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Abstract
In this paper we consider polynomial conic optimization problems, where the feasible
set is defined by constraints in the form of given polynomial vectors belonging to
given nonempty closed convex cones, and we assume that all the feasible solutions
are non-negative. This family of problems captures in particular polynomial optimiza-
tion problems (POPs), polynomial semi-definite polynomial optimization problems
(PSDPs) and polynomial second-order cone-optimization problems (PSOCPs). We
propose a new general hierarchy of linear conic optimization relaxations inspired by
an extension of Pólya’s Positivstellensatz for homogeneous polynomials being posi-
tive over a basic semi-algebraic cone contained in the non-negative orthant, introduced
in Dickinson and Povh (J Glob Optim 61(4):615–625, 2015). We prove that based on
some classic assumptions, these relaxations converge monotonically to the optimal
value of the original problem. Adding a redundant polynomial positive semi-definite
constraint to the original problem drastically improves the bounds produced by our
method. We provide an extensive list of numerical examples that clearly indicate the
advantages and disadvantages of our hierarchy. In particular, in comparison to the
classic approach of sum-of-squares, our new method provides reasonable bounds on
the optimal value for POPs, and strong bounds for PSDPs and PSOCPs, even outper-
forming the sum-of-squares approach in these latter two cases.
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38 P. J.C. Dickinson, J. Povh

1 Introduction

Polynomial optimization problems (POPs) are those for which we want to optimize
a polynomial objective function over a feasible set defined by a set of polynomial
inequalities (we call such a feasible set a basic semi-algebraic set). Several NP-hard
problems can be formulated in this way. We provide a short list of some examples
of such problems: (i) optimizing a homogeneous quadratic polynomial over the non-
negative orthant, which is equivalent to testing the matrix copositivity [7,32]; (ii)
0–1 linear optimization problems [48,49,55]; (iii) quadratic optimization problems
including, for example, the Quadratic assignment problem, the Graph partitioning
problem and the MAX-CUT problem [9,27,40–42,45,46]. Polynomial optimization
is also a strong tool in control, see [10]. A good overview of the possible applications
of polynomial optimization can also be found in [2].

Polynomial optimization problems attract a lot of attention in theoretical and applied
mathematics. Real algebraic geometry and semi-algebraic geometry are sub-fields in
algebra that are strongly related to polynomial optimization problems. Since these
problems are, in general, very difficult, it is a natural choice to look for tractable relax-
ations. These relaxations are often based on some variant of a “Positivstellensatz” for
given semi-algebraic sets [43,44,47]. Many researchers have proposed hierarchies of
such relaxations that are based on moment and sums-of-squares (SOS) approxima-
tions of the original problem, and give semi-definite optimization/programming (SDP)
problems. Lasserre [21] proposed a hierarchy of semi-definite optimization problems
that, under certain conditions, converge with their optimal values to the optimal value
of the original polynomial optimization problem, see also [38,50]. We refer the reader
to a 2010 book by Lasserre [22] and a 2008 chapter by Laurent [26] for beautiful and
comprehensive overviews of the results from this area.

In polynomial optimization we have inequality constraints, and a natural exten-
sion to this is to consider other conic constraints, giving us, for example, polynomial
semi-definite optimization (PSDP) and polynomial second-order cone optimization
(PSOCP). The feasible set in the first case is primarily defined by the constraint that a
givenmatrix polynomial (i.e., amatrixwhose entries are polynomials) is positive semi-
definite. In the second case the feasible set is primarily determined by the constraint
that a given polynomial vector must belong to the second-order cone.

In the papers [13–15,19] the authors considered how to extend the SOS approach to
obtain good relaxations for PSDP problems, see also [10,18]. The hierarchy of relax-
ations, which contain SOS polynomials and matrix SOS polynomials, is recaptured in
Sect. 4.2.

The PSOCPs can be simply rewritten as classic POPs and later approached using
tools from this area. The authors of the paper [20] proposed a general lift-and-project
and reformulation-linearization technique that can also be efficiently applied to this
family of problems.

If the feasible set for a POP is contained in the non-negative orthant then the existing
approaches stillwork and the sign constraints can bemodelled explicitly, i.e., by adding
constraints xi ≥ 0 to the set of polynomial constraints. The same idea works for PSDP
and PSOCP. In [8, Theorem 2.4] a new Positivstellensatz was presented that is tailored
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A new approximation hierarchy for polynomial conic… 39

for the non-negativity case and can be used to develop new, linear, conic optimization
approximation hierarchies for POPs over the non-negative semi-algebraic sets.

The main contributions of this paper are:

• Basedon [8,Theorem2.4],wepropose a newhierarchyof linear conic optimization
relaxations that can be uniformly applied to general polynomial conic optimization
problems (over the non-negative orthant), including the special cases listed above.

• We prove that under conditions closely related to the compactness of the feasible
set and non-redundancy in its description, the optimal values of the proposed
hierarchy are monotonic and asymptotically convergent to the optimal value of
the original problem.

• Numerical evaluations are considered for POPs, and it is found that in these exam-
ples, our method performs poorly in comparison with the classic SOS method.
However, by adding an additional (redundant) positive semi-definite constraint to
the original problem, our newmethod then performs reasonablywell in comparison
to the classic SOS approach.

• We also provide numerical evaluations for PSDPs and PSOCPs, which demon-
strate that in these examples our new method performs very well in comparison
to the classic SOS approach. This performance is further improved by adding a
(redundant) positive semi-definite constraint to the original problem,which implies
SOS-like semi-definite programming constraints in our hierarchy. The enhanced
hierarchy often outperforms the classic SOS approach also on POP problems.

Our work is also inline with recent results from Ahmadi and Majumdar [1]
and Lasserre et al. [24], who developed new approximation hierarchies that would
overcome the complexity drawbacks of the existing SOS hierarchies. New linear opti-
mization/programming (LP) and second-order cone (SOC) hierarchies are presented
in [1]. In [24] the authors proposed an LP-SDP hierarchy, but with only one SDP
constraint with which they can control the dimension. They also provided proof of
convergence for the hierarchy and numerical results, which togetherwith the numerical
results from [30] show that these approaches have a strong potential. A sparse version
of this hierarchy is provided in [53] and can solve much larger problem instances.
Another provably convergent hierarchy, called the mismatch hierarchy, is proposed in
[16], which solves complex polynomial optimization problems with several thousand
variables and constraints arising in electrical engineering.

Throughout the paper we will use N to denote the set of non-negative integers
{0, 1, 2, . . .} and use R+ to denote the set of non-negative real numbers.

2 Polynomial conic optimization

We define a polynomial conic optimization problem to be one with the following form

min
x

f (x)

s.t. gi (x) ∈ K∗
i for all i = 1, . . . , p,

x ∈ R
n+,

(1)
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40 P. J.C. Dickinson, J. Povh

where

i f : Rn → R is a polynomial of degree d0 ≥ 1,
ii For i = 1, . . . , p, we have that gi : Rn → R

mi is a polynomial vector of degree
di ≥ 1, i.e., di is the maximum degree of the polynomials

(
gi (x)

)
j for j ∈

{1, . . . ,mi },
iii For i = 1, . . . , p, we have that K∗

i ⊆ R
mi is a nonempty closed convex cone.

For i = 1, . . . , p we will in fact consider the cone K∗
i to be the dual cone to a

nonempty convex cone Ki , i.e., K∗
i = {u ∈ R

mi | 〈u,w〉 ≥ 0 for all w ∈ Ki } where
〈u,w〉 := uTw = ∑mi

j=1 u jw j . For a nonempty closed convex cone K∗
i in Euclidean

space, there always exists such a cone Ki , for example, the dual cone to K∗
i . For the

theory in this paper, the conesKi need not be closed, whereas dual cones in Euclidean
space are always closed, and it is for this reason that we have denoted our cones in
this unusual manner (i.e., the dual cone being in the problem). Note that the sets Ki

and K∗
i are convex cones in Euclidean space, i.e.,

y, z ∈ Ki , ϕ, θ ∈ R+ ⇒ ϕy + θz ∈ Ki ,

and likewise for K∗
i . They should not be confused with polynomial cones, which are

often discussed in relation to polynomial optimization.
Problems such as (1) include as special cases (i) POPs over the non-negative orthant

(for mi = 1 and Ki = K∗
i = R+ for all i), (ii) PSDPs over the non-negative orthant

(for K∗
i being linearly isomorphic to a positive semi-definite cone for all i) and (iii)

PSOCPs over the non-negative orthant (here we takeK∗
i to be linearly isomorphic to a

second-order cone for all i). This will be discussed further in Sect. 4, where examples
of such problems will also be looked at.

