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a b s t r a c t

Forecasting wastewater discharge is the basis for wastewater treatment and policy formulation. This
paper proposes a novel mixed-data sampling regression model, i.e., combination-MIDAS model to
forecast quarterly wastewater emissions in China based on dynamic factors at different frequencies. The
results show that a significant auto-correlation for wastewater emissions exists and that water con-
sumption per ten thousand gross domestic product is the best predictor of wastewater emissions. The
forecast performances of the combination-MIDAS models are robust and better than those of the
benchmark models. Therefore, the combination-MIDAS models can better capture the characteristics of
wastewater emissions, suggesting that the proposed method is a good method to deal with model
misspecification and uncertainty for the control and management of wastewater discharge in China.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Water is critical to economic development and human life
(Horne, 2013). However, the per capita annual sustainable fresh-
water available in China is only about one-quarter of the world
average (Qin et al., 2013). Water pollution, one of the environ-
mental crises, has become a major concern in China. The rapid
development of the economy, industrialization, and urbanization
without adequate investment inwastewater treatment has resulted
in degraded water quality. More than 30% of the river length, 66% of
major lakes, and 70% of groundwater wells do not meet the quality
criteria for drinking water sources (Lu et al., 2017a). Many people
inevitably consume unsafe water, which is contaminated with
heavy metals, organic compounds and pathogens fromwastewater
discharge. Over 70% of Chinese residents feel threatened by water
pollution (Wang and Yang, 2016). Evidence suggests that waste-
water has a large impact on public health and has a significantly
negative impact on the overall mortality rate (Lu et al., 2017b),
which can pose a risk to further development and social stability in
China. Therefore, the control and management of water pollution
e by Sarah Harmon.
have become an extremely important problem for the Chinese
government.

Due to the severity of water pollution, reducing the impacts of
wastewater discharge is one of the focuses in China. To address this
problem and adhere to the ecological priorities and green devel-
opment, the Water Pollution Prevention and Control Action Plan
(“10-Point Water Plan”) was released in April 2015 to tackle the
nation's water pollution crisis, including the pollution of ground
water and surface water, which are considered the most severely
deteriorated natural sources in China (Han et al., 2016). Although
substantial reductions in the pollutant emissions into the water
have been achieved with the government's endeavour to cure
water pollution, the current total amount of wastewater discharge
remains massive (Zhang et al., 2017). To control and remedy
wastewater emissions, and therefore gain better performance in
the management of water pollution, precisely forecasting the
amount of wastewater emission is required. Accurate forecasting of
the amount of wastewater discharge is essential to making more
effective policies relative to wastewater control and management
to achieve more sustainable economic development.

The amount of wastewater emissions is affected bymany factors
which can be classified into three types, namely, economic growth,
industrial structure and urbanization. Academic literature on the
drivers of wastewater emissions primarily focuses on the influence
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of economic growth. The rapid development of the economy in-
creases the demand for water use and therefore results in more
wastewater discharge, especially in industrial sectors (Li et al.,
2014). Therefore, economic development is considered the domi-
nating factor of industrial wastewater discharge (Geng et al., 2014).
Some evidence shows that there is a significant inverted U-shaped
EKC (Environmental Kuznets Curve) between income growth and
industrial wastewater emissions in rich provinces in China (Qian
et al., 2012; Yang et al., 2010; Zhou and Sun, 2013). There exists
in the EKC relationship a rising left leg of the unobserved curve
between the economy and the total amount of industrial waste-
water emissions in China (Zhang et al., 2011). Moreover, some
studies show that water consumption per ten thousand gross do-
mestic product exerts a larger influence onwastewater emissions in
the near future than in the long term using Wuhan City in China as
a case study (Zhang et al., 2016).

The industrial structure suggests the development level of in-
dustrial sectors and industrial growth. The industry accounts for
approximately 20% of the decrease in total freshwater from a global
perspective (Duarte et al., 2014). Although China enters the “New
Normal” and needs to upgrade the level of industrialization (Yan
and Liu, 2015), the industrial sewage still increases and always
does not meet the discharge standards. The extension of the in-
dustrial sector will directly lead to an increase in wastewater
emissions without a responding improvement of wastewater
treatment. This rapid growth results in a dilemma between the
development of industrialization and the preservation of water
resources including the treatment of industrial wastewater emis-
sions (Yao et al., 2018). Therefore, it is regarded as one of the main
determinants of wastewater emissions, especially industrial
wastewater emissions, which is closely related to industrial pro-
duction and will increase with the growing industrial output (Li
et al., 2016a).

Urbanization is also considered one of the main factors of
wastewater discharge and has mixed effects on water conditions.
On the one hand, rapid urbanization can directly influence the
domestic water consumption, which cannot be avoided because of
human activities (Elleuch et al., 2018). On the other hand, it will
accelerate industrial production by increasing household con-
sumption. However, urbanization also can relieve the increase in
industrial wastewater through improved industrial labour pro-
ductivity. Some evidence suggests that there exists a reverse U-
shaped relationship between the urbanization rate and industrial
wastewater discharge (Somorowska and Łaszewski, 2019), while
some studies indicate that urbanization may have a negative
impact on environmental quality in the long run by increasing
wastewater emissions (Li et al., 2016b). Moreover, the population
has a significant impact on the contamination level in surface water
(Zhu et al., 2018) and therefore can affect wastewater emissions (Hu
and Guan, 2018). It has been estimated that population growth is an
important driver of water efficiency, especially in the long run
(Distefano and Kelly, 2017; Gu et al., 2009).

