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The intrinsic nonlinearities of the spin dynamics in condensed matter systems give rise to a rich phenomenol-
ogy that can be strongly affected by topology. Here, we study formation of magnonic solitons in the topologically
nontrivial band gap of a spin lattice realization of the Haldane model, in both static and dynamic (Floquet)
regimes. We consider nonlinearities caused by magnetic crystalline anisotropy and magnon-magnon interactions.
We find soliton formation power thresholds as a function of anisotropy coefficient and interaction strength. We
predict different classes of topological solitons for the same topological class of the underlying lattice and explain
it in terms of a transition from a topologically nontrivial mass to a trivial one. Our findings imply that a soliton can
phase separate, containing boundaries between topologically trivial and nontrivial phases, which is associated
with a vanishing spin-wave gap.

DOI: 10.1103/PhysRevB.99.134402

I. INTRODUCTION

In physics, topological equivalence classes refer to Hamil-
tonians with energy gaps that with smooth changes in param-
eter space do not become gapless unless a quantum phase
transition occurs. The robustness with respect to perturba-
tions [1,2], as well as the potential for quantum computa-
tion [3], made topology an important subfield of modern
condensed matter physics. Topology manifests itself, for in-
stance, in the quantum Hall effects [4–10], three-dimensional
(3D) topological band insulators [1,2,11,12], and quantum
spin liquids [13–16]. Chiral, or in the case of the quantum
spin Hall effect, helical [6] edge modes are caused by bands
with nontrivial global phases derived from the topology of
the bulk material. Topology affects the wave functions of
electrons [2,7,17], photons [18], phonons [19], magnons [20],
and quasiparticles such as Majorana fermions [21].

In continuous media, the Damon-Eshbach (DE) surface
modes in ferromagnetic films are chiral [22,23], but not
proven yet to be topological. Nevertheless, the topology
(i.e., the Berry curvature) of magnon bands in perpendicular
magnetized films has been revealed in phenomena such as
the magnon Hall effect and the rotation of wave packets at
the edges [24,25]. Motivated by the established topological
band theory [2], topological chiral magnonic edge modes in
gapped magnonic crystals have attracted attention. Spin-wave
dispersions in ferromagnets are governed by both dipolar and
exchange interactions. In a lattice with nonuniform equilib-
rium magnetization, the former can break the inversion and
time-reversal symmetry, leading to bands with nonzero Chern
number. This implies emergence of chiral edge modes at the
boundary of the lattice with vacuum (or a lattice with different
topology) [20]. The exchange interaction can also be utilized
to design magnonic analogs of static or Floquet-type [26–28]
Haldane [5] spin lattice models [29–33]. The periodic Floquet
variable can be the time or a spatial coordinate. In two-

dimensional (2D) spatial lattices, e.g., time [28] as well as the
third spatial coordinate normal to the 2D plane [34] have been
employed as the Floquet dimension.

In the case of fermions, the chiral (or helical) edge modes
can be populated at all temperatures when the chemical po-
tential falls into a nontrivial band gap. Magnons and other
bosonic edge states, on the other hand, tend to be empty
at low temperatures, which makes experimental observation
challenging. This motivated proposals to utilize nonlinear
interactions that can drive edge-mode instabilities [35] or
lead to self-localized wave packets with a sense of chirality
inherited from the original edge modes [36–38].

Solitons are shape-preserving, self-localized modes in dis-
persive media. In magnets, solitonic textures such as do-
main walls, vortices, and skyrmions that exist in equilibrium
can be topologically protected [39]. They also emerge as
robust excited states, in which nonlinear interactions com-
pensate the wave-packet dispersion. The latter type of soli-
tons have been explored theoretically and experimentally in
both continuous and discrete systems such as Bose-Einstein
condensates of cold atoms in optical potentials [40–43] as
well as light in fibers and photonic crystals [36,37,44–47].
Solitons in thin magnetic films can be excited by mi-
crowaves [23,48–50]. Subsequently, magnonic solitons have
been generated in nanocontacts by spin-transfer [51,52] and
spin-orbit torques [53]. When the spin current is injected
locally into an in-plane magnetized film above a certain
threshold, the exchange dispersion is compensated by a
focusing nonlinearity, and a self-localized nonpropagating
spin-wave mode emerges at a frequency below the predic-
tions of linear theory [54], which is referred to as “spin-
wave bullet.” Droplets of magnon condensates as generated
by parametric pumping can be interpreted as solitons as
well [55–57].

Here, we show that the nonlinearities generated by crys-
talline magnetic anisotropy and magnon-magnon interactions
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can generate magnonic solitons that show signatures of
the topology of the underlying spin-wave band structure of
magnonic crystals with nontrivial band gaps. We search for
solitons in the bulk of static and time-periodic (Floquet)
magnonic equivalents of the Haldane model, i.e., a hexago-
nal lattice with C6v point-group symmetry, but broken time-
reversal symmetry [5]. We chose the Haldane model as a
minimal but generic model with a single band gap but non-
trivial topology. The results can be extended to other lattices
with band gaps of similar topology. We attribute the different
solitons phases in parameter space to distinct topologies, even
mixed topologies. For the latter case we predict the exis-
tence of interfaces between topologically trivial and nontrivial
highly excited phases.

The paper is organized as follows. Section II addresses
solitons in the topologically nontrivial band gap of a static
magnonic Haldane model. Section II A describes the model
and the numerical method used to find solitons. In Sec. II B
we show calculated soliton phase diagrams, and explain them
in Sec. II C. In Sec. III we focus on the soliton phase diagram
in the Floquet equivalent of the Haldane model. Finally, in
Sec. IV, we evaluate the experimental feasibility and propose
two methods to test the findings of this paper.

II. SOLITONS IN THE STATIC MAGNONIC
HALDANE MODEL

A. Model

The equivalent of the Haldane model [5] for magnons can
be derived from the Hamiltonian [31,32]

HS =
∑
〈i, j〉

J�Si · �S j +
∑
〈〈i, j〉〉

Dvi j ẑ · �Si × �S j (1)

on a 2D hexagonal lattice of spins �Si with Heisenberg
nearest-neighbor exchange interaction J and Dzyaloshinskii-
Moriya interaction D (DMI) [58,59]. The lattice sites i
and j in the second term of the right-hand side are next-
nearest neighbors (NNN), vi j = + (−)1 on the upward
(downward) pointing NNN triangle, as sketched in Fig. 1(a).
This Hamiltonian can support edge modes in the gap be-
cause the nontrivial global phase or Berry curvature leads
to bands with nonzero Chern numbers (±1, depending on
the sign of D) [60]. Each spin quantum number S is defined
by �S2 = h̄2S(S + 1). Raising and lowering operators read
as S± = Sx ± iSy, respectively. According to the Holstein-

Primakoff (HP) transformation S+ = √
2Sa†[1 − a†a/(2S)]

1
2 ,

S− = √
2S[1 − a†a/(2S)]

1
2 a and Sz = S − a†a, in terms of

magnon creation (a†) and annihilation operators (a). When
the number of magnons

∑
i a†

i ai is a small fraction of NS,
where N is the number of spins, we can expand the square
roots as S+ ≈ √

2Sa† and S− ≈ √
2Sa. However, the “par-

ticipation” 〈�s|a†
i ai|�s〉 of a localized soliton mode |�s〉 can

become of the order of S, even when the total magnon num-

ber is small. [1 − a†a/(2S)]
1
2 can then not be approximated

by unity, i.e., nonlinear terms in the Hamiltonian must be
considered.