Note that polynomial equality constraints can be included through the cones
Ki = R, K∗

i = {0}. Also note that if we have a polynomial conic optimization
problem, similar to the form (1), with a compact feasible set but without the sign
constraint x ∈ R

n+, then through a change of coordinates we can move the feasible
set into the non-negative orthant and can then add the (redundant) sign constraint (see
Example 4.3). For the main results in this paper we need a compactness-like assump-
tion (Assumption 2.2), therefore having x ∈ R

n+ explicitly in the problem is not very
restrictive.

For ease of notation, throughout the paper wewill letF be the feasible set of (1), i.e.

F = {x ∈ R
n+ | gi (x) ∈ K∗

i for i = 1, . . . , p}. (2)

We will make the following two assumptions about the problem (1):

Assumption 2.1 For all i we assume that Ki has a nonempty interior.

Assumption 2.2 We assume that one of the constraints in the problem (1) is of the
form R − aTx ∈ R+, where a ∈ R

n is a vector with all entries being strictly positive.

These assumptions guarantee asymptotic convergence of the hierarchy of lower bounds
introduced in the following section. Without these assumptions we would still have
valid lower bounds, but we would not be able to guarantee their convergence.
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A new approximation hierarchy for polynomial conic… 41

The first assumption is equivalent to havingK∗
i ∩(−K∗

i ) = {0} for all i , see, e.g., [3,
Theorem2.3].Within the conic optimization literature, this property is referred to asK∗

i
being pointed; however, we shall avoid this term due to the confusion with alternative
meanings of the term pointed. If we have a cone K∗

i such that K∗
i ∩ (−K∗

i ) �= {0}
then it is possible to project this constraint into a smaller subspace with the cone
having the required property in this subspace1. We thus see that for simple cones
Assumption 2.1 is relatively mild. However, it should be noted that for cones with a
complicated definition it might be more difficult to ensure that this holds.

Also note that if the feasible set of problem (1) is bounded, then we can always add
a redundant constraint to the problem of the form required in Assumption 2.2. This
assumption holding means that provided F �= ∅ then F is compact and the optimal
solution to problem (1) is obtained. Further discussion of these assumptions will be
provided in Sect. 3.3.

3 Approximation

3.1 New hierarchy

For an optimization problem (P), we let val(P) denote its optimal value. From the
definition of the infimum, we have that val(1) is equal to the optimal value of the
following problem:

max
λ

λ

s.t. f (x) − λ ≥ 0 for all x ∈ F
(3)

Letting D = maxi {di | i = 0, . . . , p} and e be the all ones vector, we now introduce
the following problems for r ∈ N := {0, 1, 2, . . .}:

max
λ,y

λ (4r )

s.t. (1 + eTx)D−d0+r ( f (x) − λ) ≥c

p∑

i=1

∑

α∈Nn :
eTα≤D−di+r

xα〈yi,α, gi (x)〉

yi,α ∈ Ki for all i = 1, . . . , p, α ∈ N
n : eTα ≤ D − di + r .

The “≥c” means that we are comparing the coefficients of the polynomials, for
example, ax31 + bx1x2 ≥c cx31 + dx22 iff a ≥ c and b ≥ 0 and 0 ≥ d (see also Exam-
ple 3.1 below). This should not be confused with the NP-hard problem of checking
whether one polynomial is greater than or equal to another for all x. It is, however, a
simple sufficient condition for one polynomial being greater than or equal to another
for all x ∈ R

n+. In Sect. 3.2 we will see that

1 Considering the linear spaceLi = K∗
i ∩ (−K∗

i ) = K⊥
i , we have thatL⊥

i ∩K∗
i = (Li +Ki )

∗ is a closed

convex cone with (L⊥
i ∩ K∗

i ) ∩ (−(L⊥
i ∩ K∗

i )) = {0} and g ∈ K∗
i ⇔ ProjL⊥

i
(g) ∈ L⊥

i ∩ K∗
i .
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42 P. J.C. Dickinson, J. Povh

val(40) ≤ val(41) ≤ val(42) ≤ · · · ≤ lim
r→∞ val(4r ) ≤ val (1), (5)

and in Sect. 3.4 we will see that if Assumptions 2.1 and 2.2 hold then we have

lim
r→∞ val(4r ) = val (1). (6)

Written out explicitly, the problem (4r ) is a linear conic optimization problem over
the conesKi . Therefore, if we can optimize over combinations of these cones then we
can solve (4r ). The problem (4r ) is in fact a linear conic optimization problem with

• (n+D−di+r
n

)
cone constraints of being in Ki , for i ∈ {1, . . . , p},

• (n+D+r
n

)
inequality constraints,

• 1 + ∑p
i=1 mi

(n+D−di+r
n

)
variables.

This compares favourably with other standard approximation hierarchies for poly-
nomial optimization. One of the advantages of our new approach is that although as r
increases, the number of cones we have to optimize over increases dramatically, the
cones themselves remain the same. This is in contrast to the sum-of-squares approach
for polynomial matrix problems, as will be discussed in Sect. 4.

Another advantage of our new approach is that we are not dependent on the form of
Ki , we only require that it is a convex cone that we can optimize over. This increases
the range of possible future applications.

Before discussing the theory behind this new approach, we will first consider an
illustrative example. This example is purposely picked to be a simple example for
which the convergence of our method is slow. In Sect. 4 we will consider more repre-
sentative examples, which fully demonstrate the strength of our new method.

Example 3.1 Let us consider the following polynomial optimization problem:

min
x

x

s.t. x2 = x

2x ≥ 1.

Trivially, x = 1 is the only feasible point for this problem and thus the optimal value
is equal to 1. This problem is in the form required with

f (x) = x, g1(x) = x2 − x, K∗
1 = {0}, K1 = R,

g2(x) = 2x − 1, K∗
2 = R+, K2 = R+.

The r th level of our new hierarchy is given by

max
λ,y,z

λ

s.t. (1 + x)r+1(x − λ) ≥c

r∑

i=0

yi x
i (x2 − x) +

r+1∑

i=0

zi x
i (2x − 1)

λ, y0, . . . , yr ∈ R, z0, . . . , zr+1 ∈ R+.
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A new approximation hierarchy for polynomial conic… 43

We have

(1 + x)r+1(x − λ) = xr+2 +
r+1∑

i=1

xi
((

r + 1

i − 1

)
− λ

(
r + 1

i

))
− λ,

r∑

i=0

yi x
i (x2 − x) = xr+2yr +

r+1∑

i=2

xi (yi−2 − yi−1) − xy0,

r+1∑

i=0

zi x
i (2x − 1) = 2xr+2zr+1 +

r+1∑

i=1

xi (2zi−1 − zi ) − z0

Therefore, the r th level of the hierarchy is equivalent to the following, where after
the vertical line we show which monomial term this constraint corresponds to:

maxλ,y,z λ

s.t. 1 ≥ yr + 2zr+1 xr+2

(r+1
i−1

) − λ
(r+1

i

) ≥ yi−2 − yi−1 + 2zi−1 − zi for all i = 2, . . . , r + 1 xi

(r+1
0

) − λ
(r+1

1

) ≥ −y0 + 2z0 − z1 x1

−λ ≥ −z0 x0

λ, y0, . . . , yr ∈ R, z0, . . . , zr+1 ∈ R+.

By first eliminating the y variable, this problem can be solved analytically to give
an optimal value of 1− (1+ 2r+1)−1, which tends towards 1, the optimal value of the
original problem, as r tends to infinity.

3.2 Monotonically increasing lower bounds

In this subsection we will prove the inequality relations from (5).

Proposition 3.2 We have val(4r ) ≤ val(3)= val(1) for all r ∈ N.

Proof From the definition of the infimum it is trivial to see that val(3)= val(1). It is
also trivial to see that if (λ, y) is feasible for (4r ) then λ is feasible for (3). ��
Proposition 3.3 We have val(4r ) ≤ val(4r+1) for all r ∈ N.

