2) σ′k starts with ?(p(k+2) mod n, Sk+1).T
′. Then we iterate the reasoning until we

reach the pk we started with (which we are sure to reach since the number of
participants is finite), and at this point we have a contradiction since by hypoth-
esis σk does not contain pk in (10.6).

Corollary 10.56. Let C = (νs)〈P,M,E〉 be a G-compliant configuration such that C‡.
Then P = E [s[q]?(p, x).P ′] implies s[p] ∈ vdom(M).
Proof. By contradiction. Suppose that s[p] /∈ vdom(M). Since C is G-compliant, we
know that Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 and 〈∆ �Θ〉(s[r]) = G� r for all r ∈ Part(G). From
s[p] /∈ vdom(M) it follows that s[p] /∈ vdom(Θ), hence 〈∆ � Θ〉(s[p] = ∆(s[p]). This
means that ∆(s[p]) = G � p. On the other hand, given the shape of P , we know that
it must be Φ(G � q) = Φ(〈∆ � Θ〉(s[q])) = {!Sq.}?(p, S).Φ(T) for some Sq, S and T ,
where the notation {!Sq.} means that the initial output is possibly missing (in case
s[q] /∈ vdom(M)). By Lem. 10.54 Φ(G� q) = Φ(G)� q. This means that Φ(G) is of the
form:

Φ(G) = σ.p↑〈S,Π〉.Φ(G′) (10.7)
where σ is a possibly empty sequence of communications not involving q as a receiver
nor p as a sender, and q ∈ Π. Now, consider the projection Φ(G) � p of Φ(G) on p.
Note that the projection of σ on p cannot be empty, because in this casewewould have
Φ(G)� p =!S.Tp for some Tp, contradicting the fact that C is suspended. Then σ must
consist of inputs by p. This means that P = E [s[p]?(r, x).R]. SinceC is suspended, we
know that either s[r] /∈ vdom(M) or s[r] : (v,Π ∪ {p}) ∈ M for some v,Π. In the lat-
ter case, by Rule bRCVMOREc we would have ∆(s[p]) = pause.?(r, S′).Φ(T ′) = G � p
for some S′ and T ′. Then Φ(G � p) = Φ(G) � p would be end, and thus so would
Φ(G), contradicting equation (10.7), where σ is supposed to consist only of commu-
nications. Therefore it must be s[r] /∈ vdom(M). But now we have for participant r
the same hypotheses that we had for p in the beginning. Hence we can iterate the
reasoning and since the number of participants is finite this leads us to the circular
situation (10.3), which by Lemma 10.55 is impossible.

We will prove now that the above lemma entails input readiness, and as a con-
sequence, also input timeliness. We first show that compliance with a global type is
preserved along execution.
Lemma 10.57. Let C be a G-compliant configuration and 〈∆ � Θ〉 be the corresponding
configuration environment. If C −→ C ′ (resp., C ↪→E C ′), then there exists G′ with
corresponding configuration environment 〈∆′ � Θ′〉 such that C ′ is G′-compliant and 〈∆ �
Θ〉 ⇒ 〈∆′ �Θ′〉 (resp., 〈∆ �Θ〉 y E〈∆′ �Θ′〉).

Chapter 10. Multiparty Reactive Sessions 280

Proof. By induction on the inference of −→ (resp., ↪→E).

Lemma 10.58 (G-Compliance Implies Input Readiness). Every G-compliant config-
uration

C = (νs)〈P,M∅, ∅〉

satisfies input readiness.

Proof. Let C ⇓ (νs)〈P ′,M ′, E′〉 = C ′, where P ′ = E [s[q]?(p, x).P ′′]. By Lemma 10.57,
C ′ is G′-compliant for some G′. Then s[p] ∈ vdom(M ′) by Corollary 10.56.

Theorem 10.59 (G-Compliance Implies Input Timeliness). Every G-compliant con-
figuration

C = (νs)〈P,M∅, ∅〉

satisfies input timeliness.

Proof. Suppose C ;∗ (νs)〈E [s[q]?(p, x).P ′],M,E〉 = C ′ and C ′‡. The proof is by
induction on the number n of ↪→E steps in the execution ;∗. If n = 0 then we are in
the case C ⇓ C ′ and we have the result by Lemma 10.58.

If n > 0, the result follows again by Lemma 10.58, observing that by Lemma 10.57
G-compliance is preserved by execution, and that every ↪→E step gives rise again to
a configuration of the form (νs)〈Q,M∅, ∅〉.

We proceed now to prove output persistence.

Lemma 10.60 (G-Compliance Implies Output Readiness). Let C = (νs)〈P,M∅, ∅〉
be a G-compliant configuration. If C ⇓ (νs)〈P ′,M ′, E〉, then s[p] ∈ vdom(M ′) for every
s[p] ∈ nm(P).

Proof. Let C ′ = (νs)〈P ′,M ′, E′〉. Since C is G-compliant, by Lemma 10.57 C ′ is G′-
compliant for someG′. Therefore there exist∆,Θ such that Γ ` 〈P ′,M ′, E′〉. 〈∆�Θ〉
and 〈∆�Θ〉(s[p]) = G′ � p for every p ∈ Part(G′). Now, the statement (νs)〈P ′,M ′, E′〉‡
is deduced by Rule (restrs) from 〈P ′,M ′, E′〉‡.

The proof then proceeds by contradiction. Suppose there exists a s[p] ∈ nm(P)
such that s[p] /∈ vdom(M ′). We have 〈∆ �Θ〉(s[p]) = (∆(s[p])) = T and by coherence
OG(T). This means that

Φ(T) = σ.!S.T ′

for some σ, S, T ′ and there are three possible cases for σ:

(1) σ is empty, so T is derived using rule bSENDFIRSTc:

Γ ` 〈s[p]!〈e〉.R,M ′′ ∪ {s[p] : ε}, E〉 . 〈∆, s[p] :!S.T �Θ, s[p] : void〉

with P ′ ≡ E [s[p]!〈e〉.R] andM ′ =M ′′∪{s[p] : ε} but this is a contradiction since
〈s[p]!〈e〉.R,M ′′ ∪ {s[p] : ε}, E〉 cannot be suspended.

(2) σ is a non empty sequence of inputs and T is derived using rule bRCVFIRSTc:

Γ ` 〈s[p]?(q, x).R,M ′′ ∪ {s[q] : (v,Π)}, E〉 . 〈∆, s[p] :?(q, S).T �Θ, s[q] : (S,Π)〉

withP ′ ≡ E [s[p]?(q, x).R] andM ′ =M ′′ ∪ {s[q] : (v,Π)}with p /∈ Π, but this is a
contradiction since 〈s[p]?(q, x).R,M ′′ ∪{s[q] : (v,Π)}, E〉 cannot be suspended.

Chapter 10. Multiparty Reactive Sessions 281

(3) σ is a non empty sequence of inputs and T is derived using rule bRCVNEXTc:

Γ ` 〈s[p]?(q, x).R,M ′′ ∪ {s[q] : ε}, E〉 . 〈∆, s[p] :?(q, S).T �Θ, s[q] : void〉

with P ′ ≡ E [s[p]?(q, x).R] and M ′ = M ′′ ∪ {s[q] : ε}. This is a contradiction
since by Cor. 10.56 we should have s[q] ∈ vdom(M ′).

Hence in all cases we reach a contradiction, concluding the proof.

Theorem 10.61 (G-Compliance Implies Output persistence). LetC be aG-compliant
configuration. If C ;∗ (νs)〈P0,M0, E0〉 ⇓ (νs)〈P ′,M ′, E′〉, then s[p] ∈ vdom(M ′) for
every s[p] ∈ nm(P0).

Proof. Let C = (νs)〈P,M∅, ∅〉 ;∗ (νs)〈P0,M0, E0〉 ⇓ (νs)〈P ′,M ′, E′〉. We want to
show that s[p] ∈ vdom(M ′) for every s[p] ∈ nm(P0). The proof is by induction on the
number n of ↪→E steps in the execution sequence ;∗. If n = 0 then we are in the case
C ⇓ C ′ and we have the result by Lem. 10.60. If n > 0, the result follows again by
Lem. 10.60, since by Lem. 10.57 G-compliance is preserved by execution and every
↪→E step gives rise again to a configuration of the form (νs)〈Q,M∅, ∅〉.

10.6 Timed Patterns Revisited: MRS
In this section we discuss how global types in MRS (cf. Fig. 10.10) can be used to
enforce the timed patterns presented in § 1.6. Contrary to the translations in Ch. 4
and Ch. 7, global types in MRS can be used to enforce the timing constraints, rather
than represent processes that execute the pattern’s behavior.

Remark 10.62. Notice that we do not write saturated global types in the examples
below (cf. Fig. 10.11). This is not a problem because the timing patterns presented in
§ 1.6 concern communications between two (or more) participants, rather than the
outputs without receptors added by saturation.

Example 10.63 (Request-Response Timeout Pattern). Let us recall the request-re-
sponse timeout pattern from § 1.6 as it is observed from the server side:

(a) Server side: After receiving a message REQ from A, B must send the acknowledg-
ment ACK within t time units.

To represent this pattern inMRSwe can use the developments presented in § 7.4.2:
using preemption constructs to simulate the timeout signal. For the global types, we
assume two participants: C, which represents the client and S, which represents the
server. The global type below captures the pattern:

G = C↑〈REQ, {S}〉.watch t do S↑〈ACK, {C}〉.end else Gf

Above, event t represents the timeout signal which activates the alternative behavior
Gf if s does not send the message ACK within the appropriate time-frame. The alter-
native behavior Gf can be, for example, a recovery protocol to deal with the failure.

Chapter 10. Multiparty Reactive Sessions 282

To understand the relation between global typeG and the MRS calculus, we shall
show a possible implementation for the server. First, consider the saturated version
of G (cf. Fig. 10.11). Notice that we assume that Part(G) = {C, S}:

SPart(G)(G, ∅) = C↑〈REQ, {S}〉.watch t do S↑〈ACK, {C}〉.end else SPart(Gf)(Gf , ∅) = G′

Moreover, we consider the projection G′ � S to obtain the local type corresponding to
the server (cf. Fig. 10.12):

G′ � S =?(C, REQ).〈!ACK.end, SPart(Gf)(Gf , ∅)� S〉t = TS

It can then be shown that TS types the following process (assuming that the session
between S and C is called s and ack is of type ACK):

PS = s[S]?(s[C], x3).watch t do s[S]!〈ack〉.0{Pf}

wherePf must be typablewith SPart(Gf)(Gf , ∅)� S and represents a process whichmay
be executed in case of failure. 4

Example 10.64 (Messages in a Time-Frame Pattern). We recall the variants of this
pattern presented in § 1.6:

(a) Interval: A is allowed to send B at most k messages, and at time intervals of at
least t and at most r time units.

(b) Overall time-frame: A is allowed to send B at most kmessages in the overall time-
frame of at least t and at most r time units.

For this pattern we take advantage of both the time units induced by pauses in MRS
and events. We present the MRS global types below and explain some of the choices
made for the representation:

(a) For the interval pattern we assume that there is a number k of messages to be
sent and that the lower and upper bound of the time-frame are t and r, respec-
tively. Then, the global type follows:

G = watch end do G(k) else end

G(k) = pauset.watch r do A↑〈Mk, {B}〉.G(k − 1) else Gf

In the protocol above, type pauset represents a sequence pause. · · · .pause with
t pauses representing the wait for the time-frame. Thanks to this sequence of
pauses we can represent the necessary interval between messages. The upper
bound of the timing constraint is implemented by using event r. As in Ex. 10.63,
we use Gf to denote the protocol used in case of failure.

(b) Using a similar strategy as with the pattern above, we model the overall time-
frame pattern:

G = watch r do (watch end do G(k) else end) else Gf

G(k) = pauset.A↑〈Mk, {B}〉.G(k − 1)

The protocol above is very similar to the interval pattern. The only difference
is that we only check for the overall timeout r, instead of every individual one.

Chapter 10. Multiparty Reactive Sessions 283

4

Example 10.65 (Action Duration Pattern). We recall the description of the pattern
in § 1.6:

(a) The time elapsed between two actions of the same participant Amust not exceed
t time units.

Similarly to the request-response timeout pattern, we use the preemption construct
for types to check the timing of the communications:

G = watch t do (p↑〈M1,Π〉.A↑〈M1, {B}〉.G′) else Gf

Above, event t represents a timeout event whose presence implies that the timing
constraint was violated. Similarly, to the previous examples, Gf represents the alter-
native protocol in case of failure. 4

Example 10.66 (Repeated Constraint Pattern). Below we recall the description of
the repeated constraint pattern in § 1.6:

(a) A must send (and unbounded number of) messages to B every t time units.

This requirement can be represented in MRS using recursion and preemption:

G = watch t do (µt.p↑〈M,Π〉.t) else Gf

Above, t represents upper bound of the time-frame and Gf the alternative protocol
in case of failure. 4

11
Conclusions and Related Work

In this chapter we present the conclusions and related work of Ch. 10. In § 11.1 we
explain some of our design choices and in § 11.2, we discuss further related work.

11.1 Concluding Remarks
We have developed a typed framework for multiparty sessions by building upon
MRS, a new process calculus that integrates constructs from session-based concur-
rency with constructs from synchronous reactive programming (SRP). The calculus
MRS accounts for broadcast communication, logical instants, and preemption – all of
which are hard to represent in existing process languages for sessions, usually based
on the π-calculus. For instance, a session π-calculus with broadcasting has been stud-
ied in [KGG14], but it does not support time-dependent interactions nor reactivity.
Indeed, there are useful interaction patterns, such as hot-service replacement [MBC07],
which are representable in SRP but not in asynchronous calculi. The semantics of
MRS ensures typical properties of SRP, such as deadlock-freedom and reactivity.

Our type system for MRS crucially relies on saturation for global types, a notion
that we developed to address the subtle distinction between explicit and implicit
pauses, and to capture the “timing” of a protocol interaction within the global type
itself. Another salient feature of our static analysis is a new notion of duality, suited
to our broadcast setting, in which outputs do not need to be matched by inputs. Our
notion of duality is also “time-aware” in that it requires dual participants to have
matching pauses. The benefits of our integration reflect also in the semantic prop-
erties enforced by our type system: besides classical session safety properties, our
static analysis guarantees two new time-related properties that seem to be desirable
for sessions in a reactive setting: input timeliness and output persistence. We now
discuss some design choices regarding our calculus:

Chapter 11. Conclusions and Related Work 285

• In our calculus MRS, the properties of deadlock-freedom and (bounded) reac-
tivity are enforced by the operational semantics, while the classical properties
of sessions, as well as the new time-related properties (input timeliness and
output persistence), are enforced by our specific session type system. It could
be argued that with a type system at hand, a more liberal semantics could have
been used for the calculus, letting the type system take care also of the deadlock-
freedom and reactivity properties. The reason for our choice is that deadlock-
freedom and reactivity are essential properties of SRP: they are required for the
synchronous reactive model to make sense. Hence they should be an integral
part of the calculus itself. This is the case also for real SRP languages such as
ReactiveML.

• Saturation could have been conceived as a well-formedness property of types
rather than as an operation on them. In other words, our type system could
have been designed so as to enforce the explicit separation of instants rather
than relying on it. For instance, we could have defined a “well-timedness”
predicate on global types requiring that subsequent broadcasts from the same
sender and recursion unfoldings be separated by pauses. This way, we could
have omitted some suspension rules ((outs) and (in2s)) from the semantics, and
the “More” typing rules from the type system. However, we chose the latter
solution to avoid blurring the readability of real-world programswith the pres-
ence of too many pauses. The former solution would become an attractive op-
tion if combined with a “pause inference” mechanism.

11.2 Related Work
Most related work has been already mentioned in the introduction and throughout
the chapter. Here we briefly discuss other relevant literature. In the realm of (multi-
party) session types, forms of reactive behaviors have been addressed via constructs
for exceptions, events, and run-time adaptation. This way, e.g., interactional excep-
tions for binary sessions were developed in [CHY08]; an associated type system en-
sures consistent handling of exceptions. The work [CGY16] extends this approach to
multiparty sessions.

In general, there is a tension between forms of (interactional) exceptions and be-
havioral type systems, mainly due to the linearity enforced by such systems, which
conflicts with the possibility of not (fully) consuming behaviors abstracted by types.
The works [MV14, PG15] address this tension for binary sessions by appealing to
affinity rather than to linearity. A similar approach is adopted in [FLMD19] for a func-
tional programming language. The recentwork [CP17] gives an alternative treatment
of non-determinism and control effects within a Curry-Howard interpretation of bi-
nary session types; the proposed framework allows to represent exceptions. Con-
cerning events and adaptation, the work [KYHH16] is the first to integrate events
within a session-typed framework, supported by dynamic type inspection (a type-
case construct). This work, however, is limited to binary sessions; the work [DP16]
extends this framework to the multiparty setting, with the aim of handling run-time
adaptation of choreographies. None of these works supports declarative or timed
conditions, which are naturally expressible using synchronous programming con-

Chapter 11. Conclusions and Related Work 286

structs. To our knowledge, the only prior work that considers (unreliable) broad-
casting in session types is [KGG14], which focuses on binary sessions. The work
in [DHH+15] develops run-time verification techniques for interruptible, multiparty
conversations. Also, the work [CVB+16] proposes protocol types for handling par-
tial failures and ensuring absence of orphan messages and deadlocks, among other
properties.

The most closely related work is that in [CAP17], which encodes of a binary ses-
sion π-calculus into the synchronous reactive language ReactiveML. Using the dual-
ity between the two partners in binary sessions, this encoding simulates messages-
over-channels in the session π-calculus by values-over-events in ReactiveML, slicing
every session into a sequence of atomic instants: each instant corresponds to exactly
one step in the protocol of the session. In contrast, instead of encoding a multiparty
session calculus into RML, here we pursue a different goal: devise a minimal exten-
sion of a multiparty session calculus that accommodates reactive features, and pro-
vide a session type system that ensures the usual session properties together with
some new semantic properties of interest: output persistence, input lock-freedom,
safe event handling.

PART V
CLOSING REMARKS AND FUTURE

PERSPECTIVES

12
Closing Remarks and Future

Perspectives

12.1 Closing Remarks
Ensuring the correctness of message-passing programs is a difficult problem in Com-
puter Science. The complexity of specifying these systems stems from the interplay
of heterogeneous components that depend on a myriad of features, such as commu-
nication protocols, timed requirements, reactive behavior, and partial information.
These features introduce a number of difficult issues that must be address to ensure
correctness, including the following:

• Components specified in different languages may have potentially conflicting
requirements.

• A component specification may describe features that are not expressible in the
specifications of other components.

• Languages may be equipped with reasoning techniques that can only be used to
analyze individual components and do not scale to the complete system.

The role that features such as partial information and timed behavior play in a
specification largely depends on the view from which the system is analyzed. We
have focused on two natural and commonly used views formessage-passing systems:
operational and declarative. In this dissertation, we have assumed that the operational
view is concernedwith how the system executes, whereas the declarative view is con-
cerned with what the system should execute. In this sense, languages that fall within
the operational view (i.e., operational languages) describe explicitly the instructions
that govern the system’s execution, while languages that fall within the declarative

Chapter 12. Closing Remarks and Future Perspectives 289

view (i.e., declarative languages) specify the conditions that govern the system’s exe-
cution. In this dissertation we considered the following operational process calculi
for message-passing concurrency:

• π OR, a sub-class of π (proposed by Vasconcelos [Vas12], § 2.2) without output
races (cf. § 3.1.1).

• πE, an extension of π OR with session establishment constructs (cf. § 3.1.3).

• π R , a sub-class of π without races (cf. § 3.1.2).

• aπ, a queue-based session π-calculus (cf. § 3.2).
and the following declarative languages, which are able to specify partial information,
timed behavior, and reactive behavior in message-passing programs:

• lcc, a constraint language inspired by linear logic (cf. § 2.3).

• lccp, an extension of lcc with private information (cf. § 3.3).

• RML, a synchronous reactive programming language built upon OCaml (cf.
§ 2.4).

• RMLq, an extension of RML with queues and explicit states (cf. § 3.4).
Considering the previous context, we believe that a unified view is needed to ad-

dress the issues that arise from the nature of message-passing programs. Our work
has shown that this unified view can be used to obtain robust and comprehensive
specifications of these programs. In particular, we showed that unified specifications
allow us to investigate the interplay between both declarative and operational views
by enabling a uniform analysis of the system’s components. A key insight from our
work is that declarative languages can provide a foundation for this unified view.

As a necessary step to develop the unified view we advocate, we also analyzed
mechanisms to relate operational and declarative languages. In particular, we have
investigated how relative expressiveness techniques can be used to cope with the is-
sues that the heterogeneity of message-passing programs induce. In this regard,
we have developed encodings that allow us to correctly translate (typed) operational
languages for specifying message-passing programs into declarative languages (cf.
Parts II and III). Moreover, to further investigate the relation between operational
and declarative views, we have also developed a “hybrid” process calculus in which
message-passing programs can be specified with timed and reactive constructs (cf.
Part IV). Our results show that our approach provides a uniform setting for analyzing
message-passing programs. Furthermore, we have also established that it is feasible
to analyze declarative features in operational specifications by using our encodings—
see § 4.4, § 5.4, and § 7.4 for concrete illustration.

12.1.1 Advantages
The core of our argument is that the correctness properties of encodings enable a
unified view of message-passing programs. Indeed, encodings allow to translate the
specifications of individual components into a common specific language which cap-
tures all the requirements of the program. There are two main advantages to our
approach:

Chapter 12. Closing Remarks and Future Perspectives 290

Uniform Setting for Message-Passing Programs: Our encodings allowed us to use
the target language to analyze source processes. Thanks to the correctness
properties of these encodings (i.e., encodability criteria) we were able to use the
reasoning techniques from the target language to verify properties of translated
specifications. Indeed, the encodability criteria we considered ensure that en-
coded target specifications preserve both the structure and behavior of source
specifications. In this sense, an important advantage arises: if the target lan-
guage is carefully selected, using encodingsmay enable the use of different rea-
soning techniqueswhichmay not be available in the source language. There are
two specific examples of this in our work. The first one was presented in § 4.4
and § 7.4, where we used the encodings in Ch. 4 and Ch. 7 to specify the timed
patterns for communication protocols in § 1.6. The second one refers to the se-
curity property proven for the encoding presented in Ch. 5 (cf. Thm. 5.51). This
property ensures that the translations of well-typed networks in πE (cf. § 3.1.3)
are well-typed with respect to the type system for lccp (cf. § 3.3). Hence, we
guarantee that translations ofwell-typed networks respect the local information
contained in lccp abstractions.

Well-Behaved Message-Passing Specifications: We have shown that by focusing on
specific classes of source processes we can reduce the gap between the source
and target languages while obtaining strong correctness properties. This was
possible because we focused onmeaningful source specifications; in the setting
of session-based concurrency this means well-typed programs. This property en-
sures that well-typed session programs never reduce to errors. Although our
translations are defined over all possible source terms, our correctness proper-
ties are delimited to the translations of well-typed programs. This allowed us to
prove encodability criteria that are stronger when compared to the properties
we would have obtained by considering arbitrary source terms. Throughout
this dissertation we used different type systems to narrow down the class of
source programs considered for our encodings. In this sense, the type systems
defined for π OR (cf. § 3.1.1) and π R (cf. § 3.1.2) should be highlighted, as they
sharply define the domains of our translations. The relation between the classes
of well-typed processes in π OR, π OR, and π R can be seen in Fig. 12.1.

π
π
OR

π
R

Figure 12.1: Classes and sub-classes of well-typed processes in π, π OR, and π R .

The biggest rectangle represents the class of well-typed process in π. Observe
that the class of well-typed processes in π OR is contained within the class of π
since output races are allowed. Similarly, the class of well-typed π R processes
is contained within the class of well-typed π OR programs, which allows input
races. Using these sub-classes and the operational correspondence criterion (cf.
Def. 2.3(3,4)) we ensure that the encodings of π OR into lcc (cf. Ch. 4) and of

Chapter 12. Closing Remarks and Future Perspectives 291

π R into RML (cf. Ch. 7) produced translations that do not reduce to errors—
in the sense of the source language. Indeed, the operational correspondence
criterion guarantees that the behavior of source terms is preserved (i.e., opera-
tional completeness) and that the encoding does not introduce extraneous behav-
iors (i.e., operational soundness). Even with the valuable guidance given by the
well-typedness of source specifications, this latter property proved to be rather
challenging to establish in all our encodings.

12.1.2 Discussion
We believe that our work raises insightful points regarding the use of relative expres-
siveness for relating operational and declarative languages:

Language Differences: Relative expressiveness techniques have been traditionally
used to compare the expressive power of relatively similar formal languages.
For example, the work presented in [FG96, Bor98, Ama00,Mer00, Gor10, PN12,
PN16, vG18] focuses on comparing process calculi such as the π-calculus and
its many variants. In contrast, our work required the development of trans-
lations between very different languages. Indeed, our source languages are
all message-passing and session-based, while our target languages exhibit dif-
ferences that range from the concurrency model they adhere to (e.g., lcc is
a shared-memory language) to their semantics (e.g., RML has a synchronous
semantics). All these differences must be reconciled to develop meaningful
encodings that enjoy strong correctness properties. Specific examples of how
these differences manifested in our work and how we addressed them follow.
First, consider the encoding of π OR into lcc, presented in Ch. 4. This encoding
had to be developed in a way that enabled lcc to cope with the sequentiality
present in π OR, as lcc has no sequential composition operator. Notice that even
with such mechanisms, lcc cannot encode all possible behaviors in π OR. Still,
lcc can capture the essence of session-based programs by focusing on well-
typed π OR programs—see § 3.1.1. Second, in the encoding presented in Ch. 7
the differences are even more prominent since the semantics of RML induces
time instants for RML programs. Moreover, RML uses a synchronous big-step
semantics that allows multiple simultaneous synchronizations between event
emissions and awaiting processes. This behavior contrasts with the semantics
of π R , in which a single-synchronization is executed in each reduction. We ad-
dressed this issue by equipping π R with a big-step semantics where a single
big-step reduction represents several reduction steps and by developing a type
system that disallows races in π R—see § 3.1.2.

Determinism: Anotorious difference that appeared in developing a unified view for
message-passing programs is the (non-)determinism present in the various op-
erational and declarative languages studied. For instance, while π (cf. § 2.2) in-
duces rich forms of non-deterministic behaviors via unrestricted types, lcc (cf.
§ 2.3, [Hae11]) allows only for guarded non-deterministic choices andReactive-
ML (cf. § 2.4, [MP05]) forbids it altogether. In concurrent constraint program-
ming, non-determinism is known to heavily influence the definition of theoret-
ical foundations such as denotational semantics [Ten76]—see, e.g., [dBPP95].

Chapter 12. Closing Remarks and Future Perspectives 292

Similarly, the lack of non-determinism in ReactiveML is inherited from the syn-
chronous programming paradigm, where properties such as determinism and
confluence are essential in proving real-time programs correct [Hal98]. In our
work we addressed these discrepancies by using specialized type systems for
π: by narrowing down the forms of non-determinism in the source languages,
the type systems we developed for π OR (cf. § 3.1.1) and for π R (cf. § 3.1.2) were
instrumental to ensure that our encodings correctly capture the intended be-
havior of source terms.

Encodability Criteria: The previously mentioned differences between operational
and declarative languages must be carefully considered when selecting the en-
codability criteria to guarantee the correctness of our encodings. This is be-
cause it is crucial for our unified view of message-passing programs to ensure
that translated specifications preserve the correctness properties inherited from
the source specifications. In particular, we wanted our translations to preserve
the communication safety guarantees provided by session types in well-typed
source processes. These guarantees often manifest themselves as conditions
over the syntactic structure of processes (see, e.g., Def. 3.14, Def. 3.27). There-
fore, we decided that our encodings should satisfy two static criteria: name in-
variance (cf. Def. 2.3(1)) and compositionality (cf. Def. 2.3(2)). Similarly, since
we also wanted our translated specifications to preserve the behavior of well-
typed session-based programs, we needed to consider the operational corre-
spondence criterion already mentioned above. We believe that these criteria
provide the minimal requirements needed to establish the foundations for our
unified view. Given the differences between the languages covered in ourwork,
it is unsurprising that the encodability criteria may require adjustments to cap-
ture the peculiarities of the languages involved and to induce the desired cor-
rectness properties in the encodings. As an example of this, the analysis of the
translation of π R into RML (cf. Ch. 7) required the introduction of refined en-
codings (cf. Def. 2.6), which include a coarser form of operational completeness
that accounts for the big-step semantics of RML.

Although a great deal of our work focused on encodings and their correctness,
the work presented in Part IV offers a different kind of insights about the interplay
of synchronous reactive programming and session-based concurrency. Since MRS is
a multiparty calculus equipped with reactive constructs and whose communication
model follows SRP, we have been able to analyze phenomena that, to the best of our
knowledge, have not been studied in a uniform setting. In particular, MRS allowed us
to investigate the interplay between broadcast, events, timed behavior, and reactive
behavior without having to analyze each feature independently. Another interesting
aspect of MRS is types not only statically check communication correctness, but also
timed properties such as output persistence, which guarantees that processes execute an
output action at least once during an instant, and input timeliness, which guarantees
that every input is satisfied either in the current or the next instant. Also, we showed
that themultiparty session types inMRS are expressive enough to specify and enforce
the timed patterns presented in § 1.6 (cf. § 10.6).

Chapter 12. Closing Remarks and Future Perspectives 293

12.2 Future Work
We now discuss possible directions for future work derived from the results pre-
sented here.

Session-Based Concurrency and Concurrent Constraint Programming: We would
like to use the encodings presented in Part II to transfer reasoning techniques
between session-based calculi and lcc. Two concrete examples of this kind of
transference are the characterization of a class of deadlock-free lcc processes
by encoding the session calculus in [CP10] and the use of the phase seman-
tics presented in [FRS01] to prove safety properties for session π-calculi. We
also would like to extend our encodings to consider the session π-calculus with
asynchronous (queue-based), eventful semantics defined in [KYH11] aswe be-
lieve lcc is a natural language to analyze event-driven behavior. Furthermore,
since here we have focused on π-calculus implementations for binary session
types, we think that extending our lcc encodings to address multiparty ses-
sion processes [HYC16, BHTY10] would allow us to have rich declarative in-
terpretations of communication scenarios with more than two participants. We
also want to investigate how compositional is the translation in § 5 in terms
of the session establishment protocols used. Hence, rather than the NSL pro-
tocol, we would like to analyze different session initiation protocols. In this
way, we could investigate the security features that appear in different secu-
rity protocols by using lcc. Finally, we would like to extend our results with
notions such as nested locations and security levels. Indeed, we believe we
can reason about security and space-related notions in session-based concur-
rency by using techniques adopted from recent constraint-based declarative
languages [KPPV12, GHP+17].

Session-Based Concurrency and Synchronous Reactive Programming: We plan to
exploremore in depth the limits of the runnable encodings presented in Part III.
In particular, we want to develop a session type library in ReactiveML, similar
to the one created by Padovani in OCaml [Pad, Pad17]. Moreover, it should
be possible to obtain similar encodability results by using variants of session
π-calculi such as the ones presented in by di Giusto and Pérez, and Castel-
lani et al. in [DP16, CDP16]. Results on this line would clarify the role of
the synchronous reactive paradigm in issues such as runtime adaptation and
deadlock resolution. Furthermore, we believe that extending our work on reac-
tive session-based concurrency to consider notions of security, following the
approach presented in [MBC07] would help us clarify notions such as non-
interference in reactive languages. Such extension would also require the de-
velopment of behavioral equivalences for ReactiveML. Lastly, we propose the
use of the Globally Asynchronous Locally Synchronous (GALS) model [BCE+03]
to relax the synchrony assumption imposed by the synchronous programming
paradigm in our encodings. Thiswould allowus to obtainmore realistic specifi-
cations for session-based concurrency. On amore foundational level, wewould
like to investigate possible translations from reactive synchronous calculi such
as the ones in [Ama07, ABBC06] into the π-calculus. Such results would al-
low us to compare the expressive power of reactive constructs such as, e.g., the

Chapter 12. Closing Remarks and Future Perspectives 294

preemption operator.

A Synchronous Reactive Session-Based Calculus: Directions for futurework based
on the calculus presented in Part IV include the extension of MRS with a run-
timemonitoringmechanism such as the ones in [DP16, FPS18]. We believe that
work in this direction would allow us to naturally check events, as they are in-
trinsically runtime structures, not static entities. Moreover, we believe that using
runtime verification would help us clarify the role that preemption and events
play in failure handling and interruption mechanisms [DHH+15, APN17]. We
also think that the preemption construct in MRS provides a fertile ground for
analyzing runtime adaptation and deadlock resolution as presented in [CDP16,
DP16]. Moreover, we would like to explore whether ReactiveML is an accept-
able host language for implementing MRS. Similarly to the work with encod-
ings on Part III, we want to extendMRS to consider the GALS paradigm. In this
waywewould be able to relax the synchrony requirements for processes, allow-
ing them to have different clocks and inhabit different localities. Yet another
line of future work for MRS consists in the addition of selection and branching
constructs. This would allow us to make closer comparisons of this calculus
with respect to MPST.

Bibliography

[ABB+16] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe
Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino,
RaymondHu, Einar Broch Johnsen, FranciscoMartins, VivianaMascardi, Fab-
rizio Montesi, Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vas-
concelos, and Nobuko Yoshida. Behavioral types in programming languages.
Foundations and Trends in Programming Languages, 3(2-3):95–230, 2016.

[ABBC06] RobertoM.Amadio, GérardBoudol, Frédéric Boussinot, and IlariaCastel-
lani. Reactive concurrent programming revisited. Electr. Notes Theor. Comput.
Sci., 162:49–60, 2006.

[ACP16] JaimeArias, Mauricio Cano, and JorgeA. Pérez. TowardsApracticalmodel
of reactive communication-centric software. In Proc. of the Italian Conference on
Theoretical Computer Science (ICTCS)., volume 1720 of CEURWorkshop Proceed-
ings, pages 227–233. CEUR-WS.org, 2016.

[AGPV06] Jesús Aranda, Cinzia Di Giusto, Catuscia Palamidessi, and Frank D. Va-
lencia. On recursion, replication and scope mechanisms in process calculi. In
Formal Methods for Components and Objects, 5th International Symposium, FMCO
2006, Amsterdam, The Netherlands, November 7-10, 2006, Revised Lectures, pages
185–206, 2006.

[Ama] Amazon. Amazon web services website. https://aws.amazon.com/. Ac-
cessed: 2019-13-08.

[Ama00] Roberto M. Amadio. On modelling mobility. Theoretical Computer Science,
240(1):147–176, 2000.

[Ama07] RobertoM.Amadio. A synchronous pi-calculus. Inf. Comput., 205(9):1470–
1490, 2007.

[APN17] ManuelAdameit, Kirstin Peters, andUweNestmann. Session types for link
failures. In Formal Techniques for Distributed Objects, Components, and Systems -
37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of the 12th
International Federated Conference on Distributed Computing Techniques, DisCoTec
2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, pages 1–16, 2017.

[APV19] Alen Arslanagic, Jorge A. Pérez, and Erik Voogd. Minimal session types
(pearl). In 33rd European Conference on Object-Oriented Programming, ECOOP
2019, July 15-19, 2019, London, United Kingdom., pages 23:1–23:28, 2019.

https://aws.amazon.com/

Bibliography 296

[Arb16] Farhad Arbab. Proper protocol. In Theory and Practice of Formal Methods -
Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday, pages 65–87,
2016.

[Ari15] Jaime Arias. Formal Semantics and Automatic Verification of Hierarchical Mul-
timedia Scenarios with Interactive Choices. (Sémantique Formelle et Vérification Au-
tomatique de Scénarios Hiérarchiques Multimédia avec des Choix Interactifs). PhD
thesis, University of Bordeaux, France, 2015.

[BBK87] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. On the consistency
of koomen’s fair abstraction rule. Theor. Comput. Sci., 51:129–176, 1987.

[BCDM11] Maria Grazia Buscemi, Mario Coppo, Mariangiola Dezani-Ciancaglini,
and Ugo Montanari. Constraints for service contracts. In Trustworthy Global
Computing - 6th International Symposium, TGC 2011, Aachen, Germany, June 9-10,
2011. Revised Selected Papers, pages 104–120, 2011.

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. The synchronous languages 12 years
later. Proceedings of the IEEE, 91(1):64–83, 2003.

[BCM+15] Massimo Bartoletti, Tiziana Cimoli, MaurizioMurgia, Alessandro Sebas-
tian Podda, and Livio Pompianu. Compliance and subtyping in timed session
types. In FORTE, volume 9039 of LNCS, pages 161–177. Springer, 2015.

[BdBP97] Eike Best, Frank S. de Boer, and Catuscia Palamidessi. Partial order and
SOS semantics for linear constraint programs. In Coordination Languages and
Models, Second International Conference, COORDINATION ’97, Berlin, Germany,
September 1-3, 1997, Proceedings, pages 256–273, 1997.

[BDGK14] Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouza-
pas. On duality relations for session types. In Trustworthy Global Computing -
9th International Symposium, TGC 2014, Rome, Italy, pages 51–66, 2014.

[BdS96] Frédéric Boussinot and Robert de Simone. The SL synchronous language.
IEEE Trans. Software Eng., 22(4):256–266, 1996.

[BFM98] Howard Bowman, Giorgio P. Faconti, and Mieke Massink. Specification
and verification of media constraints using UPAAL. In Design, Specification
and Verification of Interactive Systems’98, Proceedings of the Fifth International Eu-
rographics Workshop, June 3-5, 1998, Abingdon, United Kingdom, Volume 1, pages
261–277, 1998.

[BG92] Gérard Berry and Georges Gonthier. The Esterel Synchronous Program-
ming Language: Design, Semantics, Implementation. Sci. Comput. Program.,
19(2):87–152, 1992.

[BHTY10] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A the-
ory of design-by-contract for distributed multiparty interactions. In CONCUR
2010, volume 6269 of LNCS, pages 162–176. Springer - Verlag, 2010.

Bibliography 297

[BJPV11] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor.
Psi-calculi: a framework for mobile processes with nominal data and logic.
Logical Methods in Computer Science, 7(1), 2011.

[BK84] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous com-
munication. Information and Control, 60(1-3):109–137, 1984.

[BM07a] Maria Grazia Buscemi and Hernán C. Melgratti. Transactional service
level agreement. In Trustworthy Global Computing, Third Symposium, TGC 2007,
Sophia-Antipolis, France, November 5-6, 2007, Revised Selected Papers, pages 124–
139, 2007.

[BM07b] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint-based lan-
guage for specifying service level agreements. In ESOP 2007, volume 4421 of
LNCS, pages 18–32. Springer, 2007.

[BM08] Maria Grazia Buscemi and Ugo Montanari. Open bisimulation for the con-
current constraint pi-calculus. In Programming Languages and Systems, 17th Eu-
ropean Symposium on Programming, ESOP 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, pages 254–268, 2008.

[BM11] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint language
for service negotiation and composition. In Results of the SENSORIA Project,
volume 6582 of LNCS, pages 262–281. Springer, 2011.

[BMP13] Guillaume Baudart, LouisMandel, andMarc Pouzet. Programmingmixed
music in ReactiveML. In ACM SIGPLAN Workshop on Functional Art, Music,
Modeling and Design (FARM’13), Boston, USA, September 2013. Workshop
ICFP 2013.

[BMS15] Frédéric Boussinot, BernardMonasse, and Jean-Ferdy Susini. Reactive pro-
gramming of simulations in physics. International Journal of Modern Physics C,
26(12):1550132, 2015.

[BMVY19] Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and
Nobuko Yoshida. Asynchronous timed session types - from duality to time-
sensitive processes. In Programming Languages and Systems - 28th European Sym-
posium on Programming, ESOP 2019, Prague, Czech Republic, Proceedings, pages
583–610, 2019.

[Bor98] Michele Boreale. On the expressiveness of internalmobility in name-passing
calculi. Theor. Comput. Sci., 195(2):205–226, 1998.

[Bou91] Frédéric Boussinot. Reactive C: an extension of C to program reactive sys-
tems. Softw., Pract. Exper., 21(4):401–428, 1991.

[Bou92] Gérard Boudol. Asynchrony and the Pi-calculus. Research Report RR-1702,
INRIA, 1992.

Bibliography 298

[Bou04] Gérard Boudol. ULM: A core programming model for global computing:
(extended abstract). In 13th European Symposium on Programming, ESOP, pages
234–248, 2004.

[Bou06] Frédéric Boussinot. Fairthreads: mixing cooperative and preemptive
threads in C. Concurrency and Computation: Practice and Experience, 18(5):445–
469, 2006.

[BP07] Luca Bortolussi and Alberto Policriti. Stochastic concurrent constraint
programming and differential equations. Electr. Notes Theor. Comput. Sci.,
190(3):27–42, 2007.

[BS00] Frédéric Boussinot and Jean-Ferdy Susini. Java threads and sugarcubes.
Softw., Pract. Exper., 30(5):545–566, 2000.

[BTZ12] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-oriented
computing in CO2. Sci. Ann. Comp. Sci., 22(1):5–60, 2012.

[BYY14] Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty ses-
sion types. In Proc. of CONCUR’14, volume 8704, pages 419–434. Springer,
2014.

[BZ09] Massimo Bartoletti and Roberto Zunino. A calculus of contracting processes.
Technical Report DISI-09-056, University of Trento, 2009.

[BZ10] Massimo Bartoletti and Roberto Zunino. A calculus of contracting processes.
In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 332–341, 2010.

[CAP16] Mauricio Cano, Jaime Arias, and Jorge A. Pérez. A reactive interpreta-
tion session-based concurrency. Workshop on Reactive and Event-based Lan-
guages & Systems (REBLS), co-located with the ACM SIGPLAN Conference
on Systems, Programming, Languages and Applications: Software for Hu-
manity (SPLASH), 2016.

[CAP17] Mauricio Cano, Jaime Arias, and Jorge A. Pérez. Session-based concur-
rency, reactively. In Proc. of the Int. Conference on Formal Techniques for Dis-
tributed Objects, Components, and Systems (FORTE), pages 74–91, 2017.

[CCDGP19] Mauricio Cano, Ilaria Castellani, Cinzia Di Giusto, and Jorge A. Pérez.
Multiparty Reactive Sessions. Research Report 9270, INRIA, April 2019.

[CD09] Mario Coppo and Mariangiola Dezani-Ciancaglini. Structured communica-
tions with concurrent constraints. In Proc. of TGC 2008, volume 5474 of LNCS,
pages 104–125. Springer, 2009.

[CDP16] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-
adaptation and secure information flow inmultiparty communications. Formal
Asp. Comput., 28(4):669–696, 2016.