FIG. 1. (a) Schematics of the lattice, the Heisenberg exchange
interactions (purple lines), and the NNN DMI interactions [green
(vi j = 1) and red (vi j = −1) lines]. (b) The band structure of an
80-sites-wide quasi-1D ribbon with J = 0.1, D = 0.01, K = 0, and
S = 10. The edge states (green lines in the gap) merge with the
band edges for large wave numbers. (c) Soliton phase diagram in
the space of anisotropy constant K and integrated intensity P0. In the
dark blue area no solution was found. The color map indicates the
energy Es of the calculated solitons. 1 and 2 label the distinct parts
of the phase diagram. The right panels display representative soliton
density distributions found in 1 (the top one) and 2 (the two bottom
ones, which are basically the same for both signs of K). Green and
red dashed lines mark the thresholds Pc,1 and Pc,2, respectively, as
detailed in the text. In the color code of the right panels, Pmax � 1.5 S
is the peak value of Pi = 〈�s|ni|�s〉.

Other nonlinearities can be added to the Haldane Hamil-
tonian (1), such as an onsite magnetic anisotropy. Here,
we consider uniaxial perpendicular magnetic anisotropy∑

i KS2
z,i. When K is negative (positive), the anisotropy is

of the easy-axis (easy-plane) type. The Zeeman energy for a
magnetic field �H = (0, 0, Hext,z ) is HZ = gμB

∑
i Hext,zSz,i =

gμB
∑

i Hext,zS − Hext,za
†
i ai, where g is the g factor, μB is

the Bohr magneton. When the ground-state magnetization is
aligned ‖ ẑ, HZ rigidly shifts the entire spin-wave disper-
sion. This is always the case for perpendicular crystalline
anisotropy, while Hext,z should be sufficiently large when
the anisotropy is easy plane. The spin-orbit interaction is an
essential ingredient of our theory by generating a gap in the
magnon spectrum, but in practice is rather weak. We find
for realistic values of the parameter D that the canting of
spins relative to the quantization axis ẑ is so small that it can
be safely disregarded, e.g., in discussing the magnetic field
dependence of the computed results. Magnetodipolar inter-
actions are disregarded under the assumption that magnons
with wavelengths larger than the exchange length do not play
a dominant role.
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Consolidating the above, we work with the Hamiltonian

HT = − JS
∑
〈i, j〉

(a†
i a j + H.c.)

+ (3JS − 2KS − gμBHext,z )
∑

i

a†
i ai

− DS
∑
〈〈i, j〉〉

(ivi ja
†
i a j + H.c.) + HNL, (2)

with nonlinearities to the fourth order in field operators:

HNL = J

4

∑
〈i, j〉

[(ainia
†
j + ain ja

†
j + a†

i nia j + a†
i n ja j )

− 2aia
†
j − nin j] − D

4

∑
〈〈i, j〉〉

ivi j[(a
†
i nia j + a†

i n ja j )

− (ainia
†
j + ain ja

†
j ) − 2aia

†
j ] +

∑
i

K (ni )
2, (3)

where the occupation number ni = a†
i ai. The choice −2KS =

gμBHext,z takes care of the alignment of the spins as well
as the band edge for all parameters which helps to interpret
the calculated phase diagrams. With the exception of the
term nin j , the operators ni( j) appear in a “sandwiched” form
such as ainia

†
j . We refer to the nonlinearities generated by

the anisotropy K as “self-Kerr effect” since it generates a
frequency shift proportional to the number operator (that
should not be confused with the magneto-optical Kerr effect).

Rather than attempting to diagonalize this Hamiltonian, we
iteratively search for self-consistent soliton solutions. We start
with a localized initial trial wave function (WF) |�0〉 with
density 〈�0|ni|�0〉 = P0 > 0 for a site i = 0 deep in the bulk
and zero otherwise. We keep P0 constant during subsequent it-
erations by requiring

∑
i〈�m|ni|�m〉 = ∑

i P(m)
i = P0, where

m is the iteration step. This HNL can be rewritten in terms
of real-space spinors ψi = (ai, a†

i )T to become matrices H(m)
T

with dimension 2Nx × Ny, where Nx (Ny) is the number of sites
along the x (y) axis:

H(m)
T =

∑
i, j

ψ
†
j H

(
P(m−1)

i , P(m−1)
j

)
ψi. (4)

H(P(m−1)
i ) depends on |�m−1〉 by the nonlinear (nonbilinear)

terms in HNL. H(m)
T is diagonalized and |�m〉 is chosen to

be the eigenstate with the highest overlap |〈�m|�m−1〉|. Self-
consistency is reached when the overlap approaches unity by
a certain criterion for a solution with ∀iPi < 2S. Solitons are
self-localized, dispersion-less wave packets that exist in the
energy gaps of band structures. The Haldane model has one
finite band gap that splits the density of states but also a
finite spectral width with zero density of states at high and
low energies (semi-infinite gaps) [see Fig. 1(b)]. Solitons can
exist in the three gaps, but they can be topologically relevant
only in the internal band gap that can support edge modes.
We limit our search to solutions with frequencies in the band
gap and thereby discard possible solutions outside the band
edges.

This iterative method sometimes fails to converge to a sin-
gle solution. We can overcome that problem by implementing
an auxiliary temporal periodicity as described in Appendix A.

B. Results

Figure 1(b) shows the band structure of the linearized spin
Hamiltonian (1) for an infinitely long quasi-1D ribbon that
is 80 lattice sites wide with staggered (zigzag) free (open)
boundary condition at the edges. It hosts a topologically
nontrivial band gap of 6

√
3DS (see Sec. II C) with chiral

edge modes. We assume S = 10, J = 0.1, and D = 0.01 in
all of the calculations in this paper, unless otherwise stated.
We carry out the bulk soliton search in the finite gap of a
lattice with Nx = 40 and Ny = 80 and free boundary con-
dition in x and y directions, with armchair and staggered
edges, respectively. We first focus on nonlinearities caused
by the anisotropy and noninteracting magnons, i.e., when
∀i〈�s|a†

i ai|�s〉 	 S, and discuss the magnon-magnon inter-
action below. The results of the soliton search can be sum-
marized by a phase diagram as a function of intensity P0

and anisotropy K . The energy of a converged solution Es

is indicated by the color code of the side bar in Fig. 1(c).
Mathematically, the assumption of noninteracting magnons
remains valid for other parameter regimes by scaling S up with
coefficient C > 1, while scaling down J and D by 1/C.