However, there still exist some research gaps in the cognition on
the forecast of wastewater emissions. Limited literature pays
attention to wastewater emissions prediction, mainly focusing on
the application of the Grey model and neural networks by the
historical change trends of wastewater emissions. The Grey model
has been applied to forecast wastewater discharge, because it can
ensure reliability and stability with inadequate datasets (Wang
et al., 2017). There are some extended grey models to improve
the forecast accuracy (Wang et al., 2018). For example, the
Nonlinear Grey Bernoulli Model NGBM (1,1) is used to simulate the
annual qualified discharge rate of industrial water in China and
yields accurate performance (Wang et al., 2011). Artificial neural
networks are other methods frequently used to forecast
wastewater emissions (Wang and Yu, 2012). This technique has
been widely applied to research on global climate changes because
it has larger advantages in portraying nonlinear characteristics.
Similarly, it has been used to forecast the amount of wastewater
discharge (Fernandeza et al., 2009) including methane emissions
(Du et al., 2018) and performs well.

Indeed, the above Grey model and neural networks utilizing the
past change trends of wastewater discharge do not take relative
factors into consideration. Wastewater generation is a complex
process influenced bymany drivers. The fluctuation of latent factors
intensifies the fluctuation and uncertainty of wastewater emis-
sions, which is a considerable obstacle for accurate predictions.
Thus, it is important to take into account the considerable influence
of exogenous variables when performing trend analysis of waste-
water emissions. Therefore, multivariate models that can integrate
the effects of several factors have gained growing attention when
forecasting wastewater emissions. Specifically, the multivariate
nonlinear regression model is applied to forecast industrial
wastewater discharge in China considering the industrial gross
product and industrial wastewater consumption and yields a
higher precision (Lei and Pan, 2011). Moreover, an artificial neural
network that uses generic indicators performs well in forecasting
municipal waste generation for countries with highly diversified
levels of economic development, industrial structure, productivity
and output (Antanasijevi�c et al., 2013). However, this method has
the disadvantage of overfitting, which limits its application.
Furthermore, the hidden Markov model considers latent factors
and performs well when forecasting the fluctuation of wastewater
generation (Jiang and Liu, 2016). Lastly, the Grey multivariable
model based on the nonlinear least squaresmethod can identify the
nonlinear relationship between wastewater emissions and related
drivers and present greater precision than the traditional Grey
multivariable model (Zeng et al., 2019).

Nevertheless, the multivariate regression models mentioned
above pay more attention to forecast annual wastewater using the
same frequency predictors. Due to unanticipated changes in eco-
nomic growth and the factors that affect wastewater discharge, the
predictor determinations for wastewater emission should have
dynamic characters. Since there are time lags between environ-
mental policies and economic activities changes, the high-
frequency predictors can help the forward-looking decision
makers react before the annual wastewater emissions actually
occur. It is meaningful to use monthly or quarterly factors such as
economic growth, industries and consumption to forecast low-
frequency wastewater emissions. On the other hand, the influ-
ence of some factors on wastewater discharge may last for even
shorter periods than one quarter, and the effects will be ignored if
the quarterly data are used directly or is added to annual data.
Therefore, it is necessary to explore new methods that can make
full use of the high-frequency data to forecast wastewater emis-
sions with higher accuracy.

The mixed-data sampling (MIDAS) regression model is intro-
duced to forecast wastewater emissions to solve the problem of
different frequencies mentioned above. The MIDAS regression
model provides an attractive way to deal with datasets with
different frequencies because it involves parsimonious specifica-
tion based on distributed lag polynomials (Ghysels and Qian, 2019).
It is designed to keep a balance between retaining the effective
information of high-frequency data and reducing the number of
parameters which need to be estimated (Tsui et al., 2018). There-
fore, it can enhance the prediction accuracy for a low-frequency
variable through effectively utilizing high-frequency information,
thus alleviating information loss resulting from data accumulation.
However, the MIDAS regression model has not yet been applied to
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forecast wastewater emissions. In China, the data on wastewater
emissions and some drivers are published annually, whereas the
data on other drivers are published monthly or quarterly. The
quarterly wastewater emissions measurements are more mean-
ingful for policy making because they can provide better guidance
to manufacturers and residents to change their plan of wastewater
disposal according to relevant policies, even though most of the
existing research focuses on annual forecasts because of data
availability. Therefore, this paper focuses on the forecasting of
quarterly wastewater emissions considering monthly multiple
drivers based on mixed datasets., In order to improve the forecast
accuracy, this paper constructs a combination-MIDAS regression
model based on the single MIDAS forecast results to better capture
the dynamic factors of wastewater emissions.

The intention of this paper is to forecast quarterly wastewater
emissions in China considering monthly datasets of relevant fac-
tors. The main contributions can be classified into two categories.
First, this paper analyses the relationship between quarterly
wastewater emissions and monthly factors. The more compre-
hensive factor system is presented, which is critical to fully
capturing the dynamic factors of wastewater emissions. Namely,
the gross domestic product (GDP), water consumption per ten
thousand gross domestic product (WC/TTGDP), value added of
secondary industry (VASI), water consumption per value added of
secondary industry (WC/VASI), value added of tertiary industry
(VATI), urban population (UP), and household consumption (HC)
are chosen to forecast the wastewater emissions. The results show
that there exists a significant auto-correlation for wastewater
emissions and that WC/TTGDP has the best predictive ability.

The second contribution of this paper is methodology. This pa-
per constructs a combination-MIDAS regression model to deal with
model uncertainty because the dynamic drivers may have different
information sets and modelling structures. We combine the fore-
casts from the best single MIDAS models for each factor with five
weight-type schemes to alleviate the problem of model uncer-
tainty. The results show that the proposed combination-MIDAS
models perform better than benchmark models, e.g. autore-
gressive (AR), moving average (MA), and autoregressive moving
average (ARMA) models. Furthermore, the robustness analysis
suggests that the forecast performances of the combination-MIDAS
models are robust, which indicates that the combination-MIDAS
model is a promising method for wastewater emissions forecasting.

The remainder of the paper is organized as follows. Section 2
introduces the data resources and methods employed in this pa-
per. Section 3 presents an analysis of the driving factors of waste-
water discharge. Section 4 demonstrates the analysis of the forecast
of wastewater discharge, which suggests the efficacy of the models
developed in this study. The research conclusions and future work
are discussed in section 5.