Bibliography 299

[CDPY15] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. A gentle introduction to multiparty asynchronous session
types. In Formal Methods for Multicore Programming - 15th International School on
Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM 2015, Bertinoro, Italy, June 15-19, 2015, Advanced Lectures, pages 146–178,
2015.

[CDV15] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Self-
adaptive multiparty sessions. Service Oriented Computing and Applications, 9(3-
4):249–268, 2015.

[CGHL10] Marco Carbone, Davide Grohmann, Thomas T. Hildebrandt, and
Hugo A. López. A logic for choreographies. In Proc. of PLACES 2010, pages
29–43, 2010.

[CGY16] Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global escape in
multiparty sessions. Mathematical Structures in Computer Science, 26(2):156–
205, 2016.

[CHY08] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured interac-
tional exceptions in session types. InCONCUR’8, Toronto, Canada, August 19-22,
2008, pages 402–417, 2008.

[CP10] Luís Caires and Frank Pfenning. Session types as intuitionistic linear propo-
sitions. In 21th International Conference, CONCUR 2010, Paris, France, 2010. Pro-
ceedings, pages 222–236, 2010.

[CP17] Luís Caires and Jorge A. Pérez. Linearity, control effects, and behavioral
types. In ESOP’17, ETAPS’17, Uppsala, Sweden, April 22-29, 2017, pages 229–
259, 2017.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre:
A declarative language for programming synchronous systems. In POPL 1987,
Proceedings, pages 178–188, 1987.

[CPS09] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA —
safer monitoring of real-time java programs (tool paper). In Seventh IEEE In-
ternational Conference on Software Engineering and Formal Methods, SEFM 2009,
Hanoi, Vietnam, 23-27 November 2009, pages 33–37, 2009.

[CRLP15] Mauricio Cano, Camilo Rueda, Hugo A. López, and Jorge A. Pérez.
Declarative interpretations of session-based concurrency. In Proc. of the Int.
Symposium on Principles and Practice of Declarative Programming (PPDP), pages
67–78. ACM, 2015.

[CRS18] Rance Cleaveland, A. W. Roscoe, and Scott A. Smolka. Process algebra and
model checking. In Handbook of Model Checking., pages 1149–1195. Springer,
2018.

[CVB+16] Tzu-Chun Chen, Malte Viering, Andi Bejleri, Lukasz Ziarek, and Patrick
Eugster. A type theory for robust failure handling in distributed systems. In

Bibliography 300

FORTE’16, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings,
pages 96–113, 2016.

[dBGM00] Frank S. de Boer, Maurizio Gabbrielli, and Maria Chiara Meo. A timed
concurrent constraint language. Inf. Comput., 161(1):45–83, 2000.

[dBPP95] Frank S. de Boer, Alessandra Di Pierro, and Catuscia Palamidessi. Nonde-
terminism and infinite computations in constraint programming. Theor. Com-
put. Sci., 151(1):37–78, 1995.

[DGS12] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types re-
visited. In Proc. of PPDP’12, pages 139–150, 2012.

[DHH+15] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,
and Nobuko Yoshida. Practical interruptible conversations: distributed dy-
namic verification with multiparty session types and python. Formal Methods
in System Design, 46(3):197–225, 2015.

[DP16] Cinzia Di Giusto and Jorge A. Pérez. Event-based run-time adaptation in
communication-centric systems. Formal Asp. Comput., 28(4):531–566, 2016.

[DRV98] Juan F. Díaz, Camilo Rueda, and Frank D. Valencia. Pi+- calculus: A cal-
culus for concurrent processes with constraints. CLEI Electron. J., 1(2), 1998.

[dS84] Robert de Simone. On meije and SCCS: infinite sum operators VS. non-
guarded definitions. Theor. Comput. Sci., 30:133–138, 1984.

[FBS04] Xiang Fu, Tevfik Bultan, and Jianwen Su. Conversation protocols: a for-
malism for specification and verification of reactive electronic services. Theor.
Comput. Sci., 328(1-2):19–37, 2004.

[FG96] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented at the Sym-
posium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages 372–385,
1996.

[FH93] Thom W. Frühwirth and Philipp Hanschke. Terminological reasoning with
constraint handling rules. In Principles and Practice of Constraint Programming,
PPCP 1993, Newport, Rhode Island, pages 80–89, 1993.

[FLMD19] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Excep-
tional Asynchronous Session Types: Session Types Without Tiers. In Proc.
POPL’19, pages 1–29, New York, NY, USA, 2019. ACM.

[FMR+09] Dirk Fahland, Jan Mendling, Hajo A. Reijers, Barbara Weber, Matthias
Weidlich, and Stefan Zugal. Declarative versus imperative process modeling
languages: The issue of maintainability. In Business Process Management Work-
shops, BPM 2009 International Workshops, Ulm, Germany, September 7, 2009. Re-
vised Papers, pages 477–488, 2009.

Bibliography 301

[Fok09] Wan Fokkink. Process algebra: An algebraic theory of concurrency. In Al-
gebraic Informatics, Third International Conference, CAI 2009, Thessaloniki, Greece,
May 19-22, 2009, Proceedings, pages 47–77, 2009.

[Fow16] Simon Fowler. An erlang implementation of multiparty session actors.
In Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion,
Greece, 8-9 June 2016., pages 36–50, 2016.

[FPS18] Adrian Francalanza, Jorge A. Pérez, and César Sánchez. Runtime verifica-
tion for decentralised and distributed systems. In Lectures on Runtime Verifica-
tion - Introductory and Advanced Topics, pages 176–210. Springer, 2018.

[FRS01] François Fages, Paul Ruet, and Sylvain Soliman. Linear concurrent
constraint programming: Operational and phase semantics. Inf. Comput.,
165(1):14–41, 2001.

[FV13] Juliana Franco and Vasco Thudichum Vasconcelos. A concurrent program-
ming language with refined session types. In Software Engineering and Formal
Methods - SEFM 2013, Revised Selected Papers, pages 15–28, 2013.

[GH05] Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi cal-
culus. Acta Inf., 42(2-3):191–225, 2005.

[GHP+17] Michell Guzmán, Stefan Haar, Salim Perchy, Camilo Rueda, and Frank D.
Valencia. Belief, knowledge, lies and other utterances in an algebra for space
and extrusion. J. Log. Algebr. Meth. Program., 86(1):107–133, 2017.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[GLGB87] Thierry Gautier, Paul Le Guernic, and Löic Besnard. Signal: A declar-
ative language for synchronous programming of real-time systems. In Proc.
Of a Conference on Functional Programming Languages and Computer Architecture,
pages 257–277, London, UK, UK, 1987. Springer-Verlag.

[Gor10] Daniele Gorla. Towards a unified approach to encodability and separation
results for process calculi. Inf. Comput., 208(9):1031–1053, 2010.

[GV10] Marco Giunti and Vasco Thudichum Vasconcelos. A linear account of ses-
sion types in the pi calculus. In CONCUR, LNCS, pages 432–446. Springer,
2010.

[Hae11] Rémy Haemmerlé. Observational equivalences for linear logic concurrent
constraint languages. TPLP, 11(4-5):469–485, 2011.

[Hal98] Nicolas Halbwachs. Synchronous programming of reactive systems. In
Computer Aided Verification, 10th International Conference, CAV ’98, Vancouver,
BC, Canada, June 28 - July 2, 1998, Proceedings, pages 1–16, 1998.

[Har] Robert Harper. What, if anything, is a declarative language? Last Accessed
On: September 2019. URL: https://existentialtype.wordpress.com/2013/
07/18/what-if-anything-is-a-declarative-language/.

https://existentialtype.wordpress.com/2013/07/18/what-if-anything-is-a-declarative-language/
https://existentialtype.wordpress.com/2013/07/18/what-if-anything-is-a-declarative-language/

Bibliography 302

[HBS73] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal modu-
lar ACTOR formalism for artificial intelligence. In Proceedings of the 3rd Interna-
tional Joint Conference on Artificial Intelligence. Standford, CA, USA, August 20-23,
1973, pages 235–245, 1973.

[Hen07] Matthew Hennessy. A distributed Pi-calculus. Cambridge University Press,
2007.

[HL09] Thomas T. Hildebrandt andHugoA. López. Types for secure patternmatch-
ing with local knowledge in universal concurrent constraint programming. In
Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA,
July 14-17, 2009. Proceedings, pages 417–431, 2009.

[HM10] Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative event-
based workflow as distributed dynamic condition response graphs. In Pro-
ceedings ThirdWorkshop on Programming Language Approaches to Concurrency and
communication-cEntric Software, PLACES 2010, Paphos, Cyprus, 21st March 2010.,
pages 59–73, 2010.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hon93] Kohei Honda. Types for dyadic interaction. In CONCUR ’93, 4th Inter-
national Conference on Concurrency Theory, Hildesheim, Germany, August 23-26,
1993, Proceedings, pages 509–523, 1993.

[HVK98] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primi-
tives and TypeDiscipline for StructuredCommunication-Based Programming.
In Proc. of ESOP’98, volume 1381, pages 122–138. Springer, 1998.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In Proc. of POPL’08, pages 273–284. ACM, 2008.

[HYC16] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. J. ACM, 63(1):9:1–9:67, 2016.

[KCD+09] Slim Kallel, Anis Charfi, Tom Dinkelaker, Mira Mezini, and Mohamed
Jmaiel. Specifying and monitoring temporal properties in web services com-
positions. In Seventh IEEE European Conference on Web Services (ECOWS 2009),
9-11 November 2009, Eindhoven, The Netherlands, pages 148–157, 2009.

[KDPG18] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay.
Typechecking protocols with mungo and stmungo: A session type toolchain
for java. Sci. Comput. Program., 155:52–75, 2018.

[KGG14] Dimitrios Kouzapas, Ramunas Gutkovas, and Simon J. Gay. Session types
for broadcasting. In PLACES 2014, volume 155 of EPTCS, pages 25–31, 2014.

[Kle08] J. Klensin. Simple mail transfer protocol. Last Accessed: July, 2019. URL:
https://tools.ietf.org/html/rfc5321, October 2008.

[Kow79] Robert A. Kowalski. Algorithm = logic + control. Commun. ACM,
22(7):424–436, 1979.

https://tools.ietf.org/html/rfc5321

Bibliography 303

[Kow88] Robert A. Kowalski. The early years of logic programming. Commun. ACM,
31(1):38–43, 1988.

[KPPV12] Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and Frank D.
Valencia. Spatial and epistemic modalities in constraint-based process calculi.
In CONCUR 2012 - Concurrency Theory - 23rd International Conference, CONCUR
2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings, pages 317–332,
2012.

[KYH11] Dimitrios Kouzapas, Nobuko Yoshida, and Kohei Honda. On asyn-
chronous session semantics. In Proc. of FORTE’11, volume 6722 of LNCS, pages
228–243. Springer, 2011.

[KYHH16] Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda.
On asynchronous eventful session semantics. Mathematical Structures in Com-
puter Science, 26(2):303–364, 2016.

[LOP09] HugoA. López, CarlosOlarte, and JorgeA. Pérez. Towards a unified frame-
work for declarative structured communications. In PLACES 2009, York, UK,
22nd March 2009., volume 17 of EPTCS, pages 1–15, 2009.

[Low96] Gavin Lowe. Breaking and fixing the needham-schroeder public-key pro-
tocol using FDR. Software - Concepts and Tools, 17(3):93–102, 1996.

[MB05] Louis Mandel and Farid Benbadis. Simulation of mobile ad hoc network
protocols in ReactiveML. In Proceedings of Synchronous Languages, Applications,
and Programming (SLAP’05), Edinburgh, Scotland, April 2005. ElectronicNotes
in Theoretical Computer Science.

[MBC07] Ana Almeida Matos, Gérard Boudol, and Ilaria Castellani. Typing nonin-
terference for reactive programs. J. Log. Algebr. Program., 72(2):124–156, 2007.

[Mer00] Massimo Merro. Locality and polyadicity in asynchronous name-passing
calculi. In Foundations of Software Science and Computation Structures, Third Inter-
national Conference, FOSSACS 2000, Held as Part of the Joint European Conferences
on Theory and Practice of Software,ETAPS 2000, Berlin, Germany, March 25 - April
2, 2000, Proceedings, pages 238–251, 2000.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[Mil91] R. Milner. The polyadic π-calculus: A tutorial. Technical Report ECS-LFCS-
91-180, LFCS, University of Edinburgh, 1991.

[Mil99] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999.

[MM07] Lionel Morel and Louis Mandel. Executable contracts for incremental pro-
totypes of embedded systems. In Formal Foundations of Embedded Software and
Component-Based Software Architectures (FESCA’07), March 2007.

Bibliography 304

[MM12] Rubén Monjaraz and Julio Mariño. From the π-calculus to flat GHC. In
Proc. of PPDP’12, pages 163–172. ACM, 2012.

[MP95] ZoharManna andAmir Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

[MP05] Louis Mandel and Marc Pouzet. ReactiveML: a reactive extension to ML. In
Proc. of PPDP’05, pages 82–93. ACM, 2005.

[MP14] Louis Mandel and Cédric Pasteur. Reactivity of Cooperative Systems - Ap-
plication to ReactiveML. In 21st International Symposium, SAS 2014, Munich,
Germany, 2014., pages 219–236, 2014.

[MPP15a] Louis Mandel, Cédric Pasteur, and Marc Pouzet. ReactiveML, ten years
later. In Proc. of PPDP 2015, pages 6–17, 2015.

[MPP15b] Louis Mandel, Cédric Pasteur, and Marc Pouzet. Time refinement in a
functional synchronous language. Sci. Comput. Program., 111:190–211, 2015.

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I. Inf. Comput., 100(1):1–40, 1992.

[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, II. Inf. Comput., 100(1):41–77, 1992.

[MPYZ19] Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zuf-
ferey. Motion session types for robotic interactions (brave new idea paper).
In 33rd European Conference on Object-Oriented Programming, ECOOP 2019, July
15-19, 2019, London, United Kingdom., pages 28:1–28:27, 2019.

[MT90] Faron Moller and Chris M. N. Tofts. A temporal calculus of communicat-
ing systems. In CONCUR ’90, Theories of Concurrency: Unification and Exten-
sion, Amsterdam, The Netherlands, August 27-30, 1990, Proceedings, pages 401–
415, 1990.

[MV14] Dimitris Mostrous and Vasco Thudichum Vasconcelos. Affine sessions. In
COORDINATION’14, DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceed-
ings, pages 115–130, 2014.

[NBY14] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime
monitoring for multiparty conversations. In Proc. of BEAT’14, volume 162,
pages 19–26, 2014.

[NBY17] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime
monitoring for multiparty conversations. Formal Asp. Comput., 29(5):877–910,
2017.

[NPV02] Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valencia. Temporal
concurrent constraint programming: Denotation, logic and applications. Nord.
J. Comput., 9(1):145–188, 2002.

[NT04] Matthias Neubauer and Peter Thiemann. An implementation of session
types. In PADL 2004, USA, June 18-19, 2004, Proceedings, pages 56–70, 2004.

Bibliography 305

[NYH12] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session C:
safe parallel programmingwithmessage optimisation. InObjects, Models, Com-
ponents, Patterns - 50th International Conference, TOOLS 2012, Prague, Czech Re-
public, May 29-31, 2012. Proceedings, pages 202–218, 2012.

[OV08a] Carlos Olarte and Frank D. Valencia. The expressivity of universal timed
CCP: undecidability of monadic FLTL and closure operators for security. In
Proc. of PPDP’08, pages 8–19. ACM, 2008.

[OV08b] Carlos Olarte and Frank D. Valencia. Universal concurrent constraint pro-
graming: symbolic semantics and applications to security. In Proceedings of
the 2008 ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil,
March 16-20, 2008, pages 145–150, 2008.

[OY16] Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as
effects. In POPL 2016, USA, 2016, pages 568–581, 2016.

[Pad] Luca Padovani. FuSe - A simple library implementation of binary sessions.
URL: http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html.

[Pad17] Luca Padovani. A simple library implementation of binary sessions. J. Funct.
Program., 27:e4, 2017.

[Par00] Joachim Parrow. Trios in concert. In Proof, Language, and Interaction, Essays
in Honour of Robin Milner, pages 623–638, 2000.

[Par08] Joachim Parrow. Expressiveness of process algebras. Electr. Notes Theor.
Comput. Sci., 209:173–186, 2008.

[PBEB07] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Com-
piling Esterel. Springer, 2007.

[Pér10] Jorge A. Pérez. Higher-Order Concurrency: Expressiveness and Decidability Re-
sults. PhD thesis, University of Bologna, Italy, 2010.

[Pet62] C. A. Petri. Fundamentals of a theory of asynchronous information flow. In
Information Processing, Proceedings of the 2nd IFIP Congress 1962, Munich, Ger-
many, August 27 - September 1, 1962, pages 386–390, 1962.

[Pet12] Kirstin Peters. Translational Expressiveness. Comparing Process Calculi using
Encodings. PhD thesis, Berlin Institute of Technology, 2012.

[PG15] Frank Pfenning and Dennis Griffith. Polarized substructural session types.
In Foundations of Software Science and Computation Structures - 18th International
Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
pages 3–22, 2015.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html

Bibliography 306

[PN12] Kirstin Peters and Uwe Nestmann. Is it a ”good” encoding of mixed choice?
In Foundations of Software Science andComputational Structures - 15th International
Conference, FOSSACS 2012, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, pages 210–224, 2012.

[PN16] Kirstin Peters andUweNestmann. Breaking symmetries.Mathematical Struc-
tures in Computer Science, 26(6):1054–1106, 2016.

[PSVV06] Catuscia Palamidessi, Vijay A. Saraswat, FrankD. Valencia, and Björn Vic-
tor. On the expressiveness of linearity vs persistence in the asychronous pi-
calculus. In 21th IEEE Symposium on Logic in Computer Science (LICS 2006),
12-15 August 2006, Seattle, WA, USA, Proceedings, pages 59–68, 2006.

[PT08] Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no
class. In Proc. of Symposium on Haskell’08, pages 25–36. ACM, 2008.

[PvG15] Kirstin Peters and Rob J. van Glabbeek. Analysing and comparing encod-
ability criteria for process calculi. Archive of Formal Proofs, 2015, 2015.

[RH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, 2004.

[San09] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM
Trans. Program. Lang. Syst., 31(4):15:1–15:41, 2009.

[Sar93] Vijay A. Saraswat. Concurrent constraint programming. ACM Doctoral disser-
tation awards. MIT Press, 1993.

[SJG94] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Foundations of
timed concurrent constraint programming. In Proceedings of the Ninth Annual
Symposium on Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994,
pages 71–80, 1994.

[SL92] Vijay Saraswat and Patrick Lincoln. Higher-order, linear, concurrent con-
straint programming. Technical report, Xerox Parc, 1992.

[SLS+18] Rodrigo C. M. Santos, Guilherme F. Lima, Francisco Sant’Anna, Roberto
Ierusalimschy, and Edward Hermann Haeusler. A memory-bounded, deter-
ministic and terminating semantics for the synchronous programming lan-
guage céu. In Proceedings of LCTES 2018, pages 1–18. ACM, 2018.

[SMMM06] Ludovic Samper, Florence Maraninchi, Laurent Mounier, and Louis
Mandel. GLONEMO: Global and accurate formal models for the analysis of
ad hoc sensor networks. In Proceedings of the First International Conference on In-
tegrated Internet Ad hoc and Sensor Networks (InterSense’06), Nice, France, May
2006.

[SY16] Alceste Scalas and Nobuko Yoshida. Lightweight session programming in
scala. In ECOOP 2016, LIPIcs. Dagstuhl, 2016.

Bibliography 307

[Ten76] Robert D. Tennent. The denotational semantics of programming languages.
Commun. ACM, 19(8):437–453, 1976.

[TS05] Olivier Tardieu and Robert de Simone. Loops in Esterel. ACM Trans. Embed.
Comput. Syst., 4(4):708–750, November 2005.

[Uni] Uppsala University. Uppaal tool website. http://www.uppaal.org/. Accessed:
2019-13-08.

[Vas12] Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–
70, 2012.

[vG18] Rob van Glabbeek. A theory of encodings and expressiveness (extended
abstract) - (extended abstract). In Foundations of Software Science and Compu-
tation Structures - 21st International Conference, FOSSACS 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, pages 183–202, 2018.

[Wad14] PhilipWadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418,
2014.

[YHNN13] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng.
The scribble protocol language. In TGC 2013, Buenos Aires, Argentina, August
30-31, 2013, Revised Selected Papers, pages 22–41, 2013.

[YV07] Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives
and type discipline for structured communication-based programming revis-
ited: Two systems for higher-order session communication. Electr. Notes Theor.
Comput. Sci., 171(4):73–93, 2007.

http://www.uppaal.org/

A
Chapter 3

A.1 Proofs for π
OR

Lemma 3.7 (Basic Properties for Types). Let T be a π OR type such that T is defined.
Then, all of the following holds:

1. If un(T) then one of the following holds:

(a) If T = end or T = a then ¬out(T) holds.
(b) If T = µa.T or T = qp then out(T) holds.

2. If lin(T) then lin(T) holds.
Proof (see Page 69). The proof of (2) proceeds by induction on the structure of T . All
the cases are immediate by Def. 2.15. The most interesting proof is for (1). By as-
sumption, un(T) and ¬out(T) are true. We proceed by induction on the structure of
T . The base cases are T = end and T = a; they are immediate and fall on Item (a)
(i.e., ¬out(a) and ¬out(end) hold). For the inductive step, we consider two cases:
(1) whenever T = µa.T , and (2) whenever T = qp. Case (1) is immediate by ap-
plying the IH. We detail Case (2): by the definition of un(·), it must be the case that
¬out(T) holds and q = un. The previous implies that T =?T1.T2 with ¬out(T2) holds
or T = &{li : Ti}i∈I with ¬out(Ti) true, for every i ∈ I . For each of these cases we
have that, by Def. 2.15, out(T) is true.

Lemma 3.8 (Properties of Typing Environments). Let Γ = Γ1 ◦ Γ2. Then all of the
following hold:

1. U(Γ) = U(Γ1) = U(Γ2).

2. Suppose that x : qp ∈ Γ ∧ (q = lin ∨ (q = un ∧ out(p) = tt)). Then, either
x : qp ∈ Γ1 and x 6∈ dom(Γ2) or x : qp ∈ Γ2 and x 6∈ dom(Γ1).

Appendix A. Chapter 3 309

3. Γ = Γ2 ◦ Γ1.

4. If Γ1 = ∆1 ◦∆2 then∆ = ∆2 ◦ Γ2 and Γ = ∆1 ◦∆.

Proof (see Page 69). Every item is proven by induction on the structure of Γ and by
using the definition of splitting and predicates un(·) and lin(·) appropriately:

1. The base case is Γ = ∅. Then, Γ1 = ∅ and Γ2 = ∅. Moreover, U(Γ) = U(Γ1) =
U(Γ2) = ∅. For the inductive step, consider Γ = Γ′, x : T . There are two sub-
cases, depending on whether un(T) or lin(T). In the former case, we have that
Γ′, x : T = Γ1 ◦ Γ2, and by Def. 2.16, x : T ∈ Γ1 and x : T ∈ Γ2. By IH,
Γ′ = Γ′1 ◦Γ′2 and U(Γ′) = U(Γ′1) = U(Γ′2). Since un(T), then x : T ∈ U(Γ′, x : T),
x : T ∈ U(Γ1), and x : T ∈ U(Γ2). Thus, U(Γ) = U(Γ1) = U(Γ2). The latter case
is immediate by IH since x : T 6∈ U(Γ).

2. The base case is Γ = ∅. It is immediate as the empty environment does not
contain any elements. For the inductive step, assume Γ = Γ, x : qp. There are
two cases: if q = lin then the proof is immediate by Def. 2.16; if q = un then, by
assumption, out(p) = tt. This implies that un(qp) = ff; therefore, since lin(qp)
holds, we can conclude the proof by Def. 2.16.

3. Immediate by commutativity of the ‘,’ for environments.

4. Immediate by associativity of the ‘◦’ operation (cf. Def. 2.16).

Lemma 3.11 (Subject Congruence). If Γ ` P and P ≡S Q then Γ ` Q.

Proof (see Page 70). By a case analysis on the typing derivation for each member of
each axiom for ≡S. The most interesting ones are: (1) P |0≡SP , and (2) (νxy)(P |Q)
if x, y 6∈ fvπ(Q).

Case P | 0 ≡S P :

⇒) (1) Γ ` P | 0 (Assumption)
(2) Γ = Γ1 ◦ Γ2 (Inv. on Rule (T:PAR), (1))
(3) Γ1 ` P (Inv. on Rule (T:PAR), (2))
(4) Γ2 ` 0 (Inv. on Rule (T:PAR), (2))
(5) un(Γ2) (Inv. on Rule (T:NIL) to (4))
(6) Γ1 ◦ Γ2 ` P (Lem. 3.9 to (3), (5))

⇐) (1) Γ ` P (Assumption)
(2) ∅ ` 0 (Rule (T:NIL) to ∅ - un(∅) is true)
(3) Γ ` P | 0 (Rule (T:PAR) to (1), (2))

Case (νxy)P | Q ≡S (νxy)(P | Q) with x, y 6∈ fvπ(Q):

⇒) By assumption we have that Γ ` (νxy)P | Q and x, y 6∈ fvπ(Q). Then:
(1) Γ = Γ1 ◦ Γ2 (Inv. on Rule (T:PAR), Assumption)
(2) Γ1 ` (νxy)P (Inv. on Rule (T:PAR), (1))
(3) Γ2 ` Q (Inv. on Rule (T:PAR), (1))
(4) Γ1, x : T, y : T ` P (Inv. on Rule (T:RES) on (2))

Appendix A. Chapter 3 310

We now distinguish two cases. The first and most interesting one corre-
sponds to whenever un(T) is true. The second one corresponds to when-
ever un(T) is false (i.e., which groups the remaining possibilities):
un(T) is true: In this casewe distinguish two further sub-cases depending

on whether the un(T) holds or not:
un(T) is true: If this is the case, then we apply Lem. 3.9 twice in (6) to

obtain (7) Γ2, x : T, y : T ` Q and conclude by applying (T:PAR)
and (T:RES) on (5) and (7).

un(T) is false: If this is the case, then we only apply weakening once
(cf. Lem. 3.9) in (6) to obtain (7) Γ2, x : T ` Q and conclude by
applying (T:PAR) and (T:RES) to (5) and (7).

un(T) is false: In this case, we have two cases depending on un(T). Each
case proceeds similarly as above.

⇐) (1) Γ ` (νxy)(P | Q) (Assumption)
(2) x, y 6∈ fvπ(Q) (Assumption)
(3) Γ, x : T, y : T ` P | Q (Inv. on Rule (T:RES), (1))

We distinguish two further cases depending on whether un(T) is true or false:

un(T) is true: In this case we distinguish two further sub-cases depending on
whether the un(T) holds or not:
un(T) is true: If this is the case, then by inversion on (T:PAR) on (3), we

have that (4) Γ, x : T, y : T ` P and (5) Γ2, x : T, y : T ` Q. Then,
we apply Rule (T:RES) on (4) to obtain (6) Γ1 ` (νxy)P and we apply
Lem. 3.10(2) to (5), obtaining (7) Γ2 ` Q. We conclude by applying
Rule (T:PAR) to (6) and (7).

un(T) is false: If this is the case, then by inversion on (T:PAR) on (3), we
have that (4) Γ, x : T, y : T ` P and (5) Γ2 ` Q. Moreover, by
Lem. 3.10(1) applied to (2) and (5), it must be the case that y : T 6∈ Γ2.
Therefore, we apply Lem. 3.10(2) once to remove x : T from Γ2. Then,
we apply Rule (T:RES) in (4) to obtain (6) Γ ` (νxy)P and conclude
by applying Rule (T:PAR).

un(T) is false: In this case, we have two cases depending on un(T). Each case
proceeds similarly as above.

Lemma 3.12 (Substitution). If Γ1 ` v : T and Γ2, x : T ` P then Γ ` P{v/x}, with
Γ = Γ1 ◦ Γ2.

Proof (see Page 70). By induction on the structure of P . There are nine cases: one base
case and eight inductive cases.

Base Case: P = 0. By inversion, un(Γ2, x : T), which implies un(T). By inversion on
the rules for values, we also have that un(Γ1). Thus, un(Γ), with Γ = Γ1 ◦ Γ2

holds. Since 0{v/x} = 0, the proof concludes by applying Rule (T:NIL).

Appendix A. Chapter 3 311

Inductive Step: The proofs for P = Q1 | Q2, P = (νyz)Q, and P = u? (Q1) : (Q2)
follow by applying the IH. The other five cases proceed similarly. We only detail
the case for P = y〈u〉.Q.

P = y〈u〉.Q: We distinguish four sub-cases: (1) y = x and ¬un(T), (2) y = x
and un(T), (3) u = x and ¬un(T), (4) u = x and un(T). Notice that sub-
case (2) is not possible since by assumption Γ, x : T ` P , which implies
that the judgment proceeds with Rule (T:OUT) and therefore, by inversion
T = un!U.U ′, which can never satisfy un(T). We only detail sub-cases (1)
and (4), as sub-case (3) proceeds similarly.
1. By assumption, P = x〈u〉.P and ¬un(T). Moreover, since the judg-

ment Γ2 ` P can only be obtained with Rule (T:OUT), it must be the
case that T = q!U.U ′. Thus, by inversion on Rule (T:OUT), (1) Γ2 =
∆1 ◦∆2 ◦∆3, (2)∆1 ` x : q!U.U ′, (3)∆2 ` u : U , and (4)∆3+x : U ′ `
P . We distinguish two further cases depending on whether q = lin
or q = un. We assume the latter, as the former is similar. By (2), it
must be the case that x : T ∈ ∆1. Moreover, by inversion on (2) and
(3), we have that un(∆′1) holds with (5) ∆′1 = ∆1 \ x : T , and that
(6) un(∆2) holds. By Lem. 3.10(1), we also have that x : T 6∈ ∆2 and
x : T 6∈ ∆3. Moreover, by Lem. 3.8(1), ∆3 = Γ2, which implies that
∆3+x : U ′ = Γ2, x : U ′. By applying the IH, Γ1◦(Γ2, v : U ′) ` Q{v/x}.
We then distinguish two further cases depending on whether un(U)
or ¬un(U). In both cases we proceed similarly: we add all the miss-
ing hypothesis applying Lem. 3.9 and conclude by reapplying Rule
(T:OUT).

4. By assumption, P = y〈x〉.P and un(T). Moreover, since the judgment
Γ2 ` P can only be obtained with Rule (T:OUT), it must be the case
that T = q!U.U ′. We distinguish cases depending on whether un(U)
or ¬un(U) are true. Both cases proceed similarly, so we only detail the
latter. If un(U) holds, we have that (1) Γ2 = ∆1 ◦ ∆2 ◦ ∆3, (2) ∆1 `
x : q!U.U ′, (3) ∆2 ` x : U , and (4) ∆3 + y : U ′ ` P , and x : U ∈ ∆1,
x : U ∈ ∆2, and x : U ∈ ∆3. Following a similar line of reasoning
as the one above, we can conclude that ∆3 = Γ2, and that ∆1 = ∆2.
Moreover, by assumption Γ1 ` v : U and by IH, we then have that
Γ1◦(Γ2, v : U, y : U ′) ` P ′{v/x}. We then distinguish two further cases
depending on whether un(U ′) or ¬un(U ′). In both cases we conclude
similarly as above.

Theorem 3.13 (Subject Reduction). If Γ ` P and P −→∗ Q then Γ ` Q.

Proof (see Page 71). By induction on the reduction P −→∗ Q with a case analysis on
the last applied rule. The most interesting ones are for Rules bCOMc and bREPc, as the
others proceed similarly (or in the case of Rule bSTRc, by the IH and Lem. 3.11). We
show them both:

Appendix A. Chapter 3 312

Case bCOMc:
(1) P = (νxy)(x〈v〉.Q1 | y(z).Q2 | Q3) (Assumption)
(2) P −→ (νxy)(Q1 | Q2{v/z} | Q3) (Assumption)
(3) Γ ` P (Assumption)
(4) Γ, x : T, y : T ` x〈v〉.Q1 |y(z).Q2 |Q3 (Inv. on Rule (T:RES), (1))
(5) Γ = Γ1 ◦ Γ2 ◦ Γ3 (Inv. on Rule (T:PAR), (3))
(6) Γ1, x : T ` x〈v〉.Q1 (Inv. on Rule (T:PAR), (3))
(7) Γ2, y : T ` y(z).Q2 (Inv. on Rule (T:PAR), (3))
(8) Γ3 ` Q3 (Inv. on Rule (T:PAR), (3))
(9) Γ1 = Γ′1 ◦ Γ′′1 ◦ Γ′′′1 (Inv. on Rule (T:OUT), (6))

(10) Γ′1, x : T ` x : un!U.U ′ (Inv. on Rule (T:OUT), (6))
(11) Γ′′1 ` v : U (Inv. on Rule (T:OUT), (6))
(12) Γ′′′1 + x : U ′ ` Q1 (Inv. on Rule (T:OUT), (6))
(13) un(Γ′1) ∧ un(Γ′′1) hold (Inv. on Val. Rules, (10), (11))
(14) Γ′′′1 = Γ1 (Lem. 3.8 to (13), (12))
(15) Γ1 + x : U ′ ` Q1 ((14), (12))
(16) (Γ2, z : U

′) + y : U ′ ` Q2 (Derived similarly to (15))
We now distinguish cases depending the nature of T and T . Belowwe consider
all the possible combinations:

¬un(T) ∧ ¬un(T): In this case, we have that (a) Γ1, x : U ′ ` Q1, by (15) and the
definition of +; (b) Γ2, z : U, y : U ′ ` Q2, by (16) and the definition of +;
(c) Γ3 ` Q3, by (8), and (d) Γ′′1 ` v : U , by (11). By Lem. 3.12 applied to
(d) and (b), we have (e) Γ2, y : U ′ ` Q2, and we can finish the proof by
applying rules (T:PAR), (T:PAR), (T:RES).

¬un(T) ∧ un(T): In this case, we have that (a) Γ1, x : U ′ ` Q1, by (15) and the
definition of+; (Γ2, z : U

′)+y : U ′ ` Q2 and y : un?U.U ′ ∈ Γ2, by (16) and
Definition of un(·). Thus, U ′ = un?U.U ′ and thus, (b) Γ2, z : U

′, y : T ` Q2.
Similarly as above, we also have (c) Γ3 ` Q3, by (8); and (d) Γ′′1 ` v : U ,
by (11). By Lem. 3.9 on (a), we have (e) Γ1, x : U ′, y : T ` Q1, and we
can conclude by applying Lem. 3.12 and rules (T:PAR), (T:PAR), (T:RES) as
above.

Other Cases: Notice that cases (i) un(T) ∧ un(T) and (ii) un(T) ∧ ¬un(T) are
not possible, because T = un!U.U ′. Therefore out(T) = tt, and so our
definition of un(T) does not hold.

Case bREPc: Assuming that P = (νxy)(x〈v〉.Q1 | ∗ y(z).Q2 | Q3), we proceed simi-
larly as above. By inversion on Rule (T:RES):

Γ, x : T, y : T ` x〈v〉.Q1 | ∗ y(z).Q2 | Q3)

with Γ = Γ1 ◦Γ2 ◦Γ3. Following a similar derivation as above, we can conclude
that T = q!U.U ′, and T = q?U.U ′. Then, we can deduce that:

(a) Γ1 = Γ′1 ◦ Γ′′1 ◦ Γ′′′1 ;
(b) Γ′′′1 + x : U ′ ` Q1 by inversion Rule (T:OUT);
(c) Γ′′1 , x : T ` x : q!U.U ′ by inversion Rule (T:OUT);

Appendix A. Chapter 3 313

(d) un(Γ′′1) by inversion Rule (T:VAR);
(e) Γ′ ` v : U by inversion Rule (T:OUT);
(f) un(Γ′1) by inversion Rule (T:VAR) (or (T:BOOL));
(g) (Γ2, y : T , z : U ′) + y : U ′ ` Q2 by inversion Rule (T:RIN);
(h) un(Γ2, y : T) by inversion Rule (T:RIN);
(i) Γ3 ` Q3 by inversion Rule (T:PAR).

By (h), we have that un(T) holds, which implies that ¬out(T) holds, and that
T = U ′; hence T is a recursive type. Moreover, by Lem. 3.7(1b), we have that
un(T) does not hold. Hence, we have that: x : T 6∈ Γ′′′1 , x : T 6∈ Γ′1. Then,
by Lem. 3.8(1) to (a), (d), and (f), we have that Γ′′′1 = Γ1. Then, by applying
Lem. 3.12 and Lem. 3.9 to (e) and (c), we have that Γ2, y : T ◦Γ′1 ◦Γ′′1 ` Q2{v/z}.
We then apply Lem. 3.9 to (i) to obtain (Γ3, y : T)◦Γ′1 ◦Γ′′1 ` Q3. Notice that we
also know, by Lem. 3.9, that Γ′1,Γ′′1 ◦ (Γ2, y : T) ` ∗ y(z).Q2. We then apply Rule
(T:PAR) (which is applicable, since un(T) holds) to the previous hypotheses to
obtain:

Γ, x : T, y : T ` Q1 | Q2 | ∗ y(z).Q2 | Q3

We then conclude by applying Rule (T:RES).

Theorem 3.15 (Type Safety). If ` P then P is well-formed.
Proof (see Page 71). For the sake of contradiction, assume that ` P and that P is not
well-formed (i.e., it does not satisfy any of the items in Def. 3.14). We show that for
every item that is not satisfied we reach a contradiction. If ` P , then there exists a
derivation ` (νx1 . . . xny1 . . . yn)(Q1 | Q2 | R), with n ≥ 1 and therefore, by inversion
applied n times, there exists an environment x1 : Tn, . . . , xn : Tn, y1 : T 1, . . . , yn :
Tn = Γ1 ◦Γ2 ◦Γ3 ` Q1 | Q2 | R. We now show that ifQ1 | Q2 | R does not satisfy any
item in Def. 3.14, we reach a contradiction:

1. If Q1 = v? (Q1) : (Q2) then v ∈ {tt, ff}: Assume that does not satisfy this
condition. Then, the derivation Γ1 ◦Γ2 ◦Γ3 ` Q1 | Q2 | R is not possible as Rule
(T:IF) requires v : bool.

2. There does not existQ1 andQ2 such that they are both prefixed with the same variable:
Assume there exists Q1 and Q2 that are prefixed in the same variable. Then
there are two cases: (i) if the prefixes are of different nature, we reach a con-
tradiction, since it is not possible for x : T and x : T ′ with T 6= T ′ to appear
in a typing derivation in the same environment; (ii) if the prefixes are of the
same nature, we just need to notice that our splitting operation does not allow
for session types that satisfy out(·) to be shared among environments. Thus,
only unrestricted input and branching types can be shared.

3. If Q1 is prefixed on x1 ∈ x̃ and Q2 is prefixed on y1 ∈ ỹ then Q1 | Q2 is a redex:
Suppose that this does not hold (i.e., Q1 | Q2 is not a redex). Then, the typ-
ing derivation is not possible, since Rule (T:RES) requires the types of two co-
variables to be dual, thus reaching a contradiction.

Appendix A. Chapter 3 314

A.2 Proofs for π
R

Lemma 3.21 (Properties of Typing Environments). Let Γ = Γ1 ◦ Γ2. Then all of the
following hold:

1. U(Γ) = U(Γ1) = U(Γ2).

2. Suppose that x : qp ∈ Γ. Then, either x : qp ∈ Γ1 and x 6∈ dom(Γ2) or x : qp ∈ Γ2

and x 6∈ dom(Γ1).

3. Γ = Γ2 ◦ Γ1.

4. If Γ1 = ∆1 ◦∆2 then∆ = ∆2 ◦ Γ2 and Γ = ∆1 ◦∆.

Proof (see Page 75). Every item is proven by induction on the structure of Γ and by
using the definition of splitting and predicates un(·) and lin(·) appropriately:

1. The base case is Γ = ∅. Then, Γ1 = ∅ and Γ2 = ∅. Moreover, U(Γ) = U(Γ1) =
U(Γ2) = ∅. For the inductive step, consider Γ = Γ′, x : T . There are two sub-
cases, depending on whether un(T) or lin(T). In the former case, we have that
Γ′, x : T = Γ1 ◦ Γ2, and by Def. 2.16, x : T ∈ Γ1 and x : T ∈ Γ2. By IH,
Γ′ = Γ′1 ◦Γ′2 and U(Γ′) = U(Γ′1) = U(Γ′2). Since un(T), then x : T ∈ U(Γ′, x : T),
x : T ∈ U(Γ1), and x : TU(Γ2). Thus, U(Γ) = U(Γ1) = U(Γ2). The latter case is
immediate by IH since x : T 6∈ U(Γ).

2. The base case is Γ = ∅. It is immediate as the empty environment does not
contain any elements. For the inductive step, assume Γ = Γ, x : qp. There are
two cases: (1) q = lin and (2) q = un. Both cases are immediate by Def. 2.16
since un(q) is false for both qualifiers.

3. Immediate by commutativity of the ‘,’ for environments.

4. Immediate by associativity of the ‘◦’ operation (cf. Def. 2.16).

Lemma 3.25 (Substitution). If Γ1 ` v : T and Γ2, x : T ` P then Γ ` P{v/x}, with
Γ = Γ1 ◦ Γ2.

Proof (see Page 76). By induction on the structure of P . There are nine cases. The
most interesting case is whenever P = ∗ y(z).Q and y = x (the case whenever y 6= x
is immediate by IH). We detail this case below. By assumption, (1) Γ1 ` v : T and
(2) Γ2, x : T ` P = ∗x(y).Q. By inversion on Rule (T:VAR) and (1), we have that
un(Γ1) holds. Moreover, by inversion on Rule (T:RIN), we have that: (1) un(Γ2) holds,
(2) x : T ` x : un?T ′.U , and (3) Γ2, z : T ′ ` Q. By IH, we have that (4) Γ1 ◦ (Γ2, z :
T ′) ` Q{v/x} = Q (notice that x 6∈ fvπ(Q)). Moreover, we have that (5) v : T ` v : T
by applying Rule (T:VAR), and we have that (6) un(Γ1 \ v : T) holds, as no qualified
pre-typed satisfies un(·). Then, we apply Rule (T:RIN) to (4), (5), and (6) to conclude
the proof.

Theorem 3.26 (Subject Reduction). If Γ ` P and P −→∗ Q then Γ ` Q.

Appendix A. Chapter 3 315

Proof (see Page 76). By induction on the reduction P −→∗ Q with a case analysis on
the last applied rule. The most interesting ones are for Rules bCOMc and bREPc. We
only show the case for Rule bREPc as the case for Rule bCOMc can be obtained similarly.