Proof We will show that if (λ, y) ∈ R ×
(
K

∣
∣{α∈Nn |eTα≤D−di+r}∣∣
i

)

i∈{1,...,p}
is feasible

for (4r ) then there exists ỹ ∈
(
K

∣
∣{α∈Nn |eTα≤D−di+r+1}∣∣
i

)

i∈{1,...,p}
such that (λ, ỹ) is

feasible for (4r+1).
Such a ỹ is constructed by letting
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44 P. J.C. Dickinson, J. Povh

ỹi,α = yi,α +
∑

j=1,...,n:
α j≥1

yi,α−e j ∈ Ki for all
i = 1, . . . , p,

α ∈ N
n : eTα < D − di + (r + 1),

ỹi,α =
∑

j=1,...,n:
α j≥1

yi,α−e j ∈ Ki for all
i = 1, . . . , p,

α ∈ N
n : eTα = D − di + (r + 1),

where e j ∈ R
n is the unit vector with the j th entry equal to one and all the other

entries equal to zero, with membership ofKi following from this being a convex cone.
This construction implies that

p∑

i=1

∑

α∈Nn

eTα≤D−di+(r+1)

xα
〈
ỹi,α, gi (x)

〉 =c (1 + eTx)
p∑

i=1

∑

α∈Nn

eTα≤D−di+r

xα
〈
yi,α, gi (x)

〉
.

Having (λ, y) feasible for (4r ), and (1+eTx)with all the coefficients non-negative,
this implies that

(1 + eTx)
p∑

i=1

∑

α∈Nn

eTα≤D−di+r

xα
〈
yi,α, gi (x)

〉 ≤c (1 + eTx)D−d0+(r+1)( f (x) − λ).

��

3.3 Analysis of the assumptions

Before we look at the convergence of our new approximation hierarchy, we will first
need to analyse the assumptions we made about problem (1). We will show that
Assumptions 2.1 and 2.2 imply two properties, introduced below. The presence of
these properties simplifies the workings in Sect. 3.4. We could have in fact assumed
that these properties are held in place of Assumptions 2.1 and 2.2. This would have
had the advantage of encapsulating a larger class of problems. However, we chose not
to do this as these properties are somewhat more complicated than Assumptions 2.1
2.2.

Before defining these properties, we first need to introduce some new notation. For
i ∈ {1, . . . , p} and w ∈ R

mi we define the polynomial gi,w(x) :=c 〈w, gi (x)〉, and
note that deg(gi,w) ≤ di . The first property is then as follows:

Proposition 3.4 For all i ∈ {1, . . . , p} there exists γ ∈ Ki such that deg(gi,γ ) = di .

An intuitive justification for Property 3.4 is that it ensures that none of the highest-
degree terms are trivially redundant. If Property 3.4 does not hold for some i then we
can remove all the degree di terms from gi without affecting the feasible set F .

For i ∈ {1, . . . , p}, we now let g̃i (x) be the highest-order homogeneous part of
gi (x), i.e., the homogeneous polynomial vector gi (x) with all the terms of degree
strictly less than di removed (and similarly for f̃ ). For example, if
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A new approximation hierarchy for polynomial conic… 45

g1(x) =
⎛

⎝
x1x22 + x1
x2 − 1

16 − 4x21 − 2x32

⎞

⎠ , then g̃1(x) =
⎛

⎝
x1x22
0

−2x32

⎞

⎠ .

We also let F̃ = {x ∈ R
n+ | g̃i (x) ∈ K∗

i for i = 1, . . . , p}. The second property is
then as follows:

Proposition 3.5 We have f̃ (x) > 0 for all x ∈ F̃ \ {0}.
An intuitive justification for Property 3.5 is that it ensures that the problem is well
behaved at infinity.

From the following two results it immediately follows that Assumptions 2.1 and
2.2 imply Properties 3.4 and 3.5, respectively.

Proposition 3.6 For i ∈ {1, . . . , p} let K̂i = {w ∈ Ki | deg(gi,w) = di }, where
Ki ⊆ R

mi , gi,w ∈ R[x] and di ∈ N are as given earlier in the paper. Now, consider
the following statements:

i intKi �= ∅;
ii K̂i �= ∅;
iii K̂i is a dense subset of Ki ;
iv K̂i

∗ = K∗
i .

We then have

(i) ⇒ (ii) ⇔ (iii) ⇒ (iv).

Proof We begin by noting that deg(gi,w) ≤ di for all w ∈ R
mi and K̂i ⊆ Ki . We split

the remainder of the proof into the following parts:

(i) ⇒ (i i): Consider an arbitrary w ∈ intKi . If w ∈ K̂i then we are done, and
from now on in this part of the proof we will assume that w /∈ K̂i ,
i.e. deg(gi,w) < di .
There exists j ∈ {1, . . . ,mi } such that di = deg((gi (x)) j ) =
deg(gi,e j ), where e j ∈ R

mi is the unit vector with the j th entry
equal to one and all the other entries equal to zero. For all ε �= 0 we
then have deg(gi,w+εe j ) = deg(gi,w + εgi,e j ) = di . The proof of
this part is then completed by noting that as w ∈ intKi there exists
ε �= 0 such that w + εe j ∈ Ki .

(i i) ⇒ (i i i): Suppose that ∃γ ∈ K̂i and consider an arbitrary w ∈ Ki \ K̂i . Then
deg(gi,γ ) = di > deg(gi,w), and thus for all ε �= 0 we have

deg(gi,w+εγ ) = deg(gi,w + εgi,γ ) = di .

The proof of this part is then completed by noting that as Ki is a
convex cone we have w + εγ ∈ Ki for all ε > 0.

(i i) ⇐ (i i i): This trivially follows from the fact that Ki �= ∅.
(i i i) ⇒ (iv): If K̂i is a dense subset of Ki then cl K̂i = clKi and from a well-

known result for sets in Euclidean space we have K∗
i = (clKi )

∗ =
(cl K̂i )

∗ = K̂i
∗
, e.g., [3, Theorem 2.1]. ��
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46 P. J.C. Dickinson, J. Povh

Proposition 3.7 If Assumption 2.2 holds for the problem (1) then F̃ = {0}.
Proof First, note that 0 ∈ F̃ follows from g̃i (x) being homogeneous and K∗

i being a
nonempty closed cone for all i . We then complete the proof by noting that if Assump-
tion 2.2 holds for the problem (1) then

F̃ = {x ∈ R
n+ | g̃i (x) ∈ K∗

i for i = 1, . . . , p}⊆{x ∈ R
n+ | −aTx ∈ R+}={0}. ��

3.4 Asymptotic convergence

In this subsection we look at the theory behind how our new hierarchy converges.
In Sect. 4 we will then look at some numerical examples to see how it performs in
practice.

In order to prove the convergence we need to begin by considering the following
Positivstellensatz:

Theorem 3.8 [8, Theorems 2.4 and 4.1] Consider the homogeneous polynomials fi :
R
n+1 → R for i ∈ {0} ∪ I such that f0(x) > 0 for all x ∈ R

n+1+ \ {0} : fi (x) ≥
0 ∀i ∈ I. Then for some R ∈ N there exists a subset J ⊆ I of finite cardinality and
homogeneous polynomials q j : Rn+1 → R for j ∈ J , with all of their coefficients
non-negative and deg(q j ) + deg( f j ) = R + deg( f0), such that (eTx)R f0(x) ≥c∑

j∈J f j (x)q j (x).

The restriction on the degrees was not in the original theorems, but can be added
as all of the polynomials are homogeneous. There are no limitations on the set I, it
could in fact index uncountably many polynomials fi .

Before we can use this Positivstellensatz, we first need to adapt it to apply for non-
homogeneous polynomials. In order to do this we use the notation from Property 3.5,
i.e., g̃(x) is the polynomial g(x) with all terms of degree strictly less than deg(g)
removed. We then obtain the following Positivstellensatz:

Theorem 3.9 Consider polynomials fi : Rn → R for i ∈ {0} ∪ I such that

i f0(x) > 0 for all x ∈ R
n+ : fi (x) ≥ 0 ∀i ∈ I, and

ii f̃0(x) > 0 for all x ∈ R
n+ \ {0} : f̃i (x) ≥ 0 ∀i ∈ I.

Then for some R ∈ N there exists a subsetJ ⊆ I of finite cardinality and polynomials
q j : Rn → R for j ∈ J , with all of their coefficients non-negative and deg(q j ) +
deg( f j ) ≤ R + deg( f0), such that (1 + eTx)R f0(x) ≥c

∑
j∈J f j (x)q j (x).