The threshold P0 = Pc,1, marked by green dotted lines in
Fig. 1(c) is the intensity above which we find self-stabilized
soliton solutions. The solitons in the first region just above
Pc,1 have energies close to the band edges. Their amplitudes
[or “wave functions” (WF), intensity] are spatially relatively
extended, as seen in the right panel of Fig. 1(c). We note
the large differences for positive and negative anisotropy:
The energies of the solitons for K > 0 (K < 0) are closer
to the lower (upper) band edge for smaller P0 but move to
the upper (lower) band edge with increasing P0. For K < 0
(K > 0), the nonlinearity tends to localize (delocalize) the
WFs; a soliton mode exists by compensation of nonlinearity
and diffraction, so the effective mass at the band edge must
be positive (negative), which is the case at the upper (lower)
edge. K < 0 (K > 0) can be referred to as focusing (defo-
cusing) nonlinearities, respectively. The focusing nonlinearity
can lead to solitons in both continuous and discrete media,
while the defocusing nonlinearity supports solitons only in
lattices with gaps [43]. This difference becomes important
when nonlocal magnon-magnon interactions are taken into
account (see following).

A second threshold P0 = Pc,2 as indicated by the red
dashed line in Fig. 1(c) marks a very different phase boundary;
there is a sharp change in energy and is also observed for
the equivalent Floquet lattice (see the discussion below and
in Sec. III).

Above a third threshold (not shown), the iterative solution
scheme fails to converge, but oscillates between two (or more)
states. This means that the eigenfunction of the (mean-field)
nonlinear potential induced by one soliton is a different soliton
with different energy, indicating “breathing.” This situation
is an artifact of the choice of the initial condition. We im-
plement a numerical method based on an auxiliary time-
periodic potential as described in Appendix A in order to
converge unphysical breathing modes to steady-state soliton
solutions.

The results in Figs. 1(c) hold when (for fixed S/J and K)
S is sufficiently large and the magnon interaction is small.

134402-3



ELYASI, SATO, AND BAUER PHYSICAL REVIEW B 99, 134402 (2019)

FIG. 2. The bulk soliton formation phase diagram for interacting
magnons. The intensity distribution of a soliton in region 1′ as well
as two examples (marked by black and purple stars) in region 2′ are
shown. The green (red) dashed line indicates P′

c,1 (P′
c,2).

In the following, we demonstrate how the higher-order terms
in the HP expansion proportional to J and D in Eq. (3) modify
the soliton phase diagram. The numerical procedure is the
same as before. Figure 2 illustrates a first phase boundary at
threshold P′

c,1 for solitons as those in region 1 (2) of Fig. 1(c)
for K > 0 (K < 0), respectively. For K > 0, a phase boundary
at P′

c,2 (the red dashed line in Fig. 2) similar to the one at
Pc,2 in Fig. 1(c) exists. Region 1′ (2′) in Fig. 2 is similar
to region 1 (2). When (sufficiently strong) magnon-magnon
interactions are included, i.e., the terms proportional to J
and D in Eq. (3), the phase boundary marking topologically
distinct phases exists only when K > 0 (see Fig. 2), because
these interactions are of the focusing type in continuous mag-
netic media [23,48]. They assist the local Kerr nonlinearity
for K < 0 but oppose it when K > 0, preventing formation
of extended solitons in region 1′ for K < 0. Interaction also
shifts the onset of soliton formation Pc,1 to lower P0 for the
same K < 0, while the topological change threshold moves to
higher P0, i.e., P′

c,2 > Pc,2 for K > 0.
A scaling that extends the parameter space for which the

present calculations are valid corresponds to keeping S, K , and
J/D constant, while scaling down J . This decreases Pmax and
therefore Pmax/S. Approximating the envelope cross sections
of solitons of region 1 (1′) by solutions of an effective 1D
nonlinear Schrödinger equation [61,62], we deduce that Pmax

is reduced by a factor of 10 when J/S is smaller by a factor
of 100. Therefore, for S = 1, J = 0.01, and D = 0.001, the
phase diagrams as Figs. 1(c) and 2 hold for ∼10 times smaller
P0 or ∼100 times smaller energies, while Pmax/S remains the
same. We therefore can extend our arguments to small spin
systems when the exchange interaction is small enough.

C. Discussion

We now compare our results for local excitations in a
wire to that of a homogeneous excitation of the bulk sys-
tem, following an analysis of the Su-Schrieffer-Heeger (SSH)
model [63], i.e., spinless electrons on a one-dimensional
lattice with staggered hopping amplitudes, for which an an-

harmonicity in the phonon amplitude causes a phase transition
from a topologically trivial to nontrivial phase [64].

We can express the Haldane model in reciprocal space
HT = ∑

�k ψ
†
�k Hkψ�k , where the spinor ψ�k = (b�k, c�k )T is writ-

ten in terms of the magnon annihilation operators b�k and c�k
on the two sublattices. We can map the linearized magnetic
Hamiltonian (2) to this form by

Hk (�k) = q0I + q(�k) · �σ , (5)

where q0 = 3JS, I is the 2 × 2 unit matrix, �σ = [σx, σy, σz]T

is the vector of Pauli matrices,

q(�k) =

⎛
⎜⎝

−JS
∑

i cos (�k · �λNN,i )

−JS
∑

i sin (�k · �λNN,i )

−2DS
∑

i sin (�k · �λNNN,i )

⎞
⎟⎠, (6)

and �λNN,i (�λNNN,i) is one of the three (i.e., i = 1, 2, 3) lattice
vectors to the NN (NNN) sites. The energies E (�k) and wave
functions |��k〉 for the two bands are

E (�k) = q0 ± √
q · q, (7)

|��k〉 = 1√
2

⎛
⎜⎜⎝

√
1 ± qz (�k)√

q·q

∓ exp
(
−i tan−1 qy (�k)

qx (�k)

)√
1 ∓ qz (�k)√

q·q

⎞
⎟⎟⎠. (8)

The anisotropy is now represented by a 2 × 2 nonlinear
Hamiltonian HNL which is diagonal in the mean-field approx-
imation with components [HNL(�k)]1,1 = KPu〈��k|b†

�kb�k|��k〉
and [HNL(�k)]2,2 = KPu〈��k|c†

�kc�k|��k〉, where Pu is the density
per unit cell of the homogeneously excited system. Equa-
tions (7), (8), and HNL define a self-consistent problem that
has to be solved numerically for each �k. At the Dirac points
�k1 = [4π/3, 0] and �k2 = [2π/3, 2π/

√
3] (a similar discus-

sion applies to the four other Dirac points), at which the gap
opens and closes, q(�k1) = 3

√
3DSẑ and q(�k2) = −3

√
3DSẑ.