Case bREPc: Assume that P = (νxy)(x〈v〉.Q1 | ∗ y(z).Q2 | Q3)By inversion on Rule
(T:RES), Γ, x : T, y : T ` x〈v〉.Q1 | ∗ y(z).Q2 | Q3), with Γ = Γ1◦Γ2◦Γ3. Consid-
eringDef. 3.18 and Lem. 3.21we can conclude that T = q!U.U ′, and T = q?U.U ′.
Then, we can deduce that:

(a) Γ1 = Γ′1 ◦ Γ′′1 ◦ Γ′′′1 ;
(b) Γ′′′1 + x : U ′ ` Q1 by inversion Rule (T:OUT);
(c) Γ′′1 , x : T ` x : q!U.U ′ by inversion Rule (T:OUT);
(d) un(Γ′′1) by inversion Rule (T:VAR);
(e) Γ′ ` v : U by inversion Rule (T:OUT);
(f) un(Γ′1) by inversion Rule (T:VAR) (or (T:BOOL));
(g) (Γ2, z : U) ` Q2 by inversion Rule (T:RIN);
(h) un(Γ2) by inversion Rule (T:RIN);
(i) Γ3 ` Q3 by inversion Rule (T:PAR).

Then, qualified pre-types cannot be shared (i.e., un(T) and un(T) are false), we
have that: x : T 6∈ Γ′′′1 , x : T 6∈ Γ′1. Then, by Lem. 3.21(1) to (a), (d), and (f),
we have that Γ′′′1 = Γ1. Then, by applying Lem. 3.25 and Lem. 3.22 to (e) and
(c), we have that Γ2 ◦ Γ′1 ◦ Γ′′1 ` Q2{v/z}. We then apply Lem. 3.22 to (i) to
obtain Γ3 ◦Γ′1 ◦Γ′′1 ` Q3. Notice that Lem. 3.22 ensures that Γ′1,Γ′′1 ◦ (Γ2, y : T) `
∗ y(z).Q2. We then apply Rule (T:PAR) to the previous hypotheses to obtain:

Γ, x : T, y : T ` Q1 | Q2 | ∗ y(z).Q2 | Q3

We then conclude by applying Rule (T:RES).

Theorem 3.28 (Type Safety). If ` P then P is well-formed.

Proof (see Page 76). For the sake of contradiction, assume that ` P and that P is not
well-formed (i.e., it does not satisfy any of the items in Def. 3.27). We show that for
every item that is not satisfied we reach a contradiction. If ` P , then there exists a
derivation ` (νx1 . . . xny1 . . . yn)(Q1 | Q2 | R), with n ≥ 1 and therefore, by inversion
applied n times, there exists an environment x1 : Tn, . . . , xn : Tn, y1 : T 1, . . . , yn :
Tn = Γ1 ◦Γ2 ◦Γ3 ` Q1 | Q2 | R. We now show that ifQ1 | Q2 | R does not satisfy any
item in Def. 3.27, we reach a contradiction:

1. If Q1 = v? (Q1) : (Q2) then v ∈ {tt, ff}: Assume that does not satisfy this
condition. Then, the derivation Γ1 ◦Γ2 ◦Γ3 ` Q1 | Q2 | R is not possible as Rule
(T:IF) requires v : bool.

Appendix A. Chapter 3 316

2. There does not exist processes P andQ that are prefixed on the same variable: Assume
there existsQ1 andQ2 that are prefixed in the same variable. Then there are two
cases: (i) if the prefixes are of different nature, we reach a contradiction, since it
is not possible for x : T and x : T ′ with T 6= T ′ to appear in a typing derivation
in the same environment; (ii) if the prefixes are of the same nature, we just need
to notice that our splitting operation does not allow for any qualified pre-type
to be shared among environments, leading to a contradiction.

3. If Q1 is prefixed on x1 ∈ x̃ and Q2 is prefixed on y1 ∈ ỹ then Q1 | Q2 is a redex:
Suppose that this does not hold (i.e., Q1 | Q2 is not a redex). Then, the typ-
ing derivation is not possible, since Rule (T:RES) requires the types of two co-
variables to be dual, thus reaching a contradiction.

Lemma 3.35 (Semantic Correspondence). For every well-typed π R program P the fol-
lowing holds:

1. If P ↪↪→→ Q then P −→∗ Q.

2. P −→∗ Q then there exists Q′ such that P ↪↪→→∗ Q′ and Q −→∗ Q′.

Proof (see Page 78). We prove each item.

1. By induction on the number of parallel sub-processes of P .

2. By induction on the length k0 of the sequence of reductions P −→∗ Q. The base
case is immediate, since P −→∗ P implies that P ↪↪→→∗ P . For the inductive step,
we state the IH:

IH: If P −→∗ Q0 −→ Q with P −→∗ Q0 in k ≤ k0 steps. Then, there exists Q′0
such that P ↪↪→→∗ Q′0 and Q0 −→∗ Q′0.

We shall use themarked arrow introduced in page 78 (i.e., •−→). Let us enumer-
ate our assumptions: (1) ` P and (2) P −→∗ Q. We then proceed by induction
on the length k0 of the reductionP −→∗ Q. The base case iswheneverP −→∗ P
and is immediate, asP ↪↪→→∗ P . For the inductive step, we consider the IH above.
Then, we need to prove that the property holds for for Q0

•−→ Q. By Cor. 3.34:

P = (νx̃ỹ)(P1 | . . . | Pn)

with n ≥ 1 and every Pi, 1 ≤ i ≤ n a pre-redex or conditional. By IH, P −→∗
Q0. Moreover, by Thm. 3.26 applied to P −→∗ Q0 and Assumption (1), ` Q0.
Next, by Thm. 3.28 applied to Q0, Q0 is well-formed (cf. Def. 3.27). Finally, by
Cor. 3.34:

Q0 = (νx̃ỹ)(P ′1 | . . . | P ′m)

withm ≥ 1 and every P ′i , 1 ≤ i ≤ m a pre-redex or conditional.
Next, by IH, Q0 −→∗ Q′0, thus, we distinguish two cases: (1) whenever reduc-
tion Q0

•−→ Q is in the sequence Q0 −→∗ Q′0 (i.e., Q0
•−→∗ Q′0) and (2) when-

ever reduction Q0
•−→ Q is not in the sequence Q0 −→∗ Q′0.

Appendix A. Chapter 3 317

Case (1): Let Q′ = Q′0. Then, the case follows immediately by IH: If Q′ = Q′0,
then by IH, P ↪↪→→∗ Q′ and Q0

•−→∗ Q′. Moreover, by Rule bBIG-STEPc
in Def. 3.31 and since it must be the case that Q0

•−→ Q is an outermost
reduction (as it is included in Q0

•−→∗ Q′), it is possible to rearrange the
sequence as Q0

•−→ Q −→∗ Q′, finishing the proof.
Case (2): We analyze the nature of reduction Q0

•−→ Q, distinguishing two
cases: (1)whenQ0

•−→ Q comes from a conditional or (2)whenQ0
•−→ Q

comes from a synchronization. Case (1) assumes that there exists P ′j ,
1 ≤ j ≤ m such that:

Q = (νx̃ỹ)(P ′1 | . . . | P ′′j | . . . | P ′m) (1)

Case (2) assumes that there exist Pj and Pp, 1 ≤ j, p ≤ m, j 6= p such that:

Q = (νx̃ỹ)(P ′1 | . . . | P ′′j | . . . | P ′′p | . . . | P ′m) (2)

We detail Case (1) as the other proceeds similarly:
Case (1) Assume Q = (νx̃ỹ)(P ′1 | . . . | P ′′j | . . . | P ′m). Also, assume that

Q0
•−→ Q. Then, by IH, there exists Q′0 such that:

P ↪↪→→∗ Q′0 ∧Q0 −→∗ Q′0

By Rule bBIG-STEPc in Def. 3.31:

Q′0 = (νx̃ỹ)(R′1 | . . . | R′r | Rr+1 | . . . | Rs)

such thatR′1, . . . , R′r are π processes andRr+1, . . . , Rs are pre-redexes
or conditional processes that were not in an outermost reduction.
Next, by Cor. 3.34 and renaming theRi processes to Si (r+1 ≤ i ≤ s)
we have:

Q′0 = (νx̃ỹ)(S1 | . . . | St | Sr+1 | . . . | Ss)

with t ≥ r, s ≥ 1 and every Si, 1 ≤ i ≤ t is a pre-redex or conditional
process.
Notice that the fact that reductionQ0

•−→ Q is not included inQ0 −→∗
Q′0 together with the IH (i.e., P ↪↪→→∗ Q′0) imply that reduction Q0

•−→
Q is not an outermost reduction in any of the processes of the se-
quence P ↪↪→→∗ Q′0. Therefore, there must exist an Sj (j ∈ {1, . . . , t, r+
1, . . . , s}) such that:

Q′0
•−→ (νx̃ỹ)(S1 | . . . | St | . . . | S′j | . . . | Sr+1 | . . . | Ss) = Q′′0

Then, applying Rule bBIG-STEPc to Q′0 we know there exist processes
S1, . . . , Sj , . . . , Sa (with a ≤ s) and processes Sa+1, . . . , Sb (with b ≤
s) such that:

Q′0 ↪↪→→ (νx̃ỹ)(S′1 | . . . | S′j | . . . | S′a | Sa+1 | . . . | Sb) = Q′ (A.1)

By Lem. 3.35(1), Q′0 −→∗ Q′. Furthermore, by Def. 3.31, Q0
•−→ Q

must be included inQ′0 −→∗ Q′; thus,Q′0
•−→∗ Q′. Moreover,Q0 −→∗

Appendix A. Chapter 3 318

Q′0 by IH and therefore, Q0 −→∗ Q′0
•−→∗ Q′. Next, observe that

Q0
•−→ Q and Q′0

•−→ Q′′0 implies that Q0
•−→ Q −→∗ Q′, which

implies that Q −→∗ Q′. Finally, by IH, we have that P ↪↪→→∗ Q′0 and by
(A.1) above, P ↪↪→→∗ Q′0 ↪↪→→ Q′ and thus, P ↪↪→→∗ Q′, finishing the proof.

A.3 Proofs for πE
Lemma 3.37 (Subject Congruence for πE). If Φ `N N and N ≡S M then Φ `N M .

Proof (see Page 82). Using a case analysis on all the rules for ≡S. We show four cases
as all the other proceed similarly:

Case N | 0 ≡S N : We show both directions:

⇒) We proceed as follows:
(1) Φ `N N | 0 by Assumption.
(2) Φ `N N by Inversion on Rule (T:NPAR).

⇐) We proceed as follows:
(1) Φ `N N by Assumption.
(2) Φ `N 0 by Rule (T:NNIL).
(3) Φ `N N | 0 by (T:NPAR) on (1) and (2).

Case N |M ≡S M | N : We prove one direction, as the other proceeds in the same
way:

⇒): We proceed as follows:
(1) Φ `N N |M by Assumption.
(2) Φ `N N by Inversion on Rule (T:NPAR) and (1).
(3) Φ `N M by Inversion on Rule (T:NPAR) and (1).
(4) Φ `N M | N by applyinh Rule (T:NPAR) to (3) and (2).

Case (νxy)0 ≡S 0: We show both directions:

⇒) We proceed as follows:
(a) Φ `N (νxy)0 by Assumption.
(b) Φ `N 0 by applying Rule (T:NNIL) to (1).

⇐) (1) Φ `N 0 (Assumption).
(2) x : end, y : end ` 0 by the application of Lem. 3.9 and Rule (T:NIL)

from Fig. 2.3.
(3) Φ `N (νxy)0 by (T:SESS) and (2).

Case (νxy)P | (νwz)Q ≡S (νxy)(νwz)(P | Q): We show one side, as the other pro-
ceeds similarly:

⇒) We proceed as follows. Notice that x, y 6∈ fvπ(Q) and w, z 6∈ fvπ(P):

Appendix A. Chapter 3 319

(1) Φ `N (νxy)P | (νwz)Q by Assumption.
(2) Φ `N (νxy)P by Inversion on Rule (T:NPAR) and (1)).
(3) Φ `N (νwz)Q by Inversion on Rule (T:NPAR) and (1).
(4) x : T1, y : T1 ` P by Inversion on (T:SESS) and (2).
(5) w : T2, w : T2 ` Q by Inversion on (T:SESS) and (3).
(6) ` (νxy)P by the application of Rule (T:RES) from Fig. 2.3 to (4).
(7) ` (νwz)Q by the application of Rule (T:RES) from Fig. 2.3 to (5).
(8) ` (νxy)P | (νwz)Q by the application of Rule (T:PAR) from Fig. 2.3 to

(6) and (7).
(9) ` (νxy)(νwz)(P | Q) by Lem. 3.11 and ≡S in πE.

(10) x : T1, y : T1 ` (νwz)(P | Q) by Inversion on Rule (T:RES) from
Fig. 2.3 and (9).

(11) Φ `N (νxy)(νwz)(P | Q) by the application of Rule (T:SESS) to (10).

Theorem 3.38 (Subject Reduction for πE). If Φ,Γ `N N and N −→∗N N ′ then Φ,Γ `N
N ′.

Proof (see Page 83). By induction on k, the length of the reduction, followed by a case
analysis on the last applied rule. Notice that Case bNSTRc, concludes by IH and
Lem. 3.37.

Base Case: Immediate, as it is the case where k = 0. Thus, N −→∗N N .

Inductive Step: We proceed by a case analysis on the last applied rule:

Case Rule bSESTRc:
(1) N =

[
am〈x〉.P1

]n︸ ︷︷ ︸
M1

|
[
∗ aρ(y).P2

]m︸ ︷︷ ︸
M2

by Assumption.

(2) N ′ = (νxy)(P1 | P2) |
[
∗ aρ(y).P2

]m (Assumption).
(3) Φ `N N by Assumption.
(4) Φ `N M1 by (1),(3), and Inversion on Rule (T:NPAR) in Fig. 3.4.
(5) Φ `N M2 by (1),(3), Inversion on Rule (T:NPAR) in Fig. 3.4.
(6) Φ `N a : 〈T 〉 by (4) and Inversion on Rule (T:REQ) in Fig. 3.4.
(7) x : T ` P1 by (4) and Inversion on Rule (T:REQ) in Fig. 3.4.
(8) Φ `N a : 〈T 〉 by (5) and Inversion on Rule (T:RACC) in Fig. 3.4.
(9) y : T ` P2 by (5) and Inversion on Rule (T:RACC) in Fig. 3.4.

(10) x : T , y : T ` P1 | P2 by the application of Rule (T:PAR) in Fig. 2.3 to
(7) and (9).

(11) Φ `N (νxy)(P1 | P2) by the application of Rule (T:SESS) in Fig. 3.4 to
(10).

(12) Φ `N
[
∗ aρ(y).P2

]m by applying Rule (T:RACC) to (8) and (9).
(13) Φ `N (νxy)(P1 | P2) |

[
∗ aρ(y).P2

]m by applying Rule (T:NPAR) to (11)
and (12).

Appendix A. Chapter 3 320

Case Rule bNPARc: Follows from the IH.
Case Rule bSREDc: Follows by inversion on Rule (T:SESS), Thm. 3.13 and ap-

plying Rule (T:SESS).

Lemma 3.41 (Type Safety for Runtime Networks). IfN ≡S (νxy)P |M and Φ `N N
then (νxy)P is well-formed (cf. Def. 3.14).

Proof (see Page 84). The proof can be derived as follows from the assumptions:

(1) N ≡S (νxy)P |M by Assumption.

(2) Φ `N (νxy)P |M by Assumption.

(3) Φ `N (νxy)P by Inversion on (2) and Rule (T:NPAR).

(4) Φ `N M by Inversion on (2) and Rule (T:NPAR).

(5) x : T, y : T ` P by Inversion on (3) and Rule (T:SESS).

(6) ` P by applying Rule (T:RES) to (5).

(7) P is well-formed by applying Thm. 3.15 to (6).

A.4 Proofs for aπ
Theorem 3.67 (Subject Congruence for aπ). If Γ `Σ P . ∆ and P ≡A Q then Γ `Σ
Q .∆.

Proof (see Page 97). By a case analysis on the rules of ≡A (cf. Def. 3.44). For each case
we need to prove both directions:

(1) P | 0 ≡A P :

⇒): By assumption and inversion on Rule (T:QCONC), Γ `Σ P . ∆1 and Γ `∅
0.∆2. By applying inversion twice, we have that end(∆2) holds, Thus, we
can conclude by adding ∆2 to ∆1, by applying Lem. 3.61.

⇐): ∆′ = ∅ is a terminated linear environment and therefore, by Rule (T:NIL),
Γ `∅ 0 . ∅. Finally, we can apply Rule (T:QCONC) with the assumption to
conclude the proof.

(2) P | Q ≡A Q | P : Both directions are immediate by commutativity of �.

(3) P ≡A Q if P ≡α Q: Immediate by applying Lem. 3.63.

(4) (P | Q) | R ≡A P | (Q | R): Both directions are immediate by associativity of�.

(5) (νx)(νy)P ≡A (νy)(νx)P : Both directions are immediate by the commutativity
of ∆.

Appendix A. Chapter 3 321

(6) (νx)0 ≡A 0:

⇒): By assumption, (1) Γ `Σ (νx)0 .∆. Since (νx)0 is aπ⋆ process then Σ = ∅
and (1) is deduced with Rule (T:RES). Thus, by inversion, (2) Γ `Σ,x,x

0 . ∆, x : end, x : end. By the syntactic structure of 0, it can be deduced
that this judgment was derived with Rule (T:WKS). Thus, by inversion,
(3) Γ `Σ 0 .∆, x : end, x : end. Then, it can be deduced Σ = ∅. Thus, by
inversion, (4) Γ ` 0.∆, x : end, x : end. Finally, we have that this judgment
must have been deduced with Rule (T:NIL) and hence, by inversion: ∆, x :
end, x : end. Then, by Lem. 3.62, we can conclude that Γ ` 0.∆. Finally, we
can apply Rule (T:WKS) twice to obtain Γ `x,x 0 .∆, finishing the proof.

⇐): By assumption, (1) Γ `Σ (νx)0 . ∆ and by applying inversion twice we
get that Σ = ∅ and that end(∆) holds. Then, we can apply Lem. 3.62 to
obtain Γ ` 0 . ∆, x : end, x : end. Next, using Rule (T:WKS) twice, we
deduce Γ `x,x 0 .∆, x : end, x : end. Finally, we can apply Rule (T:RES) to
conclude Γ `Σ (νx)0 .∆, finishing the proof.

(7) (νk)(k[i : ε; o : ε] | k[i : ε; o : ε]) ≡A 0:

⇒): By inversion on Rule (T:RES), Γ `Σ,k,k k[i : ε; o : ε] | k[i : ε; o : ε] . ∆, x :
T � M1, x : T ′ � M2 with T ⊥T ′. This judgment was deduced with Rule
(T:QCONC). Thus, by inversion: (1) Γ `Σ1,k k[i : ε; o : ε] .∆1, x :M1, x : T ′

and (2)Γ `Σ2,k
s[i : ε; o : ε].∆2, x : T, x :M2. Then, (1) and (2) could only

have been deducedwit Rules (T:OQEND) or (T:IQEND). Let us assume that
both were deduced with Rule (T:OQEND). All the other cases proceed
similarly. By inversion on Rule (T:OQEND) on (1) and (2), we have that
Σ1 = Σ2 = ∅, which implies that Σ = ∅. Also, end(∆1, x : M1, x : T ′)
and end(∆2, x : T) hold. Thus, T = T ′ = end. We can then conclude by
applying Rule (T:NIL) with ∆ = ∆1,∆2, x : T, x : T ′.

⇐): We proceed similarly to the case 0 ≡A (νx)0. The only caveat is that we
have to consider that end � ∅ = end, to obtain the desired typing.

(8) (νx)P | Q ≡A (νx)(P | Q) if x 6∈ fvπ(Q): Both directions are immediate by in-
version and considering that x cannot appear in the linear environment typing
Q.

Theorem 3.69 (Subject Reduction for aπ). If Γ `Σ P .∆ with ∆ well-configured (cf.
Def. 3.58) and P −→∗A Q then Γ `Σ Q .∆′ with∆⇀∗ ∆′ and ∆′ is well-configured.

Proof (see Page 97). By induction on the length of reduction P −→∗A Q. The base case
is immediate. We show the inductive step:

Rule bSENDc: In here we distinguish two cases depending on whether v is a boolean
value or another channel (delegation).

Case v : bool By assumption, (1) Γ `Σ k〈v〉.Q | k[i : h̃1, o : h̃2] .∆′, k :!U.(T �
M) and ∆ = ∆′, x :!U.T is well-configured. By using inversion on Rule
(T:QCONC), we have that (2) Γ `Σ1

k〈v〉.Q . ∆′1, k :!U.T and (3) Γ `Σ2,k

Appendix A. Chapter 3 322

k[i : h̃1, o : h̃2] . ∆
′
2, k : M . By inversion applied on (2) (Rule (T:SEND)),

we have that (4) Σ1 = ∅, (5) Γ ` v : U and (6) Γ ` Q.∆′1, T . Similarly, for
(3), we distinguish cases depending on whether h̃2 = ε or not. Without
loss of generality, we only consider the case when h̃2 6= ε. The other case
is similar.
In this case, we have that h̃2 = v1 · . . . · vn, n ≥ 1. Thus, by applying
inversion on Rule (T:QOUT) we have that (7) Σ2 = ∅ and (8) end(∆′2)
holds. Then, we have that k〈v〉.Q | k[i : h̃1, o : h̃2] −→A Q | k[i : h̃1, o :

h̃2 · v]. By applying Rule (T:QOUT) with (5) we have that (9) Γ `Σ2,k

k[i : h̃1, o : h̃2 · v] . ∆′2, k : M ′, where M ′ = m1.mn.!U and for every
i ∈ {1, . . . , n},mi = ⊕lj for some j ormi =!U ′ for some U ′.
Then, by applying Rule (T:QCONC) to (6) and (9) yields:

Γ `Σ k〈v〉.Q | k[i : h̃1, o : h̃2] .∆′, x : T �M ′

Now, notice that since∆ iswell-configured (Def. 3.58),∆ = ∆0, k :!U.T, k :
?U.T . Moreover, the merging T � M ′ reconstructs the type !U.(T � M)
given that session types are reconstructed in the reverse order, as how the
messages were sent. Thus, ∆′, x : T � M ′ = ∆ and thus, ∆ ⇀∗ ∆,
finishing the proof.

Case v : T : If the value is a channel (an hence its type is a session type), then the
proof proceedsmostly as the case above, but we assume that the judgment
is deduced using Rule (T:DEL), rather than (T:SEND).

Rule bSELc: Similar to the case above, but we make use of Rule (T:SUB) to find the
correct typing for the selection operator.

Rule bCOMc: This case proceeds immediately form the IH. Notice that the environ-
ment ∆ reduces with Rule bE:SENDc. Namely, when we move an output mes-
sage from an output queue to the input queue of the complementary endpoint,
the message is consumed and thus, the environment changes.

Rule bRECVc: Similarly to bSENDc. We distinguish two cases depending on whether
the input process was typed using Rule (T:RCV) or (T:DRCV), in both cases we
proceed as in the case for the semantics Rule bSENDc.

Other Cases: Case bBRAc is similar to the case above. Cases for rules bIFTc, bIFFc,
bRECc, bRESc, and bPARc are immediate by the IH. Finally, the case for Rule bSTRc
is immediate by IH and Thm. 3.67.

Lemma 3.85 (Single-Step Semantic Correspondence). Let P be a well-formed aπ pro-
gram. Then, the following holds:

1. If P Ï→ Q then P −→∗A Q.

2. If P −→A Q then there exists R such that P Ï→ R and Q −→∗A R.

Appendix A. Chapter 3 323

Proof (see Page 104). We prove both numerals.

1. We derive the proof from the definitions. Assume that 1 ≤ n ≤ m:
(1) P = C[P1 | . . . | Pn, Q1 | . . . | Qm] (Thm. 3.69, Lem. 3.73)
(2) P Ï→ Q = unm(Q0), for some Q0 (Lem. 3.83, (1))
(3) P �→ C[P1 | . . . | Pn, Q

′
1 | . . . | Q′m] (Inversion on (2))

(4) Q1 | . . . | Qm ⇁∗ Q′1 | . . . | Q′m (Inversion on (3))
(5) C[P1 | . . . | Pn, Q

′
1 | . . . | Q′m]⇀∗ Q0 6⇀ (Inversion on (2))

(6)
Q1 | . . . | Qm −→∗A Q′1 | . . . | Q′m
using Rule bCOMc

(Lem. 3.84(1), (4))

(7)
C[P1 | . . . | Pn, Q

′
1 | . . . | Q′m]

−→∗A unm(Q0) = Q
(Lem. 3.84(2), (5))

(8)
P −→∗A C[P1 | . . . | Pn, Q

′
1 | . . . | Q′m]

−→∗A unm(Q0) = Q
(Fig. 3.5, (6), (7))

2. By Thm. 3.69 and Lem. 3.73, P = C[P1 | . . . | Pn, Q1 | . . . | Qm] with 1 ≤ n ≤
m. By assumption, P −→A Q, given the shape of the process we deduce this
reduction can only take place using Rule bRESc. By inversion, we have that
P1 | . . . | Pn | Q1 | . . . | Qm −→A Q

′, which is only possible by applying Rule
bPARc. We then distinguish two cases, depending on which processes reduce:

∃i ∈ {1, . . . , n}, j ∈ {n+ 1, . . . ,m} such that Pi | Qj −→A P
′
i | Q′j : If this is the

case, then the reduction must have occurred with either Rule bSENDc, Rule
bSELc, Rule bIFTc, Rule bIFFc, Rule bRECVc, or Rule bBRAc. We only show
the case for Rule bSENDc, as the other cases are similar:
Rule bSENDc: In this case, Pi = x〈v〉.P ′i and Qj = x[i : h̃1, o : h̃2]. We

distinguish cases for (1) h̃2 = ε or (2) h̃2 = v1 · h̃′2. We show the latter,
as it is the most interesting one. By assumption,

P = C[P1 | . . . | x〈v〉.P ′i | . . . | Pn, Q1 | . . . |

x[i : h̃1, o : v1 · h̃′2] | . . . | Qm]

−→A C[P1 | . . . | P ′i | . . . | Pn, Q1 | . . . |

x[i : h̃1, o : v1 · h̃′2 · v] | . . . | Qm]

= Q

We now prove the existence of process R. Consider the big-step re-
duction P Ï→ R. By Def. 3.81, process R is given by the big-step
reduction sequence P �→ R0 ⇀∗ R′0 6⇀, where R = unm(R′0). We
analyze the first part of the sequence: P �→ R0. By Def. 3.78,

P �→ C[P1 | . . . | x〈v〉.P ′i | . . . | Pn,Q
′
1 | . . . |

x[i : h̃′1, o : h̃
′
2] | . . . | Q′m] = R0

as Rule bCOMMc is applied to allow synchronization between all the
queues in P . InR0, we distinguish two cases: (1) h̃′1 = h̃1 or (2) h̃′1 =

h̃ · v̂′. We only show the latter, as the other case is similar.

Appendix A. Chapter 3 324

If h̃′1 = h̃ · v̂′ then, in the reduction sequence R0 ⇀
∗ R′0 6⇀, we have

that:

R0 ⇀
∗ C[P ′1 | . . . | P ′′i | . . . | P ′n,Q′′1 | . . . |

x[i : h̃′′1 , o : h̃
′′
2] | . . . | Q′m] = R′0 6⇀

with h̃′′1 = h̃0 · v̂′, and h̃′′2 = h̃′2 · v · h̃′0, for some h̃0 and some h̃′0.
We now have to prove thatQ −→∗A R. Consider the big-step reduction
Q Ï→ S. We will show that S = R and use the result obtained in Nu-
meral 1. of the proof to show the existence of the reduction sequence
Q −→∗A R. By Def. 3.81, we analyze the sequence Q �→ S0 ⇀

∗ S′0 6⇀.
As above:

Q �→ C[P1 | . . . | P ′i | . . . | Pn, Q1 | . . . | x[i : h̃′1, o : h̃′′2] | . . . | Qm]

= S0

this follows from Thm. 3.70, which ensures the existence of a unique
queue for endpoint x.
A similar argument can be used to show that S0 ⇀

∗ S′0 6⇀. Namely,
the big-step reduction⇀ only allows k-processes to interact with their
respective queue. Thus, since by Thm. 3.70 there is only one queue for
endpoint x and only process P ′i implements the protocol for endpoint
x, we can conclude that S′0 = R′0. Furthermore, by Lem. 3.85(1) (i.e,
Numeral 1. in this statement), we have that unm(Q) −→∗A unm(R0),
and considering that R = unm(R0) and that, by Def. 3.80, unm(Q) = Q
(sinceQ contains no marks), we have shown thatQ −→∗A R, finishing
the proof.

∃i, j ∈ {n+ 1, . . . ,m} such that Qi | Qj−→AQ
′
i | Q′j : The reduction originated

from the application of Rule bCOMc. We prove the case by showing that if
P −→A Q, P Ï→ R, and Q Ï→ S then S = R. This proceeds similarly as
above.

A.5 Proofs for lccp

Lemma 3.91 (Subject Congruence). If P ≡ Q and `⋄ P , then `⋄ Q.

Proof (see Page 109). By a case analysis on P ≡ Q (cf. Def. 2.28). Since congruences
are symmetric, we need to prove for both P ≡ Q and Q ≡ P . There are eight cases.
The most interesting ones are for (SCl:4) and (SCl:7). We detail them below:

Case !P ≡ P ‖ !P : We distinguish two sub-cases corresponding to the direction of
≡:

Sub-case (⇒):

Assumption !P ≡ P ‖ !P (1)

Appendix A. Chapter 3 325

Assumption `⋄ !P (2)
(2), inversion on Rule (L:REPL) `⋄ P (3)
(2), (3), formation on Rule (L:PAR) `⋄ P ‖ !P (4)

Sub-case (⇐):

Assumption !P ‖ P ≡ !P (1)
Assumption `⋄ !P ‖ P (2)
(2), inversion on Rule (L:PAR) `⋄ !P (3)

Case P ‖ ∃z.Q ≡ ∃z. (P ‖ Q): Wedistinguish two sub-cases corresponding to the di-
rection of ≡:

Sub-case (⇒):

Assumption P ‖ ∃z.Q ≡ ∃z. (P ‖ Q) (1)
Assumption `⋄ P ‖ ∃z.Q (2)
(1), inversion on Rule (SCL:7) z 6∈ fv(P) (3)
(2), inversion on Rule (L:PAR) `⋄ P (3)
(2), inversion on Rule (L:PAR) `⋄ ∃z.Q (5)
(5), inversion on Rule (L:LOCAL) `⋄ Q (6)
(4),(6), formation on Rule (L:PAR) `⋄ P ‖ Q (7)
(7), formation on Rule (L:LOCAL) using z `⋄ ∃z. (P ‖ Q) (8)

Sub-case (⇐):

Assumption ∃z. (P ‖ Q) ≡ P ‖ ∃z.Q (1)
Assumption `⋄ ∃z. (P ‖ Q) (2)
(1), inversion on Rule (SCL:7) z 6∈ fv(P) (3)
(2), inversion on Rule (L:LOCAL) `⋄ P ‖ Q (4)
(4), inversion on Rule (L:PAR) `⋄ P (5)
(4), inversion on Rule (L:PAR) `⋄ Q (6)
(6), formation on Rule (L:LOCAL) using z `⋄ ∃z.Q (7)
(5),(7), formation on Rule (L:PAR) `⋄ P ‖ ∃z.Q (8)

Theorem 3.93 (Subject Reduction). If P α−→l Q and `⋄ P then `⋄ Q.
Proof (see Page 110). By a case analysis on the transition rule applied (cf. Fig. 2.5).
There are eight cases, where themost interesting one is the case for Rule bC:SYNCLOCc,
which is detailed below:
Case Rule bC:SYNCLOCc:

Assumption
c ‖ ∀x̃(d ; e→P)
τ−→l ∃ỹ. (P{t̃/x̃} ‖ f)

(1)

Appendix A. Chapter 3 326

1, inversion on Rule bC:SYNCLOCc c⊗ d ` ∃ỹ.(e{t̃/x̃} ⊗ f) (2)
(1), inversion on Rule bC:SYNCLOCc ỹ ∩ fv(c, d, e, P) = ∅ (3)
(1), inversion on Rule bC:SYNCLOCc mgc

(
c⊗ d, ∃ỹ.(e{t̃/x̃} ⊗ f)

)
(4)

(1), inversion on Rule bC:SYNCLOCc c⊗ d ` ff =⇒ c ` ff (5)
Assumption `⋄ c ‖ ∀x̃(d ; e→P) (6)
(6), inversion on Rule (L:PAR) `⋄ c (7)
(6), inversion on Rule (L:PAR) `⋄ ∀x̃(d ; e→P) (8)
(8), inversion on Rule (L:GUARD) `A ∀x̃(d ; e→P) (9)
(9), inversion on Rule (L:ABS) `⋄ P (10)
(9), inversion on Rule (L:ABS) ∆;Θ `• e (11)
(9), inversion on Rule (L:ABS) x̃ ⊆ Θ \ fv(d) (12)
(2), deductive closure ∃ỹ.(e{t̃/x̃} ⊗ f) ∈ C (13)
(13), transitivity f ∈ C (14)
(14), formation on Rule (L:TELL) `⋄ f (15)
(4), Def. 2.29 t̃ is a vector of terms (16)
(10), (16), Prop. 3.92 `⋄ P{t̃/x̃} (17)
(15), (17), formation on Rule (L:PAR) `⋄ P{t̃/x̃} ‖ f (18)
(18), formation on Rule (L:LOCAL) with ỹ `⋄ ∃ỹ. (P{t̃/x̃} ‖ f) (19)

B
Chapter 4

B.1 Junk Processes

Lemma 4.15. Let J be junk. Then: (1) J 6 τ−→l (and) (2) there is no c ∈ C (cf. Def. 4.1)
such that J ‖ c τ−→l.
Proof (see Page 130). We prove each item individually.
(1) By induction on the structure of J . We show two cases:

Case J = ∀ε((b = ¬b)→ P): This case is immediate by inspecting the rules in
Fig. 2.5; in particular, since Rule (C:SYNC) cannot be applied J 6 τ−→l.

Case J = J1 ‖ J2: By IH, J1 6 τ−→l and J2 6 τ−→l. We prove that a reduction J1 ‖
J2

τ−→l J
′
1 ‖ J ′2 cannot occur. By Def. 4.14, junk processes are either ask-

guarded processes or tt. To reduce, one of J1 and J2 must add a constraint
to the store; two ask processes in parallel cannot reduce (cf. Fig. 2.5).
Now, since tt does not add any information to the store, we have that
J1 ‖ J2 6

τ−→l.

(2) By induction on the structure of J . We detail three cases:

Case J = tt: This case is immediate, as tt ‖ c 6 τ−→l, for any constraint c ∈ C.
Case J = ∀ε((b = ¬b)→ P): Suppose, for the sake of contradiction, that there

is a c ∈ C (cf. Def. 4.1) such that J ‖ c τ−→l S, for some S. Then, by
Def. 4.1, c must be composed of the predicates snd, rcv, sel, bra, {·:·} (cf.
Fig. 4.1), the multiplicative conjunction ⊗, replication and the existential
quantifier. We now apply induction on the structure of c: there are five
base cases (one for each predicate) and 3 inductive cases (one for each
logical connective). We show only two representative cases:

Appendix B. Chapter 4 328

Sub-case c = snd(x, v): This base case is immediate, as snd(x, v) 6` (b =
¬b) using the Rules in Fig. 2.4. Thus, Rule (C:SYNC) is not applicable,
therefore contradicting our assumption.

Sub-case c = c1 ⊗ c2: By IH, ci 6` (b = ¬b). Then, by the rules in Fig. 2.4,
c1 ⊗ c2 6` (b = ¬b), leading to a contradiction as in the previous sub-
case.

Case J = J1 ‖ J2: Then J ‖ c 6 τ−→l follows immediately from the IH (which
ensures J1 ‖ c 6 τ−→l and J2 ‖ c 6 τ−→l) and Item (1).

Lemma 4.16 (Junk Observables). For every junk process J and every Dπ ORC-context
C[−], we have that:

1. ODπ

OR (J) = ∅ (and)

2. ODπ

OR (C[J]) = O

D
π

OR (C[tt]).

Proof (see Page 130). We prove each item separately:

1. By induction on the structure of J . We show the most representative 3 cases:

Case J = ∀ε((b = ¬b)→ P): By Lem. 4.15(1), J 6 τ−→l. Therefore, by Def. 2.30
O
D

π

OR (J) = ∅.

Case J = tt: By Lem. 4.15(1), J 6 τ−→l. Moreover, since tt 6∈ Dπ OR , by Def. 2.30,

O
D

π

OR (J) = ∅.

Case J = J1 ‖ J2: By IH,O
D

π

OR (Ji) = ∅, i ∈ {1, 2}. By Lem. 4.15(1), J 6 τ−→l and

therefore, O
D

π

OR (J) = O

D
π

OR (J1) ∪ O

D
π

OR (J2) = ∅.

2. The proof is by induction on the structure of J , followed in each case by a case
analysis on C[−] (cf. Def. 2.32). All cases follow from the definitions; we detail
two representative cases:

Case J = ∀ε((b = ¬b)→ P1): Weapply a case analysis on contextC[−]. Wewill
show only two sub-cases, as the third one is symmetrical:
Sub-case C[−] = ∃x̃.−: This case follows from Lem. 4.15(1,2).
Sub-case C[−] = − ‖ P2: Then C[J] = ∀ε((b = ¬b) → P1) ‖ P2. By

Lem. 4.15(1,2), ∀ε((b = ¬b) → P1) 6
τ−→l and there is no c ∈ C (cf.

Def. 4.1) such that J ‖ c τ−→l. As such, a reduction C[J] τ==⇒l C
′[J ′]

is not possible (i.e., J cannot reduce in the context). Therefore, by
Def. 2.30 and Item (1), we have that:

O
D

π

OR (C[J]) = O

D
π

OR (J) ∪ O

D
π

OR (P2) = O

D
π

OR (P2)

Following a similar analysis, and using Lem. 4.15(1,2), Item(1) and
Def. 2.30, O

D
π

OR (C[tt]) = O

D
π

OR (tt) ∪ O

D
π

OR (P2) = O

D
π

OR (P2). We

conclude O
D

π

OR (C[tt]) = O

D
π

OR (C[J]), as wanted.

Appendix B. Chapter 4 329

Case J = J1 ‖ J2: We apply a case analysis on contextC[−]. Wewill show only
two sub-cases, as the third one is symmetrical:
Sub-case C[−] = ∃x̃.

(
−
)
: This case follows from Lem. 4.15(1,2).

Sub-case C[−] = − ‖ P2: By IH, we haveO
D

π

OR (C[J1])=O

D
π

OR (C[tt]) and

O
D

π

OR (C[J2]) = O

D
π

OR (C[tt]). Also, by Lem. 4.15(1), J1 ‖ J2 6 τ−→l and

by Lem. 4.15(2), there is no c ∈ C (cf. Def. 4.1) such that J ‖ c τ−→l.
Hence, by Def. 2.30 and Item (1), O

D
π

OR (C[J1 ‖ J2]) = O

D
π

OR (tt), as

wanted.

Lemma 4.17 (Junk Behavior). For every junk J , every Dπ ORC-context C[−], and every

process P , we have C[P ‖ J] ≈π OR
l C[P].

Proof (see Page 131). By coinduction, i.e., by exhibiting a weak o-barbed bisimulation
containing the pair (C[P ‖ J], C[P]). To achieve we recall Def. 2.33. Then, we define
a symmetric relationR such that (R,Q) ∈ R implies:

1. O
D

π

OR (R) = O

D
π

OR (Q) (and),

2. whenever R τ−→l R
′ there exists Q′ such that Q τ==⇒l Q

′ and R′RQ′.

We define

R = {(R,Q) | C[P ‖ J] τ−→
n

l R ∧ C[P]
τ−→

n

l Q,n ≥ 0}

∪ {(Q,R) | C[P ‖ J] τ−→
n

l R ∧ C[P]
τ−→

n

l Q,n ≥ 0} (1)

Notice that this relation is symmetric by definition. Moreover, Item (1) is immedi-
ately satisfied byR, thanks to Lem. 4.16(2).

As for Item (2), first notice that (R,Q) ∈ R: we have R = C[P ‖ J] andQ = C[P]

(with n = 0). Now suppose thatR τ−→l R
′; we show amatching transitionQ τ==⇒l Q

′

such thatR′RQ′. To this end, we use a case analysis on the reduction(s) possible from
C[P ‖ J]. There are six possibilities:

(a) C[P ‖ J] τ−→l C[P ‖ J ′] (i.e., an autonomous reduction from J);

(b) C[P ‖ J] τ−→l C
′[P ‖ J ′] (i.e., a reduction from the interplay of C and J);

(c) C[P ‖ J] τ−→l C[P
′ ‖ J ′] (i.e., a reduction from the interplay of P and J);

(d) C[P ‖ J] τ−→l C
′[P ‖ J] (i.e., an autonomous reduction from C);

(e) C[P ‖ J] τ−→l C
′[P ′ ‖ J] (i.e., an interaction between C and P);

(f) C[P ‖ J] τ−→l C[P
′ ‖ J] (i.e., an autonomous reduction from P).

Notice that Lem. 4.15(1,2) and Lem. 4.16(1,2) exclude cases (a)–(c). Thus, reduc-
tions for C[J] will only be of the form (d)–(f). Clearly, this transition from R can be
matched by Q as follows:

Appendix B. Chapter 4 330

• Q = C[P]
τ−→l C

′[P] = Q′, with (C ′[P ‖ J], C ′[P]) ∈ R (or)

• Q = C[P]
τ−→l C

′[P ′] = Q′, with (C ′[P ′ ‖ J], C ′[P ′]) ∈ R (or)

• Q = C[P]
τ−→l C[P

′] = Q′, with (C[P ′ ‖ J], C[P ′]) ∈ R.

With these reductions, we conclude the proof for this case. The case when Q τ−→l Q
′

is similar.

Lemma 4.19 (Occurrences of Junk). Let R be a redex (Def. 2.19).

1. If R = x / lj .P | y . {li : Qi}i∈I , with j ∈ I then: J(νxy)RK τ−→
3

l ∃x, y.
(
! {x:y} ‖JP K ‖ JQjK ‖ J), where J =

∏
i∈I′
∀ε(lj = li → JQiK), with I ′ = I \ {j}, and

∃x, y.
(
! {x:y} ‖ JP K ‖ JQjK ‖ J) ∼=π OR

l ∃x, y.
(
! {x:y} ‖ JP K ‖ JQjK).