2. Data resources and research methodology

2.1. Data resources

This paper aims to forecast the quarterly wastewater emissions
in China, including industrial and domestic wastewater emissions
and considering monthly factors. The existing literature discussed
above suggests that wastewater discharge is a complex process
influenced by many factors, such as economic growth, industrial
structure and urbanization. To construct a comprehensive factor
system for wastewater emissions, this paper chooses GDP and WC/
TTGDP from the economic aspect, chooses VASI, WC/VASI and VATI
from the industrial aspect, and chooses UP and HC from the ur-
banization aspect. The data are available in the China Statistical
Yearbook, the Report on the State of the Environment in China, and
the China Water Resources Bulletin. However, most data are pub-
lished annually or quarterly in China. To detect the relationship
among wastewater emissions and its factors in detail, this paper
applies the “quadratic match sum” principle to obtain the quarterly
wastewater emissions and monthly factors. The sample covers the
period from January 1997 to December 2016. This paper chooses
the period from January 1997 to March 2014 as the estimation
sample to train single MIDAS regression models and chooses the
period from April 2014 to December 2016 as the out-of-sample
period for forecasting to compare the forecast performance of
single MIDAS models.

The growth rates of variables are considered in the empirical
analysis to eliminate heteroscedasticity. Namely, growthit ¼
lnðvalueit=valueit�1Þ� 100, where growthit refers to the growth rate
of the i� th variable at time t. valueit is the observation of the i� th
variable at time t.
2.2. MIDAS regression model

There exists some econometric analysis providing theoretical
evidence for the advantage of the MIDAS models (Andreou et al.,
2010; Ghysels et al., 2007; Kvedaras and Ra�ckauskas, 2010).
Moreover, the MIDAS model has been widely adopted to forecast
economic variables and has yielded good performance. Many
studies have revealed overwhelming support indicating that
MIDAS has the ability to improve the forecast accuracy of low-
frequency variables and outperforms linear time series models in
both the in-sample and the out-of-sample forecast periods. Spe-
cifically, much evidence suggests that MIDAS performs better in
forecasting economic variables than do traditional models, such as
traditional linear regressions (Bangwayo-Skeete and Skeete, 2015;
Jiang et al., 2017) and generalized autoregressive conditional het-
eroskedasticity (GARCH)-class models (Alper et al., 2012). Recently,
some evidence has demonstrated that the MIDAS model performs
well in energy and environmental research due to its advantages in
addressing the problem of different sampling frequencies. It has
been used to forecast energy demands (He and Lin, 2018), oil prices
(Baumeister et al., 2015; Pan et al., 2017), carbon prices (Zhao et al.,
2018b) and carbon dioxide emissions (Zhao et al., 2018a).

To improve the forecast accuracy of quarterly wastewater
emissions using monthly drivers, MIDAS regression models are
applied in this paper. MIDAS depends on parsimonious polynomials
to reflect the dynamic relationship among data with different fre-
quencies. The basic MIDAS model (MIDASðm; kÞ) can be defined
simply as:

Yt ¼aþ bWðL1=m; qÞxðmÞ
t þ εt (1)

where Yt refers to quarterly wastewater emissions and t ¼ 1;2;/;

T . xðmÞ
t refers to the i� th monthly indicators, which can be

observed m times between quarters t � 1 and t. Thus, in this paper,
m ¼ 3. a and b are unknown parameters. L1=m is the lag order, and

Lk=mxðmÞ
t ¼ xðmÞ

t�k=m. When k ¼ 0, xðmÞ
t�k=m refers to the observation of

the third month in a quarter. When k ¼ 1, xðmÞ
t�k=m refers to the

observation of the second month in a quarter, and so on.WðL1=m; qÞ
is decided by the lag operator L1=m and a parameter vector of
limited dimension, q, which can be defined as WðL1=m; qÞ ¼PK

k¼0wðk; qÞLk=m, where wðk; qÞ is the polynomial weight and K is
the maximum lag order of the relevant drivers.

Furthermore, to take advantage of the readily available higher
frequency data, the MIDAS regression model with leads
MIDASðm; k;hÞ is introduced. Suppose that we can obtain data on
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drivers in the second month of a quarter and during which we aim
to achieve a forecast for wastewater emissions. Then, we can
employ MIDASðm; k;hÞ with one-month leads or one-step ahead to
incorporate real-time information. Therefore, MIDASðm; k;hÞ can
provide forecast updates when new data are available. The
MIDASðm; k;hÞ model can be represented by:

Yt ¼aþ bWðL1=m; qÞxðmÞ
t�h=m þ εt (2)

where h refers to the number of steps ahead. When h ¼ 1,
MIDASðm; k;hÞ can achieve the forecast of quarterly data in the
quarter twithmonthly data until the secondmonth of the quarter t.
Similarly, when h>3, MIDASðm; k;hÞ can obtain the forecast for a
quarter t þ 1 or later by using the data in the quarter t.

To fully utilize the information concerning high-frequency and
low-frequency variables in the distributed lags, we employ
MIDASðm; k;hÞwith an autoregressive distributed lag, namely, AR�
MIDASðm; k; hÞ. It takes the lag effects of Yt into consideration.
Therefore, it can minimize information loss and enhance forecast
accuracy. The AR�MIDASðm; k;hÞmodel can be represented by the
following equation:

Yt ¼aþ
Xp

j¼1
gjYt�j þ bWðL1=m; qÞxðmÞ

t�h=m þ εt (3)

The MIDAS regression model depends on polynomial weights to
capture the dynamic relationship between high-frequency data
and low-frequency data. Thus, a suitable function form for the
MIDAS model is important to achieve an accurate forecast. This
paper considers various parsimonious polynomial specifications,
including the beta density function with zero lag (Beta), beta den-
sity function with non-zero lag (BetaNN), exponential Almon lag
polynomial (ExpAlmon), Almon lag polynomial (Almon), step func-
tion (Step) and unrestricted weight function (UMIDAS).