Proof For a polynomial g : Rn → R of degree d, we define gH (x, xn+1) : Rn+1 → R

to be the unique homogeneous polynomial of degree d such that g(x) = gH (x, 1).
We then have g̃(x) = gH (x, 0), e.g., for g(x1, x2) = x1x22 + x1 we have

gH (x1, x2, x3) = x1x
2
2 + x1x

2
3 ,

gH (x1, x2, 1) = x1x
2
2 + x1 = g(x1, x2),

gH (x1, x2, 0) = x1x
2
2 = g̃(x1, x2).

Using this notation, for f0 given in the theorem we have
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i f H0 (x, 1) > 0 for all x ∈ R
n+ : f Hi (x, 1) ≥ 0 ∀i ∈ I, and

ii f H0 (x, 0) > 0 for all x ∈ R
n+ \ {0} : f Hi (x, 0) ≥ 0 ∀i ∈ I.

As all the polynomials are homogeneous, this is equivalent to

f H0 (x, xn+1) > 0 for all (x, xn+1) ∈ R
n+1+ \ {(0, 0)} : f Hi (x, xn+1) ≥ 0 ∀i ∈ I.

From Theorem 3.8 we find that for some R ∈ N there exists a subset J ⊆ I of finite
cardinality and homogeneous polynomials q j : (Rn × R) → R for j ∈ J , with all
of their coefficients non-negative and deg(q j ) + deg( f j ) = R + deg( f0), such that
(eTx + xn+1)

R f H0 (x, xn+1) ≥c
∑

j∈J f Hj (x, xn+1)q j (x, xn+1). Letting xn+1 = 1,
we then obtain the required result. ��

We are now ready to apply this result for our case:

Theorem 3.10 Let F be as given in (2) with Properties 3.4 and 3.5 holding, and
consider a polynomial f of degree d0 and λ ∈ R such that f (x)−λ > 0 for all x ∈ F .
Then there exists r ∈ N and yi,α ∈ Ki for i = 1, . . . , p, α ∈ N

n : eTα ≤ D − di + r
such that

(1 + eTx)D−d0+r ( f (x) − λ) ≥c

p∑

i=1

∑

α∈Nn

eTα≤D−di+r

xα〈yi,α, gi (x)〉

Proof In order to apply Theorem 3.9 we let f0(x) = f (x) − λ and fi ∈ R[x] for i in
some set I be such that

{ fi | i ∈ I} = {gi,w : i = 1, . . . , p, w ∈ K̂i },

where K̂i is as given inProposition 3.6 and recall from this proposition that Property 3.4
implies that K̂i

∗ = K∗
i . We then have

f̃0(x) = f̃ (x),

{x ∈ R
n+ | fi (x) ≥ 0 ∀i ∈ I} = {x ∈ R

n+ | 〈w, gi (x)〉 ≥ 0 ∀i = 1, . . . , p, w ∈ K̂i }
= {x ∈ R

n+ | gi (x) ∈ K̂i
∗ ∀i = 1, . . . , p}

= {x ∈ R
n+ | gi (x) ∈ K∗

i ∀i = 1, . . . , p} = F ,

{x ∈ R
n+ | f̃i (x) ≥ 0 ∀i ∈ I} = {x ∈ R

n+ | 〈w, g̃i (x)〉 ≥ 0 ∀i = 1, . . . , p, w ∈ K̂i }
= {x ∈ R

n+ | g̃i (x) ∈ K̂i
∗ ∀i = 1, . . . , p}

= {x ∈ R
n+ | g̃i (x) ∈ K∗

i ∀i = 1, . . . , p} = F̃ .

This, in addition to Property 3.5 holding, implies that the requirements of f0 for
Theorem 3.9 hold, and thus for some R ∈ N there exists a finite set

J ⊆ {(i,w) | i ∈ {1, . . . , p}, w ∈ K̂i }
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and polynomials qi,w : Rn → R for (i,w) ∈ J , with non-negative coefficients and
deg(qi,w) + di ≤ R + d0, such that

(1 + eTx)R( f (x) − λ) ≥c

∑

(i,w)∈J
〈w, gi (x)〉qi,w(x).

We can write qi,w in the form

qi,w =
∑

α∈Nn :
eTα≤R+d0−di

qi,w,αxα,

where qi,w,α are non-negative scalars for all i,w,α. Using this notation we have

(1 + eTx)R( f (x) − λ) ≥c

p∑

i=1

∑

α∈Nn :
eTα≤R+d0−di

xα
〈
yi,α, gi (x)

〉
,

where yi,α =
∑

w∈Ki :
(i,w)∈J

qi,w,αw ∈ Ki .

Now letting r = max{0, R + d0 − D} and considering Proposition 3.3 we obtain the
required result. ��
Remark 3.11 Suppose that the polynomial f and the polynomial vectors gi are in
fact homogeneous, i.e., (gi (x)) j is a homogeneous polynomial of degree di for all
j = 1, . . . ,mi . Then from Theorem 3.8 (using the techniques from Theorem 3.10),
we find that if f (x) > 0 for all x ∈ F \ {0}, then there exist r ∈ N and yi,α ∈ Ki for
i = 1, . . . , p, α ∈ N : eTα = D − di + r such that

(eTx)D−d0+r f (x) ≥c

p∑

i=1

∑

α∈Nn :
eTα=D−di+r

xα〈yi,α, gi (x)〉 (7)

3.5 Enhancing the convergence

The main characteristic of our hierarchy, the conic linearity, has an affect on the
tightness of the bounds it provides. The bounds improve ifwe increase r , but sometimes
we would like to improve these bounds already for the beginning members of the
hierarchy. One way to make such improvements and stay tractable is to add to the
original problem the redundant constraint

(
1 xT

x xxT

)
∈ PSDn+1, (8)
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and then apply our hierarchy, wherePSDn+1 denotes the set of positive semi-definite
matrices of the order n + 1. This gives us (extra) positive semi-definite variables in
the hierarchy, but these positive semi-definite variables would be limited to having
the order n + 1, unlike in the classic SOS approach, where the order of the positive
semi-definite constraints quickly grows to an intractable level. This approach is closely
related to that taken by Peña, Vera and Zuluaga [39], which has been demonstrated to
be very effective, and it was its effectiveness in this paper that provided the inspiration
for us to consider it. It is also aligned with a recent hierarchy of Lasserre et al. [24],
where each member of the hierarchy is an SDP with a bounded size and some linear
constraints. Considered on the dual side, this approach is closely related to considering
truncated moment matrices, but with subtle differences caused by the multiplication
with xα [see problem (12)].

We tested this approach on several examples in Sect. 4, and the numerical results
show that it improves the bounds significantly.

Another approach to improve our hierarchywould be to add optimality conditions to
the original problem, similar towas previously done for Lasserre’s hierarchy [6,34,37].
If the cones K∗

i from (1) are semi-algebraic, then we can write out the polynomial
inequalities for the cones explicitly, and then apply the SOS or linear optimization
approach from this subsection. However, this could result in a lot of terms with a very
high degree, and thus large semi-definite or linear optimization instances. We have not
tested this approach.

3.6 Further discussion on convergence

One advantage of themoment and sums-of-squares-based hierarchies is the occurrence
of a finite convergence [11,12,25,35]. Recently Nie has provided in [33,36] an exten-
sive and clear study of the convergence of Lasserre’s hierarchy. He showed that under
some generic assumptions, the so-called flat truncation is a necessary and sufficient
condition for finite convergence. A similar property also holds for non-commutative
polynomials [4,17].

We do not yet have results of this type for our hierarchy - neither for the original
nor for the enhanced version. Actually, we hope that this paper will motivate other
researchers to pursue this direction.

We know that for our new hierarchy (without enhancement) wewould not generally
expect to get finite convergence, and in Example 3.1 we saw an example with an
asymptotic but not finite convergence2. If K1, . . . ,Km are all polyhedral cones, then
the optimization problems in our hierarchywould all be linear ones and thus we cannot
expect them to encapsulate the nonlinearity in the problem. However, after adding (8)
the resulting hierarchy converges in practice much better and we believe a variant of
Nie’s results can be obtained.

While the convergence results for Lasserre’s hierarchy are beautiful results, they
are limited by the fact that in practice the finite convergence can be at a level of the

2 This example does not in fact satisfy Assumption 2.2, but we can add the extra redundant constraint
“3 − 2x ∈ R+” to the original problem to satisfy this assumption without changing the optimal values in
our hierarchy.
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hierarchy that is intractable. The main advantage of our new hierarchy is that much
higher levels of the hierarchy remain tractable, as will be seen in Sect. 4.