2. If R = b? (P1) : (P2), b ∈ {tt, ff}, then JRK τ−→l JPiK ‖ J , i ∈ {1, 2} with
J = ∀ε(b = ¬b→ JPjK), j 6= i, and JPiK ‖ J ∼=π OR

l JPiK.
3. If R = x〈v〉.P | y(z).Q then J(νxy)RK τ−→

2

l
∼=π OR

l ∃x, y.
(JP K ‖ JQ{v/z}K ‖ J) with

J = tt.

4. If R=x〈v〉.P |∗ y(z).Q then J(νxy)RK τ−→
2

l
∼=π OR

l ∃x, y.
(JP K‖JQ{v/z}K‖J∗ y(z).P K‖

J
)
with J = tt.

Proof (see Page 131). Each item follows from the translation definition (cf. Def. 4.4
and Fig. 4.2). Items (1) and (2) refer to reductions that induce junk (no junk is gen-
erated in Items (3) and (4)); those cases rely on the definition of weak o-barbed
congruence (cf. Def. 4.3) and Cor. 4.18.

1. Given R = x / lj .P | y . {li : Qi}i∈I (with j ∈ I), by Def. 4.4, Fig. 4.2, and the
operational semantics of lcc in Def. 2.5:

J(νxy)RK = ∃x, y.(!{x:y} ‖ sel(x, lj) ‖ ∀z(bra(z, lj)⊗ {x:z} → JP K)
∀l, w

(
sel(w, l)⊗ {w:x} → bra(x, l) ‖

∏
i∈I
∀ε(l = li → JQiK)))

τ−→l ∃x, y.
(
!{x:y} ‖ ∀z

(
bra(z, lj)⊗ {x:z} → JP K)

bra(x, lj) ‖
∏
i∈I
∀ε(lj = li → JQiK))

τ−→l ∃x, y.
(
!{x:y} ‖ JP K ‖∏

i∈I
∀ε(lj = li → JQiK))

τ−→l ∃x, y.
(
!{x:y} ‖ JP K ‖ JPjK ‖ ∏

i∈I\{j}

∀ε(lj = li → JQiK)︸ ︷︷ ︸
J

)

∼=π OR
l ∃x, y.

(
!{x:y} ‖ JP K ‖ JPjK)

where the last step is justified by Cor. 4.18.

Appendix B. Chapter 4 331

2. Given that R = b? (P1) : (P2), we distinguish two cases: b = tt and b = ff. We
only detail the analysis whenR = tt? (P1) : (P2), as the other case is analogous.
By the translation definition (cf. Def. 4.4 and Fig. 4.2), JRK = ∀ε(tt = tt→JP1K) ‖ ∀ε(tt = ff→ JP2K). Then, by the rules in Fig. 2.5, JRK τ−→l JP1K ‖ J ,
with J = ∀ε(tt = ff→JP2K). By Cor. 4.18, we may conclude as follows:

JRK τ−→lJP K ‖ ∀ε(tt = ff→JQK) ∼=π OR
l JP K

3. Given R = x〈v〉.P | y(z).Q, by the translation definition (cf. Fig. 4.2), and the
semantics in Fig. 2.5:

J(νxy)RK ≡ ∃x, y.(!{x:y} ⊗ snd(x, v) ‖ ∀z(rcv(z, v)⊗ {x:z} → JP K) ‖
∀z, w(snd(w, z)⊗ {w:y} → rcv(y, z) ‖ JQK))

τ−→l ∃x, y.
(
!{x:y} ‖ ∀z(rcv(z, v)⊗ {x:z} → JP K) ‖
rcv(y, v) ‖ JQ{v, x/z, w}K)

≡ ∃x, y.
(
!{x:y} ⊗ rcv(y, v) ‖ ∀z(rcv(z, v)⊗ {x:z} → JP K) ‖JQ{v, x/z, w}K)

τ−→l ∃x, y.
(
!{x:y} ‖ JP{y/z}K ‖ JQ{v, x/z, w}K)

∼=π OR
l ∃x, y.

(
!{x:y} ‖ JP{y/z}K ‖ JQ{v, x/z, w}K ‖ tt)

Let J = tt. Finally, we conclude by Cor. 4.18.

4. When R = x〈v〉.Q | ∗ y(z).P , the proof follows the same reasoning as above.

B.2 Operational Completeness
Theorem 4.20 (Completeness for J·K). Let J·K be the translation in Def. 4.4. Also, let P
be a well-typed π OR program. Then, if P −→∗ Q then JP K τ==⇒l

∼=π OR
l JQK.

Proof (see Page 131). By induction on the length of the reduction −→∗, with a case
analysis on the last applied rule. The base case is whenever P −→0 P , and it is
trivially true since JP K τ==⇒l JP K. For the inductive step, assume by IH, that P −→∗

P0 −→ Q and that JP K τ==⇒l
∼=π OR

l JP0K. We then have to prove that JP0K τ==⇒l
∼=π OR

l JQK.
There are nine cases since cases for Rules (RES), (PAR) and (STR) are immediate by
IH.

Rule bIFTc:

(1) P0 = tt? (P ′) : (P ′′).
(2) By (1), P0 −→ P ′ = Q.
(3) By Def. 4.4, JP0K = ∀ε(tt = tt→ JP ′K) ‖ ∀ε(tt = ff→ JP ′′K).

Appendix B. Chapter 4 332

(4) By Rule (C:SYNC) (cf. Fig. 2.5), with c = tt we have the following (note
that tt = tt):

JP0K τ−→l JP ′K ‖ ∀ε(tt = ff→ JP ′′K) = R

(5) By (4) note that the process ∀ε(tt = ff → JP ′′K) is junk (cf. Def. 4.14).
Then, by Cor. 4.18 R ∼=π OR

l JQK, which is what we wanted to prove.

Rule bIFFc: Analogous to the previous case.

Rule bCOMc:

(1) P0 = (νxy)(x〈v〉.P ′ | y(z).P ′′ | S), with S collecting all the processes that
may contain x and y. Notice that by typing, S can only contain (replicated)
input processes on y.

(2) By (1) P0 −→ (νxy)(P ′ | P ′′{v/z} | T) = Q .
(3) By Fig. 4.2:

JP0K = ∃x, y.(!{x:y} ‖ (snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖
∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K) ‖ JSK)

(4) By Fig. 2.5, Def. 2.28:

JP0K ≡ ∃x, y. ((!{x:y} ⊗ snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖
∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K) ‖ JSK)

−→l ∃x, y. ((!{x:y} ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖ rcv(y, v) ‖JP ′′{v, x/z2, w}K ‖ JSK)
≡ ∃x, y.

(
!{x:y} ⊗ rcv(y, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1} → JP ′K) ‖JP ′′{v, x/z2, w}K ‖ JT K)

−→l ∃x, y.
(
!{x:y} ‖ JP ′{y/z1}K ‖ JP ′′{v, x/z2, w}K ‖ JSK)

(5) By Fig. 4.2 we have that w 6∈ fv(P ′′) and z1 6∈ fv(P ′). Therefore:
∃x, y.

(
!{x:y} ‖ JP ′{y/z}K ‖ JP ′′{v, x/z, w}K ‖ JSK) = ∃x, y.

(
!{x:y} ‖ JP ′K ‖JP ′′{v/z}K ‖ JSK) = JQK

(6) Finally, by reflexivity of ∼=π OR
l (Def. 4.3), JQK ∼=π OR

l JQK.
Rule bREPLc:

(1) Assume P0 = (νxy)(x〈v〉.P ′ | ∗ y(z).P ′′ | S), with S collecting all the pro-
cesses that may contain x and y. Notice that by typing, S can only contain
(replicated) input processes on y.

(2) By (1) P0 −→ (νxy)(P ′ | P ′′{v/z} | ∗ y(z).P ′′ | S) = Q using Rule bREPc.

Appendix B. Chapter 4 333

(3) By definition of J·K:
JP0K = ∃x, y.(!{x:y} ‖ (snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖

!∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K) ‖ JSK)
≡ ∃x, y.

(
!{x:y} ‖ (snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖
∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K)) ‖
!∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K) ‖ JSK)

(4) Let R = !∀z2, w(snd(w, z2) ⊗ {w:y}) → (rcv(y, z2) ‖ JP ′′K)). By using the
rules of structural congruence and reduction of lcc the following transi-
tions can be shown:JP0K ≡ ∃x, y.(!{x:y} ⊗ snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖

∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ JP ′′K)) ‖
R ‖ JSK)

τ−→l ∃x, y.
(
!{x:y} ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖ rcv(y, v) ‖JP ′′{v, x/z2, w}K) ‖ R ‖ JSK)

≡ ∃x, y.
(
!{x:y} ⊗ rcv(y, v) ‖ ∀z1((rcv(z1, v)⊗ {x:z1})→ JP ′K) ‖JP ′′{v, x/z2, w}K ‖ R ‖ JSK)

τ−→l ∃x, y.
(
!{x:y} ‖ JP ′{y/z1}K ‖ JP ′′{v, x/z2, w}K ‖ R ‖ JSK)

(5) As in Case bCOMc, we have that

∃x, y.
(
!{x:y} ‖ JP ′{y/z1}K ‖ JP ′′{v, x/z2, w}K ‖ R ‖ JT K)

= ∃x, y.
(
!{x:y} ‖ JP ′K ‖ JP ′′{v/z2}K ‖ R ‖ JT K)

since w 6∈ fv(P ′′) and z1 6∈ fv(P ′′), by Fig. 4.2.
(6) Finally, observe that:JQK = J(νxy)(P ′ | P ′′{v/z} | ∗y(z).P ′′ | T)K

= ∃x, y.
(
(!{x:y}‖JP ′K‖JP ′′{v/z2}K‖R ‖ JT K))

Rule bSELc:

(1) Assume P0 = (νxy)(x/ lj .P
′ | x. {li : Pi}i∈I | T). Notice that since P0 is a

well-formed program, typing implies that process T ≡ 0, since x, y cannot
be shared. Thus, we do not consider T below.

(2) By (1) P0 −→ (νxy)(P ′ | Pj) = Q using Rule bSELc.
(3) By definition of J·K (cf. Fig. 4.2):

JP0K = ∃x, y.(!{x:y} ‖ sel(x, lj) ‖ ∀z(bra(z, lj)⊗ {x:z} → JP ′K)
∀l, w

(
sel(w, l)⊗ {w:x} → bra(x, l) ‖

∏
i∈I
∀ε(l = li → JPiK)))

Appendix B. Chapter 4 334

(4) By using the semantics of lcc (cf. Def. 2.5) and Cor. 4.18, we obtain the
following derivation

JP0K τ−→l ∃x, y.
(
!{x:y} ‖ ∀z

(
bra(z, lj)⊗ {x:z} → JP ′K)

bra(x, lj) ‖
∏
i∈I
∀ε(lj = li → JPiK))

τ−→l ∃x, y.
(
!{x:y} ‖ JP ′K ‖∏

i∈I
∀ε(lj = li → JPiK))

τ−→l ∃x, y.
(
!{x:y} ‖ JP ′K ‖ JPjK ‖ ∏

i∈I\{j}

∀ε(lj = li → JPiK)︸ ︷︷ ︸
J

)

∼=π OR
l ∃x, y.

(
!{x:y} ‖ JP ′K ‖ JPjK)

(5) By definition of J·K (cf. Fig. 4.2), JQK = J(νxy)(P ′ | Pj)K = ∃x, y.(!{x:y} ‖JP ′K ‖ JPjK).
(6) By (iv) and (v) we conclude the proof.

B.3 Invariants for Pre-Redexes and Redexes
Lemma 4.24 (Invariants of J·K for Input-Like Pre-Redexes). Let P be a pre-redex such
that I

D⋆

π

OR (JP K) = ∅. Then one of the following holds:

1. If JP K ‖ sel(x, lj)⊗ {y:x} τ−→l S then bra(y, lj) ∈ I
D⋆

π

OR (S) andP = y.{li : Pi}i∈I ,

with j ∈ I .

2. If JP K ‖ snd(x, v)⊗ {y:x} τ−→l S then rcv(y, v) ∈ I
D⋆

π

OR (S) and P = � y(z).P1.

Proof (see Page 136). By assumption, P is a pre-redex and I
D⋆

π

OR (P) = ∅. Then, by

Lem. 4.23(4), we have that JP K 6 τ−→l and that P = y(z).P1, P = ∗ y(z).P1 or P =
y . {l1 : Pi}i∈I . We now apply a case analysis on each numeral in the statement:

Case JP K ‖ sel(w, l)⊗ {y:x} τ−→l S: We observe the behavior of each possibilities for
P in the presence of constraint sel(w, lj)⊗ {y:x} for some lj , following Fig. 4.2.
First we observe:

Jy(z).P1K ‖ sel(w, l)⊗ {y:x} =∀z, w(snd(w, z)⊗ {w:y}→ rcv(y, z) ‖ JP1K) ‖
sel(x, lj)⊗ {y:x} 6

τ−→lJ∗ y(z).P1K ‖ sel(w, l)⊗ {y:x} =!(∀z, w
(
snd(w, z)⊗ {w:y}→ rcv(y, z) ‖ JP1K)) ‖

sel(x, lj)⊗ {y:x} 6
τ−→l

Appendix B. Chapter 4 335

In contrast, process Jy . {l1 : Pi}i∈IK ‖ sel(w, l)⊗ {y:x} can reduce: from the
semantics of lcc (cf. Fig. 2.5) and under the assumption that j ∈ I for lj , we
have:

∀l, w
(
sel(w, l)⊗ {w:y} → bra(y, l) ‖

∏
1≤i≤n

∀ε(l = li → JPiK)) ‖ sel(x, lj)⊗ {y:x}
τ−→l bra(y, lj) ‖

∏
1≤i≤n

∀ε(l = li → JPiK) = S

Finally, by Def. 4.22: I
D⋆

π

OR (S) = {bra(y, lj)} ∪ I

D⋆

π

OR (

∏
1≤i≤n

∀ε(lj = li → JPiK)),
thus concluding the proof.

Case JP K ‖ snd(x, v)⊗ {y:x} τ−→l S: This case proceeds as above by noticing that a
reduction into S is enabled only when P = y(z).P1 or P = ∗ y(z).P1.

Lemma 4.27 (Invariants for Redexes and Intermediate Redexes). Let R be a redex
enabled by x̃, ỹ, such that (νx̃ỹ)R −→ (νx̃ỹ)R′. Then one of the following holds:

1. If R ≡S v? (P1) : (P2) and v ∈ {tt, ff}, then J(νx̃ỹ)RK τ−→l
∼=π OR

l (νx̃ỹ)JPiK, with
i ∈ {1, 2}.

2. IfR ≡S x〈v〉.P | � y(w).Q, then J(νx̃ỹ)RK −→l≡ Cx̃ỹ[LRM1x̃ỹ] −→l
∼=π OR

l J(νx̃ỹ)R′K.
3. If R ≡S x / lj .P | y . {li : Qi}i∈I , with j ∈ I , then we have the reductions in Fig. 4.6.

Proof (see Page 136). This proof proceeds by using the translation (cf. Fig. 4.2) the lcc
semantics (cf. Fig. 2.5). All items are shown in the same way; we detail only Item 3,
which is arguably the most interesting case:

3. By assumption, R ≡S x / lj .P | y . {li : Qi}i∈I , with j ∈ I and (νx̃ỹ)R −→
(νx̃ỹ)R′. By Fig. 2.1, (νxy)(x / lj .P | y . {li:Qi}i∈I) −→ (νxy)(P | Qj), with
j ∈ I . Finally, by Fig. 4.2, Fig. 2.5 and expanding Not. 4.12:

J(νx̃ỹ)RK = ∃x̃, ỹ.(!⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ sel(x, lj) ‖ ∀z
(
bra(z, lj)⊗ {x:z} → JP K) ‖

∀l, w
(
sel(w, l)⊗ {w:y} → bra(y, l) ‖

∏
1≤i≤n

∀ε(l = li → JPiK)))
τ−→l ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ ∀z
(
bra(z, lj)⊗ {x:z} → JP K) ‖

bra(y, lj) ‖
∏

1≤i≤n

∀ε(lj = li → JPiK))
≡ ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ ∀z
(
bra(z, lj)⊗ {x:z} → JP K) ‖

Appendix B. Chapter 4 336

bra(y, lj) ‖ ∀ε(lj = lj → JPjK) ‖ ∏
i∈I\{j}

∀ε(lj = li → JPiK))
≡ ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ Lx / lj .P | y . {li:Qi}i∈IM1x̃ỹ) = T

up to this point, we have shown that J(νx̃ỹ)RK τ−→l≡ ∃x̃, ỹ.
(
!
⊗

xi∈x̃,
yi∈ỹ

{xi:yi} ‖

LRM1x̃ỹ). We now distinguish cases for the next reduction, as there are two pos-
sibilities:

(a) From Fig. 2.5 and Cor. 4.18:

T
τ−→l ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ JP K ‖ ∀ε(lj = lj → JPjK) ‖
∏

i∈I\{j}

∀ε(lj = li → JPiK))
≡ ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ Lx / lj .P | y . {li:Qi}i∈IM2x̃ỹ)
τ−→l
∼=π OR

l ∃x̃, ỹ.
(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ JP K ‖ JPjK)
(b) From Fig. 2.5 and Cor. 4.18:

T
τ−→l ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ ∀z
(
bra(z, lj)⊗ {x:z} → JP K) ‖

bra(y, lj) ‖ JPjK ‖ ∏
i∈I\{j}

∀ε(lj = li → JPiK))
≡ ∃x̃, ỹ.

(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ Lx / lj .P | y . {li:Qi}i∈IM3x̃ỹ)
τ−→l
∼=π OR

l ∃x̃, ỹ.
(
!
⊗
xi∈x̃,
yi∈ỹ

{xi:yi} ‖ JP K ‖ JPjK)

B.4 Invariants for Well-Typed Translated Programs

Lemma 4.30. Let P be a well-typed program. If JP K τ==⇒l S then

S = Cx̃ỹ[U1 ‖ · · · ‖ Un ‖ J]

Appendix B. Chapter 4 337

where n ≥ 1, J is some junk, and for all i ∈ {1, . . . , n}we have Ui = tt or one the following:

1. Ui = JRkK, where Rk is a conditional redex (cf. Def. 2.19) reachable from P ;

2. Ui = JRkK, where Rk is a pre-redex reachable from P ;

3. Ui ∈ {[Rk | Rj]} (cf. Def. 4.25), where redex Rk | Rj is reachable from P .

Proof (see Page 138). By induction on the length k of the reduction τ==⇒l. The base
case (k = 0) is immediate: since JP K τ==⇒l JP K, by Lem. 4.13 we have S = JP K =
Cx̃ỹ[JR1K ‖ · · · ‖ JRnK], and the property holds because every JRiK is captured by
Cases (1) and (2).

The inductive step (k > 0) proceeds by a case analysis of the transition S0
τ−→l S.

We state the IH:

IH1: If JP K τ==⇒l S0
τ−→l S, then S0 = Cx̃ỹ[W1 ‖ · · · ‖ Wm ‖ J0] where m ≥ 1, for

some junk J0, and everyWi is either tt or satisfies one of the three cases.

The transition S0
τ−→l S can only originate in some Wi 6= tt. There are then three

cases to consider: Wi is a conditional redex, a pre-redex, or an intermediate process.
We have:

CaseWi = Jb? (P1) : (P2)K with b ∈ {tt, ff}: There are two sub-cases, depending on
whether b = tt or b = ff. We only detail the case b = tt, as the case b = ff
proceeds similarly. We have:

(1) Wi = ∀ε(tt = tt→ JP1K) ‖ ∀ε(tt = ff→ JP2K) (Fig. 4.2).
(2) ∃P ′.(P −→∗ P ′ = (νx̃ỹ)(tt? (P1) : (P2) | Q)) (IH1).
(3) P ′ −→ P ′′ = (νx̃ỹ)(P1 | Q) (Fig. 2.1, (2)).
(4) S0

τ−→l S = Cx̃ỹ[W1 ‖ · · · ‖ JP1K · · · ‖ Wm ‖ J], with J = ∀ε(tt = ff →JP2K) ‖ J0 (Fig. 2.5, (1)).
To conclude this case, we proceed by induction on the structure of P1:
Case P1 = 0: By (4) and Fig. 4.2, S = Cx̃ỹ[W1 ‖ · · · ‖ tt ‖ · · · ‖ Wm ‖ J],

and so the thesis follows.
Case P1 = b? (Q1) : (Q2): By (4) and Fig. 4.2, S = Cx̃ỹ[W1 ‖ · · · ‖ JP1K ‖
· · · ‖Wm ‖ J]. Hence, the thesis follows under Case (1).

Cases: P1 = x〈v〉.P , P1 = x(y).Q, P1 = x / lj .Q, P1 = ∗x(y).Q, and P1 =
x . {li : Qi}i∈I . From the rules in Fig. 4.2 and (4), S = Cx̃ỹ[W1 ‖ · · · ‖JP1K ‖ · · · ‖Wm ‖ J]. Hence, the thesis follows under Case (2).

Case P1 = Q1 | Q2: By IH, the thesis holds for JQ1K and JQ2K, and the re-
duction from S0 to S generates one additional parallel process inside
Cx̃ỹ[·].

Case P1 = (νxy)Q: By IH, the thesis holds for JQK. By noticing that:

Cx̃ỹ[W1 ‖ · · · ‖ J(νxy)QK ‖ · · · ‖Wm ‖ J]
= Cx̃xỹy[W1 ‖ · · · ‖ JQK ‖ · · · ‖Wm ‖ J]

the thesis follows.

Appendix B. Chapter 4 338

CaseWi = JRkK, for some pre-redex Rj : Then the transition from S0 to S can only
occur if there exists aWj = JRjK, such thatRk | Rj is a redex reachable from P .
There are multiple sub-cases, depending on the shape of Rk and Rj . We only
detail a representative sub-case; the rest are similar:

Sub-case Rk = x〈v〉.P : We then have that Rk = y(z).Q and so

S0 = C
x̃ỹ
[W1 ‖ · · · ‖Wi ‖ · · · ‖Wj ‖ · · · ‖Wm]

= C
x̃ỹ
[W1 ‖ · · · ‖ Jx〈v〉.P K ‖ · · · ‖ Jy(z).QK ‖ · · · ‖Wm]

τ−→l Cx̃ỹ
[W1 ‖ · · · ‖ Lx〈v〉.P | y(z).QM1x̃ỹ ‖ · · · ‖Wm] = S

where the transition to S follows Lem. 4.27(2). The thesis then follows
Case (3).

CaseWi ∈ {[Rk | Rj]}, for some redex Rk | Rj : Then, depending on the shape of Rk

and Rj (and relying on Not. 4.26), the transition from S0 to S corresponds to
one of the following five sub-cases:

(a) Wi = Lx〈v〉.P | y(z).QM1x̃ỹ
(b) Wi = Lx〈v〉.P | ∗ y(z).QM1x̃ỹ
(c) Wi = Lx / l.P | y . {li : Qi}i∈IM1x̃ỹ
(d) Wi = Lx / l.P | y . {li : Qi}i∈IM2x̃ỹ
(e) Wi = Lx / l.P | y . {li : Qi}i∈IM3x̃ỹ
We only detail Sub-cases (a), (c) and (e); the rest are similar:

Sub-caseWi = Lx〈v〉.P | y(z).QM1x̃ỹ : Then we have:

S0 = Cx̃ỹ[W1 ‖ · · · ‖ Lx〈v〉.P | y(z).QM1x̃ỹ ‖ · · · ‖Wm]
τ−→l Cx̃ỹ[W1 ‖ · · · ‖ JP K ‖ JQK{v/z} ‖ · · · ‖Wm] = S

and the proof proceeds by a simultaneous induction on the structure of
both P and Q, as shown for the case of the conditional redex above.

Sub-caseWi = Lx / l.P | y . {li : Qi}i∈IM1x̃ỹ : Then we have:

S0 = Cx̃ỹ[W1 ‖ · · · ‖ Lx / l.P | y . {li : Qi}i∈IM1x̃ỹ ‖ · · · ‖Wm]
τ−→l Cx̃ỹ[W1 ‖ · · · ‖ Lx / l.P | y . {li : Qi}i∈IMkx̃ỹ ‖ · · · ‖Wm] = S

Sub-caseWi = Lx / l.P | y . {li : Qi}i∈IM3x̃ỹ : Assuming l = lj for some j ∈ I ,
then we have:

S0 = Cx̃ỹ[W1 ‖ · · · ‖ Lx / l.P | y . {li : Qi}i∈IM3x̃ỹ ‖ · · · ‖Wm]
τ−→l Cx̃ỹ[W1 ‖ · · · ‖ JP K ‖ JQjK ‖ · · · ‖Wm] = S

and the proof proceeds by a simultaneous induction on the structure of
both P and Q, as shown for the case of the conditional redex above.

Appendix B. Chapter 4 339

Lemma 4.31. Let P be a well-typed π OR program. Then, for every S, S′ such that JP K τ==⇒l

S
τ−→l S

′ one of the following holds:

(a) IS ⊆ IS′ (cf. Not. 4.29) and one of the following holds:

1. S ≡ Cx̃ỹ[Jb? (P1) : (P2)K ‖ U] and S′ = Cx̃ỹ[JPiK ‖ U], with i ∈ {1, 2} ;
2. S ≡ Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM1x̃ỹ ‖ U] and S′ = Cx̃ỹ[Ly / lj .P ′ | x . {li :
Qi}i∈IM3x̃ỹ ‖ U];

3. S ≡ Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM2x̃ỹ ‖ U] and S′ = Cx̃ỹ[JP ′K ‖ JQjK ‖ U].

(b) IS 6⊆ IS′ and |IS \ IS′ | = 1.

Proof (see Page 138). We first use Lem. 4.30 to characterize every parallel sub-process
Ui of S; then, by a case analysis on the shape of the Ui that originated the transition
S

τ−→l S
′ it is shown how each case will fall under either (a) or (b). More in details,

by Lem. 4.30 we have:
S = Cx̃ỹ[U1 ‖ · · · ‖ Un]

where for every Ui either Ui = tt or

(i) Ui = JRkK, where Rk is a conditional redex reachable from P ;

(ii) Ui = JRkK, where Rk is a pre-redex reachable from P ;

(iii) Ui ∈ {[Rk | Rj]}, where redex Rk | Rj is reachable from P .

Hence, transition S τ−→l S
′ must originate from some Ui. There are 12 different pos-

sibilities for this transition:

A. Ui = Jtt? (Q1) : (Q2)K;
B. Ui = Jff? (Q1) : (Q2)K;
C. Ui = Jx〈v〉.Q1K;
D. Ui = Jx(z).Q1K;
E. Ui = Jx / l.Q1K;
F. Ui = Jx . {li : Qi}i∈IK;

G. Ui = J∗x(z).Q1K.
H. Ui = Lx〈v〉.Q1 | y(z).Q2M1x̃ỹ ;
I. Ui = Lx〈v〉.Q1 | ∗ y(z).Q2M1x̃ỹ ;
J. Ui = Lx / lj .Q | y . {li : Qi}i∈IM1x̃ỹ ;
K. Ui = Lx / lj .Q | y . {li : Qi}i∈IM2x̃ỹ ;
L. Ui = Lx / lj .Q | y . {li : Qi}i∈IM3x̃ỹ ;

Notice that in Sub-cases A-B and H-L, the Ui can transition by itself; in Sub-cases
C-G, the Ui needs to interact with some other Uj (with i 6= j) to produce the transi-
tion. Also, notice that in Sub-case J, twomore sub-cases are generated, which depend
on the transition induced by Ui = Lx / lj .Q | y . {li : Qi}i∈IM1x̃ỹ :
J(1). S τ−→l S

′ = Cx̃ỹ[U1 ‖ · · · ‖ Lx / lj .Q | y . {li : Qi}i∈IM2x̃ỹ ‖ · · · ‖ Un]

J(2). S τ−→l S
′ = Cx̃ỹ[U1 ‖ · · · ‖ Lx / lj .Q | y . {li : Qi}i∈IM3x̃ỹ ‖ · · · ‖ Un]

Appendix B. Chapter 4 340

These two additional sub-cases are distinguished according to Lem. 4.27(3). All sub-
cases are proven in the same way: first, identify the exact shape of S involved, and
use the appropriate rule(s) in Fig. 2.5 to obtain S′. Next, compare the stores IS and
IS′ . If IS ⊆ IS′ , then the sub-case falls under (a). Otherwise, the sub-case falls under
(b). We detail the proof for two representative sub-cases:

Sub-Case A: Since the Ui that originates the transition is a conditional redex then
S = Cx̃y[U1 ‖ · · · ‖ Jtt? (Q1) : (Q2)K ‖ · · · ‖ Un]. By Fig. 2.5, and eliminating the
junk with Cor. 4.18, we have:

S
τ−→l
∼=π OR

l S′ = Cx̃y[U1 ‖ · · · ‖ JQ1K ‖ · · · ‖ Un]

Then, we are left to prove that IS ⊆ IS′ . This follows straightforwardly by
considering that:

∀e ∈ IS .(e ∈ IS′)

because the transition of a conditional redex does not consume any constraint
and that:

∀e ∈ IJQ1K.(e ∈ IS′)

because new constraints are added by JQ1K. Hence, this sub-case falls under
(a).

Sub-Case H: Notice that well-typedness, via Lem. 3.16, ensures that there will never
be two processes in parallel prefixed with the same variable, unless they are
input processes. Furthermore, it is not possible for more than a single input
process to interact with its corresponding partner, ensuring the uniqueness of
the constraint. Using this, we can detail the case:

1. Ui = Lx〈.〉R′ | y(z).R′′M1x̃ỹ = rcv(y, v) ‖ ∀z(rcv(z, v) ⊗ {z:x} → JR′K) ‖JR′′{v/x}K (Not. 4.26).

2. I
D⋆

π

OR (Cx̃ỹ[U1 ‖ · · · ‖ Ui ‖ · · · ‖ Un]) = {∃x̃, ỹ.rcv(y, v)m} ∪ I

D⋆

π

OR (Cx̃ỹ[U1 ‖

· · · ‖ Un]) (Def. 4.22,(1)).
3. S τ−→l Cx̃ỹ[U1 ‖ · · · ‖ JR′K ‖ JR′′{v/x}K ‖ · · · ‖ Un] (Fig. 2.5 - Rule

(C:SYNC), (1)).

4. I
D⋆

π

OR (Cx̃ỹ[U1 ‖ · · · ‖ JR′K ‖ JR′′{v/x}K ‖ · · · ‖ Un]) = {∃x̃ỹ.c | c ∈

I
D⋆

π

OR (JR′K ‖ JR′′{v/x}K)} ∪ ID⋆

π

OR (Cx̃ỹ[U1 ‖ · · · ‖ Un]) (Def. 4.22, (3)).

5. I
D⋆

π

OR (Cx̃ỹ[U1 ‖ · · · ‖ Ui ‖ · · · ‖ Un]) \ I

D⋆

π

OR (Cx̃ỹ[U1 ‖ · · · ‖ JR′K ‖JR′′{v/x}K ‖ · · · ‖ Un]) = {∃x̃, ỹ.rcv(y, v)} (Set difference, (2),(4)).

We can then conclude by observing that:
IS = I

D⋆

π

OR (Cx̃ỹ[U1 ‖ · · · ‖ Ui ‖ · · · ‖ Un]);

IS′ = I
D⋆

π

OR (Cx̃ỹ[U1 ‖ · · · ‖ JR′K ‖ JR′′{v/x}K ‖ · · · ‖ Un])

and considering that:
|IS \ IS′ | = |{∃x̃, ỹ.rcv(y, v)}| = 1. Hence, this sub-case falls under (b).

Appendix B. Chapter 4 341

Sub-Case S′ (a) (b)
A Cx̃y[U1 ‖ · · · ‖ JP1K ‖ · · · ‖ Un] X
B Cx̃y[U1 ‖ · · · ‖ JP1K ‖ · · · ‖ Un] X
C Cx̃ỹ[U1 ‖ · · · ‖ Lx〈v〉.Q1 | y(z).Q2M1x̃ỹ ‖ · · · ‖ Un] X
D Cx̃ỹ[U1 ‖ · · · ‖ Lx(z).Q1 | y〈v〉.Q2M1x̃ỹ ‖ · · · ‖ Un] X
E Cx̃ỹ[U1 ‖ · · · ‖ Lx / lj .Q | y . {li : Qi}i∈IM1x̃ỹ ‖ · · · ‖ Un] X
F Cx̃ỹ[U1 ‖ · · · ‖ Lx / lj .Q | y . {li : Qi}i∈IM1x̃ỹ ‖ · · · ‖ Un] X
G Cx̃ỹ[U1 ‖ · · · ‖ Ly〈v〉.Q1 | ∗x(z).Q2M1x̃ỹ ‖ · · · ‖ Un] X
H Cx̃ỹ[U1 ‖ · · · ‖ JQ1K ‖ JQ2K{v/z} ‖ · · · ‖ Un] X
I Cx̃ỹ[U1 ‖ · · · ‖ JQ1K ‖ JQ2K{v/z} ‖ J∗ y(z).Q2K ‖ · · · ‖ Un] X

J(1) Cx̃ỹ[U1 ‖ · · · ‖ Lx / lj .Q | y . {li : Qi}i∈IM2x̃ỹ ‖ · · · ‖ Un] X
J(2) Cx̃ỹ[U1 ‖ · · · ‖ Lx / lj .Q | y . {li : Qi}i∈IM3x̃ỹ ‖ · · · ‖ Un] X
K Cx̃ỹ[U1 ‖ · · · ‖ JQK ‖ JQjK ‖ · · · ‖ Un] X
L Cx̃ỹ[U1 ‖ · · · ‖ JQK ‖ JQjK ‖ · · · ‖ Un] X

Table B.1: Proof of Lem. 4.31: summary of the case analysis. Recall that S = Cx̃y[U1 ‖
· · · ‖ Ui ‖ · · · ‖ Un].

Table B.1 summarizes the results for all sub-cases.

Lemma 4.33 (Invariants of Target Terms (I): Adding Information). Let P be a well-
typed π OR program. For anyS, S′ such that JP K τ==⇒l S

τ−→l S
′ and IS ⊆ IS′ (cf. Not. 4.29)

one of the following holds, for some U :
1. S ≡ Cz̃[Jb? (P1) : (P2)K ‖ U ‖ J1] and S′ = Cz̃[JPiK ‖ ∀ε(b = ¬b → Pj) ‖ U ‖ J1]

with i, j ∈ {1, 2}, i 6= j;

2. JP K τ==⇒l S0 ≡ Cx̃ỹ[{x:y} ‖ Jx / lj .P ′ ‖ y . {li Qi}i∈IK ‖ U ‖ J1] and either:

(a) All of the following hold:
(i) S0

τ−→l Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM1x̃ỹ ‖ U ‖ J1] τ−→l S,
(ii) S = Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM2x̃ỹ ‖ U ‖ J1] (and)
(iii) S′ = Cx̃ỹ[JP ′K ‖ JQjK ‖ U ‖ J1 ‖ J2].

(b) All of the following hold:
(i) S0

τ−→l S = Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM1x̃ỹ ‖ U ‖ J1],
(ii) S′ = Cx̃ỹ[Ly / lj .P ′ | x . {li : Qi}i∈IM3x̃ỹ ‖ U ‖ J1] (and)
(iii) S′

τ−→l Cx̃ỹ[JP ′K ‖ JQjK ‖ U ‖ J1 ‖ J2].
where J2 =

∏
k∈I\{j} ∀ε(lj = lk → JPkK).

Proof (see Page 140). By induction on the length of the transition τ==⇒l
τ−→l. First, by

applying Lem. 4.13: JP K ≡ Cx̃ỹ[JR1K ‖ · · · ‖ JRnK] (1)
where every Ri is either a pre-redex or a conditional process. We apply induction on
the length of transition τ==⇒l:

Appendix B. Chapter 4 342

Base Case: We analyze whenever JP K τ==⇒l JP K τ−→l S
′. Thus, let S = JP K. Since

IS ⊆ IS′ , then by Lem. 4.31(a), we have:

S ≡ Cx̃ỹ[JRjK ‖ ∏
i∈{1...n}\j

JRiK]
S′ ≡ Cx̃ỹ[Sj ‖

∏
i∈{1...n}\{j}

JRiK]
where JRjK = Jb? (Q1) : (Q2)K. Notice that we only analyze Item (1) of the
statement, as Item (2) would require S to contain intermediate redexes, which
is not possible since S is the translation of a process without any preceding
transition. By assumption, P is a well-typed program, therefore, by Def. 3.14,
b ∈ {tt, ff}. We distinguish cases for each b = tt and b = ff. We only show
the case b = tt, as the other is similar.

Case b = tt: By Fig. 4.2:

S ≡ Cx̃ỹ[∀ε(tt = tt→ JQ1K) ‖ ∀ε(tt = ff→ JQ2K) ‖ ∏
i∈{1...n}\{j}

JRiK]
By applying the rules in Fig. 2.5:

S
τ−→l Cx̃ỹ[JQ1K ‖ ∀ε(tt = ff→ JQ2K) ‖ ∏

i∈{1...n}\j

JRiK] ≡ S′
By Def. 4.14, let J = tt and J ′ = J ‖ ∀ε(tt = ff → JQ2K). Therefore, by
Def. 2.28:

U ≡ Cx̃ỹ[
∏

i∈{1...n}\j

JRiK ‖ J]
U ′ ≡ Cx̃ỹ[‖

∏
i∈{1...n}\{j}

JRiK ‖ J ′]
Finally, let JRiK = Ui for every i ∈ i ∈ {1 . . . n} \ {j}, finishing the proof.

Inductive Step: By IH, JP K τ==⇒l S0
τ−→l S satisfies the property for m steps (i.e.,JP K τ−→

m−1
l S0

τ−→l S). We must prove for k = m+ 1:

JP K τ−→
m

l S
τ−→l S

′

by Lem. 4.30:
S ≡ Cx̃ỹ[U1 ‖ · · · ‖ Un ‖ J]

for some junk J and for all i ∈ {1, . . . , n} either:

1. Ui = JRkK, where Rk is a conditional redex reachable from P ;
2. Ui = JRkK, where Rk is a pre-redex reachable from P ;
3. Ui ∈ {[Rk | Rj]}, where redex Rk | Rj is reachable from P .

Appendix B. Chapter 4 343

Then, by Lem. 4.31(a), there exists JRjK such that:

S ≡ Cx̃ỹ[Uj ‖
∏

i∈{1...n}\j

Ui ‖ J]

S′ ≡ Cx̃ỹ[U
′
j ‖

∏
i∈{1...n}\j

Ui ‖ J ′]

and only cases (1), (3) will be considered:

Case Uj = JRjK with Rj a conditional redex: Since IS ⊆ IS′ , by inspection on
Fig. 4.2, Rj = b? (P1) : (P2), with b ∈ {tt, ff} and the case proceeds as the
base case.

Case Uj ∈ {[Rj | Rk]}: By inspection on Def. 4.25and Cor. 4.18, we have that
Uj ∈ {[y / lj .Q | x . {li : Qi}i∈I]}, for some Q,Qi, lj , and either,
(i) Uj

∼=π OR
l bra(y, lj) ‖ ∀z(bra(z, lj) ⊗ {z:x} → JQK) ‖ ∀ε(lj = lj → JQjK),

or
(ii) Uj

∼=π OR
l JQK ‖ ∀ε(lj = lj → JQjK).

We analyze each case:
Case (i): If Uj = bra(y, lj) ‖ ∀z(bra(z, lj) ⊗ {z:x} → JQK) ‖ ∀ε(lj = lj →JQjK), then, by Cor. 4.28, there exists S0, such that:

S0 ≡ Cx̃ỹ[{x:y} ‖ Jx / lj .Q | y . {li Qi}i∈IK ‖ U1 ‖ · · · ‖ Un ‖ J]

by the semantics in Fig. 2.5 and Cor. 4.18:

S0
τ−→l Cx̃ỹ[{x:y} ‖ Uj ‖ U1 ‖ · · · ‖ Un ‖ J] = S
τ−→l Cx̃ỹ[{x:y} ‖ bra(y, lj) ‖ ∀z(bra(z, lj)⊗ {z:x} → JQK) ‖ JQjK

‖ U1 ‖ · · · ‖ Un ‖ J ‖] = S′

τ−→l
∼=π OR

l Cx̃ỹ[{x:y} ‖ JQK ‖ JQjK ‖ U1 ‖ · · · ‖ Un ‖ J ‖∏
h∈I

∀ε(lh = lj → JQiK)]
The proof finalizes by letting J ′ = J ‖

∏
h∈I
∀ε(lh = lj → JQiK).

Case (ii): If Uj = JQK ‖ ∀ε(lj = lj → JQjK), then by Def. 4.25 and
Not. 4.26, there exists S0, such that:
S0 ≡ Cx̃ỹ[{x:y} ‖ Lx / lj .Q | y . {li Qi}i∈IM1x̃ỹ ‖ U1 ‖ · · · ‖ Un ‖ J]

by the semantics in Fig. 2.5:

S0
τ−→l Cx̃ỹ[{x:y} ‖ bra(y, lj) ‖ ∀z(bra(z, lj)⊗ {z:x} → JQK) ‖ JQjK

‖ U1 ‖ · · · ‖ Un ‖ J] = S
τ−→l Cx̃ỹ[{x:y} ‖ JQK ‖ JQjK ‖ U1 ‖ · · · ‖ Un ‖ J ‖∏

h∈I

∀ε(lh = lj → JQiK)] = S′

The proof finishes by letting J ′ = J ‖
∏
h∈I
∀ε(lh = lj → JQiK).

Appendix B. Chapter 4 344

Lemma 4.34 (Invariants of Target Terms (II): Consuming Information). Let P be
a well-typed π OR program. For any S, S′ such that JP K τ==⇒l S

τ−→l S
′ and IS 6⊆ IS′ the

following holds, for some U :

1. If IS \ IS′ = {snd(x1, v)kx̃ỹ} then all the following hold:

(a) S ≡ Cx̃ỹ[{x1:y1} ‖ Jx1〈v〉.P1 | � y1(z).P2K ‖ U];
(b) S′ = Cx̃ỹ[Lx1〈v〉.P1 | � y1(z).P2M1x̃ỹ ‖ U];

(c) S′
τ−→l Cx̃ỹ[JP1 | P2{v/z}K ‖ S′′ ‖ U], where S′′ = ∗ Jy(z).P2K or S′′ = tt.

2. If IS \ IS′ = {rcv(x1, v)kx̃ỹ} then there exists S0 such that JP K τ==⇒l S0
τ−→l S and

all of the following hold:

(a) S0 ≡ Cx̃ỹ[{x1:y1}m ‖ Jy1〈v〉.P1 | � x1(z).P2K ‖ U];
(b) S = Cx̃ỹ[Ly1〈v〉.P1 | � x1(z).P2M1x̃ỹ ‖ U];
(c) S′ = Cx̃ỹ[JP1 | P2{v/z}K ‖ S′1 ‖ U], where S′1 = ∗ Jy(z).P2K or S′1 = tt.