Therefore, HNL = KPu(I ± σz )/2, plus (minus) holding when
only the upper (lower) bands contribute, which is the case
when K is negative (positive). The HNL therefore simply adds
a mass coefficient M = ±KPu/2 to qz in the unperturbed
Hamiltonian. It can be shown that the Chern number is
±1 if −6

√
3DS < KPu < 6

√
3DS and vanishes otherwise.

Therefore, by increasing Pu for any sign of K , a transition
from topologically nontrivial to trivial phase occurs at a crit-
ical Pu,c = 6

√
3DS/|K|. Magnons with focusing (defocusing)

nonlinearity belong to a band with positive (negative) effective
mass, i.e., upper (lower) band, just as in insulators with
trivial band gaps [65]. Therefore, the trivial mass term with
coefficient M as discussed above stems only from one of the
bands, depending on the sign of K .

When the mass in the core of the soliton changes from
nontrivial to trivial, the soliton mode should be exponentially
localized in the area where the trivial and nontrivial topologies
meet, i.e., at the edges [1,2]. This is indeed evident from
the spatial WF of solitons of regions 1 (1′) and 2 (2′) [see
Figs. 1(c) and Fig. 2]: For the same P0, the energy of the
more localized soliton is higher (lower) for positive (negative)
K , simply because the self-Kerr nonlinearity

∑
i K (ni )2 in

134402-4
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FIG. 3. Peak intensity Pmax for soliton formation calculated for
four different values of the anisotropy parameter K as in Fig. 1(c).
The horizontal lines represent Pu,c, for the same K’s of homo-
geneously excited system, which agree with the jumps in Pmax,

indicating the distinct topology between regions 1 and 2.

Eq. (3) indicates that |K| × Ns,1 × (P0/Ns,1)2 > |K| × Ns,2 ×
(P0/Ns,2)2 and Ns,1 > Ns,2, where Ns,1 (Ns,2) is the number of
sites with relatively large participation in the soliton WF of
region 1 or 1′ (2 or 2′). The abrupt change of the boundary
conditions causes a jump in the formation energies. In a
homogeneously excited system in which the Chern number
is well defined, we find the transition at similar values of Pmax

(see Fig. 3), which is another indication that the soliton core
is bulklike.

Figure 3 shows the peak intensity Pmax = max〈�s|a†
i ai|�s〉

as a function of P0 for different values of K corresponding to
the solitons of Fig. 1(c) and compares it with the Pu,c(K ) for
the bulk systems represented by horizontal lines. When the
integrated intensity of the soliton P0 increases to Pmax = Pu,c,
a phase change is expected. Indeed, at those powers Pmax

jumps to a higher level. In Fig. 3, Pmax < Pu,c when P0 <

Pc,2, but Pmax > Pu,c for P0 > Pc,2. We therefore conclude
we can understand the phase boundary Pc,2 in terms of the
bulklike mechanism in the soliton core. A similar relation for
the bulk systems can be obtained for the interacting system
(not shown) with phase change that occurs at P′

c,2 of Fig. 2.
Therefore, in regions 1 and 1′, the maximum soliton WF
intensity (and therefore that at each site) is less than Pu,c,
which means that the topology remains nontrivial and the
entire lattice has the same Chern number (C = ±1). In regions
2 and 2′, the soliton WF intensity at the center is larger than
Pu,c, hence, the topology of the central part of the soliton
(trivial, C = 0) and the rest of the lattice (nontrivial, C = ±1)
is different.

If our interpretation is correct, edge modes around the core
of the solitons in region 2 (2′) should generate a finite local
density of state (LDOS), which for a site i reads as [66]

ρi(E ) = −1

π

∑
n

|� ′
n(i)|2Im

1

E − En + iε
, (9)

where the sum is over all self-consistent eigensolutions
� ′

n(i), En of HT [see Eq. (2)], and ε is a small broadening.
Figure 4(a) shows ρi(E ) for a soliton in region 1 (left) and

FIG. 4. (a) Density of state ρi(E ) at each site i for E inside
the band gap with Lorentzian broadening ε = 10−3 (10−2) JS in the
main (inserted) panels. The curves for all sites i are plotted over each
other, color coded according to the middle panel, i.e., line color is
blue (red) for the sites in the center (edges). Left panel: soliton in
region 1 of Fig. 1(c) (K = −1 and P0 = 11.5). Right panel: soliton
in region 2 of Fig. 1(c) (K = −1 and P0 = 12.9). The black dashed
lines indicate the respective soliton energies. (b) ρM,i = max ρ̃i(E ).
Left panel: soliton in region 1 of Fig. 1(c) (K = −1 and P0 = 11.5).
Right panel: soliton in region 2 of Fig. 1(c) (K = −1 and P0 = 12.9).

region 2 (right) of Fig. 1(c), for E inside the band gap. The
dominant peaks in ρi(E ) agree with the soliton energies that
are indicated by black dashed lines. The soliton of region 2 is
distinguished by an additional two relatively large peaks in the
band gap that do not exist for the solitons of type 1. We define
ρ̃i(E ) = 0 for Es − ε < E < Es + ε and ρ̃i(E ) = ρi(E ) oth-
erwise, where ε = JS/1000; in other words, we blend out the
LDOS of the soliton in order to enhance additional features.
We then define ρM,i as the maximum value of ρ̃i(E ) as a
function of E at each site i. Figure 4(b) shows ρM,i of the
solitons in regions 1 and 2 as in Fig. 4(a). Ignoring the sample
boundaries, the excess LDOS is large in the bulk (defining the
soliton core) for the soliton phase 2 (but none is left in 1).
Figure 4(b) is strong evidence that the soliton of region 2 (2′)
is surrounded by edge modes, which supports the conjecture
of a boundary between two regions with different topology. In
other words, the “mass transition” from nontrivial to trivial,
i.e., the gap opening by a trivial mass term qz = M in the
Hamiltonian is Mσz or nontrivial one when qz is as in Eq. (6),
generates edge states in the bulk around the soliton core of
type 2 (2′). We note that computational limitations force us to
consider only small solitons, so Fig. 4(b) does not resolve the
ringlike LDOS expected for edge states.