The beta density function is expressed as follows:

wðk; qÞ¼wðk; q1; q2; q3Þ ¼ f ðk=K; q1; q2Þ
.XK

k¼1
f ðk=K; q1; q2Þ

þ q3

(4)

where f ðxi; q1; q2Þ ¼ xq1�1
i ð1� xiÞ

q2�1
Gðq1 þq2Þ =Gðq1ÞGðq2Þ and

GðqÞ ¼ R∞
0 e�xxq�1dx. When q3 ¼ 0, wðk; qÞ ¼ wðk; q1;q2Þ ¼ f ðk=K;

q1;q2Þ=
PK

k¼1f ðk=K;q1;q2Þ, which is the Beta weight function. When

q1 ¼ 1, wðk; qÞ ¼ wðk;1; q2; q3Þ ¼ f ðk=K;1; q2Þ=
PK

k¼1f ðk=K;1; q2Þþ
q3, which is the BetaNN weight function.

The normalized exponential Almon lag polynomial (ExpAlmon)
can be written as follows

wðk; qÞ ¼ eðq1kþq2k2þ/þqpkpÞ
.XK

k¼1
eðq1kþq2k2þ/þqpkpÞ (5)

The Almon lag polynomial specification (Almon) can be defined
as

bwðk; q0; q1; q2; q3Þ ¼
X3

p¼0
qpkp (6)

The polynomial specification with a step function (Step) can be
expressed as

bwðk; qÞ¼ q1Ii2½a0;a1� þ
XP

p¼2
qpIi2½ap�1;ap�; Ii2½ap�1 ;ap�

¼ f1; ap�1 � i � ap
0; otherwise

(7)
where a0 ¼ 1< a1 </< aP ¼ K .
The unrestricted weight function (UMIDAS) generalizes to

Yt ¼aþ Bðb; L1=mÞxðmÞ
t þ εt (8)

where Bðb;L1=mÞ ¼ PK
k¼0bkL

k=m.
2.3. Forecast combination method

In section 2.2, the forecast models use single predictor named by
single MIDAS regression models. However, some evidences show
that multiple predictors may provide more accurate results and
more stable performance over time (Kuzin et al., 2013). There are
two ways to include multiple predictors into to single MIDAS
regression models to form the forecast. One is the multivariate
MIDAS regression method, which extends the single MIDAS
regression by adding more predictors as explanatory variables in
the regression model (Andreou et al., 2013). But this method has to
suffer the parameter proliferation problem, when there is a great
deal of predictors. The other is the forecast combination method,
which constructs a weighted average of forecasts using single
MIDAS regression with different predictors (please see the detail in
Fig. 1). This approach can solve the large number of predictors and
achieve more stable forecasts. Specifically, it provides a way to deal
with model uncertainty and is more robust to misspecification
biases, measurement errors and structural breaks (Ghysels and
Ozkan, 2015) since it does not depend on identifying a single best
model (Pettenuzzo et al., 2016). In this paper, we use forecast
combination method to introduce multiple predictors into single
MIDAS regression models. Given N forecast results from the single
MIDAS models, the forecast combination can be represented as:

f
∧

N;TþsjT ¼
XN

j¼1
wj;T
∧

y
∧

j;TþsjT (9)

where f
∧

N;TþsjT refers to the s� th forecast results from the forecast
combination method, denoted by combination-MIDAS model. T
represents the number of estimation samples to train single MIDAS

models. y
∧

j;TþsjT is the s� th forecast result from the best single

MIDAS model considering the j� th factor. wj;T
∧

suggests that the
weight given to the forecasts results depends on the best single
MIDASmodel considering the j� th factor. This paper considers five

weight types for wj;T
∧

.

(i) MSFE-weighted type
MSFE refers to the mean squared forecast error, which is

employed to provide a reference to define the weight to each
best single MIDAS model. The weight is given as,

n

wj;T ¼ m�1
j;T

X
j¼1

m�1
j;T (10)

where mj;T ¼ Pt
i¼T0 ðd

i�T0 ðyj;Tþs � y
∧

j;TþsjT ÞÞ
2
=ðt � T0 þ 1Þ. When

d ¼ 1, mj;T is the MSFE of the best single MIDAS model that con-
siders the j� th factor and that is trained by estimation samples
including T observations. yj;Tþs is the s� th real observation in the
out-of-sample data. t�T0 þ 1 refers to the number of out-of-
sample data.

(ii) DMSFE-weighted type
DMSFE is the discounted mean squared forecast error

based on MSFE. For example, set d ¼ 0:9 shown above.
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Namely, when mj;T ¼ Pt
i¼T0 ð:0:9i�T0 ðyj;Tþs � y

∧
j;TþsjT ÞÞ

2
=ðt �

T0 þ 1Þ, wj;T ¼ m�1
j;T =

Pn
j¼1m

�1
j;T refers to the discounted mean

squared forecast error (DMSFE)-weighted type.
(iii) AIC-weighted type

AIC suggests Akaike information criteria (AICs). The AIC-
weighted type is defined as follows:,
wj;T ¼ expð�AICjÞ
XN
j¼1

expð�AICjÞ (11)

(iv) BIC-weighted type
BIC refers to Bayesian information criteria. This kind of

weight is shown as follows:,

wj;T ¼ expð�BICjÞ

XN
j¼1

expð�BICjÞ (12)

(v) Equal-weighted type

The equal-weighted type is simply defined as

wj;T ¼ 1=N (13)

Therefore, the process of combination-MIDAS includes 3 steps
to forecast quarterly wastewater emission, as shown in Fig. 1.

Step 1 refers to the establishment of large numbers of single
MIDAS models with single predictor, e.g., GDP, WC/TTGDP, VASI,
WC/VASI, VATI, UP or HC. Step 2 chooses the best polynomial
weight and lag orders for wastewater emissions and the relevant
factors by comparing root mean squared errors (RMSE) with single
MIDAS regression models, which is consistent with Andreou et al.
(2010), Bai et al. (2013), Han et al. (2019). RMSE is a good index
that can test the performance of out-of-sample forecasts. The single
MIDAS regression model with the smallest RMSE is the one with
the highest forecast accuracy. We call it the best single MIDAS
regression model. Therefore, the indicator with the best predictive
ability can also be chosen by comparing RMSE values. RMSE is
defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi � byiÞ2

r
(14)

where n refers to the number of out-of-sample data, yi suggests the
i� th real observation, and byi is the i� th out-of-sample forecast
results.