4 Applications of the new hierarchy

In this section we will consider generalized classes of polynomial conic optimization
problems from the literature, and consider how the application of our new approach
to these problems compares with previous approaches. In particular we consider:

• POP over the non-negative orthant, where we found that our hierarchy in its stan-
dard form performs poorly compared to state-of-the-art methods, but performs
comparatively well when we added the redundant SDP constraint (8) to the origi-
nal problem before applying our hierarchy.

• PSDP over the non-negative orthant, wherewe found that our hierarchy (in its stan-
dard form) performs comparativelywell in comparison to state-of-the-art methods,
and performs even better when adding the redundant SDP constraint (8) to the orig-
inal problem.

• PSOCP over the non-negative orthant, where we found that our hierarchy outper-
forms state-of-the-art methods in its standard form.

For all the examples in this section, for ease of implementation we used YALMIP
[28] within MATLAB [29], which can handle polynomials directly. This converted
the optimization problems from our hierarchy (and state-of-the-art hierarchies) into
LP, SOC and SDP optimization problems, which were then in almost all cases solved
by SeDuMi [52]. We also used MOSEK [31] to compute the values for (11) in Table
2 and the SOS bounds in Table 9.

Although using YALMIP made the implementations easier, it meant that most
of the computation times were spent in constructing the problems, rather than in
solving them. These total computation times can be reduced through better, more
direct implementations, and thus are not representative measures of the performance.
For this reason no computation times have been included. Instead,we considerwhether
the optimization problems can be solved, or if there are memory problems, along with
comparing the size of these problems.

All the computations were carried out on a laptop with two 2.30-GHz CPU cores
and 4.0 GB of RAM. The code for these examples is available from the authors on
request.

4.1 Constrained polynomial optimization over the non-negative orthant

In this subsection wewill apply our method to POPs over the non-negative orthant.We
will see that ourmethod performs poorly in comparison to the classic SOS approach. If,
however, we add the constraint (8) to the original problem before applying our method
then the performance is drastically improved, even occasionally outperforming the
classic SOS approach.We are, however, of the opinion that the classic SOS approach is
currently still superior to our newmethod for these problems and instead this subsection
should be thought of as an illustration of how our new method works, in preparation
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for the subsequent subsections where we apply our (enhanced) method to the more
complicated cases of PSDPs and PSOCPs.

A polynomial f : Rn → R is defined to be a sum-of-squares (SOS) polynomial
if there exists a polynomial vector h : Rn → R

q such that f (x) =c h(x)Th(x) =c∑q
i=1 hi (x)

2, and we then trivially have that f (x) ≥ 0 for all x ∈ R
n .

Letting vd(x) : R
n → R(n+d

n ) be such that vd(x) =c (xα)α∈N, eTα≤d , it is well
known that a polynomial f : Rn → R of degree at most 2d is SOS if and only if there

exists an order
(n+d

n

)
positive semi-definite matrix A, denoted A ∈ PSD(n+d

n ), such
that f (x) =c vd(x)TAvd(x), and there is a linear relationship between the elements of
A and the coefficients of f . This allows us to optimize over the set of SOS polynomials
using positive semi-definite optimization [22,26].

Let us consider a constrained polynomial optimization problem over the non-
negative orthant:

min
x

f (x)

s.t. gi (x) ≥ 0 for all i = 1, . . . , p,

xi ≥ 0 for all i = 1, . . . , n.

(9)

Note that this is a special instance of (1) with K∗
i = R+ for all i .

If the sign constraints xi ≥ 0 are considered as the usual polynomial inequalities
then (9) is a special instance of a classic constrained polynomial optimization problem,
formulated in [22, problem (5.2)].

Due to the hardness of (9), several approximation hierarchies are proposed in the
literature. Probably one of the most well-known and tight is the SOS hierarchy, which
consists of the following approximation problems (for each r ∈ N):

max
λ,{ai }

λ

s.t. f (x) − λ =c a0(x) +
n∑

i=1

xi ai (x) +
p∑

i=1

gi (x) an+i (x)

a0(x) is SOS of degree at most 2� 1
2 (D + r)�

ai (x) is SOS of degree at most 2� 1
2 (D + r − 1)� for i = 1, . . . , n

an+i (x) is SOS of degree at most 2� 1
2 (D + r − di )� for all i = 1, . . . , p.

(10)

In practice this method provides very good approximations. If we know some constant
N such that the feasible set for (9) is contained in the Euclidean ball centred at the
origin with the radius N (note that this is essentially our Assumption 2.2) then we
can add this ball constraint to the problem (9) and then the solutions of the dual
problems (10) converge to the optimal value of (9), when r → ∞ (see [21, Theorem
4.2], [22, Theorem 5.6]). However, as r (and/or D) increase, the hierarchy members
contain increasingly larger positive semi-definite constraints that are more and more
difficult to handle. The problem from the hierarchy corresponding to fixed r has:
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• One positive semi-definite constraint of the order
(n+� 12 (D+r)�

n

)
,

• n positive semi-definite constraints of the order
(n+� 12 (D+r−1)�

n

)
,

• a positive semi-definite constraint of the order
(n+� 12 (D+r−di )�

n

)
for each i ∈

{1, . . . , p},
• (n+D+r

n

)
equality constraints,

• 1+ 1
2

(n+� 12 (D+r)�
n

) [(n+� 12 (D+r)�
n

) + 1

]
+ 1

2n
(n+� 12 (D+r−1)�

n

) [(n+� 12 (D+r−1)�
n

)+1

]

+ +∑p
i=1

1
2

(n+� 12 (D+r−di )�
n

) [(n+� 12 (D+r−di )�
n

) + 1

]
variables.

Our hierarchy from Sect. 3 applied to (9) can be simplified to

max
λ,{yi,α} λ

s.t. (1 + eTx)D−d0+r ( f (x) − λ) ≥c

p∑

i=1

gi (x)
∑

α∈Nn :
eTα≤D−di+r

yi,αxα

yi,α ≥ 0 for all i,α

(11)

This hierarchy is usually weaker, but on the other hand contains problems that are
easier to solve. It contains

• (n+D+r
n

) + ∑p
i=1

(n+D−di+r
n

)
inequality constraints,

• 1 + ∑p
i=1

(n+D−di+r
n

)
variables.

By adding the redundant PSD constraint (8) to the original problem and then apply-
ing our hierarchy to give the following problem adds additional

(n+D+r−2
n

)
PSD

constraints of the order n + 1 and an additional 1
2

[(n+D+r−2
n

)] [(n+D+r−2
n

) + 1
]

variables:

max
λ,{yi,α},{Zβ } λ

s.t. (1 + eTx)D−d0+r ( f (x) − λ) ≥c

p∑

i=1

gi (x)
∑

α∈Nn :
eTα≤D−di+r

yi,αxα + . . .

. . . +
∑

β∈Nn :
eTβ≤D+r−2

xβ v1(x)TZβv1(x)

yi,α ≥ 0 for all i,α

Zβ ∈ PSDn+1 for all β

(12)

Remark 4.1 Suppose we have d0 = d1 = · · · = dp = 2. For r = 0 the SOS relaxation
(10) is equivalent to the enhanced relaxation (12), since every feasible solution for the
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Table 1 Considering a polynomial optimization problem with n = d0 = 8, p = d1 = d2 = 2 the table
below gives the size of the approximation problems (10), (11) and (12) for r = 4

Hierarchy SDP constraints Linear constraints Number of variables

Order Number Type Number

SOS hierarchy, (10) 3003 1 = 125,970 12,798,787

1287 10

New LP hierarchy, (11) − − ≥ 213,486 87,517

New SDP hierarchy, (12) 9 43,758 ≥ 213,486 2,056,627

first problem yields a feasible solution with the same objective value for the second
problem and vice versa.

In Table 1we consider the explicit problem sizes that this would give for an instance
with r = 4 , n = d0 = 8, p = d1 = d2 = 2. As we see, the SOS problem, (10),
is on the boundary or even beyond the reach of state-of-the-art SDP solvers that are
based on the interior point methods, but are still solvable with some other SDP solvers,
like SDPNAL [57], while our new LP approximation (11) is solvable with most LP
solvers. The new SDP hierarchy (12) contains a lot of SDP variables of small size and
is solvable with SDP solvers that enable parallelization, see ,e.g., [51,56].