We conclude that the soliton WF has a nonzero intensity
in two regions with different topology. Figures 5(a) and 5(b)
illustrate this scenario. Figure 5(a) is a sketch of the two
possible situations, where the nontrivial situation is the right
panel and the interesting interface is indicated by the red
dotted line. Figure 5(b) shows the spin-wave band structure
for a topologically trivial and a nontrivial Haldane model
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FIG. 5. (a) The topology of solitons on the Haldane lattice below
and above Pu,c. The blue region is the soliton core that at high
intensities may have a different Chern number C from the rest of
the lattice (embedded into a medium with C = 0). (b) The bulk
dispersion of the spin lattice for a nontrivial (D = 0.01 and M = 0)
gap (left) and a trivial (D = 0 and M = 3

√
3 × S/100) gap (right).

The color map encodes the Berry curvature �	(�k) = 	(�k)ẑ, for each
band. The arrows indicate the connection of different phases in (a) to
the relevant band structure panels in (b).

with the same gap, including the calculated Berry curvature
�	(�k) = 	(�k)ẑ = ∇�k × 〈�(�k)|i∇�k|�(�k)〉 [60,67], while C =∫

BZ dk2	(�k)/(2π ), where BZ stands for the first Brillouin
zone. These band structures are global and cannot simply be
assigned to a small number of lattice sites such as the soliton
core. Indeed, assigning nonlocal properties such as a Chern
number to a small number of lattice sites such as the soliton
core is not completely rigorous, but as our discussion above
indicates it is still a useful heuristic instrument.

Appendix B analyzes the phase texture of the soliton WFs
in support of the above discussion.

III. SOLITONS IN THE FLOQUET MAGNONIC
HALDANE MODEL

We now turn to the Floquet problem of the Haldane model
with a periodic potential in time. Solitons can exist in Flo-
quet photonic topological insulators, i.e., lattices of helical
waveguides with onsite Kerr nonlinearity [∼n2

i in Eq. (3)], in
which the pitch of the helix is the (spatial) Floquet period.
Static bulk and propagating edge solitons have been predicted
[36–38]. Here, we focus on the magnonic Haldane model with
a time-periodic perturbation [33]:

HF = J
∑
〈i, j〉

Sz
i Sz

j + J

2

∑
〈i, j〉

[
S+

i S−
j eiAi j (t ) + H.c.

]
, (10)

where Ai j is the Aharonov-Casher phase [68] accumulated
upon hopping between nearest neighbors. It can be gener-
ated by elliptically polarized light propagating normal to the

FIG. 6. The quasienergy α (normalized by JS) of a soliton in
a Floquet lattice with K = −1 as a function of P0. Two exemplary
intensity distributions also depicted.

lattice plane. The Hamiltonian in Eq. (10) oscillates with
period T of the light field. The nontopological Heisenberg
Hamiltonian (Ai j = 0) can thus be driven to generate a
topologically nontrivial band structure. In other words, in
T exp (−i

∫ T
0 HF (t )dt )|�〉 = exp (−iαT )|�〉, where T is the

time-ordering operator and |�〉 is the Floquet eigenstate,
the band structure that underlies the quasifrequency α can
be topologically nontrivial, even when the band structure
for the static part of HF is trivial [28].

We choose a periodic potential that gives rise to the Floquet
equivalent of the static Haldane model considered in Fig. 1
(see Appendix C for details of the Floquet lattice [33]), which
can be treated by the soliton search method described in
Appendix A [36]. Figure 6 shows the soliton quasienergies
α for K = −1 without magnon-magnon interactions. Regions
1 and 2 of the static case [see Figs. 1(c)] also exist for the
Floquet problem (see Sec. II C).

The similarity of the soliton phase diagrams for the static
and dynamically periodic system in the presence of the Kerr
nonlinearity implies that including magnon-magnon interac-
tions will modify the phase diagram of the Floquet system in
the same way as it affects the spatially periodic one in Fig. 2.

IV. EXPERIMENTAL REALIZATION

In the following, we discuss the possibility of experimental
realization of magnonic solitons in topologically nontrivial
lattices including their edges. We realize that this is a larger
order for the present stage of material science since the num-
ber of potential systems is limited and the required structures
might be difficult to fabricate. The real bottleneck could
be the dissipation and heating, which has been completely
disregarded in the theory. In order to keep these in check in
excited systems, the materials and structures must be grown
and fabricated with high magnetic quality.

The magnonic solitons discussed here exist in a lattice
that is strongly and locally excited and has a topologically
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FIG. 7. (a) The schematic for an experimental realization of
solitons described in this paper. SG stands for signal generator. The
current �jsb(t ) passes through a current line with a constricted region.
A “spin-wave bullet (SWB)” wave function is shown schematically.
The inset is a xz cross section, in which the materials of the SWB
generation part (Au, Py, and Pt), as well as thickness of Py (LPy)
and lattice (L) are pointed out. The cyan color in both 3D and
cross-section panels indicates a magnetic pillar array embedded in
another magnetic host [20]. (b) Soliton generation in a 2D transition
metal halide proximate to a heavy metal (e.g., Pt). A THz laser
pulse irradiates the bilayer. The THz light excites magnons in the
2D material.

nontrivial band structure. Suggested realizations are artificial
magnonic crystals on the �100 nm scale [20], but also natural
materials such as the kagome lattice of Lu2V2O7 [30] or the
hexagonal lattice of CrBr3 [31,32,69,70]. In magnetic films,
solitons can be generated by spin Hall oscillators [53,71,72] in
which a point contact of few tens of nanometer is deposited on
top of a ferromagnet (e.g., permalloy)/heavy metal (e.g., Pt)
bilayer. The associated spin-orbit torques cause self-limited
spatially localized large-angle precessional states referred to
as “spin-wave bullets” (SWB) [51,53,54] with frequency and
amplitude controlled by the external magnetic field and charge
current. In addition, precession can be phase locked to an ac
modulated charge current drive [72].

Figure 7(a) sketches a device that could test our predic-
tions. Two triangular contacts of high-mobility metal film
(e.g., from Au) force a focused charge current �jsb(t ) through
the Pt, generating a SWB with frequency Es/(2π h̄) in the
permalloy film by the spin Hall effect. The latter is grown

on a lattice of magnetic islands deposited in the holes of
another magnetic material [20]. The SWB generates dynamic
dipolar and exchange fields that excite the underlying lat-
tice. The existence and shape of the created lattice soliton
can be studied using spatiotemporal Brillouin-light scattering
measurement technique [53,55,73,74] at resolutions down to
∼50 nm [53,73]. We give some estimates for this scenario in
Appendix D. We can operate the device also without the Py
layer. Current-induced self-oscillations in the perpendicular
magnetized material then require an in-plane field [75], but
once excited, they can be sustained by an ac current in Pt
without the field.