3. If IS \ IS′ = {sel(x1, lj)kx̃ỹ} then all of the following hold:

(a) S ≡ Cx̃ỹ[{x1:y1} ‖ Jx1 / l.P1 | y1 . {li : Pi}i∈IKU];
(b) S′ = Cx̃ỹ[Lx1 / l.P1 | y1 . {li : Pi}i∈IM1x̃ỹ ‖ U];

(c) S1
τ−→

2

l
∼=π OR

l Cx̃ỹ[JP1 | PjK ‖ U ′], with U ′ ≡ U ‖∏h∈I ∀ε(lh = lj → JQhK).
4. If IS \ IS′ = {bra(x, lj)kx̃ỹ}, then there exists S0 ≡ Cx̃ỹ[{x:y} ‖ Jx / lj .Q | y .
{li Qi}i∈IK ‖ U] such that JP K τ==⇒l S0 and either:

(a) All of the following hold:
(i) S0

τ−→l Cx̃ỹ[Ly / lj .Q | x . {li : Qi}i∈IM1x̃ỹ ‖ U]
τ−→l S,

(ii) S = Cx̃ỹ[Ly / lj .Q | x . {li : Qi}i∈IM3x̃ỹ ‖ U] (and)
(iii) S′ = Cx̃ỹ[{x:y} ‖ JQ | QjK ‖ U ′].

(b) All of the following hold:
(i) S0

τ−→l Cx̃ỹ[Ly / lj .P | x . {li : Qi}i∈IM1x̃ỹ ‖ U] ≡ S,
(ii) S′ = Cx̃ỹ[Ly / lj .P | x . {li : Qi}i∈IM2x̃ỹ ‖ U] (and)
(iii) S′

τ−→l Cx̃ỹ[{x:y} ‖ JP | QjK ‖ U ′].
with U ′ ≡ U ‖

∏
h∈I ∀ε(lh = lj → JQhK).

Proof (see Page 140). By induction on the transition τ==⇒l
τ−→l. By Lem. 4.13:

JP K ≡ ∃x̃, ỹ.(JR1K ‖ · · · ‖ JRnK ‖!⊗
xi∈x̃,
yi∈ỹ

{xi:yi}) (1)

Appendix B. Chapter 4 345

where each Ri is a pre-redex or a conditional process. Also, by Lem. 4.31(b), the
difference of observables between a process and the process obtained in a single τ -
transition is a singleton. Therefore, we apply a case analysis on each one of those
singletons.

Base Case: Then JP K τ==⇒l JP K τ−→l S
′. Let JP K = S. By assumption, S τ−→l S

′ and
IS 6⊆ IS′ . Thus, there is a constraint c ∈ IS such that c 6∈ IS′ . Considering Eq.
(1) and by inspection on Fig. 4.2 we only analyze from Case (2), as cases (1)
and (3) do not apply: Case (1) does not apply as it does not entail constraint
consumption (cf. Lem. 4.31(a)) and Case (3) does not apply as there are no
intermediate redexes in S.

Case IS \ IS′ = {snd(x1, v)x̃ỹ}: By Lem. 4.23, there exists j such that:

S ≡ Cx̃ỹ[JRjK ‖ ∏
i∈{1...n}\j

JRiK]
where JRjK ≡ Jxj〈v〉.QK. Since IS 6⊆ IS′ , and every c ∈ IS is unique, by
inspection on Fig. 4.2 and Lem. 4.24, there must exist an Rk such that:

S ≡ Cx̃ỹ[Jxj〈v〉.QK ‖ JRkK ‖ ∏
i∈{1...n}\{j,k}

JRiK]
where JRkK ≡ Jyj(z).Q′K or JRkK ≡ J∗ yj(z).Q′K. Without loss of generality,
we only show the case for JRkK ≡ Jyj(z).Q′K:

S ≡ Cx̃ỹ[Jxj〈v〉.QK ‖ Jyj(z).Q′K ‖ ∏
i∈{1...n}\{j,k}

JRiK]
By the semantics of lcc (cf. Fig. 2.5) and Lem. 4.27:

S
τ−→l Cx̃ỹ[Lxj〈v〉.Q | yj(z).Q′M1x̃ỹ ‖ ∏

i∈{1...n}\{j,k}

JRiK]
τ−→l Cx̃ỹ[JQK ‖ JQ′{v/z}K ‖ ∏

i∈{1...n}\{j,k}

JRiK] = S′

Case IS \ IS′ = {sel(x1, lj)x̃ỹ}: By Lem. 4.23, there exists j such that:

S ≡ Cx̃ỹ[JRjK ‖ ∏
i∈{1...n}\j

JRiK]
where JRjK ≡ Jxj / lj .QK. Furthermore, by following the same analysis as
in the previous case, there must exists Rj , such that:

S ≡ Cx̃ỹ[Jxj / lj .QK ‖ JRkK ‖ ∏
i∈{1...n}\{j,k}

JRiK]
where JRkK ≡ Jyj.{li : Qi}i∈IK. Then, by the semantics of lcc (cf. Fig. 2.5):

S
τ−→l Cx̃ỹ[Lyj . {li : Qi}i∈IM1x̃ỹ ‖ ∏

i∈{1...n}\{j,k}

JRiK] = S′

Appendix B. Chapter 4 346

τ−→l Cx̃ỹ[Lyj . {li : Qi}i∈IM2x̃ỹ ‖ ∏
i∈{1...n}\{j,k}

JRiK]
τ−→l Cx̃ỹ[JQK ‖ JQjK ‖ ∏

i∈{1...n}\{j,k}

JRiK ‖∏
h∈I

∀ε(lh = lj → JQiK)]
∼=π OR

l ∃x̃, ỹ.(JQK ‖ JQjK ‖ ∏
i∈{1...n}\{j,k}

JRiK ‖∏
h∈I

∀ε(lh = lj → JQiK))
Inductive Case: By IH, JP K τ==⇒l S

τ−→l S
′ satisfies the property for m steps (i.e.,JP K τ−→

m−1
l S

τ−→l S
′). Therefore:

S ≡ Cx̃ỹ[U1 ‖ · · · ‖ Un ‖ J]

for some junk J and for all i ∈ {1, . . . , n} either:

1. Ui = JRkK, where Rk is a conditional redex reachable from P ;
2. Ui = JRkK, where Rk is a pre-redex reachable from P ;
3. Ui ∈ {[Rk | Rj]}, where redex Rk | Rj is reachable from P .

We now have to prove for k = m+ 1:

JP K τ−→
k

l S
τ−→l S

′

Since S τ−→l S
′, there exists JRjK such that:

S ≡ Cx̃ỹ[Uj ‖
∏

i∈{1...n}\j

Ui ‖ J]

S′ ≡ Cx̃ỹ[U
′
j ‖

∏
i∈{1...n}\j

Ui ‖ J ′]

As above, we distinguish only cases for 2 and 3. Notice that using Lem. 4.31(a)
and Lem. 4.33 we can discard case 1:

Case 2: Proceeds as the base case, by distinguishing cases between the con-
sumed constraints. The cases correspond to constraints snd and sel (cf.
Fig. 4.1).

Case 3: By inspection on Def. 4.25 and Not. 4.26, we distinguish two cases cor-
responding to predicates rcv, bra (cf. Fig. 4.1):
Case IS \ IS′ = {rcv(x1, v)x̃ỹ}: By Lem. 4.23 and Lem. 4.24, there exists j

such that:
S ≡ Cx̃ỹ[Uj ‖ U1 ‖ · · · ‖ Un ‖ J]

where Uj = rcv(xj , v) ‖ W , for some W . By inspecting Def. 4.25 and
Lem. 4.24, there exists Uk such that Uj ‖ Uk ∈ {[xj(z).Q | yj〈v〉.Q′]}
or Uj ‖ Uk∈{[∗xj(z).Q | yj〈v〉.Q′]}, for some xj , yj , v. Without loss of
generality, we will only analyze the case when

Uj ‖ Uk∈{[xj(z).Q | yj〈v〉.Q′]}

Appendix B. Chapter 4 347

By Def. 4.25 and Not. 4.26, Uj = Lxj(y).Q | yj〈v〉.Q′M1x̃ỹ . By expanding
the previous definitions:

S ≡ Cx̃ỹ[rcv(xj , v) ‖ ∀w(rcv(w, v)⊗ {w:yj} → JQK) ‖ JQ′{v/z}K ‖
U1 ‖ · · · ‖ Un ‖ J]

and by the application of Rule (C:SYNC) in Fig. 2.5 (i.e., the lcc seman-
tics):

S
τ−→l Cx̃ỹ[JQK ‖ JQ′{v/z}K ‖ U1 ‖ J]

Case IS \ IS′ = {bra(x, lj)x̃ỹ}: This case proceeds as above. The conclu-
sion is reached using the same analysis as in the inductive case in the
proof of Lem. 4.33.

B.5 A Diamond Property for Target Terms

Lemma 4.47. Let S be a target term such that S ω−→l S1 and S γ(x̃ỹ)=====⇒l S2, where γ(x̃ỹ)
is a closing sequence (cf. Not. 4.42). Then, there exists S3 such that S1

γ(x̃ỹ)=====⇒l S3 and
S2

ω−→l S3.

Proof (see Page 148). By induction on the length n of |γ(x̃ỹ)|.

Base Case: n = 0. Then:

(1) By Assumption, S ω−→l S1.

(2) By Assumption, S γ(x̃ỹ)=====⇒l S.

(3) By Fig. 2.5, S1
γ(x̃ỹ)=====⇒l S1.

Conclude by letting S1 = S1, S2 = S and S3 = S1 and using (1) and (3).

Inductive Step: n ≥ 1. We state the IH:

IH: If S ω−→l S1 and S
γ0(x̃ỹ)=====⇒l S0

κ−→l S2, then there exists S′0 such that
S1

γ0(x̃ỹ)=====⇒l S
′
0 and S0

ω−→l S
′
0.

We distinguish cases for κ ∈ {IO1, RP1, CD, SL2, SL3}. There are five cases and
each one has four sub-cases that correspond to the opening labels in the set
{IO, SL, RP, SL1}. We detail three cases: κ = IO1, κ = RP1 and κ = CD, as the
other are similar:

Case κ = IO1: As mentioned above, there are four sub-cases depending on ω.
We enumerate them below and only detail ω = IO, ω = RP:

Appendix B. Chapter 4 348

Sub-case ω = IO: First assume that the actions take place on endpoints
x, y and w, z. This is a general asumption. Furthermore, by typing
and Cor. 3.16 and Def. 3.14, it cannot be the case that x = w and y = z,
because thiswould imply that there aremore than one output prefixed
on x. Then, we we only consider the case when x 6= w and y 6= z:
Sub-case x 6= w ∧ y 6= z: We proceed as follows:
(1) By Assumption, Fig. 4.7, and Lem. 4.30:

S = Cx̃ỹ[U1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(u1).Q2K ‖ · · · ‖ Un ‖ J]

(2) By Fig. 2.5 and (1):

S1 = Cx̃ỹ[U1 ‖ · · · ‖ Lx〈v〉.Q1 | y(u1).Q2M1xy ‖ · · · ‖ Un ‖ J]

(3) By IH, (1), and Lem. 4.30:

S0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(u1).Q2K ‖Lw〈v′〉.Q3 | z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

withm ≥ 1.
(4) By (3) and Fig. 2.5

S2 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖JQ3K ‖ JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

(5) By IH S0
IO(x,y)−−−−−→l S

′
0.

(6) By Fig. 2.5 and (5)

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

(7) By IH S1
γ0(x̃ỹ)=====⇒l S

′
0.

We can then reduce the proof to show that there exists some S3

such that S2
IO(x,y)−−−−−→l S3 and S′0

IO1(w,z)−−−−−−→l S3:
(a) where:

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | z(u2).Q4M1xy ‖ · · · ‖ U ′m ‖ J ′]

.
(b) where:

S2 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(u1).Q2K ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

Appendix B. Chapter 4 349

then, let

S3 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(u1).Q2M1xy ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

and we can show by Fig. 2.5 that:

S′0
IO1(w,z)−−−−−−→l S3 and S2

IO(x,y)−−−−−→l S3

which concludes the proof.
Sub-case ω = RP: As above, assume the actions take place in variables x, y

and w, z. It is not possible for them to happen in the same variable, by
Cor. 3.16.
(1) By Assumption, Fig. 4.7, Lem. 4.30

S = Cx̃ỹ[U1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖ · · · ‖ Un ‖ J]

(2) By Fig. 2.5 and (1)

S1 = Cx̃ỹ[U1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖ · · · ‖ Un ‖ J]

(3) By IH, (1) and Lem. 4.30

S0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖J∗ y(u1).Q2K ‖ Lw〈v′〉.Q3 | z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

withm ≥ 1.
(4) By (3) and Fig. 2.5

S2 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖JQ3K ‖ JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

(5) By IH S0
RP(x,y)−−−−−→l S

′
0.

(6) By Fig. 2.5 and (5)

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

(7) S1
γ0(x̃ỹ)=====⇒l S

′
0 (IH).

We reduce the proof to show the existence of some some S3 such that
S2

RP(x,y)−−−−−→l S3 and S′0
IO1(w,z)−−−−−−→l S3:

(a) Where:

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | z(u2).Q4M1xy ‖ · · · ‖ U ′m ‖ J ′]

Appendix B. Chapter 4 350

(b) Where:

S2 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

then, let

S3 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

and we can show by Fig. 2.5 that:

S′0
IO1(w,z)−−−−−−→l S3 and S2

RP(x,y)−−−−−→l S3

which concludes the proof.
Sub-case ω = SL(): Similarly as above.
Sub-case ω = SL1(): Similarly as above.

Case κ = RP1: We proceed similarly as above. The most interesting case is ω =
RP:
Sub-case ω = RP: As above, assume the actions take place in variables x, y

and w, z. It is not possible for them to happen in the same variable, by
Cor. 3.16.
(1) By Assumption, Fig. 4.7, and Lem. 4.30

S = Cx̃ỹ[U1 ‖ · · · ‖ Jx〈v〉.Q1K ‖J∗ y(u1).Q2K ‖ · · · ‖ Un ‖ J]

(2) By Fig. 2.5 and (1)

S1 = Cx̃ỹ[U1 ‖ · · · ‖Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖ · · · ‖ Un ‖ J]

(3) By IH, (1), and Lem. 4.30

S0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖Lw〈v′〉.Q3 | ∗ z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

withm ≥ 1.
(4) S2 = Cx̃ỹ[U

′
1 ‖ . . . ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖ JQ3K ‖ JQ4K{v′/u2} ‖J∗ z(u2).Q4K‖ . . .‖U ′m ‖J ′] ((3), Fig. 2.5).

(5) By IH S0
RP(x,y)−−−−−→l S

′
0.

(6) By Fig. 2.5 and (5)

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | ∗ z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

Appendix B. Chapter 4 351

(7) By IH S1,
γ0(x̃ỹ)=====⇒l S

′
0.

We reduce the proof to show the existence of S3 such that S2
RP(x,y)−−−−−→l

S3 and S′0
RP1(w,z)−−−−−−→l S3:

(a) where

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | ∗ z(u2).Q4M1xy ‖ · · · ‖ U ′m ‖ J ′]

(b)
S2 = Cx̃ỹ[U

′
1 ‖ . . .‖Jx〈v〉.Q1K‖J∗ y(u1).Q2K‖JQ3K ‖JQ4K{v′/u2}‖J∗ z(y2).Q4K‖ . . .‖U ′m ‖J ′]

then, let

S3 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖ JQ3K ‖ JQ4K{v′/u2} ‖J∗ z(y2).Q4K · · · ‖ U ′m ‖ J ′]

and we can show by Fig. 2.5 that:

S′0
RP1(w,z)−−−−−−→l S3 and S2

RP(x,y)−−−−−→l S3

which concludes the proof.
Sub-case ω = IO: Similarly as above.
Sub-case ω = SL: Similarly as above.
Sub-case ω = SL1: Similarly as above.

Case κ = CD: As above we distinguish four cases. We only develop Sub-case
ω = IO, as the other cases are similar:
Sub-case ω = IO: Assume that the IO transition happens on endpoints x

and y. Since CD does not occur on any channels, we do not need to
assume more endpoints:
(1) S = Cx̃ỹ[U1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(z).Q2K ‖ · · · ‖ Un], n ≥ 1

(Assumption, Fig. 4.7, Lem. 4.30).
(2) S1 = Cx̃ỹ[U1 ‖ · · · ‖ Lx〈v〉.Q1 | y(z).Q2M1xy ‖ · · · ‖ Un], n ≥ 1

((1), Fig. 4.7).
(3) S0 = Cx̃ỹ[U

′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(z).Q2K ‖ Jb? (Q3) : (Q4)K ‖ · · · ‖

U ′m],m ≥ 1, with b ∈ {tt, ff} (IH, Fig. 4.7).
(4) S2 = Cx̃ỹ[U

′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(z).Q2K ‖ JQiK ‖ · · · ‖ U ′m],

i ∈ {3, 4} ((3), Fig. 4.7).
(5) S′0 = Cx̃ỹ[U

′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(z).Q2M1xy ‖ Jb? (Q3) : (Q4)K ‖ · · · ‖

U ′m],m ≥ 1, with b ∈ {tt, ff} (IH, Fig. 4.7).
Now, let S3 = Cx̃ỹ[U

′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(z).Q2M1xy ‖ JQiK ‖ · · · ‖ U ′m],

m ≥ 1, with b ∈ {tt, ff}, i ∈ {3, 4}. It can be shown, by Fig. 4.7 that:

S2
IO(x,y)−−−−−→l S3 and S′0

CD(−)−−−−→l S3

which, by IH implies that S1
γ0(x̃ỹ)CD(−)=========⇒l S3, concluding the proof.

Appendix B. Chapter 4 352

Sub-case ω = RP: Similarly as above.
Sub-case ω = SL: Similarly as above.
Sub-case ω = SL1: Similarly as above.

Case κ = SL2: Similarly as Case ω = IO1.
Case κ = SL3: Similarly as Case ω = IO1.

Lemma4.48. For everywell-typedπ OR programP and for every sequence of labels γ(x̃ỹ) such
that JP K γ(x̃ỹ)=====⇒l S, there exist Q, S′, and γ′(x̃ỹ) such that P −→∗ Q and S γ′(x̃ỹ)=====⇒l S

′,
with γ′(x̃ỹ) = γ(x̃ỹ)↓ (cf. Def. 4.46). Moreover, JQK ∼=π OR

l S′.

Proof (see Page 148). By induction on |γ(x̃ỹ)| and a case analysis on the last label of
the sequence. The base case is immediate since JP K γ(x̃ỹ)=====⇒l JP K and P −→∗ P . For
the inductive step, assume |γ(x̃ỹ)| = n ≥ 0. We state the IH:

IH: if JP K γ(x̃ỹ)0=====⇒l S0
αn+1−−−−→l S then there existsQ0, S

′
0 and γ′0(x̃ỹ) such thatP −→∗

Q, S0
γ′(x̃ỹ)=====⇒l S

′
0, γ′0(x̃ỹ) = γ(x̃ỹ)↓ and S′0 ∼=

π OR
l JQK.

Using the IH, the proof can be summarized by the diagram in Fig. 4.8, wherewemust
show the existence of the dotted arrows. Details follow:

Base Case: n = 0. Then:

(1) S
ω−→l S1 (Assumption).

(2) S
γ(x̃ỹ)=====⇒l S (Assumption)

(3) S1
γ(x̃ỹ)=====⇒l S1 (Fig. 2.5)

Conclude by letting S1 = S1, S2 = S and S3 = S1 and using (1) and (3).

Inductive Step: n ≥ 1. We state the IH:

IH: If S ω−→l S1 and S
γ0(x̃ỹ)=====⇒l S0

κ−→l S2, then there exists S′0 such that
S1

γ0(x̃ỹ)=====⇒l S
′
0 and S0

ω−→l S
′
0.

We distinguish cases for κ ∈ {IO1, RP1, CD, SL2, SL3}. There are five cases and
each one has four sub-cases, that correspond to the opening labels in the set
{IO, SL, RP, SL1}. We detail three cases: κ = IO1, κ = RP1 and κ = CD, as the
other are similar:

Case κ = IO1: As mentioned above, there are four sub-cases depending on ω.
We enumerate them below and only detail ω = IO, ω = RP:
Sub-case ω = IO: First assume that the actions take place on endpoints

x, y and w, z. This is a general assumption. Furthermore, by typing
and Cor. 3.16 and Def. 3.14, it cannot be the case that x = w and y = z,
because thiswould imply that there aremore than one output prefixed
on x. Then, we we only consider the case when x 6= w and y 6= z:

Appendix B. Chapter 4 353

Sub-case x 6= w ∧ y 6= z: We proceed as follows:
(1) S = Cx̃ỹ[U1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(u1).Q2K ‖ · · · ‖ Un ‖ J]

(Assumption, Fig. 4.7, Lem. 4.30).
(2) By Fig. 2.5 and (1)

S1 = Cx̃ỹ[U1 ‖ · · · ‖Lx〈v〉.Q1 | y(u1).Q2M1xy ‖ · · · ‖ Un ‖ J]

(3) By IH, (1), and Lem. 4.30

S0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(u1).Q2K ‖Lw〈v′〉.Q3 | z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

withm ≥ 1.
(4) By (3) and Fig. 2.5

S2 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

(5) S0
IO(x,y)−−−−−→l S

′
0 (IH)

(6) By Fig. 2.5 and (5)

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

(7) S1
γ0(x̃ỹ)=====⇒l S

′
0 (IH).

We can then reduce the proof to show that there exists some S3

such that S2
IO(x,y)−−−−−→l S3 and S′0

IO1(w,z)−−−−−−→l S3:
(a) Where:

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | z(u2).Q4M1xy ‖ · · · ‖ U ′m ‖ J ′]

(b) Where:

S2 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(u1).Q2K ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

then, let

S3 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(u1).Q2M1xy ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

and we can show by Fig. 2.5 that:

S′0
IO1(w,z)−−−−−−→l S3 and S2

IO(x,y)−−−−−→l S3

which concludes the proof.

Appendix B. Chapter 4 354

Sub-case ω = RP: As above, assume the actions take place in variables x, y
and w, z. It is not possible for them to happen in the same variable, by
Cor. 3.16.
(1) S = Cx̃ỹ[U1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖ · · · ‖ Un ‖ J]

(Assumption, Fig. 4.7, Lem. 4.30).
(2) S1 = Cx̃ỹ[U1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖ · · · ‖ Un ‖ J]

(Fig. 2.5,(1)).
(3) By IH, (1), and Lem. 4.30

S0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖Lw〈v′〉.Q3 | z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

withm ≥ 1.
(4) By (3) and Fig. 2.5

S2 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖J∗ y(u1).Q2K ‖ JQ3K ‖ JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

(5) S0
RP(x,y)−−−−−→l S

′
0 (IH)

(6) By Fig. 2.5 and (5)

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

(7) S1
γ0(x̃ỹ)=====⇒l S

′
0 (IH).

We reduce the proof to show existence of S3 such that S2
RP(x,y)−−−−−→l S3

and S′0
IO1(w,z)−−−−−−→l S3:

(a) Where:

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | z(u2).Q4M1xy ‖ · · · ‖ U ′m ‖ J ′]

(b) Where:

S2 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

then, let

S3 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖ JQ3K ‖JQ4K{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]

and we can show by Fig. 2.5 that:

S′0
IO1(w,z)−−−−−−→l S3 and S2

RP(x,y)−−−−−→l S3

which concludes the proof.

Appendix B. Chapter 4 355

Sub-case ω = SL: Similarly as above.
Sub-case ω = SL1: Similarly as above.

Case κ = RP1: We proceed similarly as above. The most interesting case is ω =
RP:
Sub-case ω = RP: As above, assume the actions take place in variables x, y

and w, z. It is not possible for them to happen in the same variable, by
Cor. 3.16.
(1) S = Cx̃ỹ[U1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖ · · · ‖ Un ‖ J]

(Assumption, Fig. 4.7, Lem. 4.30).
(2) S1 = Cx̃ỹ[U1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖ · · · ‖ Un ‖ J]

(Fig. 2.5,(1)).
(3) By IH, (1), and Lem. 4.30

S0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ J∗ y(u1).Q2K ‖Lw〈v′〉.Q3 | ∗ z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

withm ≥ 1.
(4) By (3) and Fig. 2.5

S2 = Cx̃ỹ[U
′
1 ‖ . . .‖Jx〈v〉.Q1K‖J∗ y(u1).Q2K‖JQ3K‖JQ4K{v′/u2}‖J∗ z(u2).Q4K ‖ . . .‖U ′m ‖J ′]

(5) S0
RP(x,y)−−−−−→l S

′
0 (IH)

(6) By Fig. 2.5 and (5)

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | ∗ z(u2).Q4M1wz ‖ · · · ‖ U ′m ‖ J ′]

(7) S1
γ0(x̃ỹ)=====⇒l S

′
0 (IH).

We reduce the proof to show the existence of S3 such that S2
RP(x,y)−−−−−→l

S3 and S′0
RP1(w,z)−−−−−−→l S3:

(a) Where:

S′0 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖Lw〈v′〉.Q3 | ∗ z(u2).Q4M1xy ‖ · · · ‖ U ′m ‖ J ′]

(b) Where:

S2 = Cx̃ỹ[U
′
1 ‖ . . .‖Jx〈v〉.Q1K‖J∗ y(u1).Q2K‖JQ3K‖JQ4K{v′/u2}‖J∗ z(y2).Q4K‖ . . .‖U ′m ‖J ′]

then, let

S3 = Cx̃ỹ[U
′
1 ‖ · · · ‖ Lx〈v〉.Q1 | ∗ y(u1).Q2M1xy ‖ JQ3K ‖ JQ4K{v′/u2} ‖J∗ z(y2).Q4K · · · ‖ U ′m ‖ J ′]

Appendix B. Chapter 4 356

and we can show by Fig. 2.5 that:

S′0
RP1(w,z)−−−−−−→l S3 and S2

RP(x,y)−−−−−→l S3

which concludes the proof.
Sub-case ω = IO: Similarly as above.
Sub-case ω = SL: Similarly as above.
Sub-case ω = SL1: Similarly as above.

Case κ = CD: As above we distinguish four cases. We only show Sub-case ω =
IO, as the other cases are similar:
Sub-case ω = IO: Assume that the IO transition happens on endpoints x

and y. Since CD does not occur on any channels, we do not need to
assume more endpoints:
(1) S = Cx̃ỹ[U1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(z).Q2K ‖ · · · ‖ Un], n ≥ 1

(Assumption, Fig. 4.7, Lem. 4.30).
(2) S1 = Cx̃ỹ[U1 ‖ · · · ‖ Lx〈v〉.Q1 | y(z).Q2M1xy ‖ · · · ‖ Un], n ≥ 1

((1), Fig. 4.7).
(3) S0 = Cx̃ỹ[U

′
1 ‖ · · · ‖ Jx〈v〉.Q1KJy(z).Q2K ‖ Jb? (Q3) : (Q4)K ‖ · · · ‖

U ′m],m ≥ 1, with b ∈ {tt, ff} (IH, Fig. 4.7).
(4) S2 = Cx̃ỹ[U

′
1 ‖ · · · ‖ Jx〈v〉.Q1K ‖ Jy(z).Q2K ‖ JQiK ‖ · · · ‖ U ′m],

i ∈ {3, 4} ((3), Fig. 4.7).
(5) S′0 = Cx̃ỹ[U

′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(z).Q2M1xy ‖ Jb? (Q3) : (Q4)K ‖ · · · ‖

U ′m],m ≥ 1, with b ∈ {tt, ff} (IH, Fig. 4.7).
Now, let S3 = Cx̃ỹ[U

′
1 ‖ · · · ‖ Lx〈v〉.Q1 | y(z).Q2M1xy ‖ JQiK ‖ · · · ‖ U ′m],

m ≥ 1, with b ∈ {tt, ff}, i ∈ {3, 4}. It can be shown, by Fig. 4.7 that:

S2
IO(x,y)−−−−−→l S3 and S′0

CD(−)−−−−→l S3

which, by IH implies that S1
γ0(x̃ỹ)CD(−)=========⇒l S3, concluding the proof.

Sub-case ω = RP: Similarly as above.
Sub-case ω = SL: Similarly as above.
Sub-case ω = SL1: Similarly as above.

Case κ = SL2: Similarly as Case ω = IO1.
Case κ = SL3: Similarly as Case ω = IO1.

C
Chapter 5

C.1 TransformingTranslatedTerms Into lcc via Erasure
Lemma 5.31. For every well-typed initialized closed network N = H[P,M] such that

P = (νx1, y1)P1 | . . . | (νxnyn)Pn

the following holds (k ≥ 0):

1. If JP K γ(x̃ỹ,−)−−−−−→k
l S1 then JP Kf γ(x̃ỹ,−)−−−−−→k

l S2 and δ(S2) = S1.

2. If JP Kf γ(x̃ỹ,−)−−−−−→
k

l S then JP K γ(x̃ỹ,−)−−−−−→k
l δ(S).

Proof (see Page 179). We prove each statement individually:

1. By induction on the transition JP K γ(x̃ỹ,−)−−−−−→k
l S.

Base Case: Whenever JP K γ(x̃,ỹ)−−−−→0
l JP K. We need then to show that δ(JP Kf) =JP K, we will prove this by induction on the structure of P . We only show

two cases, as the other follow in the same way:
Case P = 0: Immediate by the definition of δ(·) (cf. Fig. 5.7), as δ(J0Kf) =J0K = tt.
Case P = x〈v〉.Q: Immediate by the definition of δ(·) (cf. Fig. 5.7). Ob-

serve that δ(Jx〈v〉.QKf) = Jx〈v〉.QK, up to α-conversion:

δ(Jx〈v〉.QKf) = δ(snd(x; v) ‖
∀ε(ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ rcv(fx, v; ε)→JQKf))

= snd(x, v) ‖ ∀w1({x:fx} ⊗ rcv(w1, v)→ δ(JP K{w1/fx}))
= Jx〈v〉.QK

Appendix C. Chapter 5 358

Inductive Step: Assume that JP K γ(x̃,ỹ)−−−−→k−1
l S0

α(x,y)−−−−→l S1 in k − 1 ≥ 0 steps
(for JP K γ(x̃,ỹ)−−−−→k−1

l S0). By IH, JP Kf γ(x̃,ỹ)−−−−→k−1
l S′0 and δ(S′0) = S0. We

then have to prove that if S0
α(x,y)−−−−→l S1 then S′0

α(x,y)−−−−→l S2 and that
δ(S2) = S1. This is done by a case analysis on α(x, y). There are nine cases
corresponding to α ∈ {IO, SL, RP, CD, IO1, RP1, SL1, SL2, SL3}. We will only
show case α(x, y) = IO(x, y) as it showcases the necessary machinery for
solving the other cases.
Case α(x, y) = IO(x, y):

(1) S0 = Cx̃ỹ[Jx〈v〉.P1KJy(z).P2K · · · ‖ Un] (Def. 4.37).
(2) S1 = Cx̃ỹ[Lx〈v〉.P1 | y(z).P2M1xy ‖ · · · ‖ Un] (Def. 4.37).
(3) S′0 = JHx̃ỹK[Jx〈v〉.P1Kf ‖ Jy(z).P2Kf ‖ · · · ‖ U ′n, tt] (Def. 5.25).
(4) By Def. 5.25:

S2 = JP Kf = JHx̃ỹK[Lx〈v〉.P1 | y(z).P2, fM1xy ‖ · · · ‖ U ′n, tt]
(5) δ(S) = Cx̃ỹ[Lx〈v〉.P1 | y(z).P2M1xy ‖ · · · ‖ Un] (Def. 5.29 to (3),

IH).

2. By induction on the transition JP Kf γ(x̃,ỹ)−−−−→l S and case analysis on the label of
the last transition.

Base Case: Assume JP Kf γ(x̃,ỹ)−−−−→0
l JP Kf . The case is immediate as in the base

case for Numeral (1).
Inductive Step: By IH, JP Kf γ(x̃,ỹ)−−−−→k−1

l S0 in k−1 ≥ 0 steps and JP K γ(x̃,ỹ)−−−−→k−1
l

δ(S0). Then we are left to prove that if S0
α(x,y)−−−−→l S then δ(S0)

α(x,y)−−−−→l

δ(S). We proceed by a case analysis on α(x, y):
Case α(x, y) = IO(x, y):

(1) S0 = JHx̃ỹK[Jx〈v〉.P1Kf ‖ Jy(z).P2Kf ‖ · · · ‖Wn, tt] (Def. 5.25).
(2) S = JHx̃ỹK[Lx〈v〉.P1 | y(z).P2, fM1xy ‖ · · · ‖Wn, tt] (Def. 5.25).
(3) δ(S0) = Cx̃1x̃2

[Jx〈v〉.P1K ‖ Jy(z).P2K ‖ · · · ‖ δ(Wn)] (Def. 5.29,
IH).

(4) δ(S0)
IO(x,y)−−−−−→l Cx̃ỹ[Lx〈v〉.P1 | y(z).P2M1xy ‖ · · · ‖ δ(Wn)] = S′

(Def. 4.37, (3)).
(5) δ(S) = S′ (Def. 5.29 to (2)).

C.2 Auxiliary Results for Operational Soundness

Lemma 5.36. Let N be a well-typed closed network. If JNKf γ(−,−,ã)=======⇒l S and S 6 α(a)−−−→l

for any service name a, then there exists N ′ such that N est−−→∗ N ′ 6 est−−→ and JN ′Kg = S with
f ⊆ g.

Appendix C. Chapter 5 359

Proof (see Page 183). By Def. 5.12,N = H[P,M], for some P andM . By Lem. 5.11,M
is a starting network. We proceed by induction on the maximum number of sessions
k that can be established from N :

Base Case: k = 0. Therefore,N 6 est−−→ and soN is an initialized network (cf. Def. 5.10).
Then, by Lem. 5.28, JNKf 6 α(a)−−−→l, for any a. Thus, N ′ = N .

Inductive Step: k ≥ 1. Assume that JNKf γ(ã)====⇒l S0 and S0 6
α(a)−−−→l for any service

name a where N can establish a maximum number of k sessions. By IH, there
existsN0 such thatN est−−→r N0 6

est−−→ andS0 = JN0Kg0 with f ⊆ g0. Wenowprove
the property forN being able to establish themaximumnumber of k+1 sessions
(cf. Def. 5.15). Notice that k + 1 being the maximum number of sessions that
can be established inN , implies that there are k+1 potentially satisfied requests
(cf. Def. 5.15):

(1) N = H[P,M], whereN contains k+1 potentially satisfied requests (As-
sumption).

(2) N
est−−→ N1 and N1 contains k potentially satisfied requests (Fig. 3.3,

Not. 5.14, (1)).
(3) N = H[P, [an〈x〉.Q1]

m | [∗ aρ(x).Q2]
n |M ′], for some Q1, Q2 (By (2)).

(4) N1 = H[P | Q1 | Q2, [∗ aρ(x).Q2]
n |M ′] (By (2)).

(5) JNKf = JHx̃ỹK[JP Kf , J[an〈x〉.Q1]
m | [∗ aρ(x).Q2]

n |M ′Kf] (Fig. 5.3, (3)).

(6) JNKf SE(a)−−−−→l JHx̃ỹK[JP Kf , L[an〈x〉.Q1]
m | [∗ aρ(y).Q2]

n, fM1xy ‖ JM ′Kf] = W
(Def. 5.25, (5)).

(7) W
SE1(a)−−−−→l JHx̃ỹK[JP Kf , L[an〈x〉.Q1]

m | [∗ aρ(y).Q2]
n, fM2xy ‖ JM ′Kf] = W ′

(Def. 5.25, (6)).

(8) W ′
SE2(a)−−−−→l JHx̃xỹyK[JP Kf∪{x:y} |JQ1 |Q2Kf∪{x:y}, J[∗ aρ(y).Q2]

nKf∪{x:y} ‖JM ′Kf∪{x:y}] =W1 (Def. 5.25, (7)).
(9) JN1Kf∪{x:y} =W1, f ⊆ f ∪ {x:y} (By (4),(8)).

(10) There exists N ′, such that N1
est−−→k N ′ 6 est−−→ (Lem. 5.16).

(11) There exists S such that W1
γ(ã)====⇒l S, S 6

SE(a)−−−−→l nor S 6 SE1(a)−−−−→l (By
Lem. 5.36, (10)).

(12) S = JN ′Kg , f ∪ {x:y} ⊆ g (IH (11), (10), since N1 has k potentially
satisfied requests).

Lemma 5.38. Let S be a target term (Def. 5.22). If S α(a)−−−→l S1 and S
γ(x̃ỹ,−)======⇒l S2 then

there exists an S3 such that S1
γ(x̃ỹ,−)======⇒l S3 and S2

α(a)−−−→l S3.

Proof (see Page 183). Recalling Not. 5.26, there are three cases: (1) α(a) = SE(a),
(2) α(a) = SE1(a) and (3) α(a) = SE2(a). We only show Case (1), as Cases (2),

Appendix C. Chapter 5 360

(3) proceed similarly. We proceed by induction on k, defined as the length of tran-
sition S γ(x̃ỹ,−)======⇒l S2, together with a case analysis on the label α′(x, y) of the last
action in the transition.

Base Case: k = 1. Then, S α(x,y)−−−−→l S2. We apply a case analysis on α(x, y) (cf.
Def. 5.25). There are nine sub-cases. We only show one case as the other pro-
ceed similarly:

Sub-case α(x, y) = IO(x, y):

(1) S
SE(a)−−−−→l S1 (Assumption).

(2) S
IO(x,y)−−−−−→l S2 (Assumption).

(3) By (1), (2) and Def. 5.25:

S = JHx̃ỹK[Jx〈v〉.P1Kf ‖ Jy(z).P2Kf ‖ S′,J[an〈w〉.Q1]
mKf ‖ J[∗ aρ(z).Q2]

nKf ‖ S′′]
(4) By (3) and Def. 5.25:

S1 = JHx̃ỹK[Jx〈v〉.P1Kf ‖ Jy(z).P2Kf ‖ S′,L[an〈w〉.Q1]
m | [∗ aρ(z).Q2]

n, fM1xy ‖ S′′]
(5) By (3) and Def. 5.25:

S2 = JHx̃ỹK[Lx〈v〉.P1 | y(z).P2, fM1xy ‖ S′,J[an〈w〉.Q1]
mKf ‖ J[∗ aρ(z).Q2]

nKf ‖ S′′]
(6) By (4) and Def. 5.25:

S1
IO(x,y)−−−−−→l JHx̃ỹK[Lx〈v〉.P1 | y(z).P2, fM1xy ‖ S′,L[an〈w〉.Q1]

m | [∗ aρ(z).Q2]
n, fM1xy ‖ S′′] = S3

(7) By (4) and Def. 5.25:

S2
SE(a)−−−−→l JHx̃ỹK[Lx〈v〉.P1 | y(z).P2, fM1xy ‖ S′,L[an〈w〉.Q1]

m | [∗ aρ(z).Q2]
n, fM1xy ‖ S′′] = S3

Inductive Step: Assume that S γ(x̃ỹ,−)======⇒l S0
α(x,y)−−−−→l S2 in k > 1 steps (for the

transition S γ(x̃ỹ,−)======⇒l S0) and we need to prove that the property holds for
the last step (S0

α(x,y)−−−−→l S2). We proceed by a case analysis on α(x, y), which
yields 3 cases. As above, for each case, there are nine sub-cases corresponding
to all the labels in Def. 5.25 that do not correspond to session establishment
(i.e., IO(x, y), IO1(x, y), etc.). Each sub-case proceeds as the sub-case above and
concludes by applying the IH.

Appendix C. Chapter 5 361

Lemma 5.40. Let S be a target term. If S γ(x̃ỹ,−)α(a)γ0(x̃0ỹ0,ã0)=================⇒l S1 then
S

γ1(x̃ỹ,−)α(a)γ2(x̃ỹ,−)γ0(x̃0ỹ0,ã0)========================⇒l S1, where γ1(x̃ỹ,−)γ2(x̃ỹ,−) = γ(x̃ỹ,−).

Proof (see Page 184). By induction on k, the length of sequence γ(x̃ỹ,−), coupledwith
a case analysis on the last label α′(x, y) in γ(x̃ỹ,−).

Base Case: k = 1. Then γ(x̃ỹ,−) = α′(x, y). We apply a case analysis on α′(x, y).
There are nine sub-cases, corresponding to the labels that do not involve session
establishment in Def. 5.25. We will only show one case, as the others proceed
similarly:

Sub-case α′(x, y) = IO(x, y): We distinguish two further Sub-cases, depending
on whether α(a) = SE(a), α(a) = SE1(a) or α(a) = SE2(a). We only show
the former, as the latter two are similar:

(1) S
IO(x,y)−−−−−→l S

′ SE(a)−−−−→l S
′′ γ0(x̃0ỹ0,ã0)=========⇒l S1 (Assumption).

(2) By (1) and Def. 5.25:

S = JHx̃ỹK[Jx〈v〉.P1Kf ‖ Jy(z).P2Kf ‖ S0,J[an〈w〉.Q1]
mKf ‖ J[∗ aρ(z).Q2]

nKf ‖ S′0]
(3) By (1), (2), and Def. 5.25:

S′ = JHx̃ỹK[Lx〈v〉.P1 | y(z).P2, fM1xy ‖ S0,J[an〈w〉.Q1]
mKf ‖ J[∗ aρ(z).Q2]

nKf ‖ S′0]
(4) By (1), (3), and Def. 5.25:

S′′ = JHx̃ỹK[Lx〈v〉.P1 | y(z).P2, fM1xy ‖ S0,L[an〈w〉.Q1]
m | [∗ aρ(z).Q2]

n, fM1xy ‖ S′0]
(5) S

SE(a)−−−−→l S
′
1

IO(x,y)−−−−−→l S
′′
1 ((2), Rules bSEc, bIOc in Fig. 4.7).

(6) By (5) and Def. 5.25:

S′1 = JHx̃ỹK[Jx〈v〉.P1Kf ‖ Jy(z).P2Kf ‖ S0,L[an〈w〉.Q1]
m | [∗ aρ(z).Q2]

n, fM1xy ‖ S′0]
(7) By (6) and Def. 5.25:

S′′1 = JHx̃ỹK[Lx〈v〉.P1 | y(z).P2, fM1xy ‖ S0,L[an〈w〉.Q1]
m | [∗ aρ(z).Q2]

n, fM1xy ‖ S′0]
(8) S′′ = S′′1 , let γ1(x̃ỹ,−) be the empty sequence and γ2(x̃ỹ,−) = α′(x, y)

(By (7),(4)).