Example 4.2 In the paper [24], in particular instances C4_2, C4_4, C4_6, C6_2,
C6_4,C6_6,C8_2,C8_4,C10_4,C20_2, the authors considered some polynomial
optimization problems of the form (9) such that for all feasible points of this problem
and all i ∈ {1, . . . ,m} we have gi (x) ≤ 1.3 For these problems the authors com-
pared the standard SOS approach, a bounded SOS approach [23] and an LP approach
based on Krivine-Stengle’s Positivstellensatz to compute the lower bounds on these
problems.

For these instances we computed the lower bounds provided by our new LP hierar-
chy, (11), and SDP hierarchy, (12). The new LP hierarchy was computed for all r for
which we did not get “out of memory” warnings, while the new SDP hierarchy was
computed for r = 1. The results for this are in Table 2.

As we can see, our new LP approximation, (11), does not perform very well in
comparison to the other methods, but our new SDP approximation, (12), does perform
extremely well, always giving the tightest lower bound of all the approximations in the
instances considered. It is even strictly better than all of the other bounds for instances
C4_6 and C6_6.

In order to compare the sizes of these problems, in Table 3 we consider the size of
the hierarchies for the case C6_6. For r = 1 we see that not only does our new SDP
hierarchy, (12), provide a better lower bound than the (bounded) SOS approach, but
the size of the problem, in terms of the order of the largest PSD constraints, is also
significantly smaller.

3 Note that for compact optimization problemswe can always normalize the constraints so that this inequal-
ity holds; however, doing this involves computing a good upper bound of gi on the feasibility set, which is
itself a demanding task.
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Table 2 The results of Example 4.2 are presented, considering instances from the paper [24]

Instance n Problem (11) val(12), r = 1 KS-bound (B)SOS
bound

Optimum

r and r val(11)

C4_2 4 r = 3 −0.900 −0.250 −0.310 −0.250 −0.250

r = 11 −0.299

C4_4 4 r = 8 −3.90 −0.696 −0.88542 −0.696 −0.696

r = 9 −2.12

C4_6 4 r = 4 −2.00 −0.956 Infeasible −1.193 –

r = 8 −1.30

C6_2 6 r = 5 −0.900 −0.250 −0.350 −0.250 −0.250

r = 8 −0.545

C6_4 6 r > 11 – −0.696 −1.11 −0.696 −0.696

C6_6 6 r = 6 −2.54 −0.889 Infeasible/ −1.193 –

r = 11 −1.64 Out of memory

C8_2 8 r > 7 – −0.250 −0.425 −0.250 −0.250

C8_4 8 r > 15 – −0.696 −1.11 −0.696 −0.696

C10_2 10 r > 9 – −0.250 −0.425 −0.250 −0.250

C20_2 20 r > 19 – −0.250 −0.589 −0.250 −0.250

Problems (11) and (12) are our new LP and SDP hierarchies, respectively, whose optimal values give lower
bounds on the true optimal value (given in the final column). The last three columns give the results reported
from [24], with KS-bound and (B)SOS-bound being the alternative lower bounds on the true optimal value
using state-of-the-art methods. The (B)SOS-bound is the optimal value from both the standard SOSmethod
and the bounded SOS method. r is the lowest value of r such that the problem (11) was feasible, while r is
the highest value of r that we could compute this problem for without getting “out of memory” warnings.
For each instance the best bound is in bold

Table 3 Comparing the size of the approximation hierarchies for the case C6_6 in Example 4.2

Hierarchy Optimal Value PSD constraints Number of…

Order Number “=” const. “≥” const. Variables

KS, r = 5 Infeasible − − 1,947,792 80,730 80,730

KS, r = 6 OoM − − 5,245,786 376,740 376,740

(11), r = 11 −1.64 − − 0 224,707 123,761

(12), r = 1 −0.889 7 462 0 1786 13,007

SOS, r = 1 −1.193 84 7 1716 10 25,001

BSOS, d = 1, k = 3 −1.193 84 1 924 23 3593

4.2 Polynomial semi-definite optimization over the non-negative orthant

In this subsection we will apply our method to PSDPs over the non-negative orthant.
We will see that our method performs very well on these problems, especially after
adding the redundant constraint (8) to the original problem, but the method does not
suffer as severely from memory problems as the classic SOS approach.
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In [13–15,19] the authors considered PSDPs, and how the SOS approach could be
extended for positive semi-definite constraints using the concept of matrix SOS.

Let us consider a (scalar) polynomial f and thematrix polynomialsGi : Rn → Smi

(i.e., ((Gi )k� = (Gi )�k is a polynomial for all k, � = 1, . . . ,mi ). We define

d0 = deg( f ), di = deg(Gi ) = max
k,�

deg(Gi )k�.

Following [13,14] we define a PSDP over the non-negative orthant as

min
x

f (x)

s.t. Gi (x) ∈ PSDmi for all i = 1, . . . , p,

xi ≥ 0 for all i = 1, . . . , n.

(13)

This is again a very hard problem, so tractable relaxations are very desirable. The
standard SOS approach to (13) is based on using matrix SOS constraints.

A polynomial matrix G : Rn → Sm is matrix SOS if there exists a matrix polyno-
mial H : Rn → R

q×m such that G(x) =c H(x)TH(x), and we then trivially have that
G(x) ∈ PSDm for all x ∈ R

n . Similar to the standard SOS case (see, e.g., [14,19]),
we have that G(x) : Rn → Sm is a matrix SOS of degree at most 2d if and only if

there exists A ∈ PSDm(n+d
n ) such that

G(x) =c (Im ⊗ vd(x))TA(Im ⊗ vd(x)),

where “⊗” denotes the Kronecker product and Im denotes the identity matrix of the
order m. Also, similar to before, there is a linear relationship between the elements
of A and the coefficients of the elements of G(x), and thus we can optimize over the
set of matrix SOS polynomials using positive semi-definite optimization. We can also
construct the SOS relaxation hierarchy for (13) for each r ∈ N [13,14]:

max
λ,{ai ,Ai }

λ

s.t. f (x) − λ =c a0(x) +
n∑

i=1

xi ai (x) +
p∑

i=1

〈Gi (x), Ai (x)〉

a0(x) is SOS of degree at most 2� 1
2 (D + r)�

ai (x) is SOS of degree at most 2� 1
2 (D + r − 1)� for i = 1, . . . , n

Ai (x) is matrix SOS, deg(Ai ) ≤ 2� 1
2 (D + r − di )� for all i=1, . . . , p.

(14)

where D = max{di : i = 0, 1, . . . , p}. Under some conditions related to the compact-
ness of the feasibility set for (13), the optimal values of this hierarchy converge to the
optimal value of (13) [13, Theorem 2.2].
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Table 4 Complexity of the r = 4 member of matrix SOS hierarchy (14) and our new hierarchies (15)
and (16), for n = 8, p = 5, d0 = 4 and di = 2, mi = 10, i = 1, . . . , 5

Hierarchy SDP constraints Linear constraints Number of variables

Order Number Type Number

Matrix SOS hierarchy, (10) 1650 5 = 12,870 7, 042, 696

495 1

165 8

New hierarchy, (15) 10 15,015 ≥ 12,870 825,826

New hierarchy, (16) 10 15,015 ≥ 12,870 960,961

9 3003

Similar to before, the order of the PSD constraints in this problem grows very
quickly with r . In fact for each i ∈ {1, . . . , p}, the SOS constraint for Ai (x) is
equivalent to a PSD constraint of the order mi

(n+�(D+r−di )/2�
n

)
.

Alternatively, by taking Ki = PSDmi = K∗
i for all i , we can apply our hierarchy

from Sect. 3 to problem (13), both with and without the additional PSD constraint (8)
in the original problem, to give the following problems, respectively:

max
λ,{Yi,α} λ

s.t. (1 + eTx)D−d0+r ( f (x) − λ) ≥c

p∑

i=1

∑

α∈Nn :
eTα≤D−di+r

xα〈Yi,α,Gi (x)〉

Yi,α ∈ PSDmi for all i,α, (15)

max
λ,{Yi,α},{Zβ } λ

s.t. (1 + eTx)D−d0+r ( f (x) − λ) ≥c

p∑

i=1

∑

α∈Nn :
eTα≤D−di+r

xα〈Yi,α,Gi (x)〉 + . . .