Other interesting systems are 2D van der Waals materials
such as FePS3, Cr2Ge2Te6, and transition metal trihalides,
which have attracted attention for their tunable magnetic
properties [76–78]. In the latter, the transition metal (mag-
netic) sites form a hexagonal lattice, with a Heisenberg (su-
per)exchange interaction mediated by the halides. In addition,
the magnetic anisotropy can be tuned from in plane to out
of plane by controlling the halide composition: the magnetic
anisotropy K of CrCl3−xBrx varies linearly with x and changes
from in-plane to out of plane at x ≈ 2 [79]. A DMI can be
induced at the interface to a heavy metal like Pt. The magnetic
states can be studied by x-ray magnetic circular dichroism
(XMCD) spectroscopy with ∼nm (∼50 fs) spatial (temporal)
resolution [80,81]. The magnon gap width of MX3 is in the
range of 10 meV [82], i.e., we require THz excitation for an
efficient excitation of the spin system. Topological solitons
can then be generated in a monolayer of CrCl3−xBrx on top
of a heavy metal irradiated by focused THz light with power
above a certain threshold, as sketched in Fig. 7(b).

V. CONCLUSIONS

In conclusion, we discuss the existence and charac-
teristics of soliton excitations in topologically nontrivial
spin/magnonic lattices. We calculate the soliton formation
phase diagram in the presence of crystalline anisotropies and
magnon-magnon interactions. We understood in Sec. II C that
without change in the topology of the underlying lattice,
topologically distinct solitons can form. We classify the phase
diagrams and predict a topological transition between soliton
phases. Under certain conditions we find a phase separation in
the soliton itself. This implies the existence of phase bound-
aries between solitons with trivial and nontrivial topological
properties. The boundary separates nonlinear excited states
with trivial and nontrivial magnon gaps, which implies that at
the boundary the spin gap vanishes. Our toolbox to date does
not allow to study the physical consequences of such a topo-
logical interface for nonequilibrium systems, but judging from
the impact of the discovery of the interface states of electronic
topological insulators [1], we expect interesting physics.

Such interplay of nonlinearity, dynamics, and topology
has very recently gained attention but is still widely unex-
plored [64,83,84]. Unfortunately, experimental demonstration
of a topologically nontrivial band gap of a magnonic lattice
is still lacking. Magnonic and other bosonic edge states are
not thermally excited at low temperatures, which makes ex-
perimental observations challenging. Nonlinearities in highly
excited systems can overcome this problem [35–38]. A soliton
is a nondispersive mode and its formation is a threshold
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process. Finding our predicted phase boundaries with sharp
changes in soliton energies would be strong evidence of a
nontrivial topology of the underlying lattice. In addition, the
solitons phase texture as explained in Appendix B reveals
information about the topology of the underlying lattice and
the class of the soliton based on our classification. Soli-
tons might serve for information storage and transfer, and
interaction/collision between solitons as well as robust topo-
logical dynamic distinction, can be an information resource.
The possible unidirectional motion of the soliton when gener-
ated at lattice edges [37] can lead to magnon squeezing [85]
and enhanced optomagnonic coupling to photons [86]. We
suggest that the theoretical ideas can be realized and predic-
tions tested in artificial magnonic lattices as well as hybrid
structures with single-layer van der Waals ferromagnets.
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APPENDIX A: FLOQUET CALCULATION METHODS

As explained briefly in Sec. II B, in regions 2 and 2′ of
parameter space the iterative solution scheme sometimes fails
to converge, but oscillates between two (or more) states. This
means that the eigenfunction of the (mean-field) nonlinear
potential induced by one soliton is another soliton with differ-
ent energy and vice versa, which indicates a breathing mode.
Figure 8(a) shows example WFs of such a breathing mode,
labeled as 2-1 and 2-2. Adopting a time-periodic (Floquet)
potential that oscillates between the two solutions of 2-1 and
2-2 with natural period TF = 2π/|E2−1 − E2−2| leads to a
converged time-independent solution as shown in Fig. 8(a)
with label 2. In the following, we discuss the rationale for TF

and the method to solve the corresponding Floquet problem.
Figure 8(b) shows the temporal evolution of the initial

WF labeled by 2-1, for several neighboring sites [with colors
explained in Fig. 8(c)]. The WF amplitude |�s| reflects the
oscillation of the nonlinear potential, which for the anisotropy
term is K|�s|2. The normalized overlap of the 2-1 and 2-2
WFs in Fig. 8(d) reveals an out-of phase oscillation with
fixed frequencies that appears to be a mixture of these two
WFs. We test the assertion that TF = 2π h̄/|E2−1 − E2−2| by
plotting F1(2) = √∑

i |G1(2)( f )|2 in Fig. 8(e), where the sum
is over the sites of the lattice and f is the frequency. G1(2)( f )
is the Fourier transform of �s − M̄1 (|�s| − M̄2), where M̄1(2)

is the time average of �s (|�s|). The frequency of the main
oscillatory features is above 1/TF , supporting the assumption.

The time dependence for a coarser time step is shown in
Fig. 8(f). It can be seen that the WF amplitude converges
to a fixed point with energy below the bottom of the band;
therefore, the time steps chosen for evolution should be fine
enough for convergence to the solitons inside the finite gap.

We now posit that a periodic potential in time with period-
icity TF can bridge the “breathing” and help find a converged
static WF. U (TF ) = T exp (−i

∫ TF

0 Hp(t )dt ) is the evolution
operator for time TF under a periodic Hamiltonian Hp(t )

FIG. 8. Soliton breathing modes. (a) Two soliton WFs that are
mean-field solutions of each other’s potential, labeled 2-1 and 2-
2. The converged stationary WF found with an auxiliary Floquet
potential as described in the text is labeled 2 [see also Fig. 1(c)].
(b) The time-dependent soliton WF |�s(i)|, for sites i with significant
participation in the WF. The curves for the presented sites are color
coded in (c). The initial WF is the one corresponding to the 2-2
in (a). The results are for K = −1 and P0 = 16, and E2−1(2) in
TF = 2π/|E2−1 − E2−2| is energy of 2-1 (2-2) in (a). (c) The color
code of the sites presented in (b). (d) The temporal evolution of the
soliton WF overlap with the WFs corresponding to 2-1 and 2-2. (e)
The effective amplitude of the Fourier transform of the WF and its
amplitude. (f) Similar to (b) but for coarser time steps. The inset
shows the color coding of the sites.

and T is the time-ordering operator. In the following, we
transform U (TF ) into e−iHp,eff TF , where Hp,eff is a static Hamil-
tonian. The band structure of the system is then governed
by Hp,eff for integer multiples of TF with eigenvalues or
quasienergies α. This is then a static equivalent of the Floquet
Hp with energy band structure E = α.