Inductive Step: k > 1. Assume that S γ′
1(x̃ỹ,−)α

′(x,y)α(a)γ0(x̃0ỹ0,ã0)======================⇒l S1 with
γ(x̃ỹ,−) = γ′1(x̃ỹ,−)α′(x, y). By IH, if S γ′

1(x̃ỹ,−)α(a)α
′(x,y)γ0(x̃0ỹ0,ã0)======================⇒l S1

Appendix C. Chapter 5 362

then S γ′(x̃ỹ,−)α(a)γ′′(x̃ỹ,−)α′(x,y)γ0(x̃0ỹ0,ã0)============================⇒l S1 with the sequence γ′1(x̃ỹ,−) =
γ′(x̃ỹ,−)γ′′(x̃ỹ,−). Thus, we need to prove that S γ′

1(x̃ỹ,−)α(a)α
′(x,y)===============⇒l S1. The

proof proceeds as in the base case, by a case analysis on α′(x, y). All the 9 sub-
cases proceed in the same way, each one concludes by applying the IH.

C.3 Secure Types and The Translation
Theorem 5.51 (Typability of J·Kf). For every well-typed closed networkN , the derivation
`⋄ JNKf holds.

Proof (see Page 189). By induction on the structure ofN . The first cases are in Fig. C.1,
which gives the derivation tree for the case N = [∗ aρy(x).Q]m and N = [am〈x〉.Q]n.
All the other cases follow.

out = o locρ(n; ε) = lnρ r(l) = rl p(l) = pl

Case N = 0: This case is immediate, by Rule bL:TELLc.

Case N = N1 | N2: By IH, assume `⋄ N1 and `⋄ N2 and thus we can apply Rule
bL:PARc to finish the proof.

Case N = (νxy)P : By induction on the structure of P . There are nine Sub-cases.
Sub-cases P = Q1 | Q2, P = 0 and P = (νwz)Q are immediate by IH. Thus, we only
show the 6 remaining cases:

Sub-case P = x〈v.Q〉: The derivation tree is given. In the derivation tree [1] stands
for the application of Rules (L:COMB), (L:COMB), (L:PRED), (L:PRED), (L:PRED), in that
order.

(L:TELL)
`⋄ snd(x; v)

IH
`⋄ JQKf [1]

{fx, v}; ∅ `• {x:fx} ⊗ ch(fx; ε)⊗ rcv(fx, v; ε) (L:ABS)
`A ∀ε(ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ rcv(fx, v; ε)→JQKf) (L:GUARD)
`⋄ ∀ε(ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ rcv(fx, v; ε)→JQKf) (L:PAR)

`⋄ snd(x; v) ‖ ∀ε(ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ rcv(fx, v; ε)→JQKf)
Sub-case P = x(y).Q The derivation tree is given. In the derivation tree [1] stands
for the application of Rules (L:COMB), (L:COMB), (L:PRED), (L:PRED), (L:PRED), in that
order. Also, [2] = (L:ABS).

(L:TELL)
`⋄ rcv(x, y; ε)

IH
`⋄ JQKf (L:PAR)

`⋄ rcv(x, y; ε) ‖ JQKf [1]
{fx}; {y} `• {x:fx} ⊗ ch(fx; ε)⊗ snd(fx; y)

[2]
`A ∀y

(
ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ snd(fx; y)→rcv(x, y; ε) ‖ JQKf) (L:GUARD)

`⋄ ∀y
(
ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ snd(fx; y)→rcv(x, y; ε) ‖ JQKf)

Appendix C. Chapter 5 363

Sub-case P = x / li.P : The derivation tree is given. In the derivation tree [1] stands
for the application of Rules (L:COMB), (L:COMB), (L:PRED), (L:PRED), (L:PRED), in that
order.

(L:TELL)
`⋄ sel(x; l)

IH
`⋄ JQKf [1]

{fx, l}; ∅ `• {x:fx} ⊗ ch(fx; ε)⊗ bra(fx, l; ε) (L:ABS)
`A ∀ε(ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ bra(fx, l; ε)→JQKf) (L:GUARD)
`⋄ ∀ε(ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ bra(fx, l; ε)→JQKf) (L:PAR)

`⋄ sel(x; l) ‖ ∀ε(ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ bra(fx, l; ε)→JQKf)
Sub-case P = x . {li : Qi}i∈I : The derivation tree is given. In the derivation tree [1]
stands for the application of Rules (L:COMB), (L:COMB), (L:PRED), (L:PRED), (L:PRED),
in that order. Notice that when using IH, we previously need to use n steps with
(L:PAR). Also [2] = (L:GUARD).

D1

[1]
{fx}; {l} `• {x:fx} ⊗ ch(fx; ε)⊗ sel(fx; l) (L:ABS)

`A ∀l
(
ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ sel(fx; l)→bra(x, l; ε)‖

∏
1≤i≤n

l = li→JQiKf)
[2]

`⋄ ∀l
(
ch(x; ε) ; {x:fx} ⊗ ch(fx; ε)⊗ sel(fx; l)→bra(x, l; ε)‖

∏
1≤i≤n

l = li→JQiKf)
and sub-tree D1 is:

(L:TELL)
`⋄ bra(x, l; ε)

IH
`⋄

∏
1≤i≤n

l = li → JQiKf
(L:PAR)

`⋄ bra(x, l; ε)‖
∏

1≤i≤n
l = li→JQiKf

Sub-case P = v? (Q) : (R): The proof is immediate as all the variables of an equality
are unrestricted; we omit the derivation tree.

Appendix C. Chapter 5 364

(L
:T
EL

L)
` ⋄

o(
{〈
a
,w
,n
〉}

p m
)

IH
` ⋄

JQK f
(L

:T
EL

L)
` ⋄

!{
x
:y
}

(L
:T
EL

L)
` ⋄

o(
{〈
a
,w
,x
,y
〉}

p m
)

(L
:P
AR

)
` ⋄

o(
{〈
a
,w
,x
,y
〉}

p m
)
‖
!{
x
:y
}

` ⋄
o(
{〈
a
,w
,x
,y
〉}

p m
)
‖
!{
x
:y
}
‖
JQK f

∪
{x

:y
}

(L
:P
RE

D)
{n
};
{a
,w
,y
,m
}
` •

o(
{〈
a
,w
,y
,m
〉}

p n
(L

:A
BS
)

` A
∀y

(o(
r n

)
;
o(
{〈
a
,w
,y
,m
〉}

p n
)→

o(
{〈
a
,w
,x
,y
〉}

p m
)
‖
!{
x
:y
}
‖
JQK f

∪
{x

:y
}) (L

:G
UA

RD
)

` ⋄
∀y

(o(
r n

)
;
o(
{〈
a
,w
,y
,m
〉}

p n
)→

o(
{〈
a
,w
,x
,y
〉}

p m
)
‖
!{
x
:y
}
‖
JQK f

∪
{x

:y
}) (L

:P
AR

)
` ⋄

o(
{〈
a
,w
,n
〉}

p m
)
‖
∀y

(o(
r n

)
;
o(
{〈
a
,w
,y
,m
〉}

p n
)
→

o(
{〈
a
,w
,x
,y
〉}

p m
)
‖
!{
x
:y
}
‖
JQK f

∪
{x

:y
})

(L
:L
OC

AL
)

` ⋄
∃w
,x
.(o(
{〈
a
,w
,n
〉}

p m
)
‖
∀y

(o(
r n

)
;
o(
{〈
a
,w
,y
,m
〉}

p n
)→

o(
{〈
a
,w
,x
,y
〉}

p m
)
‖
!{
x
:y
}
‖
JQK f

∪
{x

:y
}))

(L
:T
EL

L)
` ⋄

o(
{〈
a
,z
,x

,m
〉}

p n
)

IH
` ⋄

JQK f
(L

:P
RE

D)
{m

};
{a

,z
,x

,y
}
` •

o(
{〈
a
,z
,x

,y
〉}

p m
)

[1
]

` ⋄
∀y

(o
(r

m
)
;
o(
{〈
a
,z
,x

,y
〉}

p m
)
→
JPK f

∪
{x

:y
}
)

[2
]

` ⋄
o(
{〈
a
,z
,x

,m
〉}

p n
)
‖
∀y

(o
(r

m
)
;
o(
{〈
a
,z
,x

,y
〉}

p m
)
→
JPK f

∪
{x

:y
}
)

(L
:P
RE

D)
{m

};
{a

,n
,z
}
` •

o(
{〈
a
,z
,n

〉}
p m

)

(L
:P
RE

D)
∅;
{n

,ρ
}
` •

ln ρ
[3
]

{m
};
{a

,z
,n

,ρ
}
` •

o(
{〈
a
,z
,n

〉}
p m

)
⊗

ln ρ
[4
]

` A
∀z

,n
(o(

r m
)
;
o(
{〈
a
,z
,n

〉}
p m

)
⊗

ln ρ
→

o(
{〈
a
,z
,x

,m
〉}

p n
)
‖
∀y

(o
(r

m
)
;
o(
{〈
a
,z
,x

,y
〉}

p m
)
→
JPK f

∪
{x

:y
}
)) [5

]

` ⋄
∀z

,n
(o(

r m
)
;
o(
{〈
a
,z
,n

〉}
p m

)
⊗

ln ρ
→

o(
{〈
a
,z
,x

,m
〉}

p n
)
‖
∀y

(o
(r

m
)
;
o(
{〈
a
,z
,x

,y
〉}

p m
)
→
JPK f

∪
{x

:y
}
))

[6
]

` ⋄
!(∃x

.(∀z
,n

(o(
r m

)
;
o(
{〈
a
,z
,n

〉}
p m

)
⊗

ln ρ
→

o(
{〈
a
,z
,x

,m
〉}

p n
)
‖
∀y

(o
(r

m
)
;
o(
{〈
a
,z
,x

,y
〉}

p m
)
→
JPK f

∪
{x

:y
}
))))

Fi
gu

re
C
.1
:T

yp
in
g
de

riv
at
io
ns

fo
rJ[aρ

(x
).
P
]m
Kand

[a
m
〈x
〉.Q

]n
,a

su
se

d
in

th
ep

ro
of

of
Th

m
.5

.5
1.

Th
em

iss
in
g
ru

le
sa

re
nu

m
be

re
d:

[1
]=

(L
:A

BS
),

[2
]=

(L
:P
AR

),
[3

]=
(L

:C
OM

B)
,[

4]
=

(L
:A

BS
),

[5
]=

(L
:G

UA
RD

),
[6

]=
(L

:R
EP

L)
,(L

:L
OC

AL
).

D
Chapter 7

D.1 Auxiliary Results for Operational Correspondence
Lemma 7.19. For every π R pre-redex or inaction process P and every target term S, it holds
that S = init(JP Kgf) implies that either:

1. S = JP Kgf (or)

2. there exists a declaration context Dx̃ such that Dx̃[S] = JP Kgf , for some g and f and
x̃ = (fv(S) ∩ fv(JP Kfg)) \ (ran(f) ∪ ran(g)).

Proof (see Page 208). By applying a case analysis on T . We only show the case for:
S = init(Jx〈v〉.QKgf) since the other cases are either immediate (T = init(Jx(y).QKgf),
S = init(Jx . {li : Qi}i∈IKgf) and S = init(J0Kgf)) or similar (S = init(J∗x(y).QKgf)
and T = init(Jx / l.QKgf)).
(1) By Assumption, P = x〈v〉.Q.

(2) By Assumption, S = init(P).

(3) By Fig. 7.2 and (1):

JP Kfg = signal x′, x′′ in

do loop (emit fx (fv, gv, x
′, x′′); pause)

until gx → JQKg,{x′←x′′}
f,{x←x′}

(4) Def. 7.16 and (2):

S = do loop (emit fx (fv, x
′, x′′); pause) until gx → JQKg,{x′←x′′}

f,{x←x′}

Appendix D. Chapter 7 366

(5) By the Def. of fv(·) and (4), fv(S) = {fx, gx, x′, x′′, fv} ∪ fv(JQKg,{x′←x′′}
f,{x←x′}).

(6) By the Def. of fv(·) and (3), fv(JP Kgf) = {fx, gx, fv} ∪ fv(JQKg,{x′←x′′}
f,{x←x′}).

(7) By applying ∩ to (5) and (6), fv(JP Kgf) ∩ fv(S) = {x′, x′′} = x̃.

(8) Let Dx̃[·] = signal x′, x′′ in [·] by Def. 2.40 and (7).

(9) Finally, by applying = to (8) and (4):

Dx̃[S] = signal x′, x′′ in

do loop (emit fx (fv, gv, x
′, x′′); pause) until gx

→ JQKg,{x′←x′′}
f,{x←x′}

= JP Kgf
Lemma 7.23. Let R be a well-typed π R redex enabled by x̃, ỹ. If J(νx̃ỹ)RKgf 7−→ S then
there exists R′ such that (νx̃ỹ)R −→ (νx̃ỹ)R′ and the following holds:

1. S ↪→R JR′Kg′

f ′ for some f ′, g′ such that x̃ỹ ∈ dom(f ′) and x̃ỹ ∈ dom(g′) and

2. there exists Dz̃ such that Dz̃[S] ≡α J(νx̃ỹ)R′Kg′

f ′ for some z̃.
Proof (see Page 210). By a case analysis on the possible redexes. For every case we
first show Item 1 and then Item 2. There are three cases:
(a) x〈v〉.P | y(z).Q,

(b) x〈v〉.P | ∗ y(z).Q, and

(c) x / lj .P | y . {li : Qi}i∈I , with j ∈ I .
We only show Case (a) as the others proceed similarly. AssumeR = x〈v〉.P | y(z).Q.
Also, assume that fx, gx, gy and gy are in the signal environment, since they are emit-
ted by the processes in the translation. First we prove Item (1): we show the deriva-
tion of the big-step reduction, obtained from the rules in Fig. 2.8.

bSIG-DECc
bLET-PARc

bSIG-DECc
bDU-Pc

bLP-STUc, bL-DONEc
bEMITc, bPAUSEc

S 7−→ JP Kg2f2Jx〈v〉.P Kg1f1 7−→ JP Kg2f2 D1J(x〈v〉.P | y(z).Q)Kf1g1 7−→ JP Kg2f2 ‖ JQKg3f3{v/z}J(νx̃ỹ)(x〈v〉.P | y(z).Q)Kfg 7−→ JP Kg2f2 ‖ JQKg3f3{v/z}
where D1 is given below:

bL-DONEc

bDW-INTc, bEMITc
bDU-Pc, bL-STUc, bPAUSEcJy(z).QKg1f1 7−→ JQKg3f3{v/z}

Appendix D. Chapter 7 367

and S = do (loop (emit w (v, gv, x
′, c′); pause)) until c → (JP Kg1,{x′←c′}

f1,{x←x′}), f1 =

f, {x̃← w̃, ỹ ← w̃}, g1 = g, {x̃← c̃, ỹ ← c̃}, f2 = f1, {x← x′}, g2 = g1, {x← c′}, f3 =

f2, and g3 = g2 (since r, r′ in await fy(z, r, r
′) in JQKg3,{y←c,z←c}

f3,{y←r,z←z} have been replaced
by the emitted values x′ and c′ resp.). Thus, J(νx̃ỹ)(x〈v〉.P | y(z).Q)Kfg 7−→ JP Kg2f2 ‖JQKg2f2{v/z}. Furthermore, by Thm. 7.9: JP Kg2f2 ‖ JQKg2f2{v/z} = JP | Q{v/z}Kg2⊙{v/z}

f2⊙{v/z}
=

S. Then, by Rule bCOMc, (νx̃ỹ)(x〈v〉.P | y(z).Q) −→ (νx̃ỹ)(P | Q{v/z}), with R′ =
P | Q{v/z}. Thus, letting f ′ = f2 � {v/z}, g′ = g2 � {v/z}, we conclude: S ↪→R JR′Kg′

f ′ .
To prove Item (2), we have to show the existence ofDz̃[·]. To do this, it is enough

to prove that there exists a sequence z̃ that satisfies the properties in the statement.
Let z̃ = f ′x̃g

′
x̃. By Def. 2.40, Dz̃[JR′Kf ′

g′] = signal f ′x̃g
′
x̃ in JR′Kg′

f ′ . Furthermore, by
Lem. 7.20, J(νx̃ỹ)R′Kg′

f ′ = signal w̃, c̃ in JR′Kg′,{x̃←c̃,ỹ←c̃}
f ′,{x̃←w̃,ỹ←w̃}. Finally, by α-conversion,

signal f ′x̃g
′
x̃ in JR′Kf ′

g′ ≡α signal w̃, c̃ in JR′Kg′,{x̃←c̃,ỹ←c̃}
f ′,{x̃←w̃,ỹ←w̃}.

Lemma 7.24. Let P = (νx̃ỹ)(P1 | . . . | Pn), n ≥ 1 be a well-typed π R program. Then, the
following holds: for every S such that JP Kgf 7−→∗ S, it holds that (1) S = S1 ‖ · · · ‖ Sm,
m ≥ n, (2) there exists P ′ = (νx̃ỹ)(P ′1 | . . . | P ′m) such that P −→∗ P ′ and (3) for every
1 ≤ i ≤ m there exist f ′, g′ such that either:

1. Si ↪→R init(JP ′i Kg′

f ′), for some pre-redex P ′i or

2. Si ↪→R JP ′i Kg′

f ′ , such that P ′i is a pre-redex, P ′i = v? (Q1) : (Q2), or P ′i = 0.

Proof (see Page 210). By Cor. 3.34, for every 1 ≤ i ≤ n, Pi is a pre-redex or Pi =
v? (P ′i) : (P

′′
i). We apply induction on the length r of transition JP Kgf 7−→∗ S. The base

case is JP Kgf 7−→∗ JP Kgf , which is immediate. We show the inductive step. First, the
IH:

IH1: If JP Kgf 7−→∗ S′0 in r − 1 big-step reductions then S′0 = S′1 ‖ · · · ‖ S′m and for
every 1 ≤ i ≤ m either:

(a) S′i ↪→R init(JP ′i Kg′

f ′), for some pre-redex P ′i (or)

(b) S′i ↪→R JP ′i Kg′

f ′ , such that P ′i is a pre-redex or P ′i = v? (Q1) : (Q2),

for some f ′, g′, and there exists P ′0 such that P −→∗ P ′0 = (νx̃ỹ)(P ′1 | . . . | P ′m).

Then, we need to prove the property for JP Kgf 7−→∗ S′0 7−→ S, focusing on transition
S 7−→ S′. We prove this by induction on the numberm of S′i processes in S′0:

Base Case: m = 1. Assuming that S′0 = S′i thenwe apply a case analysis on S′i. There
are two main cases:

1. S′i ↪→R init(JP ′i Kg′

f ′), for some pre-redex P ′i : Immediate by Cor. 7.17.

2. S′i ↪→R JP ′i Kg′

f ′ , such that P ′i is a pre-redex or P ′i = v? (Q1) : (Q2): There are
six sub-cases. The first five that correspond to pre-redexes are immediate
by Cor. 7.17 (since there is only one process in parallel). The last case
corresponds to P ′i = v? (Q1) : (Q2), which proceeds by Fig. 2.8.

Appendix D. Chapter 7 368

Inductive Step: For the inductive step letm ≥ 2 and we prove form processes. The
IH is as follows:

IH2: If S′1 ‖ · · · ‖ S′m−1 7−→ S = S1 ‖ · · · ‖ Ss, s ≥ m−1 then for every 1 ≤ j ≤ s
either:
(a) Sj ↪→R init(JP ′′j Kg′′

f ′′), for some pre-redex P ′′j (or)
(b) Sj ↪→R JP ′′j Kg′′

f ′′ , such that P ′′j is a pre-redex or P ′′j = v? (Q1) : (Q2),
for some f ′′, g′′, and there exists P ′ such that

P ′0 −→∗ P ′ = (νx̃ỹ)(P ′′1 | . . . | P ′′s)

We then need to prove the statement for S′1 ‖ · · · ‖ S′m−1 ‖ S′m 7−→ S1 ‖ · · · ‖ Ss.
We proceed by using a case analysis on S′m. There are eleven cases:

• Three cases correspond to S′m = init(JP ′jKg′

f ′) for P ′j = x〈v〉.Q, P ′j = x/ v.Q
and ∗x(y).Q.

• Six cases correspond to S′m = JP ′jKg′

f ′ for P ′j being a pre-redex.

• Two correspond to S′m = J0Kg′

f ′ and S′m = Jv? (Q1) : (Q2)Kg′

f ′ .

We show one case: S′m = init(Jx〈v〉.QKg′

f ′). The other cases proceed similarly:

Case S′m = init(Jx〈v〉.QKg′

f ′): By assumption, S′1 ‖ · · · ‖ S′m−1 ‖ S′m = S′1 ‖ · · · ‖
S′m−1 ‖ init(Jx〈v〉.QKg′

f ′), we identify two sub-cases: whenever there exists
a S′k, 1 ≤ k ≤ m− 1 such that

S′k = Jy(z).RKg′

f ′

and (νx̃ỹ)(x〈v〉.Q | y(z).R) is a redex enabled by x̃ỹ, and whenever such
S′k does not exist. Notice that by typability and Thm. 3.28, we ensure that
y(z).R is unique in process (νx̃ỹ)(P ′1 | . . . | P ′m−1). Therefore, there will
not be multiple translated processes that react to the signal emitted by S′m.
We show the first case, as the other follows by Cor. 7.17.

Sub-case ∃S′k=Jy(z).RKg′

f ′ : (1) ` P (Assumption).
(2) JP Kfg 7−→ S′0 = S′1 ‖ . . . ‖ Jy(z).RKg′

f ′ ‖ . . . ‖ S′m−1 (IH1, Assump-
tion).

(3) P −→∗P ′=(νx̃ỹ)(P ′1 | . . . |y(z).R | . . . | P ′m−1) ((1), (2), IH1).
(4) S′0 7−→S =S1 ‖ . . .‖Ss, s ≥ m− 1 (Assumption)
(5) ∀1≤j≤s.(S′j ↪→R init(JP ′jKg′

f ′)∧Sj ↪→R JP ′′j Kg′′

f ′′) (IH2).
(6) ` P ′ (Thm. 3.26, (1), (3)).
(7) S = S1 ‖ · · · ‖ Jy(z).RKg′

f ′ ‖ · · · ‖ Ss ((6), Def. 3.27, (2)).
(8) S′0 ‖ S′m = S′1 ‖ . . . ‖ Jy(z).RKg′

f ′ ‖ . . . ‖ S′m−1 ‖ S′m (Assumption,
(7)).

Appendix D. Chapter 7 369

(9) S′0 ‖ S′m 7−→ S1 ‖ . . . ‖ JRKg′′

f ′′{v/z} ‖ . . . ‖ Sm−1 ‖ JQKg′′

f ′′ (Fig. 2.8,
Lem. 7.23, (4), and (5)).

(10) Finally, by Fig. 2.1 and (3):

(νx̃ỹ)(P ′1 | . . . | y(z).R | . . . | P ′m−1 | x〈v〉.Q)

−→ (νx̃ỹ)(P ′′1 | . . . |R{v/x}| . . . |P ′′m−1 |Q)=P ′

E
Chapter 8

E.1 Auxiliary Results for Operational Correspondence

Lemma 8.12. Let H(k̃) be a process handler as in Def. 8.1. Then, if 〈signal k̃ in H(k̃) �
Σ〉 7999K∗ 〈T � Σ′〉 for some Σ′, it holds that:

1. T = T1 ‖ · · · ‖ Tn with n ≥ 1

2. There exists Dz̃, Dz̃1 , . . . , Dz̃n such that

Dz̃[Dz̃1 [T1] ‖ · · · ‖ Dz̃n [Tn]] ≡R signal k̃ in H(k̃)

Proof (see Page 231). By induction on the lengthm of k̃. The base case ism = 2 since
by typing our translation will not allow handler processes with a single channel. By
Def. 8.1:

K = signal k, k, ackki , ack
k
o , ack

k
i , ack

k
o in I(k) ‖ O(k) ‖ I(k) ‖ O(k)

Then, by Lem. 8.11, there exists k′, k′′, k′, k′′,Σ′ such that one of the following cases
holds:

(1) K 79999K∗ 〈I(k′) ‖ O(k′′) ‖ I(k′′) ‖ O(k′) � Σ′〉

(2) K 79999K∗ 〈I(k′) ‖ init(O(k)) ‖ init(I(k)) ‖ O(k′) � Σ′〉

(3) K 79999K∗ 〈init(I(k)) ‖ O(k′) ‖ I(k′) ‖ init(O(k)) � Σ′〉

(4) K 79999K∗ 〈init(I(k)) ‖ init(O(k)) ‖ init(I(k)) ‖ init(O(k)) � Σ′〉

Appendix E. Chapter 8 371

We only show case (2), as cases (1), (3) and (4) are similar.
Assuming that K 79999K∗ 〈I(k′) ‖ init(O(k)) ‖ init(I(k)) ‖ O(k′) � Σ′〉. We

consider the free signal names of each component:

fv(I(k′)) ={ackko , ackki , k′}

fv(O(k′)) ={ackko , ackki , k′}

fv(init(I(k))) ={ackko , ackki , k}

fv(init(O(k))) ={ackko , ackki , k, k′′, k′′}

We then prove the existence of z̃, z̃1, z̃2, z̃3, and z̃4, which in turn shows the existence
of the required signal declaration contexts. To calculate z̃, we take the names in the
union of the intersections of complementary handler components:

z̃ = (fv(I(k′)) ∩ fv(O(k′))) ∪ (fv(init(I(k))) ∩ fv(init(O(k))))

To calculate the other variable we just subtract z̃ from their corresponding free signal
names. Also notice that by Def. 8.10, init(I(k)) = I(k), up-to its unfolding (as it is a
recursive process). Thus, we obtain process:

Dz̃[Dz̃1 [I(k
′)] ‖ Dz̃2 [O(k′)] ‖ Dz̃3 [init(I(k))] ‖ Dz̃4 [init(O(k))]]

= signal k′, k, ackki , ack
k
o , ack

k
i , ack

k
o in I(k′) ‖

O(k′) ‖ I(k) ‖ signal k′′, k′′ in init(O(k)) = R

Observe that signal k′′, k′′ in init(O(k)) = O(k), up-to its unfolding. Furthermore,
since k′ is now bound in R, we state that R ≡R signal k̃ in H(k̃) up-to the renaming
of bound variables. The inductive step proceeds by applying the IH and following
an argument as the one presented above.

Lemma 8.13. For everywell-typed aπ programC[P,Q] = (νk̃)(P ‖ Q) the following holds:
If LC[P,Q]M 7999K∗ K, then K = 〈T1 ‖ · · · ‖ Tn ‖ Tn+1 ‖ · · · ‖ Tm � Σ〉, 1 ≤ n ≤ m,
where:

1. There exists R such that P Ï→∗ R = C[P ′, Q′] and Σ = δ(Q′).

2. There exist contexts Dz̃, Dz̃n+1
, . . . , Dz̃m such that: (a) Dz̃[Dz̃n+1

[Tn+1] ‖ · · · ‖
Dz̃m [Tm]] ≡R signal k̃ in H(k̃), and (b) T1 ‖ · · · ‖ Tn = VP ′W.

3. There exist s̃ and s̃′ such that z̃ = s̃s̃′ and 〈Ds̃[T1 ‖ · · · ‖ Tn ‖ Ds̃′ [Dz̃n+1
[Tn+1] ‖

· · · ‖ Dz̃m [Tm]]] � Σ〉 ≡R LC[P ′, Q′]M.
Proof (see Page 232). By induction on the length m of the reduction LC[P,Q]M 79999K∗
K. The base case is immediate. We show the inductive step.

Let LC[P,Q]M 79999K∗ K0 79999K K. By IH1, K0 = 〈S1 ‖ · · · ‖ Sn ‖ Sn+1 ‖ · · · ‖
Sm � Σ0〉where the following holds:

1. There exists C[P0, Q0] such that C[P,Q] Ï→∗ C[P0, Q0] and Σ0 = δ(Q0).

2. There exist Dz̃′ , Dz̃′
n+1

, . . . , D
z̃′
m

such that:

Appendix E. Chapter 8 372

(a) Dz̃′ [Dz̃′
n+1

[Sn+1] ‖ · · · ‖ Dz̃′
m
[Sm]] = signal k̃ in H(k̃) and

(b) S1 ‖ · · · ‖ Sn = VP0W.
3. There exist s̃0 and s′0 such that z̃′ = s̃0s̃′0 and

〈Ds̃0 [S1 ‖ · · · ‖ Sn ‖ Ds̃′0
[Dz̃n+1

[Sn+1] ‖ · · · ‖ Dz̃m [Sm]]] � Σ0〉 ≡R LC[P0, Q0]M
We now focus on the big-step reduction K0 79999K K. Since K0 = 〈S1 ‖ · · · ‖ Sn ‖
Sn+1 ‖ · · · ‖ Sm � Σ0〉, we apply induction on the number n of Sr processes:
Base Case: n = 1. By assumption, K0 = 〈S1 ‖ S2 ‖ · · · ‖ Sm � Σ0〉. By IH1,

there exists C[P0, Q0] such that C[P,Q] Ï→∗ C[P0, Q0], Σ0 = δ(Q0), S1 =VP0W, and there exist Dz̃′ , Dz̃′
2
, . . . , D

z̃′
m

with Dz̃′ [Dz̃′
2
[S2] ‖ · · · ‖ Dz̃′

m
[Sm]] =

signal k̃ in H(k̃). We proceed then by induction on the structure of P0. We
show only cases for P0 = 0 and P0 = x〈v〉.P ′0, as the other cases are similar:

P0 = 0: By Thm. 3.70, Q0 = k2[i : ε, o : ε] | . . . | km[i : ε, o : ε]. Thus, by IH
Σ0 = δ(Q0) = {k2o : ε, k2i : ε, . . . , kmo : ε, kmi : ε} and hence,

〈V0W ‖ S2 ‖ · · · ‖ Sm � Σ0〉 79999K 〈V0W ‖ T2 ‖ · · · ‖ Tm � Σ0〉

By Lem. 8.12, there exist Dz̃ , Dz̃2 , . . . Dz̃m such that ‖ Dz̃[Dz̃2 [T2] ‖ · · · ‖
Dz̃m [Tm]] = signal k in H(k), up-to renaming of bound variables.

Similarly, we can show that z̃ = k̃′ · ãckkr
i · ãck

kr
o · ãckkr

i · ãck
kr
o for kr ∈ k̃,

where s̃ = k̃′ and s̃′ = ãckkr
i · ãck

kr
o · ãckkr

i · ãck
kr
o and that:

Ds̃[V0W ‖ Ds̃′ [Dz̃2 [T2] ‖ · · · ‖ Dz̃m [Tm]]]

we then conclude the proof by letting P ′ = 0 and Q′ = Q0.
P0 = x〈v〉.P ′0: By Thm. 3.70, Q0 = x[i : h̃1, o : h̃2] | Q′0, with Q′0 a parallel com-

position of queue processes. Thus, Σ0 = xi : h̃1, xo : h̃2,Σ
′
0. By Fig. 3.9,

Fig. 3.10, and Fig. 3.11:

〈Vx〈v〉.P ′0W ‖ S2 ‖ · · · ‖ Sm � xi : h̃1, xo : h̃2,Σ
′
0〉

79999K 〈T1 ‖ T2 ‖ · · · ‖ Tm � xi : h̃′1, xo : h̃′2 · v · h̃3,Σ′〉

provided that VP ′0W 79999K T1 and Sr 79999K Tr for 2 ≤ r ≤ m (rules bL-PARc
and bL-DONEc). By applying IH2we can conclude that T1 = VP ′W for some
P ′ such that C[x〈v〉.P ′0, Q0] Ï→∗ C[P ′, Q′].
We now prove that δ(Q′) = xi : h̃′1, xo : h̃′2 · v · h̃3,Σ′. For this we distin-
guish two cases: (1)whenever there is a synchronization possible between
queues and (2) whenever such synchronization does not occur. We show
case (1): assume that h̃2 = v1 · h̃′2. Then, by Thm. 3.70, Q′0 = x[i : h̃4, o :

v2 · h̃5] | Q′′0 , for some Q′′0 composed of only queues. Thus:

C[x〈v〉.P ′0, x[i : h̃1, o : h̃2] | Q′0]

= C[x〈v〉.P ′0, x[i : h̃1, o : v1 · h̃′2] | x[i : h̃4, o : v2 · h̃5] | Q′′0]

Appendix E. Chapter 8 373

We analyze the big-step reduction:

C[x〈v〉.P ′0, x[i : h̃1, o : h̃2] | x[i : h̃4, o : v2 · h̃5] | Q′′0] Ï→ R

By Def. 3.81, it can be shown that:

R = C[P ′, x[i : h̃′′1 · v2, o : h̃′2 · v · h̃3] | x[i : h̃′4 · v1, o : h̃′5] | Q′′′0]

where h̃′1 = h̃′′1 ·v2. We can then show that δ(x[i : h̃′′1 ·v2, o : h̃′2 ·v · h̃3] | x[i :
h̃′4 · v1, o : h̃′5] | Q′′′0) = Σ by applying Lem. 8.11(1) and using Def. 8.2.
Furthermore, by using an argument similar to the previous case, we can
show the existence of Dz̃, Dz̃2 , . . . , Dz̃m , finishing the proof.

Inductive Step: The inductive step proceeds by assuming the property holds for that
P0 = P1 | . . . | Pn and we analyze for P0 = P1 | . . . | Pn | Pn+1. The proof
proceeds similarly as the base case, by induction on the structure of Pn+1.

F
Chapter 10

F.1 Reactivity
Lemma 10.13 (Size Reduction During Instantaneous Execution). Let C be a reach-
able configuration. Then:

C −→ C ′ ⇒ Size(C) > Size(C ′)
Proof (see Page 256). We distinguish two cases, depending on whether C is an initial
configuration or not.
(1) Let C = 〈P,M,E〉. Then C −→C ′ = (νs)〈P ′,M ′, E′〉 is deduced by Rule [INIT].

Here C = 〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉 and

C ′=(νs)〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉

Then we may conclude, since

sizeM (P) =

n∑
i=1

sizeM (a[i](αi).Pi)=n+

n∑
i=1

sizeM∅
s
(Pi{s[i]/αi})

=n+sizeM∅
s
(P ′)>sizeM∅

s
(P ′)

(2) Let C = (νs)〈P,M,E〉. In this case we have (νs)〈P,M,E〉 −→ (νs)〈P ′,M ′, E′〉
if and only 〈P,M,E〉 −→ 〈P ′,M ′, E′〉, and thus it is enough to prove the fol-
lowing statement:
If (νs)〈P,M,E〉 is reachable then 〈P,M,E〉 −→ 〈P ′,M ′, E′〉 implies sizeM (P) >
sizeM ′(P ′)

To prove this statement we proceed by induction on the inference of the tran-
sition 〈P,M,E〉 −→ 〈P ′,M ′, E′〉, and case analysis on the last rule used in the
inference. We examine the interesting cases.

Appendix F. Chapter 10 375

• Basic cases
– Rule [OUT]. In this case, 〈P,M,E〉 = 〈s[p]!〈e〉.Q,M ′′ ∪ s[p] : ε, E〉 and

that 〈P ′,M ′, E′〉 = 〈Q,M{s[p] 7→ (v, ∅)}, E〉 where e ↓ v. Then,
since (s, p) /∈ Fired(M), we have sizeM (P) = 1 + sizeM ′(Q) = 1 +
sizeM ′(P ′) > sizeM ′(P ′).

– Rule [IN]. In this case

〈P,M,E〉 = 〈s[q]?(p, x).P,M ′′ ∪ s[p] : (v,Π), E〉

for some Π such that q /∈ Π. Moreover

〈P ′,M ′, E′〉 = 〈P{v/x},M{s[p] 7→ (v,Π ∪ q)}, E〉

Hence, sizeM (P) = 1+sizeM ′(P{v/x}) = 1+sizeM ′(P ′) > sizeM ′(P ′).
• Inductive cases

– Rule [REC]. Here we have 〈P,M,E〉 = 〈rec X .Q,M,E〉, and the re-
duction

〈recX .Q,M,E〉 −→ 〈P ′,M ′, E′〉

is deduced from the reduction

〈Q{(pause. recX .Q)/X},M,E〉 −→ 〈P ′,M ′, E′〉

by induction, sizeM (Q{(pause. recX .Q)/X}) > sizeM ′(P ′). Whence
also:

sizeM (P) = sizeM (recX .Q)

= sizeM (Q{(pause. recX .Q)/X})
> sizeM ′(P ′)

– Rule [CONT]. Easy induction.

Lemma 10.15 (Immediate Convergence of 0-size Configurations). Let C be a reach-
able configuration. Then

(Size(C) = 0) ⇔ C ‡⋎

Proof (see Page 257). Note that C cannot be an initial configuration, since in this case
we would have Size(C) > 0. Hence C = (νs)〈P,M,E〉. Since

Size((νs)〈P,M,E〉) = Size(〈P,M,E〉) = sizeM (P)

and (νs)〈P,M,E〉 ‡⋎ ⇔ 〈P,M,E〉 ‡⋎, it is enough to prove the statement for C =

〈P,M,E〉. We prove each side of the biconditional in turn.

(⇒) Weproceed by simultaneous induction on the structure ofP and on the number
of pause-unguarded recursive calls in P , considering only the cases for which
sizeM (P) = 0. Note that the reachability assumption rules out the cases P = X ,
P = ā[n] and P = a[p](α).Q, while the assumption sizeM (P) = 0 rules out the
cases P = emit ev.Q and P ≡ if e then P1 else P2.

Appendix F. Chapter 10 376

Basic Cases
– P = 0. Then P ≡ 0 and thus 〈P,M,E〉 ‡⋎ by definition.
– P = pause. Q. Then 〈P,M,E〉‡ by Rule (pause) in Fig. 10.7 and thus
〈P,M,E〉 ‡⋎ by definition.

– P = s[p]!〈e〉.Q. Since we assumed sizeM (P) = 0, we have (s, p) ∈
Fired(M), i.e., there exist v,Π such that s[p] : (v,Π) ∈ M . Then
〈P,M,E〉‡ by Rule (outs) in Fig. 10.7.

– P ≡ s[q]?(p, x).Q. Since sizeM (P) = 0, then either (s ∈ sn(M)∧(s, p) /∈
Fired(M)) or (s, p, q) ∈ Comm(M). In both cases we can deduce
〈P,M,E〉‡, respectively by Rule (ins) and by Rule (in2s) in Fig. 10.7.

Inductive Cases
– P = P1 | P2. Since sizeM (P) = 0, we have sizeM (Pi) = 0 for i = 1, 2.

By induction, this implies 〈Pi,M,E〉‡ for i = 1, 2. Whence, by Rule
(pars) in Fig. 10.7, we deduce 〈P1 | P2,M,E〉‡.

– P = recX .Q. Since sizeM (P) = 0, we have that

sizeM (Q{(pause. recX .Q)/X}) = 0

by Property 10.12. By induction on the number of pause-unguarded
recursive calls, we have that 〈Q{(pause. recX .Q)/X},M,E〉‡. There-
fore, we may conclude that 〈P,M,E〉‡, using Rule (recs) in Fig. 10.7.

– watch ev do Q{R}. Since sizeM (P) = 0, we have sizeM (Q) = 0. By
induction 〈Q,M,E〉‡. Then 〈P,M,E〉‡ by Rule (watchs) in Fig. 10.7.

(⇐) There are two possibilities for 〈P,M,E〉 ‡⋎:

1) If P ≡ 0, we proceed by induction on the definition of ≡. In essence, P ≡ 0
if and only if P is an n-ary parallel composition whose components are either 0
or of the form watch ev doQ{R}, whereQ ≡ 0. In all cases, by Def. 10.9 we have
sizeM (P) = 0.
2) If 〈P,M,E〉‡, we proceed by induction on the definition of the suspension
predicate in Fig. 10.7. In each case, the reasoning is dual to that for the (⇒)
direction above.

Lemma 10.16 (Deadlock freedom). Let C be a reachable configuration. Then

either C ‡⋎ or ∃ C ′ . C −→ C ′

Proof (see Page 257). We distinguish two cases, depending on whether C is an initial
configuration or not.

(1) Let C = 〈P,M,E〉 be an initial configuration. Then there is a reduction C −→
C ′ = (νs)〈P ′,M ′, E′〉 deduced by Rule [INIT].

Appendix F. Chapter 10 377

(2) LetC = (νs)〈P,M,E〉. ThenC reduces if and only if 〈P,M,E〉 reduces andC ‡⋎
if and only if 〈P,M,E〉 ‡⋎. Hence it is enough to prove the property for 〈P,M,E〉.
We proceed by induction on the structure of P . Note that the reachability as-
sumption rules out the cases P = X , P = ā[n] and P = a[p](α).Q.

Basic Cases

• P = 0. Then 〈P,M,E〉 ‡⋎ by definition.
• P = emit ev.Q. By Rule [EMIT], for anyM,E we have that

〈emit ev.Q,M,E〉 −→ 〈Q,M,E ∪ {ev}〉

• P = pause. Q. By Rule (pause), for anyM,E we have 〈P,M,E〉‡.
• P = if e then P1 else P2. Since the evaluation of e terminates, for any
M,E a reduction may be inferred by either Rule [IF-T] or Rule [IF-F].

• P ≡ s[p]!〈e〉.Q. By the reachability condition, s[p] ∈ dom(M). There are
then two possibilities:
(i)M =M ′ ∪ {s[p] : ε}, in which case 〈P,M,E〉 can reduce by Rule [OUT];
(ii)M =M ′ ∪ {s[p] : (v,Π)}, in which case 〈P,M,E〉‡ by Rule (outs).

• P ≡ s[q]?(p, x).Q. In this case, there are three possibilities:
(i) there is a message sent by p that participant q has not read yet, in which
case the configuration can reduce by Rule [IN];
(ii) there is no message sent by p, in which case the configuration is sus-
pended by Rule (ins);
(iii) there is a message sent by p that participant q has read already, in
which case the configuration is suspended by Rule (in2s).

Inductive cases. Straightforward, by applying the inductive hypothesis.

Theorem 10.18 (Bounded Reactivity). Let C be a reachable configuration. Then
∃n ≤ Size(C) . C ⇓n

Proof (see Page 258). We distinguish two cases, depending on whether C is an initial
configuration or not. Since the latter case depends on the former, we start by consid-
ering non initial configurations.
(1) C is not initial. In this case, C has the form C = (νs)〈P,M,E〉, where P is a

parallel composition of sequential session-closed processes. Thereforewe have:
Size((νs)〈P,M,E〉) = Size(〈P,M,E〉) = sizeM (P)

(νs)〈P,M,E〉 ‡⋎ ⇔ 〈P,M,E〉 ‡⋎
(νs)〈P,M,E〉 −→ (νs)〈P ′,M ′, E′〉 ⇔ 〈P,M,E〉 −→ 〈P ′,M ′, E′〉

Therefore it is enough to prove the statement:
∃n ≤ sizeM (P) . 〈P,M,E〉 ⇓n

We proceed by simultaneous induction on the structure of P , on the size of P
and on the number of pause-unguarded recursive calls in P .