. . . +
∑

β∈Nn :
eTβ≤D+r−2

xβ v1(x)TZβv1(x)

Yi,α ∈ PSDmi for all i,α,

Zβ ∈ PSDn+1 for all β. (16)

Here, in comparison to the matrix SOS approach, we have many more SDP con-
straints, but the order of the positive semi-definite constraints is fixed.

In Table 4 we consider the sizes of these approximation problems for r = 4 with
n = 8 variables and p = 5matrix SDP constraints of the order 10 with degrees d0 = 4
and di = 2, i = 1, . . . , 5.
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The difference is significant. While the Matrix SOS problem is already out of reach
for most of the SDP solvers, our new hierarchies are manageable by at least those SDP
solvers that can explore parallelization, like [51,56].

Example 4.3 Let us consider the example from [13, Sect. II E]:

min
x

f (x) = −x21 − x22 s.t. G(x) =
[
1 − 4x1x2 x1

x1 4 − x21 − x22

]
∈ PSD2.

This has the optimal solutions (0, 2) and (0,−2) with the optimal value −4.
As reported in [13, Table II], the SOS approximation hierarchy (14) applied to

this problem reduces for r = 0 to semi-definite optimization problems with 2 PSD
constraints of the orders 3 and 2, giving an optimal value of −4, which is already the
optimal value of the original problem.

We can transform the semi-definite constraint from (17) into two (scalar) polyno-
mial constraints and apply the approach from Sect. 4.1. However, in [13, Table I] it
is reported that only the 7th member of the hierarchy (10) yields the optimal value of
−4. This member of the hierarchy has 3 PSD constraints of the orders 36, 28 and 21.

To apply our hierarchy to this problem, we first need to translate its feasible set into
the non-negative orthant. To do this we substitute x1 by x1 − 2 and x2 by x2 − 2 to
give the following problem.

min
x

f (x) = −(x1 − 2)2 − (x2 − 2)2

s.t. G(x) =
[
1 − 4(x1 − 2)(x2 − 2) x1 − 2

x1 − 2 4 − (x1 − 2)2 − (x2 − 2)2

]
∈ PSD2.

Note that the semi-definite constraint implies that 4 − (x1 − 2)2 − (x2 − 2)2 ≥ 0;
therefore, x1, x2 ≥ 0, i.e., after the substitution the sign constraint is redundant and
we can add it without affecting the feasible region.

Our hierarchy (15) for this problem reduces for r = 1 to

max
λ,{Y } λ

s.t. (1 + x1 + x2)(−(x1 − 2)2 − (x2 − 2)2 − λ)

≥c 〈Y(0,0) + x1Y(1,0) + x2Y(0,1),G(x)〉
Y(0,0),Y(1,0),Y(0,1) ∈ PSD2

(17)

The optimal value for this is also equal to −4, i.e., the member of the hierarchy
corresponding to r = 1 is already giving the optimal value of the original problem.
Note that the problem from our hierarchy has only 3 PSD constraints, all being of the
order 2.
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Table 5 Numerical results for polynomial SDP problem (18), computed for different approximation hier-
archies

n Optimum val(15) val(16) Matrix SOS, (14)

r = 2 r = 1 r = 2 r = 2

3 2 1.600 1.948 2.000 2.000

6 5 4.444 4.865 5.000 5.000

9 8 7.385 7.790 8.000 8.000

12 11 1.035 1.072 11.000 11.000

15 14 13.333 13.651 14.000 14.000

18 17 16.319 16.587 17.000 17.000

21 20 19.310 19.525 20.000 Out of memory

Example 4.4 Let us consider the following family of PSDPs:

min
x

trace G(x)

s.t. G(x) ∈ PSDn

x ∈ R
n+,

(18)

where

G(x) =

⎡

⎢⎢⎢
⎣

(1 + x1/2)2 0 . . . 0
0 (1 + x2/2)2 . . . 0
...

...
. . .

...

0 0 . . . (1 + xn/2)2

⎤

⎥⎥⎥
⎦

−

⎡

⎢⎢⎢
⎣

x1
x2
...

xn

⎤

⎥⎥⎥
⎦

·

⎡

⎢⎢⎢
⎣

x1
x2
...

xn

⎤

⎥⎥⎥
⎦

T

.

It is shown in Appendix A that for the problem (18) we have:

• The optimal value is equal to n − 1;
• The matrix SOS hierarchy, (14), for r ∈ {0, 1} has an optimal value of zero;
• Our new hierarchy, (15), for r ∈ {0, 1} has an optimal value of zero;
• Our new hierarchy, (16), for r = 0 has an optimal value of zero.

In Table 5 we report on the numerical results for higher levels of these hierarchies,
and in Table 6 we compare how large these problems are for n = 21. From these
results we see that, in terms of optimal values, our new hierarchies perform very
competitively in comparison with the matrix SOS approach. Moreover, in Table 6,
we see that the sizes of our hierarchies, in terms of the order of the largest PSD
constraint, are much smaller than the matrix SOS approach. We also see that adding
the redundant constraint (8) to the original problem before applying our hierarchy to
give the problem (16), significantly improves the lower bound in comparison to the
problem (15).
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Table 6 Comparing the size of
some instances of approximation
hierarchies, in terms of order
and number of PSD constraints,
of the problem in Example 4.4
for n = 21

Type r Optimal value PSD const.

Order #

New hierarchy, (15) 2 19.310 21 253

New hierarchy, (16) 1 19.525 22 22

21 22

2 20.000 22 253

21 253

Matrix SOS, (14) 2 20.000 462 1

253 1

22 21

4.3 Polynomial second-order cone optimization over the non-negative orthant

In this subsection we will apply our method to PSOCPs over the non-negative orthant.
We will see that our method performs very well on these problems, especially after
adding the redundant constraint (8) to the original problem, convincingly outperform-
ing the classic SOS approach.

Suppose that the cones K∗
i in (1) are the second-order cones (SOC):

SOCmi := {(z1, z) ∈ R × R
mi−1 : ‖z‖2 ≤ z1}.

Note that (z1, z) ∈ R × R
mi−1 belongs to SOCmi iff z1 ≥ 0 and z21 − ∑mi

i=2 z
2
i ≥ 0.

For g : Rn → R
mi being a polynomial vector of degree d, we call g(x) ∈ SOCmi

a polynomial second-order cone constraint (PSOC). It can be transformed into two
polynomial inequalities, one of the order d and one of the order 2d. Therefore, we
can handle PSOCPs as classic polynomial optimization problems and use approaches
from Sect. 4.1.

Since SOCs are tractable, i.e., we can solve linear conic optimization problems over
these cones numerically efficiently, it is a natural idea to approximate PSOCPs also
using the new hierarchy from Sect. 3 directly. We demonstrate this with the following
two examples.

Example 4.5 Let us consider the following simple PSOC optimization problem:

min
x1,x2

x21 + x22

s.t. g(x) =
⎡

⎣
x21 − x22
x1x2

x1 + x2 + 1

⎤

⎦ ∈ SOC3

x1, x2 ∈ R+.

(19)
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Table 7 The optimal values of our hierarchy (20) (without (8)) compared to SOS hierarchy (10), obtained
by replacing the PSOC constraint with two polynomial constraints. We also consider adding the additional
redundant constraint (8) to the problem (19) before applying our hierarchy

Hierarchy r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

New, without (8) 1.0000 2.0000 2.5000 2.6000 2.6154 2.6176

New, with (8) 1.0000 2.6180 2.6180 2.6180 2.6180 2.6180

SOS 0.0000 0.0000 0.0110 0.0850 0.9895 2.2275

Table 8 We compare the sizes of the optimization problems, in terms of the size and the number of PSD
and SOC3 constraints, for some approximation hierarchies for the problem in Example 4.5

Type r Optimal value PSD constraints # SOC3
Order Number const.

New, without (8) 5 2.6176 − – 21

New, with (8) 1 2.6180 3 3 3

SOS 5 2.2275 15 3 0

10 1

6 1

Its minimum, obtained by Mathematica [54], is attained at x∗ = (1.6180, 0)T and is
equal to 2.6180. Our hierarchy reduces for fixed r to

max
λ,{yα} λ

s.t. (1 + x1 + x2)
r (x21 + x22 − λ) ≥c

∑

eTα≤r

xα〈yα, g(x)〉

yα ∈ SOC3 ∀eTα ≤ r .