Step 3 combines the best single MIDAS models for each factor as
chosen by step 2 with the weight schemes shown above to
construct the combination-MIDAS model and applies it to forecast
wastewater emissions.
Fig. 1. Flow chart of the combination-MIDAS model.
3. Analysis of driving factors of wastewater discharge

3.1. Selection of the single MIDAS models

This section analyses the forecast performance of the single
MIDAS regression models discussed in section 2.2. The single
MIDAS models with the highest accuracy and the indicators with
the best predictive ability are chosen by comparing RMSE values,
which is in line with Han et al. (2019). The selection of the best
single MIDAS model is a critical step to obtain final results with
higher accuracy because it is the basis of the combination-MIDAS
model and thus influences the final forecast results.
In line with Han et al. (2019), Jiang et al. (2017), and Zhao et al.

(2018b), the best lag orders and polynomial weights for wastewater
discharge and its factors are selected by comparing the RMSE
values of relevant single MIDAS models. To reflect the change
trends of RMSE values, themaximum lag orders for monthly factors
are changed from 1 to 30 months, the maximum lag order for
wastewater emissions ranges from 0 to 4 quarters, and h ranges
from 0 to 3 months. This paper takes the single MIDAS models
considering the gross domestic product (GDP) as an example to
demonstrate the mechanism of choosing the best polynomial
weight and the best lag orders for wastewater emissions and GDP,
which is shown in Table 1. Table 1 shows the RMSEs of single MIDAS
models with 2-month leads of wastewater emissions, namely,
models in which the h step is 2 months, which suggests that the
best polynomial weight and the best lag orders for GDP may be
different under different lag orders for wastewater emissions.
Generally, the polynomial weight of UMIDAS performs better in
reflecting the relationship betweenwastewater emissions and GDP
with the condition of 2-month leads of wastewater emissions.
Moreover, there exists an auto-correlation for wastewater emis-
sions since the RMSE is smaller when we consider the lag order for
wastewater emissions. The smaller RMSE means that the forecast
accuracy is improved. Furthermore, in the case considering MIDAS
models with 2-month leads, the RMSE is the smallest when the lag
orders for wastewater emissions and GDP are 4 quarters and 8
months, respectively.

3.2. Comparisons among the dynamic factors

Considering the complex processes among wastewater emis-
sions and factors, this paper chooses the best polynomial weight,
the best h steps, and the best lag orders for wastewater emissions
and factors, respectively, to decide the best single MIDAS models
with different leads. Similar to the process shown above, the best
single MIDAS models are selected, which are shown in Table 2. The
results in Table 2 suggest that there exists an auto-correlation
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among wastewater emissions. This auto-correlation provides evi-
dence for the research of Wang et al. (2011), which only consider
wastewater discharge time series. Moreover, the mechanisms by
which factors influence wastewater emissions are different, which
provide evidence that we should determine the best polynomial
weight to reflect the influence of each factor on wastewater emis-
sions rather than predetermining one before analysis for all factors.

Specifically, the best MIDAS models with each factor under
different conditions are the ones whose RMSEs are bolded in
Table 2. According to the best MIDAS models, we suggest that
UMIDAS can better capture the impacts of GDP and urban popu-
lation (UP) on wastewater emissions. The influence of GDP and UP
lasts for 8 and 16 months respectively, which is different from the
findings of Zhang et al. (2016). Zhang et al. (2016) hold that GDP
growth rate impacts wastewater emissions more significantly in
the long term, which may because that they only consider the
municipal wastewater emissions in Wuhan, China using annual
data directly. For water consumption per ten thousand gross do-
mestic product (WC/TTGDP), water consumption per value added
of secondary industry (WC/VASI) and the household consumption
(HC), their impacts onwastewater emissions can be represented by
a step function. The impacts ofWC/TTGDP,WC/VASI, and HC last for
30, 28 and 24 months. Regarding the value added of secondary
industry (VASI), the BetaNN polynomial weight can better capture
the relationship between this factor and wastewater emissions,
which lasts for 26 months. For the value added of tertiary industry
(VATI), the Almon polynomial weight performs better, and this
Table 1
RMSEs of single MIDAS models considering GDP with 2-month leads.