Appendix F. Chapter 10 378

• Basic case: sizeM (P) = 0 and P has no pause-unguarded recursive calls.
By Lem. 10.15, if sizeM (P) = 0 then either P ≡ 0 or 〈P,M,E〉‡.
By definition 〈P,M,E〉 ‡⋎ ⇒ (〈P,M,E〉 ⇓ 0 〈P,M,E〉). Then we may
conclude, since n = 0 = sizeM (P).

• Inductive cases: sizeM (P) ≥ 1 or P has pause-unguarded calls.
– P = emit ev. P ′. In this case, by Rule [Emit] we have the reduction:

〈emit ev. P ′,M,E〉 −→ 〈P ′,M,E ∪ {ev}〉

By induction (on the size or on the structure), there must exist n ≤
sizeM (P ′) such that 〈P ′,M,E ∪ {ev}〉 ⇓n. Then

〈emit ev. P ′,M,E〉 ⇓n+1

where n+ 1 ≤ sizeM (P ′) + 1 = sizeM (emit ev. P ′).

– P = s[q]?(p, x).Q. By Lem. 10.16, there are two possibilities:
– 〈s[q]?(p, x).Q,M,E〉‡. This is inferred either using Rule (ins), if
s ∈ sn(M) ∧ (s, p) /∈ Fired(M), or using Rule (in2s), if (s, p, q) ∈
Comm(M).
Then 〈s[q]?(p, x).Q,M,E〉 ⇓ 0 〈Q,M,E〉 and we may conclude,
since n = 0 ≤ sizeM (P).

– 〈P,M,E〉 = 〈s[q]?(p, x).Q,M ′′∪s[p] : (v,Π), E〉 for some M ′′, v
and Π such that q /∈ Π. Then Rule [In] can be applied, yielding

〈P ′,M ′, E′〉 = 〈Q{v/x},M{s[p] 7→ (v,Π ∪ q)}, E〉

By induction there exists n ≤ sizeM (P ′) such that 〈P ′,M ′, E′〉 ⇓n.
Hence 〈P,M,E〉 ⇓n+1, where

n+ 1 ≤ sizeM (P ′) + 1 = sizeM (s[q]?(p, x).Q)

– P = s[p]!〈e〉.Q. This case is similar to the previous one, and slightly
simpler.

– P = recX .Q. By Lem. 10.16, there are two possibilities:
– 〈recX .Q,M,E〉‡. Then 〈rec X .Q,M,E〉 ⇓ 0 〈rec X .Q,M,E〉

and we may conclude, since n = 0 = sizeM (P).
– There exist P ′,M ′, E′ such that 〈P,M,E〉 −→ 〈P ′,M ′, E′〉. Then

the reduction is inferred by Rule [Rec], namely:

〈Q{(pause. recX .Q)/X},M,E〉 −→ 〈P ′,M ′, E′〉

〈recX .Q,M,E〉 −→ 〈P ′,M ′, E′〉
[Rec]

Since the call rec X .Q is pause-guarded in P ′, the number of
pause-unguarded calls in P ′ is strictly less than in P . Then by
induction there exists n ≤ sizeM (P ′) such that 〈P ′,M ′, E′〉 ⇓n.

Appendix F. Chapter 10 379

Whence 〈P,M,E〉 ⇓n+1. By Lem. 10.13, we know that
sizeM (P ′) < sizeM (Q{(pause. recX .Q)/X}). By Property 10.12,

sizeM (Q{(pause. recX .Q)/X}) = sizeM (P)

We may thus conclude that n < sizeM (P), that is to say, n + 1 ≤
sizeM (P).

– Conditional, parallel and watch: these cases are straightforward by
induction on the structure of the process.

(2) C = 〈P,M,E〉 is initial. Thus we have
C = 〈a[1](α1).P1 | ... | a[k](αk).Pk | ā[k], ∅, ∅〉

Then by Rule [INIT] we have a reduction C −→ C ′ = (νs)〈P ′,M∅s , ∅〉, where
P ′ = (νs)P1{s[1]/α1} | . . . | Pk{s[k]/αk}

Moreover, by Def. 10.9:

Size(C) =
k∑

i=1

size∅(a[i](αi).Pi) = k +

k∑
i=1

sizeM∅
s
(Pi{s[i]/αi})

= k + sizeM∅
s
(P ′) > sizeM∅

s
(P ′) = Size(C ′)

By Point 1. there exists m ≤ Size(C ′) such that C ′ ⇓m. Letting n = m + 1, we
conclude that C ⇓n and n ≤ Size(C).

F.2 Type System
Lemma 10.24 (Correctness of Saturation with Respect to OG(T)). Let G be a global
type such that |Part(G)| ≥ 2, p be a participant, and P be a set of participants such that
(1) P ⊆ Part(G), and (2) Part(G) \ P 6= ∅. Then, OG(SPart(G)(G,P) � p) holds for every
p ∈ Part(G) \ P .
Proof (see Page 265). By induction on the structure of G. The base cases are G = end
and G = t, which are vacuously true since |Part(end)| = |Part(t)| = 0. For the in-
ductive step we assume that the property holds for a global type G′ and prove the
statement for every type that containsG′ as a sub-expression. There are five inductive
cases.
Case G = pause.G′:

(1)
SPart(G)(G,P)� p = SPart(G)(pause.G

′,P)� p
= p{1,n} ↑〈S, ∅〉.pause.SPart(G′)(G

′, ∅)� p
(Assumption,
Fig. 10.11)

(2) Part(G) \ P = {p1, . . . , pn} (Assumption,
Fig. 10.11)

(3)
∀pi ∈ {p1, . . . , pn}.(p{1,n} ↑〈S, ∅〉.pause.SPart(G′)(G

′, ∅)� pi
= !Si.pause.(SPart(G′)(G

′, ∅)� p))
((1), (2),
Fig. 10.12)

(4) OG(!Si.pause.(SPart(G′)(G
′, ∅)� p)) is true (Def. 10.23,

(3))

Appendix F. Chapter 10 380

Case G = tick.G′: Analogous to the case above.

Case G = r↑〈S,Π〉.G′: There are two cases depending on whether r ∈ P or not:

Case r 6∈ P :
(1) By Def. 10.11,

SPart(G)(r↑〈S,Π〉.G′,P) = r↑〈S,Π〉.SPart(G)(G′,P ∪ {r})

(2) By IH, ∀p ∈ P.(OG(SPart(G)(G′,P)� p)).
(3) By Def. 10.12, (2), and (1) OG(r ↑ 〈S,Π〉.SPart(G)(G′,P ∪ {r}) � r) is

true.
Case r ∈ P : By applying Fig. 10.11 toG, which adds an output for every r ∈ P .

Case G = watch ev do G′ else G′′: Follows directly from the IH. By Def. 10.23, we
have that OG(〈T1, T2〉ev) = OG(T1).

Lemma 10.33. If (SR(G,P)� p)� q ./ (SR(G,P)� q)� p, P ⊆ P ′, Part(G) ⊆ R ⊆ R′,
P ⊆ R and P ′ ⊆ R′ then (SR′(G,P ′)� p)� q ./ (SR′(G,P ′)� q)� p.
Proof (see Page 268). By induction on the structure ofG. There are two base cases and
five inductive cases:

Base Cases: The cases are G = end and G = t. We only show G = end, as the other
is similar. Let P,P ′, R, and R′ be sets of participants satisfying satisfying the
following assumptions:

Case G = end:
(1) Part(G) ⊆ R ⊆ R′ (Assumption)
(2) P ⊆ R (Assumption)
(3) P ′ ⊆ R′ (Assumption)
(4) (SR(end,P)� p)� q ./ (SR(end,P)� q)� p (Assumption)
(5) P ⊆ P ′ (Assumption)

Then, we distinguish cases depending on whether p, q belong to P ′ or not.

(a) p ∈ P ′ and q ∈ P ′.
(b) p 6∈ P ′ and q 6∈ P ′.

(c) p ∈ P ′ and q 6∈ P ′.
(d) p 6∈ P ′ and q ∈ P ′.

All the cases proceed similarly, hence we only show (a):
Sub-Case (a):

(i)
∀r ∈ P.(SR′(end,P ′)
= SR′(end,P ′) = r{1,n} ↑〈Sd, ∅〉.end

(Fig. 10.11)

(ii)
(r{1,n} ↑〈Sd, ∅〉.end� p)� q =

(!Sd.end)� q = !Sd.end
(Fig. 10.12,
Fig. 10.16, (i))

(iii) (r{1,n} ↑〈Sd, ∅〉.end� q)� p = (!Sd)� p = !Sd.end (Fig. 10.12,
Fig. 10.16, (i))

(iv) !Sd.end ./ !Sd.end (Def. 10.30,
(ii), (iii))

Appendix F. Chapter 10 381

Inductive Cases: There are five cases. As in the base cases, let P,P ′, R, and R′ be
sets of participants satisfying satisfying the following assumptions:
(1) Part(G) ⊆ R ⊆ R′ (Assumption)
(2) P ⊆ R (Assumption)
(3) P ′ ⊆ R′ (Assumption)
(4) (SR(G,P)� p)� q ./ (SR(G,P)� q)� p (Assumption)
(5) P ⊆ P ′ (Assumption)

Then, we distinguish cases depending on the shape ofG. The IH states that the
property holds for all the sub-terms G′ of type G.

Case G = r↑〈S,Π〉.G′:
IH: (SR(r↑〈S,Π〉.G′,P)� p)� q ./ (SR(r↑〈S,Π〉.G′,P)� q)� p implies that

(SR′(r↑〈S,Π〉.G′,P ′)� p)� q ./ (SR′(r↑〈S,Π〉.G′,P ′)� q)� p for every
R′,P ′ such thatR ⊆ R′ ∧ P ⊆ P ′.

We then further distinguish two cases depending on whether r ∈ P or
r 6∈ P :
Case r ∈ P : By Fig. 10.11, SR(r ↑ 〈S,Π〉.G′,P ′) = r ↑ 〈S,Π〉.SR(G′,P ∪
{r}). We then further distinguish eight sub-cases depending on the
conditions satisfied by p and q:
Sub-case r = p ∧ q ∈ Π: Then G = p↑〈S,Π〉.G′:

(i)
p↑〈S,Π〉.SR(G′,P ∪ {p})� p
= !S.(SR(G′,P ∪ {p}))� p

(Fig. 10.12)

(ii)
p↑〈S,Π〉.SR(G′,P ∪ {p})� p� q
= !S.((SR(G′,P ∪ {p}))� p)� q

(Fig. 10.16)

(iii)
p↑〈S,Π〉.SR(G′,P ∪ {p})� q� p
= ?(q, S).((SR(G′,P ∪ {p}))� q)� p

(Fig. 10.12 and
Fig. 10.16)

By (1) and (5), R ⊆ R′ and P ⊆ P ′. Thus, we distinguish two
more sub-cases: p 6∈ P ′ and p ∈ P :
Sub-case p 6∈ P ′: Notice that:

(i) p ↑ 〈S,Π〉.SR′(G′,P ′ ∪ {p}) � p � q =!S.((SR′(G′,P ′ ∪ {p})) �
p)� q by Fig. 10.12 and Fig. 10.16. Also, by assumption, Fig. 10.12
and Fig. 10.16 we have (ii) p ↑ 〈S,Π〉.SR′(G′,P ∪ {p}) � q � p =
?(q, S).((SR(G′,P ′ ∪{p}))� q)� p. Since by assumption we have
that:

((SR(G′,P ∪ {p}))� p)� q ./ ((SR(G′,P ∪ {p}))� q)� p

and thatR′ ⊇ R ∧ P ′ ⊇ P , we can apply the inductive hypoth-
esis to obtain (iii)

((SR′(G′,P ′ ∪ {p}))� p)� q ./ ((SR′(G′,P ′ ∪ {p}))� q)� p

and then we can conclude by Def. 10.30.
Sub-case p ∈ P ′: Notice that (i) SR(p ↑ 〈S,Π〉.G′,P ′) = r{1,n} ↑
〈Sd, ∅〉.tick.p ↑ 〈S,Π〉.SPart(G′)(G

′, {r}) by Fig. 10.11. Then, we

Appendix F. Chapter 10 382

have that (ii) r{1,n} ↑〈Sd, ∅〉.tick.p↑〈S,Π〉.SPart(G′)(G
′, {p})� p =

tick.!S.(SPart(G′)(G, {p})� p) by Fig. 10.12 and (iii):

tick.!S.(SPart(G′)(G, {p})� p)� q
= tick.!S.((SPart(G′)(G, {p})� p)� q

by Fig. 10.16 and Assumption. Also, by assumption, Fig. 10.12
and Fig. 10.16 we have (iv):

(r{1,n} ↑〈Sd, ∅〉.tick.p↑〈S,Π〉.SPart(G′)(G
′, {p})� p)� q

= tick.?(p, S).((SPart(G′)(G
′, {p})� q)� p

Finally, since {p} ⊆ P ′ and the length of G′ has decreased we
can apply the IH and Def. 10.30 to show that duality holds.

Sub-case r = p ∧ q 6∈ Π: This proof proceeds similarly as above, while
considering that q is not a receptor from the broadcast done by p.
Then, the case will conclude by Def. 10.30 and IH, since an output
can be dual to any type.

Sub-case r = q ∧ p ∈ Π: Symmetrical to Case r = p ∧ q ∈ Π.
Sub-case r = q ∧ p 6∈ Π: Symmetrical to Case r = p ∧ q 6∈ Π.
Sub-case p ∈ Π ∧ q ∈ Π: In this case r 6= p ∧ r 6= q, by Definition.

Notice also, that in this case both participants are receptors, and
hence, by Fig. 10.16, the input prefix obtained by Fig. 10.12 will
disappear, hence the case will conclude by the IH.

Sub-case p 6∈ Π ∧ q ∈ Π: Analogous to the case above.
Sub-case p ∈ Π ∧ q 6∈ Π: Analogous to the case above.
Sub-case p 6∈ Π ∧ q 6∈ Π: Analogous to the case above.

Case r ∈ P : We have that:

SR(r↑〈S,Π〉.G′,P ′) = r{1,n} ↑〈Sd, ∅〉.tick.r↑〈S,Π〉.SPart(G′)(G
′, {r})

by Fig. 10.11. The proof proceeds as shown above, the only difference
being the fact thatwe are adding a tick to the global type by projection.
Hence, our IH will consider Part(G′) and {r} as parameters.

Case G = pause.G′: This case is straightforward by applying the IH, since the
size of the parameters of the saturation function will only affect the pro-
jections up to the number of outputs, which are dual with any type.

Case G = µt.G′: There are two cases, but they are straightforward by applying
the IH, notice that projections do not affect the recursion, so they onlywork
internally in the body of the recursive type.

Case G = watch ev do G′ else G′′: This case again is straightforward by apply-
ing the inductive hypothesis. Similarly to the recursive type, we have to
consider that the IH is applied to both themain body and alternative body.
In the alternative body, it is necessary to consider that the size of the pa-
rameters set will not affect duality.

Appendix F. Chapter 10 383

Proposition 10.34. Let G be a global type and p 6= q. Then (Gb p)� q ./ (Gb q)� p.

Proof (see Page 269). By induction on G. Let p, q ∈ Part(G) and let Part(G) = R.

Case G = end:
(1) (endb p)� q = (SR(end, ∅)� p)� q (Fig. 10.12,

Fig. 10.11)
(2) (endb q)� p = (SR(end, ∅)� q)� p (Fig. 10.12 and

Fig. 10.11)
(3) Part(end) = R = ∅ (Definition of

Part(G))
(4) R \ P = ∅ (algebra of sets)
(5) SR(end, ∅) = S∅(end, ∅) = end (Fig. 10.11)
(6) (S∅(end, ∅)� p)� q = (end� p)� q = end� q = end ((5), Fig. 10.12,

Fig. 10.16)
(7) (S∅(end, ∅)� q)� p = (end� q)� p = end� p = end ((5), Fig. 10.12,

Fig. 10.16)
(8) end ./ end (Def. 10.30)

Case G = t: As above.

Case G = r↑〈S,Π〉.G′: We have that (G′b p)� q ./ (G′b q)� p by IH. Moreover,

(SPart(G′)(G
′, ∅)� p)� q ./ (SPart(G′)(G

′, ∅)� q)� p

by Fig. 10.12 and Fig. 10.11. Then, We distinguish cases depending on r and the
memberships of p, q in Π. There are eight cases:

Case r = p ∧ q ∈ Π: Then G = p↑〈S,Π〉.G′:
(i) By Fig. 10.11:

SPart(G)(p↑〈S,Π〉.G′, ∅) = p↑〈S,Π〉.SPart(G)(G′, {p})

(ii) By Fig. 10.12, p↑〈S,Π〉.SPart(G)(G′, {p})� p =!S.(SPart(G)(G′, {p})� p).
(iii) By Fig. 10.16, !S.(SPart(G)(G′, {p})� p)� q =!S.((SPart(G)(G′, {p})� p)� q).
(iv) By Fig. 10.12:

p↑〈S,Π〉.SPart(G)(G′, {p})� q =?(p, S).(SPart(G)(G
′, {p})� q)

(v) By Fig. 10.16, ?(p, S).(SPart(G)(G′, {p}) � q) � p =?S.((SPart(G)(G′, {p}) �
q)� p).

We conclude by Lem. 10.33 and IH that

(SPart(G′)(G
′, ∅)� p)� q ./ (SPart(G′)(G

′, ∅)� q)� p

implies !S.((SPart(G)(G′, {p})� p)� q) ./ ?S.((SPart(G)(G′, {p})� q)� p) which
is the same as saying SPart(G)(G′, {p}) ./ SPart(G)(G′, {p}).

Case r = p ∧ q 6∈ Π: Then G = p↑〈S,Π〉.G′:
(i) By Fig. 10.11:

SPart(G)(p↑〈S,Π〉.G′, ∅) = p↑〈S,Π〉.SPart(G)(G′, {p})

Appendix F. Chapter 10 384

(ii) By Fig. 10.12, p↑〈S,Π〉.SPart(G)(G′, {p})� p =!S.(SPart(G)(G′, {p})� p).
(iii) By Fig. 10.16, !S.(SPart(G)(G′, {p})� p)� q =!S.((SPart(G)(G′, {p})� p)� q).
(iv) By Fig. 10.12, p↑〈S,Π〉.SPart(G)(G′, {p})� q = SPart(G)(G′, {p})� q.
(v) By Fig. 10.16, (SPart(G)(G′, {p})� q)� p = (SPart(G)(G′, {p})� q)� p.
We then conclude by Lem. 10.33 since

(SPart(G′)(G
′, ∅)� p)� q ./ (SPart(G′)(G

′, ∅)� q)� p

implies

!S.((SPart(G)(G
′, {p})� p)� q) ./ ((SPart(G)(G′, {p})� q)� p)

which means that SPart(G)(G′, {p}) ./ SPart(G)(G′, {p}).
Case r = q ∧ p ∈ Π: Symmetrical to Case r = p ∧ q ∈ Π.
Case r = q ∧ p 6∈ Π: Symmetrical to Case r = p ∧ q 6∈ Π.
Case p ∈ Π ∧ q ∈ Π: In this case r 6= p ∧ r 6= q, hence:

(i) By Fig. 10.11:

SPart(G)(r↑〈S,Π〉.G′, ∅) = r↑〈S,Π〉.SPart(G)(G′, {r})

(ii) By Fig. 10.12, SPart(G)(r↑〈S,Π〉.G′, ∅) = r↑〈S,Π〉.SPart(G)(G′, {r}).
(iii) By Fig. 10.16, ?(r, S).(SPart(G)(G′, {p}) � p) � q = (SPart(G)(G′, {p}) � p) �

q.
(iv) By Fig. 10.12, p ↑ 〈S,Π〉.SPart(G)(G′, {p}) � q =?(r, S).(SPart(G)(G′, {p}) �

q).
(v) By Fig. 10.16, ?(p, S).(SPart(G)(G′, {p}) � q) � p = (SPart(G)(G′, {p}) � q) �

p.
We then conclude by Lem. 10.33, since

(SPart(G′)(G
′, ∅)� p)� q ./ (SPart(G′)(G

′, ∅)� q)� p

implies

((SPart(G)(G
′, {r})� p)� q) ./ ((SPart(G)(G′, {p})� q)� p)

which means that SPart(G)(G′, {r}) ./ SPart(G)(G′, {r}).
Case p 6∈ Π ∧ q ∈ Π: Analogous to the case above – concludes by Lem. 10.33.
Case p ∈ Π ∧ q 6∈ Π: Analogous to the case above – concludes by Lem. 10.33.
Case p 6∈ Π ∧ q 6∈ Π: Analogous to the case above – concludes by Lem. 10.33.

Case G = pause.G′:
(1) (pause.G′b p)� q = (SR(pause.G′, ∅)� p)� q (Fig. 10.12,

Fig. 10.11)
(2) (pause.G′b q)� p = (SR(pause.G′, ∅)� q)� p (Fig. 10.12,

Fig. 10.11)
(3) SPart(G)(pause.G′, ∅) = r{1,n} ↑〈Sd, ∅〉.pause.SPart(G′)(G

′, ∅) (Fig. 10.11)
We then distinguish cases depending on the presence of p, q in {r1, . . . rn}.
There are four cases:

Appendix F. Chapter 10 385

Case p, q ∈ {r1, . . . rn}: This case follows from the Lem. 10.33.
Case p ∈ {r1, . . . rn} ∧ q 6∈ {r1, . . . rn}: This case follows from the Lem. 10.33.
Case p 6∈ {r1, . . . rn} ∧ q ∈ {r1, . . . rn}: This case follows from the Lem. 10.33.
Case p, q 6∈ {r1, . . . rn}:

Case G = µt.G′: There are two cases, but they proceed straightforward by the IH.
Note that Part(µt.G′) = Part(G′).

Case G = watch ev do G′ else G′′: This case follows by Lem. 10.33. This is because
the duality of a watch operator depends on the duality of its components.

F.3 Properties of the Type System
Lemma 10.35. If Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 then Γ `M .Θ.

Proof (see Page 272). By induction on the height of the typing derivation

Γ ` 〈P,M,E〉 . 〈∆ �Θ〉

Base Cases:

Case bRVARc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ �Θ〉with Rule bRVARc. Then,
by inversion, we have Γ `M .Θ, concluding the proof.

Case bINACTc: By assumption, Γ ` 〈P,M,E〉. 〈∆�Θ〉with Rule bINACTc. Then,
by inversion, we have Γ `M .Θ, concluding the proof.

Case bMINITc: By assumption, Γ ` 〈P,M,E〉.〈∆�Θ〉withRule bMINITc. Notice
that the memories are empty. Hence, the judgment Γ ` M . Θ holds by
Rule bEMPTYMEMc in Fig. 10.15.

Case bMACCc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bMACCc.
Notice that the memories are empty. Hence, the judgment Γ ` M . Θ
holds by Rule bEMPTYMEMc in Fig. 10.15.

Inductive Cases:

Case bWEAKc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bWEAKc. By
inversion, Γ ` 〈P,M,E〉 . 〈∆, c : end �Θ〉. Then, by IH, Γ `M .Θ.

Case bCONTRc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 with Rule bCONTRc. By
inversion, Γ ` 〈P,M,E〉 . 〈∆ \ c : end �Θ〉. Then, by IH, Γ `M .Θ.

Case bCONCc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bCONCc.
By inversion, P = P1 | P2, Γ ` 〈P1,M,E〉 . 〈∆1, c : end � Θ〉, and Γ `
〈P1,M,E〉 . 〈∆1, c : end � Θ〉, with ∆ = ∆1,∆2. Then, by IH, Γ ` M . Θ,
concluding the proof.

Case bEMITc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bEMITc. As
above, this case concludes by applying inversion and the IH.

Appendix F. Chapter 10 386

Case bPAUSEc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bPAUSEc. By
inversion, we have that Γ `M .Θ, which is what we wanted to prove.

Case bRECc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ �Θ〉with Rule bRECc. By inver-
sion, (1) Γ, X : pause.T ` 〈P,M∅, ∅〉. 〈c : T �Θ∅〉 and (2) Γ, X : pause.T `
〈P,M,E〉 . 〈c : T �Θ〉. Then, by applying the IH on (2), we conclude that
Γ, X : pause.T ` M . Θ. Since Xis not used in typing M it implies that
Γ `M .Θ, which allows us to conclude this case.

Case bSENDFIRSTc: By assumption, Γ ` 〈P,M,E〉. 〈∆�Θ〉. From the rule it can
be deduced thatM =M ′ ∪ s[p] : ε, Θ = Θ′, s[p] : void. Then, by inversion
on the Rule, (1) Γ ` 〈P,M ′ ∪ s[p] : (dS , ∅), E〉 . 〈s[p] : T �Θ′, s[p] : (S, ∅)〉.
From IH applied to (1), we have that (2) Γ ` M ′ ∪ s[p] : (dS , ∅) .Θ′, s[p] :
(S, ∅). Notice that the judgment in (2) can only be deduced from Rule
bMERGEMEMc in Fig. 10.15, thus, by inversion we have that (3) Γ `M ′ .Θ′.
Then, applying Rule bVOIDMSGc, we have that (4) Γ ` s[p] : ε . s[p] : void.
Thus, applying Rule bMERGEMEMc, we can conclude that Γ ` M ′ ∪ s[p] :
ε .Θ′, s[p] : void, which concludes the proof.

Case bSENDMOREc, bRCVFIRSTc, bRCVMOREc, and bRCVNEXTc: The proof for each
of these cases proceeds similarly as above, by using inversion, applying the
IH and using the rules in Fig. 10.15, to deduce that the memory is typable.

Case bWATCHc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ �Θ〉with

P = watch ev doQ1{Q2}

and 〈∆ �Θ〉 = 〈TQ1
?ev TQ2

�Θ〉. By inversion on Rule bWATCHc, we have
that Γ ` 〈Q1,M,E〉 . 〈s[p] : TQ1

�Θ〉. Then, we can conclude by applying
the IH to Γ ` 〈Q1,M,E〉 . 〈s[p] : TQ1 �Θ〉.

Case bIFc: By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bIFc. The proof
proceeds by inversion and applying the IH.

Lemma 10.41 (Subject Congruence). If Γ ` C . 〈∆ � Θ〉 and C ≡ C ′ then Γ ` C ′ .
〈∆ �Θ〉.

Proof (see Page 274). By induction on the structural congruence relation in Fig. 10.5.
There are two cases:

Case P ≡ Q⇒ 〈P,M,E〉 ≡ 〈Q,M,E〉: Assume C = 〈P,M,E〉 and C ′ = 〈Q,M,E〉.
We proceed by case analysis on the hypothesis P ≡ Q. There are 4 rules by
which it may be deduced:

Case R | 0 ≡ R. Suppose P = R | 0 and Q = R. By assumption, we have that
Γ ` 〈P,M,E〉 . 〈∆ �Θ〉. This judgment is necessarily deduced using Rule
bCONCc. By inversion, (i) Γ ` 〈R,M,E〉 . 〈∆1 �Θ〉, and (ii) Γ ` 〈0,M,E〉 .
〈∆2 �Θ〉. Furthermore, the judgment in (ii) has to be necessarily deduced
using Rule bINACTc. Thus, applying inversion, (iv) ∆2 = ∆end. Thus,
we conclude by applying Rule bWEAKc to add ∆2 in (i), obtaining Γ `
〈R,M,E〉 . 〈∆1,∆2 �Θ〉.

Appendix F. Chapter 10 387

Let us now consider the inverse case, i.e., P = R and Q = R | 0. By as-
sumption, we have Γ ` 〈R,M,E〉 . 〈∆ � Θ〉, and we have to prove that
Γ ` 〈R | 0,M,E〉 . 〈∆ � Θ〉. By Lem. 10.35, (i) Γ ` M . Θ. Then, observe
that ∆0 = ∅ implies that ∆0 = ∆end by Def. 10.21. We may then apply
Rule bINACTc, using ∆0 = ∅ and (i) to derive Γ ` 〈0,M,E〉 . 〈∅ � Θ〉, and
subsequently apply Rule bCONCc to obtain Γ ` 〈R | 0,M,E〉 . 〈∆ �Θ〉.

Case watch ev do 0{R} ≡ 0. Suppose P = watch ev do 0{R} and Q = 0. By
assumption, Γ ` 〈P,M,E〉. 〈∆�Θ〉. This judgement is deduced with Rule
bWATCHc, hence ∆ = {s[p] : T0 ?ev TR}. By inversion on Rule bWATCHc,
we have (i) Γ ` M . Θ and (ii) Γ ` 〈0,M,E〉 . 〈s[p] : T0 � Θ〉. Since (ii) is
deduced by Rule bINACTc, it must be T0 = end. Hence also T0 ?ev TR = end
(cf. Def. 10.26), and we may conclude that Γ ` 〈Q,M,E〉 . 〈∆ �Θ〉.
Conversely, suppose P = 0 and Q = watch ev do 0{R}. By assumption,
Γ ` 〈0,M,E〉 . 〈∆ �Θ〉. This judgment is deduced by Rule bINACTc. By in-
version we have (i) ∆ = ∆end. Hence, we distinguish two cases: (1) ∆ =
∅ and (2) ∆ 6= ∅. In Case (1), we apply Rule bWEAKc to obtain Γ `
〈0,M,E〉 . 〈c : end � Θ〉. Then, we apply Rule bWATCHc to deduce Γ `
〈watch ev do 0{R},M,E〉 . 〈s[p] : end �Θ〉. Finally, we apply Rule bCONTRc
to conclude Γ ` 〈watch ev do 0{R},M,E〉 . 〈∅ �Θ〉.
For Case (2), consider an arbitrary s[p] ∈ dom(∆). By (i), s[p] : end ∈
∆. Then, using the contraction rule bCONTRc, we may deduce (ii) Γ `
〈0,M,E〉 . 〈s[p] : end �Θ〉. We may now apply Rule bWATCHc to the judge-
ment (ii) to obtain Γ ` 〈watch ev do 0{R},M,E〉 . 〈s[p] : end � Θ〉. Then,
by iteratively applying Rule bWEAKc to add ∆ \ s[p] : end to the session
environment, we finally obtain Γ ` 〈watch ev do 0{R},M,E〉 . 〈∆ �Θ〉.

Case R1 | R2 ≡ R2 | R1. The proof of this case is straightforward by inversion,
since the hypotheses Γ ` 〈R1,M,E〉.〈∆1�Θ〉 andΓ ` 〈R2,M,E〉.〈∆2�Θ〉
are not ordered in Rule bCONCc.

Case (R1 | R2) | R3 ≡ R1 | (R2 | R3). Again, the proof is straightforward by in-
version, considering that
(dom(∆1)∩dom(∆2))∩dom(∆3) = ∅ if and only if dom(∆1)∩ (dom(∆2)∩
dom(∆3)) = ∅.

Case C1 ≡ C2 ⇒ (νs)C1 ≡ (νs)C2: Suppose that C = (νs)C1 and C ′ = (νs)C2. By
assumption, Γ ` C . 〈∅ � ∅〉. This judgment is derived with Rule bCRESc. Then,
by inversion, Γ ` C1 . 〈∆ �Θ〉 and Co 〈∆ �Θ〉. By induction Γ ` C2 . 〈∆1 �Θ1〉,
and we can apply Rule bCRESc to this statement and to Co 〈∆1 � Θ1〉 to obtain
Γ ` (νs)C2 . 〈∅ � ∅〉, namely Γ ` C ′ . 〈∅ � ∅〉, which is what we wanted to prove.

Lemma 10.42 (Substitution Lemma). If Γ, x : S ` C . 〈∆ � Θ〉 and Γ ` v : S then
Γ ` C{v/x} . 〈∆ �Θ〉.

Proof (see Page 274). By induction on the height of the type derivation. The base cases
are rules bINACTc and bMINITc. The thesis is easily derived observing that x does not
occur free neither in 0 nor in the initiator.

Appendix F. Chapter 10 388

For the inductive cases, the interesting ones are those of rules bSENDFIRSTc and
bSENDMOREc. All other cases follow by the fact that the process under consideration
either do not contain free occurrences of x or the conclusion follows by a direct ap-
plication of the inductive hypothesis.

Let us consider the case of rule bSENDFIRSTc (the treatment for rule bSENDMOREc
will be the same). We know that:

Γ, x : S ` 〈s[p]!〈e〉.P,M ∪ s[p] : ε, E〉 . 〈s[p] :!S.T �Θ, s[p] : void〉

By inversion we have: (1) Γ, x : S ` e : S and (2) Γ, x : S ` 〈P,M ∪ s[p] :
(dS , ∅), E〉 . 〈s[p] : T �Θ, s[p] : (S, ∅)〉.

By an easy induction on the height of the type derivation of expressions, Fig. 10.14,
and from (1) we deduce Γ, v : S ` e{v/x} : S. From (2), by inductive hypothesis we
conclude Γ, v : S ` 〈P{v/x},M ∪ s[p] : (dS , ∅), E〉 . 〈s[p] : T �Θ, s[p] : (S, ∅)〉.

Finally using rule bSENDFIRSTcwe conclude this case obtaining:

Γ, v : S ` 〈(s[p]!〈e〉.P){v/x},M ∪ s[p] : ε, E〉 . 〈s[p] :!S.T �Θ, s[p] : void〉

Lemma 10.43 (Reduction Lemma). Let Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 and 〈P,M,E〉 −→
〈P ′,M ′, E′〉 via some reduction rule different from [Cont] and [Struct]. Then

〈∆ �Θ〉 ⇒ 〈∆′ �Θ′〉

and Γ ` 〈P ′,M ′, E′〉 . 〈∆′ �Θ′〉. Moreover, if 〈∆,∆0 �Θ,Θ0〉 is coherent, then 〈∆′,∆0 �
Θ′,Θ0〉 is coherent.

Proof (see Page 274). By induction on length of the reduction

〈P,M,E〉 −→ 〈P ′,M ′, E′〉

with a case analysis on the last applied rule. Notice that Case [Init] is not consid-
ered here, as we are only interested in reductions that affect the processes inside a
reachable non initial configuration.

Case [Out] : Let P = s[p]!〈e〉.P ′, andM = M ′′ ∪ {s[p] : ε} for someM ′′. P is typed
with rule bSENDFIRSTc and by hypothesis we have: e ↓ v, M ′ = M ′′ ∪ {s[p] :
(v, ∅)}, ∆ = s[p] :!S.T and Θ = Θ′′, s[p] : void.
By inversion on rule bSENDFIRSTc we know that Γ ` e : S and Γ ` 〈P ′,M ′′ ∪
{s[p] : (dS , ∅)}, E〉 . 〈s[p] : T �Θ′′, s[p] : (S, ∅)〉.
Now since Γ ` e : S and e ↓ v we know that Γ ` v : S. Hence we can conclude
that

Γ ` 〈P ′,M ′′ ∪ {s[p] : (v, ∅)}, E〉 . 〈s[p] : T �Θ′′, s[p] : (S, ∅)〉

and by using item 1 of Def. (Def. 10.36) we have that

〈s[p] :!S.T �Θ′′, s[p] : void〉 ⇒ 〈s[p] : T �Θ′′, s[p] : (S, ∅)〉

Finally by assumption we have, Co 〈s[p] :!S.T,∆0 � Θ′′, s[p] : void,Θ0〉. We
know thatCo 〈s[p] : T,∆0 �Θ′′, {s[p] : (S, ∅),Θ0}〉. We only have to consider the

Appendix F. Chapter 10 389

impact of s[p] as the other members of the environment are unchanged. Since
s[p] ∈ vdom(Θ′′, s[p] : (S, ∅),Θ0) Condition 1 of Def. 10.32 holds. For Condition
2, duality is preserved, as the generalized type of s[p] in∆will lift the necessary
output from Θ to re-construct the correct type.

Case [In]: Let P = s[q]?(p, x).P ′′ for some P ′′ and M = M ′′ ∪ {s[p] : (v,Π)} for
someM ′′, v,Π such that q /∈ Π.
P is typed with rule bRCVFIRSTc. By hypothesis we have: P ′ = P ′′{v/x}, M ′ =
M ′′ ∪ {s[p] : (v,Π ∪ q)}, ∆ = s[q] :?(p, S).T and Θ = Θ′′, s[p] : (S,Π).
By inversion on bRCVFIRSTcwe know that

Γ, x : S ` 〈P ′′,M ′′ ∪ s[p] : (v,Π ∪ {q}), E〉 . 〈s[q] : T �Θ′′, {s[p] : (S,Π ∪ {q})}〉

Now by Lem. 10.42 we can conclude that

Γ ` 〈P ′′{v/x},M ′′ ∪ s[p] : (v,Π ∪ {q}), E〉 . 〈s[q] : T �Θ′′, {s[p] : (S,Π ∪ {q})}〉

and by item 2 in Def. 10.36

〈s[q] :?(p, S).T �Θ′′, s[p] : (S,Π)〉 ⇒ 〈s[q] : T �Θ′′, s[p] : (S,Π ∪ {q})〉

Finally, we prove Co 〈s[q] : T,∆0 � Θ′′, s[p] : (S,Π),Θ0〉. Let us check the
first condition for coherence; notice that Co 〈∆,∆0 � Θ,Θ0〉 implies that ei-
ther s[q] ∈ vdom(Θ,Θ0) or OG(?(p, S).T). In both cases coherence holds by
assumption. Now, to check duality, let ∆0 = ∆′0, s[p] : T

′ and we know that
s[p] : (S,Π) ∈ Θ. Hence, by assumption 〈∆,∆0 � Θ,Θ0〉(s[q]) =?(p, S).T and
〈∆,∆0 � Θ,Θ0〉(s[p]) =!S.T ′. Furthermore, ?(p, S).T ./ !S.T ′ implies T ./ T ′

by Def. 10.30 and therefore, T ./ !s.T ′, which in turn, ensures that duality is
preserved in 〈∆′,∆0 �Θ′,Θ0〉.

Case [Emit]: Immediate, since this rule does not change the memory nor the config-
uration environment.

Case [Watch]: Let P = watch ev do P ′{Q}. By assumption we know

〈P,M,E〉 −→ 〈watch ev do P ′{Q},M ′, E′〉

and Γ ` 〈P,M,E〉 . 〈T ′P ?ev TQ � Θ〉 . By inversion on rule bWATCHc we have
Γ ` 〈P,M,E〉 . 〈TP ′ �Θ〉, Γ ` 〈Q,M∅, E〉 . 〈TQ �Θ∅〉 and OG(TQ). By inductive
hypothesis we have Γ ` 〈P ′,M ′, E′〉 . 〈TP � Θ′〉 and 〈TP ′ �Θ〉 ⇒ 〈T ′P ′ �Θ′〉.
Hence, by item 3 in Def. 10.36 we conclude
〈TP ′ ?ev TQ �Θ〉 ⇒ 〈T ′P ′ ?ev TQ �Θ′〉.
Finally, assume Co 〈TP ′ ?ev TQ,∆0 � Θ,Θ0〉. This implies Co 〈TP ′ ,∆0 � Θ,Θ0〉
and hence, by inductive hypothesis we haveCo 〈T ′P ′ ,∆0�Θ′,Θ0〉, which in turn
implies Co 〈T ′P ′ ?ev TQ,∆0 �Θ′,Θ0〉.

Case [Rec]: The proof proceeds as above by using the inductive hypothesis.

Appendix F. Chapter 10 390

Lemma 10.44 (Tick Reduction of Configuration Environments Preserves Duality).
If 〈∆�Θ〉 yE 〈∆′ �Θ′〉 then∆′ = [∆]E , dom(∆′) ⊆ dom(∆) andΘ′ = Θ∅. Moreover, if
〈∆�Θ〉 satisfies duality then also 〈∆′�Θ′〉 satisfies duality and for any s[p], s[q] ∈ dom(∆′),
if s[p] : Tp ∈ ∆ and s[q] : Tq ∈ ∆ , then 〈∆ �Θ〉(s[p])� q ./ 〈∆ �Θ〉(s[q])� p if and only if
[Tp]E � q ./ [Tq]E � p.

Proof (see Page 275). By induction on the definition of y . There is only one basic
case, corresponding to Rule (Pause).

Case (Pause): In this case 〈∆ �Θ〉 yE 〈∆′ �Θ′〉 is deduced by Rule 1. of Def. 10.37
and we have ∆ = pause(∆′), E = ∅, ∆′ = [∆]E and Θ′ = Θ∅. Moreover
dom(∆′) = dom(∆).
Assume now s[p] : Tp ∈ ∆ and s[q] : Tq ∈ ∆ . Then, letting T ′p = [Tp]E and
T ′q = [Tq]E , we have:

Tp = pause.T ′p Tq = pause.T ′q s[p] : T ′p ∈ ∆′ s[q] : T ′q ∈ ∆′

We want to prove the duality of 〈∆′ � Θ∅〉 assuming the duality of 〈∆ � Θ〉.
Note that 〈∆′ � Θ∅〉(s[p]) = T ′p and 〈∆′ � Θ∅〉(s[q]) = T ′q. On the other hand,
there are two possibilities for 〈∆ � Θ〉(s[p]): either 〈∆ � Θ〉(s[p]) = Tp, in case
s[p] /∈ vdom(Θ), or 〈∆ � Θ〉(s[p]) = !Sp.Tp, in case s[p] : (Sp,Πp) ∈ Θ. Similarly,
either 〈∆ �Θ〉(s[q) = Tq or 〈∆ �Θ〉(s[q]) = !Sq.Tq.

Let now τp = Tp � q, τq = Tq � p, and τ ′p = T ′p � q, τ ′q = T ′q � p. Since projection
preserves pause, we have τp = pause.τ ′p and τq = pause.τ ′q. Then:

〈∆′ �Θ∅〉(s[p])� q = T ′p � q = τ ′p 〈∆′ �Θ∅〉(s[q])� p = T ′q � p = τ ′q

Moreover, we have:

either 〈∆ �Θ〉(s[p)� q = τp or 〈∆ �Θ〉(s[p])� q = !Sp.τp

either 〈∆ �Θ〉(s[q)� p = τq or 〈∆ �Θ〉(s[q])� p = !Sq.τq

We want to show τ ′p ./ τ
′
q. By assumption duality holds for 〈∆ � Θ〉, so we are

in one of the four cases:

τp ./ τq i.e. pause.τ ′p ./ pause.τ ′q
!Sp.τp ./ τq i.e. !Sp.pause.τ

′
p ./ pause.τ ′q

τp ./ !Sq.τq i.e. pause.τ ′p ./ !Sq.pause.τ
′
q

!Sp.τp ./ !Sq.τq i.e. !Sp.pause.τ
′
p ./ !Sq.pause.τ

′
q

Now, it is easy to see that any of the four statements on the right-hand side im-
plies τ ′p ./ τ ′q. Hence we have shown duality of 〈[∆]E �Θ∅〉 andmore specifically
that 〈∆ �Θ〉(s[p])� q ./ 〈∆ �Θ〉(s[q])� p if and only if [Tp]E � q ./ [Tq]E � p.