(20)

The optimal values of (20) for r ∈ {0, . . . , 5} are reported in the second row of
Table 7.

We can replace the PSOC constraint g(x) ∈ SOC3 by two equivalent polynomial
constraints:

x21 − x22 ≥ 0, (x21 − x22 )
2 − (x1x2)

2 − (x1 + x2 + 1)2 ≥ 0

and apply the SOS hierarchy (10). The lower bounds provided by the SOS hierarchy
are shown in the fourth row of Table 7. We can see that in this example our hierarchy
outperforms the SOS hierarchy. This is especially apparent when we consider the sizes
of the problems in Table 8. We also consider adding the redundant PSD constraint (8)
to the original problem and then applying our hierarchy, and when doing this the r = 1
member of the hierarchy gives the exact optimal value (within numerical errors) using
a very small optimisation problem, as is also shown in Tables 7 and 8.
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Example 4.6 We have also evaluated our hierarchy on seven randomly generated
polynomial second-order cone-optimization problems in three variables. Each such
problem has two polynomial SOC constraints of degree two and dimension four.
More precisely, for i = 1, 2 we generated polynomials gi1(x), . . . , g

i
4(x), which have

all possible monomials in three variables of the degree two with coefficients generated
randomly from [−0.3, 0.7] following the uniform distribution. We then replaced gi1
with g̃i1 = ∑4

k=1 g
i
k and set the PSOC gi = (g̃i1, g

i
2, g

i
3, g

i
4)

T ∈ SOC4. When we have
generated both PSOCs, we set the objective function f (x) = g̃11(x) + g̃21(x) + h(x),
where h is polynomials of the degree two with random uniform coefficients from
[−0.5, 0.5].

For each randompolynomial second-order coneoptimization problemwecomputed
the optimum value using Mathematica [54] and the optimal values of the first three
members of our hierarchy (with andwithout adding the additional SDPconstraint (8) to
the original problem) and of the standard SOS hierarchy. Recall that the SOS hierarchy
is applied after reformulating each polynomial SOC constraint into two polynomial
inequalities, as described at the beginning of this subsection. The results are in Table 9.

As we can see, for these examples our new hierarchy [without (8)] provides better
bounds through solving smaller optimization problems in comparison to the standard
SOS method. If we add (8) to the original problem, then the hierarchy is even better.

5 Conclusion

In this paper we considered polynomial conic optimization over the non-negative
orthant. We proposed a hierarchy of relaxations that are in the form of conic lin-
ear optimization problems. We demonstrated that when the feasible set is contained
in the non-negative orthant we can successfully apply the proposed hierarchy to
constrained polynomial optimization problems (POPs), polynomial semi-definite
optimization problems (PSDPs) and polynomial second-order cone-optimization
problems (PSOCPs). We proved that the hierarchy is monotonic and gives bounds
that converge asymptotically to the optimum value of the original problem, if some
classic assumptions are satisfied. Through the addition of a redundant PSD constraint
in the original problem, the proposed hierarchy performs reasonably well for POPs, in
comparison to the classic SOS approach, and outperforms the classic SOS approach for
PSDPs and PSOCPs, while also being cheaper to compute. The preliminary numerical
evaluation confirms that this hierarchy deserves a deeper theoretical/numerical study
and efficient code development. In particular, it would be of interest to consider the
dual problems of our hierarchy, investigating whether similar results to that for the
SOS/moment hierarchies hold with regards to the flat extension conditions [5], flat
truncations [33] and extracting optimal solutions [12, Sect. 2].
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Appendix: Proofs of Example 4.4

Lemma A.1 We have val(18)= n − 1.

Proof If we consider x = 2e1 then we haveG(2e1) = Diag(0, 1, . . . , 1) ∈ PSDn and
thus val(18) ≤ trace G(2e1) = n − 1. Now assume for the sake of contradiction that
val(18)< n−1. This is possible only if there exists x ∈ R

n+ such that at least two of the
on-diagonal entries ofG(x) are strictly less than one (otherwise,we have n−1 diagonal
entries that are at least 1, and the remaining is nonnegative, hence trace G(x) ≥ n−1).
Without loss of generality the first two on-diagonal entries of G(x) are strictly less
than one, implying that x1, x2 > 4

3 . The positive semi-definiteness of G implies that
the determinant of the submatrix ofG corresponding of the first two rows and columns
is non-negative, but

G1,1(x) · G2,2(x) − G1,2(x)2 < 1 − 16
9 < 0,

which is a contradiction. Hence, val(18)= n − 1. ��
Considering the approximation hierarchies discussed in this paper for problem (18),

we have the following results:

Lemma A.2 The optimal value of our new hierarchy, (15) (without the additional
constraint (8) in the original problem), for r ∈ {0, 1} is equal to zero.
Proof Our hierarchy, (15), for r = 0 and r = 1 reduces to the following respectively:

max
λ,Y

λ

s.t. traceG(x) − λ ≥c 〈Y ,G(x)〉 (21)

Y ∈ PSDn,

max
λ,{Y } λ

s.t. (1 + eTx)(traceG(x) − λ) ≥c 〈Y0,G(x)〉 +
n∑

i=1

xi 〈Yi ,G(x)〉

Yi ∈ PSDn for all i = 0, . . . , n. (22)

Considering λ = 0 and Y equal to the identity matrix gives us a feasible point
of (21), and thus val(21)≥ 0.

From Proposition 3.3 we have val(21)≤ val(22). We will now complete the proof
by showing that val(22)≤ 0.
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For an arbitrary feasible point of (22),we consider the following coefficient inequal-
ities explicitly:

1 : n − λ ≥ trace Y0,
x2i : 1

4 ≥ − 3
4 (Y0)i i + (Yi )i i ,

x3i : − 3
4 ≥ − 3

4 (Yi )i i .

This implies that for all i we have (Y0)i i ≥ 4
3 (Yi )i i − 1

3 ≥ 4
3 − 1

3 = 1, which in turn
implies that λ ≤ n − trace Y0 ≤ n − n = 0, and thus val(22)≤ 0. ��
Lemma A.3 The optimal value of both of our new hierarchy, (16) (with the additional
constraint (8) in the original problem), and the Matrix SOS hierarchy, (14), are equal
to zero for r = 0.

Proof These problems both reduce to the following problem:

max
λ,Y ,v,w,Z

λ

s.t. traceG(x) − λ ≥c 〈Y ,G(x)〉 +
〈(

v wT

w Z

)
,

(
1 xT

x xxT

)〉

Y ∈ PSDn,

(
v wT

w Z

)
∈ PSDn+1. (23)

Considering λ = v = 0, w = 0, Z = 0 and Y equal to the identity matrix gives us a
feasible point of (23), and thus val(23)≥ 0.

For an arbitrary feasible point of(23), we consider the following coefficient inequal-
ities explicitly:

1 : n − λ ≥ trace Y + v,

x2i : − 3
4 ≥ − 3

4 yii + zii .

Considering the positive semi-definiteness constraints, we also have 0 ≤ v and 0 ≤ zii
for all i . Therefore, yii ≥ 1+ 4

3 zii ≥ 1 for all i andλ ≤ n−trace Y−v ≤ n−n−0 = 0,
implying that val(23)≤ 0. ��
Lemma A.4 The optimal value of the Matrix SOS hierarchy, (14), is equal to zero for
r = 1.

Proof This problem reduces to the following problem:

max
λ,Y ,{vi },{wi },{Zi }

λ

s.t. traceG(x) − λ =c 〈Y ,G(x)〉 +
〈(

v0 wT
0

w0 Z0

)
,

(
1 xT

x xxT

)〉
+ · · ·

· · · +
n∑

i=1

xi

〈(
vi wT

i
wi Zi

)
,

(
1 xT

x xxT

)〉

Y ∈ PSDn,

(
vi wT

i
wi Zi

)
∈ PSDn+1 for i = 0, . . . , n.
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For i, j ∈ {1, . . . , n} such that i = j , considering the coefficient equalities for x3i
and x2i x j explicitly, for any feasible point to this problem we have 0 = (Zi )i i and
0 = 2(Zi )i j + (Zi ) j j . As Zi ∈ PSDn , this implies that Zi is equal to the zero matrix
for all i . Therefore, this problem reduces to the problem (23), which we have already
shown to have an optimal value equal to zero. ��
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