Weights Lag order for GDP

3 7 8 16 20 25 30

Lag order for wastewater emissions: 0
Beta 0.2549 0.2540 0.2542 0.2677 0.2694 0.2682 0.2669
BetaNN 0.2553 0.2534 0.2570 0.2479 0.2705 0.2679 0.2636
ExpAlmon 0.2542 0.2545 0.2642 0.2787 0.2732 0.2745 0.2745
Almon 0.2494 0.3366 0.2591 0.2742 0.2516 0.2391 0.2631
Step 0.2592 0.2543 0.2537 0.3169 0.3095 0.2960 0.2840
UMIDAS 0.2408 0.2194 0.2373 0.4905 0.4359 0.5723 1.5260
Lag order for wastewater emissions: 1
Beta 0.1753 0.1753 0.1753 0.1837 0.1850 0.1835 0.1826
BetaNN 0.1733 0.1712 0.1740 0.1703 0.1871 0.1790 0.1803
ExpAlmon 0.1753 0.1753 0.1753 0.1753 0.1753 0.1753 0.1753
Almon 0.2411 0.2334 0.1881 0.1850 0.1759 0.1784 0.1875
Step 0.1741 0.1738 0.1739 0.2264 0.2217 0.2656 0.2821
UMIDAS 0.1681 0.1682 0.1687 0.5117 0.5648 0.5960 1.1605
Lag order for wastewater emissions: 2
Beta 0.1710 0.1710 0.1710 0.1813 0.1816 0.1797 0.1788
BetaNN 0.1689 0.1669 0.1698 0.1670 0.1686 0.1781 0.1856
ExpAlmon 0.1710 0.1710 0.1710 0.1710 0.1710 0.1710 0.1710
Almon 0.6229 0.2252 0.1871 0.1822 0.1723 0.1750 0.1848
Step 0.1698 0.1699 0.1702 0.2219 0.2171 0.2582 0.2800
UMIDAS 0.1644 0.1637 0.1648 0.5093 0.5594 0.6193 1.2090
Lag order for wastewater emissions: 3
Beta 0.1760 0.1760 0.1760 0.1828 0.1848 0.1836 0.1828
BetaNN 0.1740 0.1719 0.1746 0.1709 0.1723 0.1792 0.1888
ExpAlmon 0.1760 0.1760 0.1760 0.1760 0.1760 0.1760 0.1760
Almon 0.1964 0.2363 0.1855 0.1841 0.1744 0.1773 0.1865
Step 0.1748 0.1744 0.1745 0.2224 0.2194 0.2699 0.2896
UMIDAS 0.1692 0.1724 0.1731 0.5301 0.5769 0.6235 1.1863
Lag order for wastewater emissions: 4
Beta 0.2094 0.2094 0.2094 0.2094 0.1956 0.1989 0.2006
BetaNN 0.2062 0.2032 0.2046 0.2007 0.1987 0.1987 0.2090
ExpAlmon 0.2094 0.2094 0.2093 0.2094 0.2094 0.2094 0.2094
Almon 0.7042 0.2401 0.1803 0.1878 0.1864 0.1909 0.2031
Step 0.2091 0.2058 0.2053 0.2219 0.2242 0.2551 0.2668
UMIDAS 0.2021 0.1544 0.1540 0.3638 0.4883 0.6196 1.1386

Notes: The bold values represent the smallest RMSEs under the condition of
different lag orders for wastewater emissions.
factor's influence on wastewater emissions lasts for 3 months.
Furthermore, the best single MIDAS models relevant to WC/TTGDP
have the smallest RMSE value among the best single MIDAS models
with different factors, which means that WC/TTGDP, as an eco-
nomic proxy, is the best predictor for wastewater emissions among
the factors discussed above. This is to some degree in line with the
findings of Geng et al. (2014), which suggests that economic factors
are the main determinants for industrial wastewater emissions.

4. Analysis of forecast of wastewater discharge

4.1. Forecast results of the combination-MIDAS model

One model cannot maintain a dominant performance all the
time because of model uncertainty. Therefore, this paper constructs
combination-MIDAS models based on the best single MIDAS
models under each condition shown in Table 2, which is discussed
in section 2.2. The best polynomial weight and best lag orders for
each factor are different, thus, the combination-MIDAS model can
make full use of the advantages of the best single MIDAS models.
Consistent with Han et al. (2019) and Zhao et al. (2018b), this paper
applies the best singleMIDASmodels considering each factor under
the condition of different leads shown in Table 2 to achieve the
forecast for wastewater emissions. Then, the forecast results ob-
tained from the best single MIDAS models are given corresponding
weights according to the five weight schemes to achieve the final
forecasts of the combination-MIDAS models for wastewater
emissions.

Table 3 demonstrates the out-of-sample forecast performance of
the combination-MIDAS models. Panel A shows the RMSEs of the
combination-MIDAS models, which suggests that the DMSFE
weight can better capture the advantages of the best single MIDAS
models since the combination-MIDAS model with this type of
weight has the smallest RMSE value. This finding is consistent with
that of Ghysels and Ozkan (2015), which only applies DMSFE
weight to construct forecast combination method since the dis-
count factor attaches greater weight to the recent predictive power
of individual factors. Moreover, comparing with forecast perfor-
mance of the best single MIDAS models shown in Table 2, we find
that the combination-MIDAS models outperform most of the best
single MIDAS models, which is in line with the findings of Zhao
et al. (2018b). Especially, the forecast performances of the
combination-MIDAS models given the best combination weight
perform better than do the best single MIDAS models considering
all other factors except WC/TTGDP, which is slightly better than the
combination-MIDAS models.

Furthermore, we compare the forecast performances of the
combination-MIDAS models with those of the benchmark models
using quarterly data, e.g. AR(1), MA(1) and ARMA(1, 1) models in
order to illustrate the effectiveness and feasibility of the
combination-MIDAS models. Table 4 shows the RMSE ratios of the
combination-MIDAS models to that of the benchmark models. It is
demonstrated that the forecast performances of the combination-
MIDAS models are obviously better than those of the benchmark
models. This finding suggests that related factors can help forecast
wastewater emissions and that the combination-MIDAS models
can take advantage of the useful information inmonthly factors and
thus can significantly improve the forecast accuracy of wastewater
emissions.

4.2. Robustness checks

In this section, we investigate the robustness of the forecast
performance of the combination-MIDAS models discussed in sec-
tion 4.1. We consider not only the randomness of sample selection



Table 2
The best single MIDAS models with different leads.