The Floquet Hamiltonian can be written in terms of its
discrete Fourier components as Hp(t ) = ∑∞

n=−∞ H (n)
p einωpt t ,

where ωpt = 2π/TF and H (n)
p = ∫ TF

0 Hp(t )e−inωpt t dt/TF . The
effective static Hamiltonian Hp,eff can then be written as a
perturbation expansion [27]

Hp,eff = H (1)
p,eff + H (2)

p,eff + H (3)
p,eff + · · · , (A1)

H (1)
p,eff = H (0)

p , H (2)
p,eff = 1

2

∑
n �=0

[
H (−n)

p , H (n)
p

]
nωpt

, (A2)

H (3)
p,eff = 1

2

∑
n �=0

[[
H (n)

p , H (0)
p

]
, H (−n)

p

]
n2ω2

pt

+ 1

3

∑
n′,n �=0

[
H (n)

p ,
[
H (n′ )

p , H (−n−n′ )
p

]]
n′nω2

pt
. (A3)
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Higher-order terms H (n>3)
p,eff can be disregarded for large

enough ωpt , as is the case in our calculations.
In the soliton search, we start with either 2-1 or 2-2

Floquet WFs at t = 0, |�F (t = 0)〉. Subsequently, we evolve
|�F (t = 0)〉 using HT for one period, TF , using the split-
step method by updating the nonlinearities during the evo-
lution. The resulting |�F (0 � t � TF )〉 is only a Floquet
WF when |�F (0)〉 = |�F (TF )〉. We diagonalize the resulting
time-dependent Hamiltonian by choosing an appropriate cut-
off for n in Eqs. (A1) to (A3). The WF with the largest overlap
with |�F (0)〉 is chosen as the next |�F (0)〉 and the iteration
goes on, until |�F (t )〉 becomes WF of the nonlinearity-
induced time-periodic potential. In the calculations, we use
n up to 50.

Panel 2 in Fig. 8(a) is the converged result of the de-
scribed method for the initial breathing 2-1 and 2-2 WFs.
The intensity distribution of 2 is a mixture of 2-1 and 2-2,
as expected. After convergence, the distribution and potentials
are constant in time and the auxiliary periodic potential can be
eliminated.

APPENDIX B: SOLITON PHASE TEXTURE

We discuss now the soliton WF phase � = arg �s for
the topological transition in Figs. 3, 5(a), and 5(b). The
spatial dependence of the local precession phase, plotted in
Figs. 9(a) and 9(b) on a large scale around a soliton at
the center, reveals a global phase texture of either three or
six domains. The “order parameter” is here a phase wave
vector �k� defined as � ∼ mod[�k� · �r + φ0, 2π ], where φ0 is a
constant.

A soliton in a material with topologically trivial band gap,
such as an optical soliton with a vortex phase imprinted by
the light shining on a photonic lattice, can only have a scalar
phase [87]. Its winding number is a measure in real space and
since the lattice is topologically trivial, a nonzero value can
only be imprinted by an external excitation. However, when
the winding (Chern) number of the Berry (geometric) phase
in momentum �k space [60] is nonzero, the real-space domains
are characterized by a vector �k�.

For a given domain, we can measure �k� by the angle θk:

θk =
∑

�k
mod

[
tan−1

(
ky

kx

)
, π

]
|G�(�k)|2, (B1)

where G�(�k) is the normalized discrete Fourier transform of
the phase texture �(�r) = arg �s(�r). Here, �s is a station-
ary solution with frequency Es/(2π h̄). Both �k� and −�k�,
i.e., θk and θk + π should be included into the k-space
summation, as demonstrated in Figs. 9(c) and 9(d), with
colored points corresponding to the domains in Figs. 9(a)
and 9(b).

From Figs. 3, 5(a), and 5(b) and the corresponding dis-
cussion follows that for regions 1 and 1′, the nontrivial (C =
±1) and a trivial (C = 0) topology meet at the edges to the
vacuum, whereas in regions 2 and 2′ a phase separation can
exist within the soliton as well. Therefore, the phase texture
of the solitons of regions 1 and 1′ is solely determined by
the outer edges, i.e., the minimal phase texture should contain

FIG. 9. (a), (b) Spatially distributed cos � of solitons centered
at the origin (blue hexagon) from regions 1 (1′) and 2 (2′) in
Figs. 1(c) and 2, respectively. For better visibility, only sites with
cos � > 0.5 and cos � < −0.5 are shown. The insets depict the
intensity distribution close to the origin. The yellow dashed line
separates the phase domains. The circles label each domain with
colors that are the same as that of the dots in (c) and (d). (c), (d) The
dots indicate the calculated θk and θk + π [Eq. (B1)] of each domain
in (a) and (b), respectively. The inner panels sketch the chirality of the
gap modes in the real-space lattice by arrows. In (c), these have the
same color as the corresponding θk and θk + π . In (d), the chirality
arrow of the outer (inner) edge is depicted by cyan (yellow). The
inner edge is close to the origin of (b) where soliton intensity is
maximized. Dots in (d) have a different size for clarity and the “louds
peaker” mimics the soliton amplitude snapshot in (b).

three domains each with mean Fourier components deriving
from two of the six Dirac points. The calculation of θk and
θk + π using Eq. (B1) confirms this understanding as depicted
in Fig. 9(c). For the solitons of regions 2 and 2′, both the inner
and outer edges contribute to the phase texture. The inner edge
is formed around the sites with Pi > Pu,c (see Sec. II C), and
its chirality is sketched by the yellow arrows in the inner panel
of Fig. 9(d) for the WF corresponding to Fig. 9(b). We adopt
arguments from Ref. [36] to determine the chirality of the
inner edge. The phase texture of Fig. 9(b) reflects these two
counterpropagating edges by six domains, each with mean
Fourier components occurring (approximately) at two of the
six Dirac points, as inferred from the values for θk and θk + π

plotted in Fig. 9(d).

APPENDIX C: FLOQUET LATTICE

Equation (10) is the Hamiltonian of a 2D lattice of Heisen-
berg exchange-coupled local spins in the xy plane when
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illuminated by circularly polarized (CP) light with frequency
ω. We show here that this is equivalent to a periodic static
Haldane model.

A charge-neutral particle with magnetic moment
accumulates (Aharonov-Casher) phase when moving
with respect to an electric field [68], analogous to the
Aharonov-Bohm phase for charged particles moving with
respect to magnetic fields [88]. The accumulated phase upon
hopping of a magnon, Ai j = gμB

∫ �r j

�ri
�A(t ) · d�r for �A(t ) =

E0(± sin ωt, cos ωt, 0)/ω, is Ai j∝gμBE0[± cos(ωt ) cos(φi j )+
sin(ωt ) sin(φi j )]/ω, where E0 is the light electric field
amplitude, g is the Landé g factor, μB is Bohr magneton, and
φi j is the angle of the vector connecting site i at �ri to j at �r j .