Case (Tick): Analogous to the previous case.

Case (In): This case is vacuously true, since ∆ = s[q] :?(p, S).T and hence it does
not have any other type to be compared to.

Appendix F. Chapter 10 391

Case (Par): In this case 〈∆ � Θ〉 yE 〈∆′ � Θ′〉 is deduced by Rule 4. of Def. 10.37.
Therefore ∆ = (∆1,∆2) and 〈∆i �Θ〉 yEi 〈∆′i �Θ′〉, for i = 1, 2. By induction
∆′i = [∆i]E , dom(∆′i) ⊆ dom(∆i) and Θ′ = Θ∅. Now, suppose 〈∆1,∆2 � Θ〉
satisfies duality. We want to show that also 〈[∆1,∆2]E �Θ∅〉 = 〈[∆1]E1

, [∆2]E �
Θ∅〉 satisfies duality. Note that since the ∆i have disjoint domains, the duality
of 〈∆1,∆2 �Θ〉 entails the duality of each 〈∆i �Θ〉. Then by induction also each
〈[∆i]E �Θ∅〉 satisfies duality. Hence, to check duality of 〈[∆1]E , [∆2]E �Θ∅〉we
only have to look at pairs s[p1], s[p2] such that s[p1] ∈ dom([∆1]E) and s[p2] ∈
dom([∆2]E), because the other cases (i.e., when pairs belong to only one single
∆i) conclude by IH. Let s[p1], s[p2] be such a pair. Recalling that dom([∆i]E) ⊆
dom(∆i), this means that for each i = 1, 2, there exists Ti such that s[pi] : Ti ∈
∆i. By definition this implies s[pi] : [Ti]E ∈ [∆i]E . Let T ′i = [Ti]Ei

. Thus we
have:

〈[∆1,∆2]E �Θ∅〉(s[p1]) = T ′1 〈[∆1,∆2]E �Θ∅〉(s[p2]) = T ′2

As regards 〈∆1,∆2 �Θ〉(s[pi]), we have:

either 〈∆1,∆2 �Θ〉(s[pi]) = Ti if s[pi] /∈ vdom(Θ)

or 〈∆1,∆2 �Θ〉(s[pi]) = !Si.Ti if s[pi] : (Si,Πi) ∈ Θ

Let now τ1 = T1 � p2 and τ2 = T2 � p1 and τ ′1 = T ′1 � p2 and τ ′2 = T ′2 � p1. We
need to prove that τ1 ./ τ2 implies τ ′1 ./ τ ′2. There are then 4 cases to analyze:

τ1 ./ τ2

!S1.τ1 ./ τ2

τ1 ./ !S2.τ2

!S1.τ1 ./ !S2.τ2

this proceeds as follows:

Case τ1 ./ τ2: We need to apply induction on the structure of τ1, base case is
τ1 = end:
Case τ1 = end ∨ τ1 = t ∨ τ1 =!S.τ ′′1 ∨ τ ′′1 =?S.τ ′′1 : Let τ2 = µt.τ ′′2 and τ2 =

pause.τ ′′2 . Then, the statement is vacuously true, since duality does not
hold, and for the other case, duality proceeds simply by assumption,
since the types do not change.

Case τ1 = pause.τ ′′1 : Now, we apply a case analysis on τ2:
Case τ2 = pause.τ ′′2 : In this case we have that pause.τ ′′1 ./ pause.τ ′′2 .

Then we also can say that [pause.τ ′′1]E = τ ′′1 and [pause.τ ′′2]E = τ ′′2 .
Moreover, since we know that T ′i = [Ti]E , then we know that τ ′′1 =
τ ′1 and τ ′′2 = τ ′2, and hence it is clear that τ ′1 ./ τ ′2 by Def. 10.30. All
the other cases are vacuously true.

Case τ1 = µt.τ ′′1 : Wecan only proceed for the casewhen τ1 = µt′.τ ′′2 , other
cases are vacuously true. In this case, we proceed by applying the IH,
since we are looking at the bodies of the recursive types.

Appendix F. Chapter 10 392

Case τ1 = 〈ϕ1, ψ1〉e: For this case we only need to look at τ2 = 〈ϕ2, ψ2〉e,
all the other cases are vacuously true. For this casewe have to consider
two sub-cases depending on whether e ∈ E or e 6∈ E:
Sub-case e ∈ E: In this case, by assumption, we have that 〈ϕ1, ψ1〉e ./
〈ϕ2, ψ2〉e. Also, by Def. 10.38 we have that [〈ϕ1, ψ1〉e]E = ψ1 and
[〈ϕ2, ψ2〉e]E = ψ2, hence τ ′1 = ψ1 and τ2 = ψ2. Notice that by
Def. 10.30, 〈ϕ1, ψ1〉e ./ 〈ϕ2, ψ2〉e implies ϕ1 ./ ϕ2 and ψ1 ./ ψ2 and
therefore, we conclude by assumption.

Sub-case e 6∈ E: This case concludes by applying the IH hypothesis,
since the reconditioning is applied to the first part of the watch
type.

Case !S.τ1 ./ τ2: As above, we apply induction on the structure of τ1 and ob-
tain the same cases. This is possible if we consider the fact that the duality
of !S.τ1 ./ τ2 implies the duality of τ1 ./ τ2.

Case τ1 ./ !S.τ2: As above.
Case !Sτ1 ./ !S′.τ2: As above, notice that the reasoning is: By Def. 10.30,

!Sτ1 ./ !S.τ2 implies τ1 ./ !S.τ2, which in turn implies !Sτ1 ./ τ2 and from
here on, the reasoning is as the above mentioned cases.

Case (Watch): In this case 〈∆ �Θ〉 yE 〈∆′ �Θ′〉 is deduced by Rule 6. of Def. 10.37.
Then∆ = ∆1 ?ev∆2. There are two cases two consider, depending on the result
of the composition operator in Def. 10.26:

Case∆1 = ∆end: This case is vacuously true since there is no reduction for a
terminated environment.

Case∆1 6= ∆end: In this case, again we have two cases to consider, depending
on whether ev ∈ E or not:
Case ev ∈ E: In this case, we have by Def. 10.38 that [∆1 ?ev ∆2]E = ∆2,

since by assumption ev ∈ E, also, by assumption we have that ∆′ =
∆2, hence ∆′ = [∆1 ?e ∆2]E , and applying the IH we have that 〈∆ �
Θ〉 yE 〈∆′ � Θ∅〉, thus proving the first part of the lemma. Notice
also that by Def. 10.26 we have that dom(∆1) = dom(∆2) or the func-
tion would be undefined and hence dom(∆′) ⊆ dom(∆). Now, let us
assume that 〈∆1 ?ev ∆2 � Θ〉 satisfies duality, we need to prove that
〈[∆1 ?ev ∆2]E �Θ∅〉 also satisfies duality. For this we consider two ar-
bitrary s[p] : Tp, s[q] : Tq ∈ ∆. This means then that, as above we have
two possibilities for each participant-type pair:

〈∆1 ?ev ∆2 �Θ〉(s[p]) = Tp ∨ 〈∆1 ?ev ∆2 �Θ〉(s[p]) =!S.Tp

〈∆1 ?ev ∆2 �Θ〉(s[q]) = Tp ∨ 〈∆1 ?ev ∆2 �Θ〉(s[q]) =!S′.Tq

Then, let Tp � q = τp and Tq � p = τq, then, as above, we have the

Appendix F. Chapter 10 393

following cases:
τp ./ τq

!Sp.τp ./ τq

τp ./ !Sq.τq

!Sp.τp ./ !S′q.τq

Lastly, the proof proceeds as above by cases. Notice, however, that
by Def. 10.26, one has that for all c : T ∈ ∆ the type T = 〈T1, T2〉ev .
Furthermore, since duality for the watch type is defined pairwise (cf.
Def. 10.30) and considering the fact that the reconditioning in the
presence of ev does not change the environment ∆2, we can conclude
that 〈∆2 �Θ〉 preserves duality, concluding this case.

Case ev /∈ E: This case proceeds with a reasoning similar to the Case τ1 =
µt.τ ′′1 above: by IH and case analysis. We need to consider the full
environment, and check only ∆1, since ∆2 remains untouched.

Lemma 10.45 (Suspension Lemma). Let 〈P,M,E〉‡ and Γ ` 〈P,M,E〉.〈∆�Θ〉. Then
we have that 〈∆ �Θ〉 y 〈[∆]E �Θ∅〉 and Γ ` 〈[P]E ,M∅, ∅〉 . 〈[∆]E �Θ∅〉. Moreover, if
〈∆ �Θ〉 is coherent then 〈[∆]E �Θ∅〉 is coherent.

Proof (see Page 275). By induction on the definition of 〈P,M,E〉‡. The basic cases cor-
respond to the suspension rules (pause), (outs), (ins) and (in2s), and the inductive
cases to rules (pars), (watchs) and (recs). We start with the basic cases.

Case (pause): Assume P = pause. P ′. Hence [P]E = P ′. By assumption Γ `
〈P,M,E〉 . 〈∆ � Θ〉. This judgement is derived by Rule bPAUSEc, hence ∆ =
pause.T and [∆]E = T . By inversion on Rule bPAUSEc we have Γ ` M . Θ,
OG(T), and Γ ` 〈P ′,M∅, ∅〉 . 〈T � Θ∅〉. The latter is the required judgement
Γ ` 〈[P]E ,M∅, ∅〉. 〈[pause.T]E �Θ∅〉. Moreover, 〈pause.T �Θ〉 y 〈[pause.T]E �
Θ∅〉 = 〈T � Θ∅〉 by Clause 1. of Def. 10.37. Assume now that 〈∆ � Θ〉 is coher-
ent. Then 〈[∆]E �Θ∅〉 is coherent, since Condition 1. of Def. 10.32 follows from
OG(T) and Condition 2. of Def. 10.32 follows from Lem. 10.44.

Case (outs): Assume P = s[p]!〈e〉.P ′ andM = M0 ∪ {s[p] : (w,Π)}. By assumption
Γ ` 〈P,M,E〉 . 〈∆ � Θ〉. This judgement is deduced by Rule bSENDMOREc,
therefore, assuming e ↓ v, Γ ` v : S and Γ ` w : S′, it has the form:

Γ ` 〈s[p]!〈e〉.P ′,M0 ∪ {s[p] : (w,Π)}, E〉 . 〈s[p] : tick.!S.T �Θ0, s[p] : (!S
′,Π)〉

where∆ = s[p] : tick.!S.T andΘ = Θ0, s[p] : (!S
′,Π). By reconditioning P and

∆we obtain [P]E = P = s[p]!〈e〉.P ′ and [∆]E = s[p] :!S.T . By inversion on Rule
bSENDMOREcwe have Γ ` 〈P ′,M∅0 ∪ s[p] : (v, ∅), ∅〉 . 〈s[p] : T �Θ∅0 ∪ s[p] : (S, ∅)〉,
where Γ ` M0 . Θ0. This is the premise we need to apply Rule bSENDFIRSTc to
〈s[p]!〈e〉.P ′,M∅0 ∪ s[p] : ε, ∅〉 = 〈[P]E ,M∅, ∅〉. By this rule we deduce:

Γ ` 〈s[p]!〈e〉.P ′,M∅0 s[p] : ε, ∅〉 . 〈s[p] :!S.T �Θ∅0, s[p] : void〉

Appendix F. Chapter 10 394

that is, Γ ` 〈[P]E ,M∅, ∅〉.〈[∆]E�Θ∅〉, given thatM∅ =M∅0∪s[p] : ε, [∆]E = s[p] :
!S.T and Θ∅ = Θ∅0, s[p] : void (the latter follows from Θ = Θ0, s[p] : (!S

′,Π)).
Again, we have 〈∆�Θ〉 y 〈[∆]E �Θ∅〉 by Clause 1. of Def. 10.37. What is left to
show is coherence of 〈[∆]E �Θ∅〉. It is easy to see that Condition 1. is satisfied,
because OG(!S.T) implies OG([∆live]E). As for Condition 2., it follows again
from Lem. 10.44.

Case (ins): Here P = s[q]?(p, x).P ′ and M = M0 ∪ s[p] : ε. By assumption Γ `
〈P,M,E〉. 〈∆�Θ〉. This judgement is deduced by Rule bRCVNEXTc, hence it has
the form:

Γ ` 〈s[q]?(p, x).P ′,M0 ∪ s[p] : ε, E〉 . 〈s[q] :?(p, S).T �Θ0, s[p] : void〉

We will call the derivation tree obtained by the previous hypothesis D1.
Through reconditioningwe obtain: [P]E = P = s[q]?(p, x).P ′ andwe show that
Γ ` 〈P,M∅, E〉.〈∆′�Θ∅〉. This judgement is again deduced by Rule bRCVNEXTc,
hence it has the form:

Γ ` 〈s[q]?(p, x).P ′,M∅ ∪ s[p] : ε, E〉 . 〈s[q] :?(p, S).T ′ �Θ∅, s[p] : void〉

By inversion we have Γ ` 〈P ′,M∅ ∪ s[p] : (v, {q}), ∅〉 . 〈s[q] : T ′ � s[p] : (S, {q})〉
andΓ ` v : S. We also have thatΓ `M∅.Θ∅, by applying the Rules in Fig. 10.15.
The previously obtained derivation tree will be called D2. We now proceed by
induction on the structure of P ′: we will prove that T ′ = trm(T)0{p}.

Case P ′ = 0: By using Rule bINACTc we obtain Γ ` 〈0,M∅ ∪ s[p] : (v, {q}), ∅〉 .
〈s[q] : end�s[p] : (S, {q})〉 and by Fig. 10.19we have that end = trm(end)0{p}.

Case P ′ = ā[n] or P ′ = a[p](α).P ′′: This case is vacuously true as we are
considering single session processes. Hence, there cannot be session initi-
ations in a continuation.

Case P ′ = s[q]!〈e〉.P ′′: We distinguish the following two cases, depending on
the memoryM :
CaseM0(s[q]) 6= ε: Wehave that onD1 wewill have that T = tick.!S1.T1,

since this derivation is obtained by using Rule bSENDMOREc. For the
D2 we need to show then that T ′ = trm(T)0{p}; for this is enough to
observe that T ′ = trm(T)0{p} =!S1.T1, by Fig. 10.19, and hence, we can
apply Rule bSENDFIRSTc. Finally, we can conclude by IH.

CaseM0(s[q]) = ε: We have that onD1 wewill have that T =!S1.T1, since
this derivation is obtained by using Rule bSENDFIRSTc. By inversionwe
obtain:

Γ `〈P ′′,M ′0 ∪ s[q] : (v′, ∅) ∪ s[p] : (v, {q}), E〉
. 〈s[q] : T1 �Θ′, s[p] : (v, {q}, s[q] : (S1, ∅)〉

withM0 =M ′0 ∪ s[q] : (v′, ∅) and Θ = Θ′, s[q] : (S1, ∅).
Notice now that on D2 we have that the judgment is also deduced by
Rule bSENDFIRSTc, hence, by inversion: Γ ` 〈P ′,M∅1 ∪ s[q] : (v′, ∅) ∪

Appendix F. Chapter 10 395

s[p] : (v, {q}), ∅〉 . 〈s[q] : T ′1 � Θ∅1, s[q] : (S1∅), s[p] : (S, {q})〉, with
M∅ =M∅1 ∪ s[q] : (v′, ∅) and Θ∅ = Θ∅1, s[q] : (S1∅).
We know by Fig. 10.19 that T ′ = trm(T)0{p} =!S1.T

′
1. We need then to

show that T ′1 = trm(T1)
1
{p}; this is done by induction on P ′′:

Case P ′′ = 0: In this case again, by Rule bINACTc on D1 we obtain
that Γ ` 〈0,M∅1 ∪ s[q] : (v′, ∅) ∪ s[p] : (v, {p}), ∅〉 . 〈s[q] : end �
Θ∅1, s[q] : (S1∅), s[p] : (S, {p})〉 and since by Fig. 10.19, we have that
trm(end)1{p} = end, then we can conclude inD2 with Rule bINACTc.

Case P ′′ = ā[n] or P ′ = a[p](α).P ′′: This case is vacuously true as we
are considering single session processes. Hence, there cannot be
session initiations in a continuation.

Case P ′′ = s[q]!〈e〉.P ′′: In this case, on D1 we use Rule bSENDMOREc,
therefore, we have that T1 = tick.!S2.T2 and since trm(T1)

1
{p} =

T1 = tick.!S2.T2 we have, by Fig. 10.19, that T ′1 = trm(T1)
1
{p}.

Therefore, we can concludeD2 by applying Rule bSENDMOREc and
the IH.

Case P ′′ = s[q]?(r, x).P ′′: In this case, on D1 we need to distinguish
cases depending on r:
Case r ∈ {p}: In this case we have that r = p and therefore,
the judgment om D1 is deduced from Rule bRCVMOREc, which
means that T1 = tick.?(p, S2).T2. Hence,

T1 = trm(tick.?(p, S2).T2)
1
{p} = tick.?(p, S2).T2

We can then conclude by applying IH.
Case r 6∈ {p}: In this casewe need to distinguish cases depending
on the memoryM0:
Case M0(s[r]) = ε: In this case we have that on D1 the judg-
ment is deduced from Rule bRCVFIRSTc and therefore T1 =
?(r, S2).T2 and T ′1 =?(r, S2).T

′
2. By IH and Fig. 10.19 we have

that T ′2 = trm(T2)
1
{p,r} and therefore, T ′1 = trm(?(r, S2).T2)

1
{p},

which is what we wanted to prove.
Case M0(s[r]) 6= ε: In this case we apply Rule bRCVMOREc on
D1 and therefore T1 = tick.?(r, S2).T2. Observe then that in
D2 wewill apply Rule bRCVFIRSTc and T ′1 =?(r, S2).T

′
2. Finally

by IH and Fig. 10.19 we have that trm(T1)1{p} =?(r, S2).T2 and
T ′2 = T2, hence concluding the proof.

Case P ′′ = recX .P ′′′: This case concludes by inversion on Rule
bRECc and applying the IH on the premises.
Case P ′′ = pause. P ′′′: Note that since, by Fig. 10.19, function
trm(pause.T)1{p} = pause.T , the case is straightforward by IH.
Case P ′′ = P ′′′ | Q, P ′′ = if e then P ′′′ elseQ, P ′′ = emit ev. P ′′′

and P ′′ = watch ev do P ′′′{Q}: Again, these cases conclude by
applying the IH on the premises of the Rules, obtained by in-
version.

Appendix F. Chapter 10 396

Case P ′ = s[q]?(r, x).P ′′: We distinguish cases depending on r:
Case r ∈ {p}: This case proceeds as above, by considering that inD1 and

D2 we apply bRCVMOREc. The equality is preserved, since this type is
not changed by function trm(T)0{p}.

Case r ∈ {p}: We distinguish cases depending on the memoryM0:
CaseM0(s[r]) = ε: This case concludes by applying the IH, since we

have that function trm(·)0{p,r} is applied recursively on the contin-
uation T1.

Case M0(s[r]) 6= ε: This case concludes as Case r ∈ {p}, since the
judgment on D1 is deduced from bRCVMOREc.

Case P ′ = recX .P ′′: This case proceeds by applying the IH on the premises
obtained by inversion Rule bRECc.

Case P ′ = pause. P ′′: This case proceeds straightforward because trm(·)0{p}
does not change type T = pause.T1 and bothD1, D2 use Rule bPAUSEc and
conclude by IH.

Cases: P ′ = P ′′ | Q, P ′ = if e then P ′′ else Q, P ′ = emit ev. P ′′, and P ′ =
watch ev do P ′′{Q}. These three cases are concluded by applying the IH
on the premises obtained by inversion in each of the respective Rules (i.e.,
bCONCc, bIFc,bEMITc, bWATCHc).

Note that once more, we have 〈∆�Θ〉 y 〈[∆]E �Θ∅〉 by Clause 3. of Def. 10.37.
Moreover, 〈[∆]E � Θ∅〉 is coherent: Condition 1. holds since, assuming that
〈∆�Θ〉 is coherent since, by assumptionOG(?(p, S)).T is true, and Condition 2.
follows from Lem. 10.44.

Case (in2s): Here P = s[q]?(p, x).P ′ and M = M0 ∪ {s[p] : (w,Π)} with q ∈ Π.
By assumption Γ ` 〈P,M,E〉 . 〈∆ � Θ〉. This judgment is deduced by Rule
bRCVMOREc, hence it has the form:

Γ `〈s[q]?(p, x).P ′,M0 ∪ s[p] : (w,Π), E〉
. 〈s[q] : pause.?(p, S).T �Θ0, s[p] : (S

′,Π)〉

Through reconditioning we obtain: [P]E = P = s[q]?(p, x).P ′ and [∆]E = s[p] :
?(p, S).T . By inversion on Rule bRCVMOREcwe have q ∈ Π, Γ ` v : S, Γ ` w : S′,
Γ `M0.Θ0, OG(T), andΓ, x : S ` 〈P ′,M∅0∪s[p] : (v, {q}), ∅〉.〈s[q] : T �Θ∅0, s[p] :
(S, {q})〉.
These statements may now be used as premises for applying Rule bRCVNEXTc
to the configuration
〈[P]E ,M∅, ∅〉 = 〈s[q]?(p, x).P ′,M∅0 ∪ s[p] : ε, ∅〉. By this Rule we obtain:

Γ ` 〈s[q]?(p, x).P ′,M∅0 ∪ s[p] : ε, ∅〉 . 〈s[q] :?(p, S).T �Θ∅0, s[p] : void〉

This is the required judgment Γ ` 〈[P]E ,M∅, ∅〉 . 〈[∆]E � Θ∅〉. Note that once
more, we have 〈∆ � Θ〉 y 〈[∆]E � Θ∅〉 by Clause 1. of Def. 10.37. Moreover,
〈[∆]E � Θ∅〉 is coherent: Condition 1. holds because OG(T), and Condition 2.
follows from Lem. 10.44.
We now turn to the inductive cases, corresponding to rules (pars), (watchs) and
(recs):

Appendix F. Chapter 10 397

Case (pars): Here P = P1 | P2, and 〈P1 | P2,M,E〉‡ is deduced from 〈P1,M,E〉‡
and 〈P2,M,E〉‡. Notice that the two components P1 and P2 are run in the same
memory M and set of events E. By assumption Γ ` 〈P,M,E〉 . 〈∆ � Θ〉. This
judgment is deduced by Rule bCONCc, withM1 = M2 = M and E1 = E2 = E,
hence the deduction has the form:

Γ ` 〈Pi,M,E〉 . 〈∆i �Θ〉, i = 1, 2

Γ ` 〈P1 | P2,M,E〉 . 〈∆1,∆2 �Θ〉

By induction, 〈Pi,M,E〉‡ and Γ ` 〈Pi,M,E〉.〈∆i�Θ〉 imply Γ ` 〈[Pi]E ,M
∅, ∅〉.

〈[∆i]E � Θ∅〉 for i = 1, 2. Moreover, 〈∆i � Θ〉 y 〈[∆i]E � Θ∅〉 and coher-
ence of 〈∆i � Θ〉 implies coherence of 〈[∆i]E � Θ∅〉. We want to show that
Γ ` 〈[P1 | P2]E ,M

∅, ∅〉 . 〈[∆1,∆2]E �Θ∅〉, and that coherence of 〈∆1,∆2 � Θ〉
implies coherence of 〈[∆1,∆2]E � Θ∅〉. From Fig. 10.15, we have that Γ ` M∅ .
Θ∅. We may then apply Rule bCONCc to the premises Γ ` M∅ . Θ∅ and Γ `
〈[Pi]E ,M

∅, ∅〉 . 〈[∆i]E � Θ∅〉 for i = 1, 2, to deduce Γ ` 〈[P1]E | [P2]E ,M
∅, ∅〉 .

〈[∆1]E , [∆2]E , �Θ∅〉. By definition of reconditioning, [P1 | P2]E = [P1]E | [P2]E
and 〈[∆1,∆2]E �Θ∅〉 = 〈[∆1]E , [∆2]E �Θ∅〉. Hence we have the required judg-
ment Γ ` 〈[P1 | P2]E ,M

∅, ∅〉 . 〈[∆1,∆2]E , �Θ∅〉. Let us check now coherence
preservation. Assuming Co 〈∆1,∆2 �Θ〉, we want to show Co 〈[∆1,∆2]E �Θ∅〉.
To prove Condition 1., observe thatCo 〈∆1,∆2 �Θ〉 impliesCo 〈∆i �Θ〉 for each
i = 1, 2. Then by induction we have Co 〈[∆i]E �Θ∅〉.
This implies OG([∆live

i]E) for each i, from which we deduce that

OG([∆live
1]E , [∆

live
2]E)

holds, which implies OG([∆live
1 ,∆live

2]E).
Moreover, from 〈∆i � Θ〉 y 〈[∆i]E � Θ∅〉 for i = 1, 2 we deduce 〈∆1,∆2 �
Θ〉 y 〈[∆1,∆2]E � Θ∅〉 by Def. 10.37(Rule 4.). Then we may use Lem. 10.44
again to obtain Condition 2.

Case (watch_s): Here P = watch ev do P1{P2} and 〈watch ev do P1{P2},M,E〉‡ is
deduced from 〈P1,M,E〉‡. The judgment Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 is deduced
by Rule bWATCHc and has the form:

Γ ` 〈watch ev do P1{P2},M,E〉 . 〈s[p] : T1 ?ev T2 �Θ〉

By inversion on rule bWATCHcwe obtainΓ ` 〈P1,M,E〉 . 〈s[p] : T1 �Θ〉, as well
as Γ ` 〈P2,M

∅, E〉 . 〈s[p] : T2 � Θ∅〉 and OG(∆2). Note that it is not the case
that T1 = end because in this case the configuration 〈watch ev do P1{P2},M,E〉
would be terminated and not suspended.

Now, the form of [P]E and [∆]E will depend on the presence or absence of ev
in E, namely:

1. If ev ∈ E then [P]E = P2 and [s[p] : T1 ?ev T2]E = s[p] : T2; in this
case, by inversion on rule bWATCHcwe obtain the required judgement Γ `
〈P2,M

∅, E〉 . 〈s[p] : T2 �Θ∅〉. Now, assume Co 〈∆ �Θ〉. We want to show
Co 〈s[p] : T2 �Θ∅〉. Condition 1. follows immediately from OG(T2). As for
Condition 2., notice that it follows from Lem. 10.44.

Appendix F. Chapter 10 398

2. If ev /∈ E, then [P]E = watch ev do [P1]E{P2} and [s[p] : T1 ?ev T2]E = s[p] :
[T1]E ?ev T2. By inversion on Rule bWATCHc we get Γ ` 〈P1,M,E〉 . 〈s[p] :
T1 �Θ〉, and by applying the IH, we can obtain that Γ ` 〈P1,M,E〉 . 〈s[p] :
[T1]E�Θ∅〉 andwe can use this hypothesis to conclude using Rule bWATCHc.
Now, for the second part, assumeCo 〈s[p] : T1 ?ev T2 �Θ〉, we want to show
that Co 〈s[p] : [T1]E ?ev T2 � Θ〉. By inversion and IH we know then that
Co 〈[s[p] : T1]E �Θ∅〉 and since T1 = endwe also have that OG(T2). Hence,
it is true that Co 〈s[p] : [T1]E ?ev T2 � Θ∅〉, satisfying Condition 1.. The
second condition follows directly from Lem. 10.44.

Case (recs): Here P = (rec X .P ′) and 〈(rec X .P ′),M,E〉‡ is deduced from

〈P ′{pause. recX .P ′
/X}),M,E〉‡

The judgement Γ ` 〈P,M,E〉 . 〈s[p] : T �Θ〉 is obtained from Rule bRECc and is
as follows:

Γ ` 〈(rec X .P),M,E〉 . 〈s[p] : T �Θ〉

by inversion, we have that Γ, X : pause.T ` 〈P,M∅, E〉. 〈s[p] : T �Θ∅〉 and then
by IH we have that Γ, X : pause.T ` 〈P,M∅, E〉 . 〈[s[p] : T]E � Θ∅〉. Then, it is
enough to apply Rule bRECcwith the previous hypothesis used twice to obtain:

Γ ` 〈(rec X .P),M∅, E〉 . 〈[s[p] : T]E �Θ∅〉

to proof the first part of the theorem. Supposing then Co 〈∆ �Θ〉 and that 〈∆ �
Θ〉 y 〈[∆]E �Θ∅〉 then 〈[∆]E �Θ∅〉 is coherent. This follows directly by IH and
Lem. 10.44 as the proof is reduced to checking each type inside ∆.

Theorem 10.46 (Subject Reduction). Let C be a reachable configuration and C ;+ C ′.
If Γ ` C . 〈∆ � Θ〉 then Γ ` C ′ . 〈∆′ � Θ′〉 and 〈∆ � Θ〉 ∗〈∆′ � Θ′〉 for some ∆′,Θ′.
Moreover if 〈∆ �Θ〉 is coherent then 〈∆′ �Θ′〉 is coherent.

Proof (see Page 275). By induction on the length n of the reduction sequence ;+.

Case n = 1: We distinguish two more cases, depending on whether C is an initial
configuration or not.

(a) C = 〈P,M,E〉 is initial. In this case

C = 〈a[1](α1).P1 | . . . | a[n](αn).Pn | ā[n], ∅, ∅〉

and C ; C ′ is a reduction deduced by Rule [Init]. Hence:

C ′ = (νs)〈P1{s[1]/α1} | . . . | P1{s[n]/αn},M∅s , ∅〉

Moreover, the type judgment Γ ` C . 〈∆ � Θ〉 is deduced using Rules
bMINITc, bMACCc and bCONCc and thus it has the form (i) Γ ` C . 〈∅ � ∅〉.
From (i), using inversion on Rules bCONCc and bMACCcwe obtain (ii) Γ `
〈Pi{s[i]/αi},M∅s , ∅〉 . 〈s[i] : Gib i� Θ∅s〉. By applying Rule bCONCc to (ii)

Appendix F. Chapter 10 399

we deduce (iii) Γ ` 〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉 . 〈∆ � Θ∅s〉. By
Prop. 10.34 we get (iv) Co〈∆ �Θ∅s〉. We may then apply bRESc to (iii) and
(iv) to get Γ ` (νc)〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉 . 〈∅ � ∅〉. Since
〈∆ � Θ〉 = 〈∆′ � Θ′〉 we trivially have 〈∆ � Θ〉 ∗〈∆′ � Θ′〉 and there is
nothing to prove about coherence.

(b) C = (νs)〈P,M,E〉 and C ; C ′ is either a reduction deduced by Rule
[Restr], or a tick transition deduced by Rule (tick). In both cases C ′ has
the form C ′ = (νs)〈P ′,M ′, E′〉 by Prop. 10.5. In the first case C −→ C ′

is deduced by Rule [Restr] from 〈P,M,E〉 −→ 〈P ′,M ′, E′〉 and we get
the result by Lem. 10.43 (reduction lemma). In the second case C ↪→E

C ′ is deduced by Rule (tick) from 〈P,M,E〉‡, and we get the result by
Lem. 10.45 (suspension lemma).

Case n > 1: Let

(C;(νs)〈P1,M1, E1〉; · · ·;(νs)〈Pn−1,Mn−1, En−1〉
;(νs)〈P ′n,Mn, En〉 = C ′

By induction Γ ` 〈Pn−1,Mn−1, En−1〉.〈∆n−1 �Θn−1〉 and 〈∆�Θ〉 ∗〈∆n−1 �
Θn−1〉. Moreover if 〈∆�Θ〉 is coherent then 〈∆n−1�Θn−1〉 is coherent. Consider
now the last reduction:

(νs)〈Pn−1,Mn−1, En−1〉; (νs)〈Pn,Mn, En〉

There are two possibilities:

(1) ;= ↪→E . In this case:

(νs)〈Pn−1,Mn−1, En−1〉 ↪→E (νs)〈[Pn−1]E ,M
∅
n−1, ∅〉 = (νs)〈Pn,Mn, En〉

Since (νs)〈Pn−1,Mn−1, En−1〉‡ if and only if 〈Pn−1,Mn−1, En−1〉‡ and

Γ ` 〈Pn−1,Mn−1, En−1〉 . 〈∆n−1 �Θn−1〉

by Lem. 10.45 we deduce Γ ` 〈[Pn−1]En−1 ,M
∅
n−1, ∅〉.〈[∆n−1]En−1 �Θ∅n−1〉,

〈∆n−1 �Θn−1〉 yEn−1 〈[∆n−1]En−1 �Θ∅〉 and Co 〈[∆]En−1 �Θ∅〉.
(2) ;=−→. In this case (νs)〈Pn−1,Mn−1, En−1〉 −→ (νs)〈Pn,Mn, En〉, and

this reduction is deduced by Rule [RES] from 〈Pn−1,Mn−1, En−1〉 −→
〈Pn,Mn, En〉, which in turn is deduced by the contextual Rules [CONT]
and [STRUCT] from a reduction 〈Q,Mn−1, En−1〉 −→ 〈Q′,Mn, En〉 that is
deduced by the computational rules only, where Pn−1 ≡ E [Q] and Pn ≡
E [Q′] for some evaluation context E . This means that:

(νs)〈Pn−1,Mn−1, En−1〉 = (νs)〈E [Q],Mn−1, En−1〉

Then, assuming

Γ ` 〈Q,Mn−1, En−1〉 . 〈∆Q �ΘQ〉

Appendix F. Chapter 10 400

and Γ ` 〈E [0],Mn−1, En−1〉 . 〈∆′′ � Θ′′〉, by the typing rules [Conc] and
[CRes] we have ∆n−1 = (∆Q,∆

′′) and Θn−1 = (ΘQ,Θ
′′).

Since the reduction 〈Q,Mn−1, En−1〉 −→ 〈Q′,Mn, En〉 is deduced by com-
putational rules only, by Lem. 10.43 we have 〈∆Q �ΘQ〉 ⇒ 〈∆′Q �Θ′Q〉
and Γ ` 〈Q′,Mn, En〉 . 〈∆′Q �Θ′Q〉. Moreover, the same lemma states that
if 〈∆Q,∆

′′ �ΘQ,Θ
′′〉 is coherent, then 〈∆′Q,∆′′ �Θ′Q,Θ′′〉 is coherent. From

this we deduce that if 〈∆n−1 �Θn−1〉 is coherent then also 〈∆′ �Θ′〉 is co-
herent.

Titles in the IPA Dissertation Series since 2016

S.-S.T.Q. Jongmans. Automata-Theoretic
Protocol Programming. Faculty of
Mathematics and Natural Sciences,
UL. 2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis
and Verification of Embedded Systems for
Healthcare. Faculty of Mathematics and
Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2016-05

Y. Luo. From Conceptual Models to Safety
Assurance – Applying Model-Based Tech-
niques to Support Safety Assurance. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-06

B. Ege. Physical Security Analysis of
Embedded Devices. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-07

A.I. vanGoethem. Algorithms for Curved
Schematization. Faculty of Mathematics
and Computer Science, TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Deci-
sionDiagrams. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Faculty
of Mathematics and Computer Science,
TU/e. 2016-10

A.C. van Hulst. Control Synthesis us-
ing Modal Logic and Partial Bisimilarity –
A Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineer-
ing, TU/e. 2016-11
A. Zawedde. Modeling the Dynamics of
Requirements Process Improvement. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-12
F.M.J. van den Broek. Mobile Com-
munication Security. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-13
J.N. van Rijn. Massively Collaborative
Machine Learning. Faculty of Mathemat-
ics and Natural Sciences, UL. 2016-14
M.J. Steindorfer. Efficient Immutable
Collections. Faculty of Science,
UvA. 2017-01
W. Ahmad. Green Computing: Effi-
cient Energy Management of Multipro-
cessor Streaming Applications via Model
Checking. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-02
D. Guck. Reliable Systems – Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-03
H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Radio
Applications Scheduled on Heterogeneous
Multiprocessors. Faculty of Mathematics
and Computer Science, TU/e. 2017-04
A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communication on
the Internet and in the Internet of Things
(IoT). Faculty of Science, Mathematics
and Computer Science, RU. 2017-05
A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty of

Mathematics and Computer Science,
TU/e. 2017-06
D. Landman. Reverse Engineering Source
Code: Empirical Studies of Limitations
and Opportunities. Faculty of Science,
UvA. 2017-07
W. Lueks. Security and Privacy via Cryp-
tography – Having your cake and eating it
too. Faculty of Science,Mathematics and
Computer Science, RU. 2017-08
A.M. Şutîi. Modularity and Reuse of
Domain-Specific Languages: an exploration
with MetaMod. Faculty of Mathematics
and Computer Science, TU/e. 2017-09
U. Tikhonova. Engineering the Dynamic
Semantics of Domain Specific Languages.
Faculty of Mathematics and Computer
Science, TU/e. 2017-10
Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2017-11
A. Amighi. Specification and Verification
of Synchronisation Classes in Java: A Prac-
tical Approach. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2018-01
S. Darabi. Verification of Program Paral-
lelization. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-02
J.R. Salamanca Tellez. Coequations and
Eilenberg-type Correspondences. Faculty
of Science, Mathematics and Computer
Science, RU. 2018-03
P. Fiterău-Broştean. Active Model Learn-
ing for the Analysis of Network Protocols.
Faculty of Science, Mathematics and
Computer Science, RU. 2018-04
D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java Code.
Faculty of Mathematics and Computer
Science, TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2018-06

A. Lele. Response Modeling: Model Re-
finements for Timing Analysis of Runtime
Scheduling in Real-time Streaming Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and pro-
gramming. Faculty of Mathematics and
Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of rail-
way maintenance: Analysis and optimiza-
tion of maintenance via fault trees and sta-
tistical model checking. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2018-10

F. Yang. A Theory of Executability: with a
Focus on the Expressivity of Process Calculi.
Faculty of Mathematics and Computer
Science, TU/e. 2018-11

L. Swartjes. Model-based design of bag-
gage handling systems. Faculty of Me-
chanical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Similarity
Measures for Curves and Surfaces. Faculty
of Mathematics and Computer Science,
TU/e. 2018-13

M. Talebi. Scalable Performance Analy-
sis of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14

R. Kumar. Truth or Dare: Quantitative se-
curity analysis using attack trees. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software Develop-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2018-16
M. Mehr. Faster Algorithms for Ge-
ometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17
M. Alizadeh. Auditing of User Behavior:
Identification, Analysis and Understanding
of Deviations. Faculty of Mathematics
and Computer Science, TU/e. 2018-18
P.A. Inostroza Valdera. Structuring Lan-
guages as Object-Oriented Libraries. Fac-
ulty of Science, UvA. 2018-19
M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-20
A. Serrano Mena. Type Error Customiza-
tion for Embedded Domain-Specific Lan-
guages. Faculty of Science, UU. 2018-21
S.M.J. de Putter. Verification of Concur-
rent Systems in a Model-Driven Engineer-
ing Workflow. Faculty of Mathematics
and Computer Science, TU/e. 2019-01
S.M. Thaler. Automation for Information
Security using Machine Learning. Faculty
of Mathematics and Computer Science,
TU/e. 2019-02
Ö. Babur. Model Analytics and Manage-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-03
A. Afroozeh and A. Izmaylova. Practi-
cal General Top-down Parsers. Faculty of
Science, UvA. 2019-04
S. Kisfaludi-Bak. ETH-Tight Algorithms
for Geometric Network Problems. Faculty

of Mathematics and Computer Science,
TU/e. 2019-05
J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learning.
Faculty of Science, Mathematics and
Computer Science, RU. 2019-06
V. Bloemen. Strong Connectivity
and Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-07
T.H.A. Castermans. Algorithms for Vi-
sualization in Digital Humanities. Faculty
of Mathematics and Computer Science,
TU/e. 2019-08
W.M. Sonke. Algorithms for River Net-
work Analysis. Faculty of Mathematics
and Computer Science, TU/e. 2019-09
J.J.G. Meijer. Efficient Learning and
Analysis of System Behavior. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2019-10
P.R. Griffioen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,
UvA. 2019-11
A.A. Sawant. The impact of API evolution
on API consumers and how this can be af-
fected by API producers and language de-
signers. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2019-12
W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency Veri-
fication. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-13
M.A. Cano Grijalba. Session-Based Con-
currency: Between Operational and Declar-
ative Views. Faculty of Science and Engi-
neering, RUG. 2019-14

	Summary
	Samenvatting
	Acknowledgments
	Contents
	List of figures
	I Introduction and Preliminaries
	Introduction
	Context and Motivation
	Towards a Unifying Perspective of Concurrent Systems
	Research Challenges
	Approach: Relative Expressiveness
	Contributions
	Timed Patterns in Communication Protocols
	This Dissertation

	Preliminaries
	Relative Expressiveness
	The Session
	Linear Concurrent Constraint Programming (lcc)
	ReactiveML (RML)
	Multiparty Session Types (MPSTs)

	Source and Target Languages
	Variants of the Session Calculus
	An Asynchronous Session ()
	Extending with Private Information ()
	Queue-Based ReactiveML (RMLq)
	Summary of Sources, Targets, and Translations

	II Session-Based Concurrency and Concurrent Constraint Programming
	Encoding in
	The Translation
	Static Correctness
	Operational Correspondence
	Timed Patterns Revisited:

	Encoding in
	The Translation
	Static Correctness
	Operational Correspondence
	Secure Types and the Translation

	Conclusions and Related Work
	Concluding Remarks
	Related Work

	III Session-Based Concurrency and Synchronous Reactive Programming
	Encoding in
	The Translation
	Static Correctness
	Operational Correspondence
	Timed Patterns Revisited:

	Encoding in RMLq
	The Translation
	Static Correctness
	Operational Correspondence

	Conclusions and Related Work
	Concluding Remarks
	Related Work

	IV A Synchronous Reactive Session-Based Calculus
	Multiparty Reactive Sessions
	Introduction
	Two Motivating Examples
	Our Process Model: MRS
	Types for MRS
	Time-Related Properties
	Timed Patterns Revisited: MRS

	Conclusions and Related Work
	Concluding Remarks
	Related Work

	V Closing Remarks and Future Perspectives
	Closing Remarks and Future Perspectives
	Closing Remarks
	Future Work

	References
	Appendices
	Appendix Chapter 3
	Proofs for
	Proofs for
	Proofs for
	Proofs for
	Proofs for

	Appendix Chapter 4
	Junk Processes
	Operational Completeness
	Invariants for Pre-Redexes and Redexes
	Invariants for Well-Typed Translated Programs
	A Diamond Property for Target Terms

	Appendix Chapter 5
	Transforming Translated Terms Into lcc via Erasure
	Auxiliary Results for Operational Soundness
	Secure Types and The Translation

	Appendix Chapter 7
	Auxiliary Results for Operational Correspondence

	Appendix Chapter 8
	Auxiliary Results for Operational Correspondence

	Appendix Chapter 10
	Reactivity
	Type System
	Properties of the Type System