Factors Model RMSE Model RMSE

H¼ 0 H¼ 1

GDP AR(2)-BetaNN-MIDAS(3,21,0) 0.1556 AR(2)-BetaNN-MIDAS(3,15,1) 0.1563
WC/TTGDP AR(1)-Step-MIDAS(3,28,0) 0.0762 AR(1)-Step-MIDAS(3,28,1) 0.0622
VASI AR(2)-Almon-MIDAS(3,3,0) 0.1156 AR(2)-BetaNN-MIDAS(3,26,1) 0.1189
WC/VASI AR(2)-U-MIDAS(3,9,0) 0.0982 AR(2)-Step-MIDAS(3,28,1) 0.0976
VATI AR(2)-Beta-MIDAS(3,4,0) 0.1682 AR(2)-Almon-MIDAS(3,3,1) 0.1648
UP AR(3)-U-MIDAS(3,16,0) 0.1184 AR(3)-U-MIDAS(3,15,1) 0.1206
HC AR(2)-Step-MIDAS(3,24,0) 0.1440 AR(2)-Almon-MIDAS(3,16,1) 0.1439

H¼ 2 H¼ 3

GDP AR(4)-U-MIDAS(3,8,2) 0.1540 AR(2)-U-MIDAS(3,5,3) 0.1541
WC/TTGDP AR(2)-Step-MIDAS(3,30,2) 0.0573 AR(4)-Almon-MIDAS(3,29,3) 0.0873
VASI AR(1)-BetaNN-MIDAS(3,26,2) 0.1078 AR(3)-BetaNN-MIDAS(3,29,3) 0.1366
WC/VASI AR(2)-U-MIDAS(3,8,2) 0.1130 AR(1)-U-MIDAS(3,7,3) 0.1255
VATI AR(2)-Almon-MIDAS(3,3,2) 0.1666 AR(2)-Step-MIDAS(3,3,3) 0.1696
UP AR(2)-Step-MIDAS(3,3,2) 0.1669 AR(2)-Almon-MIDAS(3,5,3) 0.1659
HC AR(2)-Almon-MIDAS(3,7,2) 0.1448 AR(2)-Almon-MIDAS(3,10,3) 0.1446

Notes: GDP refers to gross domestic product; WC/TTGDP refers to water consumption per ten thousand gross domestic product; VASI refers to value added of secondary
industry;WC/VASI refers to water consumption per value added of secondary industry; VATI refers to value added of tertiary industry; UP refers to urban population; HC refers
to household consumption. The bold value is the smallest RMSE obtained through comparison among the best single MIDAS models. The models are displayed as AR-weight-
MIDAS(m,k,h). The bolded values are the smallest RMSEs of the best MIDAS models with each factor among different conditions of h.

Table 3
Forecast performance for combination-MIDAS models.

Weight h¼ 0 h¼ 1 h¼ 2 h¼ 3

Panel A: RMSE
MSFE 0.0888 0.0805 0.0905 0.1144
DMSFE 0.0848 0.0795 0.0832 0.1051
AIC 0.0881 0.1400 0.1426 0.0874
BIC 0.1612 0.1439 0.1507 0.1270
Equal Weights 0.1062 0.1036 0.1242 0.1319

Notes: The bolded values refer to the smallest RMSEs under the condition of
different leads.

Table 4
Comparison of the combination-MIDAS models with benchmark models.

Weight h¼ 0 h¼ 1 h¼ 2 h¼ 3

Panel A: AR(1)
MSFE 0.1740 0.1578 0.1773 0.2242
DMSFE 0.1662 0.1558 0.1630 0.2059
AIC 0.1728 0.2744 0.2796 0.1713
BIC 0.3160 0.2821 0.2954 0.2490
Equal Weights 0.2081 0.2030 0.2435 0.2585
Panel B: MA(1)
MSFE 0.1029 0.0933 0.1049 0.1326
DMSFE 0.0983 0.0921 0.0964 0.1218
AIC 0.1022 0.1623 0.1653 0.1013
BIC 0.1868 0.1668 0.1747 0.1472
Equal Weights 0.1230 0.1200 0.1440 0.1529
Panel C: ARMA(1,1)
MSFE 0.2181 0.1977 0.2223 0.2810
DMSFE 0.2083 0.1952 0.2043 0.2581
AIC 0.2165 0.3439 0.3504 0.2146
BIC 0.3960 0.3535 0.3702 0.3121
Equal Weights 0.2608 0.2544 0.3052 0.3240

Note: If the RMSE ratios are smaller than 1, the forecast accuracy of the
combination-MIDAS models is higher than benchmark models.

Table 5
Forecast results analysis of the combination-MIDAS models based on the new
sample selection.

Weight h¼ 0 h¼ 1 h¼ 2 h¼ 3

Panel A: AR(1)
MSFE 0.3468 0.3513 0.3386 0.3627
DMSFE 0.2891 0.2888 0.2711 0.3091
AIC 0.5856 0.5769 0.5794 0.5293
BIC 0.5693 0.5913 0.5935 0.5994
Equal Weights 0.4695 0.4747 0.4585 0.4379
Panel B: MA(1)
MSFE 0.2164 0.2192 0.2113 0.2264
DMSFE 0.1804 0.1802 0.1692 0.1929
AIC 0.3655 0.3601 0.3616 0.3304
BIC 0.3553 0.3690 0.3704 0.3741
Equal Weights 0.2930 0.2963 0.2861 0.2733
Panel C: ARMA(1,1)
MSFE 0.4319 0.4376 0.4218 0.4518
DMSFE 0.3601 0.3597 0.3376 0.3850
AIC 0.7295 0.7186 0.7217 0.6594
BIC 0.7092 0.7365 0.7393 0.7466
Equal Weights 0.5848 0.5913 0.5711 0.5454

Note: If the RMSE ratios are smaller than 1, the forecast accuracy of the
combination-MIDAS models is higher than benchmark models. The bolded values
are the smallest RMSE rations under each condition of h.
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but also the frequency of wastewater emissions.
Because the forecast performance of a model may be sensitive to

sample selections (Zhang et al., 2015), we test the robustness of the
combination-MIDAS models by selecting a different estimation
sample. In particular, we choose the period from January 1997 to
December 2010 as the estimation sample and choose the period
from January 2011 to December 2016 as the out-of-sample period.
Then we construct combination-MIDAS models with similar
mechanism discussed above and compare the forecast performance
with benchmark models estimated with the new estimation sam-
ple. The results of the robustness analysis are shown in Table 5,
which suggests that the DMSFE outperforms among the five com-
bination weights because the RMSE ratios of the combination-
MIDAS models with DMSFE weight are smaller than those with
other weights under each condition of h. Moreover, the forecast
performances of the combination-MIDAS models based on the new
sample selection are better than the benchmark models.