Using Eqs. (A1) to (A3), the Hamiltonian (10) can to lead-
ing order in the small parameter ξ = gμBE0/ω be transformed
into a time-independent sum of two contributions

H (1)
F,eff = J

∑
〈i, j〉

[
Sz

i Sz
j + J0(ξ )

(
Sx

i Sx
j + Sy

i Sy
j

)]
, (C1)

H (2)
F,eff =

∑
〈〈i, j〉〉

∑
n �=0

(−1)nJJ 2
n (ξ )

nω

× sin

(
n

2π

3
vi j

)
�Sk · (�Si × �S j ), (C2)

where k is a site between two next-nearest neighbors (NNN) i
and j, and Jn is the nth-order Bessel function of the first kind.
Focusing on a perpendicular equilibrium magnetization, �Sk

can be written as a sum of a static and dynamic contribution as
�Sk = S0,k ẑ + δ�Sk in Eq. (C2), which to leading order reduces
to a term similar to the DMI in Eq. (1) with effective DMI
coefficient DF = −√

3JSJ 2
1 (ξ )/ω:

Hp,eff = H (1)
F,eff +

∑
〈〈i, j〉〉

DF vi j ẑ · (�Si × �S j ), (C3)

where ξ and ω are tunable by the power and frequency of the
light. We thereby recover the static Haldane model in the Flo-
quet manner without intrinsically broken inversion symmetry
(and therefore DMI). Nonlinearities affect Hp,eff in the same
way as in the main text. Hence, the soliton search procedure as
explained in Appendix A can be applied, whereby the Floquet
period TF in Appendix A is fixed by T = 2π/ω. More-
over, the initial trial WF of the iterative method is 〈�F (t =
0)|ni|�F (t = 0)〉 = P0 for a site i = 0 in the bulk and zero
otherwise.

APPENDIX D: PARAMETER ESTIMATES

Magnons in crystals with periodic magnetization Ms on
length scales of d ∼ 0.5 μm are dominated by dipolar in-
teractions. In a structure consisting of a regular lattice of
holes in a host magnet film that are filled with sufficiently
different magnetic materials and a filling fraction F ∼ 10−2,

the Chern number of a specific band can be tuned between
0, 1, and 2, by changing d and the aspect ratio of the
unit cell [20]. The total spin in each unit cell is then S =
(Ms, f F + Ms,l )d2L/(γ h̄) ≈ Ms,l d2L/(γ h̄), where −γ is the
gyromagnetic ratio and subscript l ( f ) refers to the magnetic

material of the lattice host (filling). S can be tuned by the film
thickness L, while the topological invariant is kept constant,
as long as the translational invariance along ẑ is a good
assumption (thick film limit). We assume that we can locally
excite the lowest magnonic bands with constant amplitude
along ẑ by the dynamic spin-transfer torque of a spin-wave
bullet in a Py overlayer with in-plane magnetization, as in
Fig. 7(a).

Based on the typical frequencies of the bandwidths of
dipolar magnonic lattices (corresponding to JS in the Hal-
dane model) ∼10 GHz, for L ∼ 10 μm, i.e., S ∼ 1015, we
have a correspondence to J ∼ 0.0001 in the Haldane model.
The gap width and topology of the magnonic lattice is gov-
erned by the aspect ratio of the rectangular 2D unit cell
with fixed area. It can be tuned to correspond to the D/J
parameter used here. Therefore, the soliton phase diagram
for K = −1 of Fig. 1(c) can be achieved in a magnonic
lattice with K ∼ −0.001 by a crystalline anisotropy constant
Ku through K = −2γ Ku/(μ0Ms,l S), or Ku ∼ 104 J/m3 for
γ = 2.2 × 105 A/(m·s) and Ms,l = 105 A/m. For compari-
son, Ku for YIG and L10 FePt, are of the order of ∼103

and ∼106 J/m3, respectively [89,90]. Tuning S by changing
L while keeping all other parameters intact, thus should allow
resolving soliton phase diagrams with (Fig. 2) and without
[Fig. 1(c)] magnon-magnon interactions. A possible concrete
choice would be YIG for the film, while the filling material
is Fe (or Co). An ability to change the crystalline anisotropy
from say 103 to 104 J/m3 by using different crystal growth
directions, doping, or gating of YIG, could be useful to map
the soliton phase diagrams.

The spin Hall oscillators that generate self-localized oscil-
lations (SWB) can be fabricated with spatial half-widths at
half-maximum RSWB of ∼500 nm [53], which would cover
approximately a unit cell of the lattice in the previous ex-
ample, which is sufficient to generate the localized solitons
predicted in Figs. 1(c) and 2. In a ∼10-μm-wide disk Py/Pt
bilayer the SWB were excited for an in-plane equilibrium
magnetization. For a fixed current above threshold, an in-
plane magnetic field �HIP of 4 × 104−12 × 104 A/m can tune
the SWB frequencies in the range of 5–10 GHz. The perpen-
dicular magnetization of the underlying magnonic lattice is
not significantly affected when the perpendicular anisotropy
is strong enough, e.g., Ku ∼ 104 J/m3 while the in-plane
magnetization of Py is stabilized by the thin-film shape
anisotropy.

Modeling the SWB by a macrospin precession within
the bullet volume, we can calculate the effective dipo-
lar field on the lattice below the SWB as hSWB,l >

πR2
SWBLPyMs,Py sin θc/(r2

wL), where LPy is the Py layer thick-
ness (5 nm), Ms,Py = 7 × 105 A/m. θc is the precession cone
angle, and 2rw is the diameter of the expected lattice soli-
ton. With rw ≈ 0.1 μm, θc = π/4, hSWB,l > 2.5 × 103 A/m.
A magnon mode in the lattice resonant with the frequency
ωSWB of the driving field hSWB,l is estimated as nl ∼
(2hSWB,lγ

2R2
SWBL

√
Ms,l/2γ h̄/ζm)2, where ζm is the magnon

decay rate, which in a best case scenario ∼1 MHz for YIG.
Therefore, nl ∼ 1.5 × 1015, which is ∼1−10 S that is in the
range of P0/S of Figs. 1(c) and 2. By adopting Ms of the
host material YIG (which is smaller than the filling materials
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Fe or Co), this is a lower bound for nl . It should be noted
that hSWB,l and consequently nl can be tuned by the charge
current amplitude and the locking microwave charge current

power [72]. In the steady state, the charge current generates
an SWB that stabilizes the solitons by regenerating the losses
due to damping.
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