Furthermore, we investigate whether the combination-MIDAS
models discussed in section 4.1 are robust to annual wastewater
emissions. Similarly, we reconstruct the combination-MIDAS
models to forecast annual wastewater emissions with monthly
factors. Because the combination-MIDAS models are robust to
sample selection as discussed above and in order to have enough
observations to evaluate the forecast accuracy of the combination-
MIDAS models, we determine the out-samples according to Turhan



Table 6
Forecast results analysis of the combination-MIDAS models based on annual
wastewater emissions.

Weight h¼ 0 h¼ 1 h¼ 2 h¼ 3

Panel A: AR(1)
MSFE 0.3587 0.3579 0.3078 0.3945
DMSFE 0.3518 0.3510 0.3038 0.3876
AIC 0.5636 0.6445 0.4392 0.9076
BIC 0.5636 0.6445 0.4392 0.9083
Equal Weights 0.4722 0.4665 0.4243 0.5267
Panel B: MA(1)
MSFE 0.2262 0.2256 0.1940 0.2487
DMSFE 0.2218 0.2213 0.1916 0.2444
AIC 0.3554 0.4063 0.2769 0.5723
BIC 0.3554 0.4063 0.2769 0.5727
Equal Weights 0.2977 0.2941 0.2675 0.3321
Panel C: ARMA(1,1)
MSFE 0.2134 0.2129 0.1831 0.2347
DMSFE 0.2093 0.2088 0.1808 0.2306
AIC 0.3353 0.3834 0.2613 0.5400
BIC 0.3353 0.3834 0.2613 0.5404
Equal Weights 0.2809 0.2775 0.2524 0.3133

Note: If the RMSE ratios are smaller than 1, the forecast accuracy of the
combination-MIDAS models is higher than benchmark models. The bolded values
are the smallest RMSE rations under each condition of h.

Table 7
Forecast results for wastewater emissions (%).

Date March-2017 June-2017 September-2017 December-2017

H 3 6 9 12
Forecast results 1.1349 1.1480 1.1354 1.0926
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et al. (2015). We select the year 1997e2010 as the estimation
sample and select year 2011e2016 as the out-of-sample period.
Then, we compare the forecast performance of the reconstructed
combination-MIDAS models with the benchmark models using
annual data. The results of the robustness analysis are shown in
Table 6, which suggests that the DMSFE weight remains better
performance when constructing the combination-MIDAS models
and that the combination-MIDAS models are still robust to annual
wastewater emissions given the better performance than the
benchmark models.

4.3. Application of the combination-MIDAS models

The robustness analysis discussed above suggests that the
combination-MIDAS models constructed in section 4.1 to forecast
quarterly wastewater emissions with monthly factors are robust.
Therefore, we apply the combination-MIDAS models to achieve
short-term forecast for the wastewater emissions in the future one
year, which is of interest to policy-makers to manage the waste-
water emissions. Consistent with the way introduced by Zhao et al.
(2018b), we apply the combination-MIDAS models based on the
best single MIDAS models with three-, six-, nine-, and twelve-
month leads of wastewater emissions to conduct the short-term
forecasts with the monthly factors until December 2016. We
construct the combination-MIDAS models with DMSFE weight
because this type of weight performs better and are robust sug-
gested by the previous analysis. The forecast results are shown in
Table 7, which shows that the total amount of wastewater emis-
sions in China keeps increasing with a stable growth rate in 2017.

5. Conclusions

This paper proposes combination-MIDAS regression models to
forecast quarterly wastewater emissions in China with monthly
factors based on datasets with different frequencies. To better
capture the complex process of wastewater emissions including
industrial and domestic emissions, this paper selects GDP and WC/
TTGDP from the economic aspect, VASI, WC/VASI, and VATI from
the industrial aspect, and UP and HC from the urbanization aspect.
The combination-MIDAS model is based on the best single MIDAS
models, therefore, it can deal with model misspecification and
solve the weakness of wastewater emissions forecasting to some
degree.

First, large numbers of single MIDAS models are analysed. The
forecast performances of single MIDAS models suggest that there
exists a significant auto-correlation for wastewater emissions and
that WC/TTGDP is the best predictor for wastewater emissions.
Moreover, the impacts of WC/TTGDP, VASI, WC/VASI, UP, and HC on
wastewater emissions last longer than 1 year. An alternative
explanation is that the industrial production pattern, urban popu-
lation and the household consumption habit are hard to change in
the short term, which should draw more attention when the gov-
ernment makes policies relevant to wastewater emissions.
Furthermore, the influence of GDP and VATI on wastewater emis-
sions lasts only for several months, which is less than 1 year. This
result suggests the reasonability of employing MIDAS models with
mixed datasets since the short influence may be ignored if annual
data are directly used to forecast wastewater emissions. Further-
more, the polynomial weight and h steps vary for the best single
MIDAS models considering different factors, which shows the ra-
tionality of constructing combination-MIDAS models to make full
use of the advantages of the best single MIDAS models.

Second, this paper constructs the combination-MIDAS model
with five different weight schemes on the basis of the forecast re-
sults from the best single MIDAS models. The DMSFE weight per-
forms better than do the other weight types. The forecast accuracy
of the combination-MIDAS model is higher than those of the
benchmark models. Then we test the robustness analysis from two
aspects. The results suggest that the forecast performances of the
combination-MIDAS model are robust not only to sample selection
but also to the frequency of wastewater emissions. Therefore, the
combination-MIDAS models can capture the characteristics of
wastewater emissions and reflect the complex processes among
wastewater discharge and its factors. This method provides a
reference for the forecasting and the forecast update of wastewater
emissions. The short-term forecast results indicate that the total
amount of wastewater emissions in China will increase steadily.

In future research, we will expand our model and apply it to
other countries, especially developing countries, where the prob-
lem of water pollution is more serious. Furthermore, we will also
aim to establish a more comprehensive factor system for waste-
water emissions forecasts, because wastewater emission is a com-
plex process including many other factors in addition to those
considered in this paper.
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