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ScienceDirect
Microorganisms produce extracellular compounds that affect

the final product quality in fermentation processes. Selection of

overproducing mutants requires coupling of the extracellular

product to the producer genotype, which can be achieved by

single-cell compartmentalization. Emulsions contain up to

billions of microdroplets/mL which significantly increases the

screening throughput compared to microtiter-plate-based

selections. Factors affecting the success of screening in

microdroplets include the nature of the producing organism

(robust, no invasive growth), the product (not soluble in oil) and

the product assay (preferably fluorescence based). Together

these factors determine the required microdroplet production

technique and sorting set-up. Because microdroplets allow

relatively inexpensive ultrahigh-throughput screening, they are

likely to become a standard tool in the strain selection toolbox

of the fermentation industry.
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Introduction
In many fermentation processes microorganisms produce

extracellular compounds such as flavor volatiles, enzymes,

polysaccharides and antimicrobials, which determine

the quality of the final product. Mutant selections are

regularly performed to alter the production profile of these
Current Opinion in Biotechnology 2020, 61:72–81 
compounds [1,2]. Selection systems in which mutants grow

in a single compartment (e.g. shake flasks or batch reactors),

often fail to enrich improved producers of extracellular

compounds, because diffusion uncouples the product

concentration from its producer cell (Figure 1a). To main-

tain such coupling, single cells can be cultured in separate

compartments, for instance using microtiter-plates [3��].
The identification of natural mutants might require screen-

ing of over 104 cells (depending on bacterial species, strains

and growth conditions), which is not always feasible with

this set-up [4]. Alternatively, a comparison shows that

single-cell compartmentalization in emulsions with up to

1010 microdroplets/mL allows cost-efficient screening of

millions of cells [4]. Selection in microdroplets has been

used for over ten years in academic laboratories [5–7] but it

only slowly finds its way into the (food) fermentation

industry. Here we discuss the potential of microdroplets

as high-throughput screening platform for the identifica-

tion of organisms with increased production of extracellular

products. Other microdroplet-based assays such as cell-free

systems are outside the scope of this review.

Production of microdroplets
Microdroplets usually have volumes of 65 fL to 65 nL

(diameter of 5–500 mm) [5,8,9�,10] and they generally

consist of a water-phase that contains the content of

the microdroplet (e.g. nutrients, cells, assay reagents,

hydrogel bead polymers), an oil-phase that can prevent

cross-talk between compartments, and a surfactant that

localizes at the water/oil interphase and stabilizes the

microdroplet by reducing surface tension (Figure 1b).

There are different types of microdroplets: water-in-oil

(w/o) emulsions, water-in-oil-in-water (w/o/w) double

emulsions and hydrogel beads, and all of them can be

either monodisperse or polydisperse (Figure 1c).

Water-in-oil emulsions are generated by mixing an oil-phase

containing oil-soluble surfactant and a water-phase. Mixing

withavortexshakeryieldspolydispersemicrodroplets,while

the use of microfluidic devices allows to produce monodis-

perse microdroplets (Figure 1c) [8]. Water-in-oil emulsions

can be transformed into w/o/w double emulsions by re-

emulsification of the primary w/o emulsion in a water-phase

with water-soluble surfactant [6]. In both w/o and w/o/w

double emulsions the microdroplets are surrounded by oil,

which prevents cross-talk between compartments for

compounds not soluble in the oil-phase. In this way every
www.sciencedirect.com
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Figure 1

No compar tme ntali zation
• differen t mutan ts sha re a 

sing le compa rtmen t
• one  ba tch culture 
• mutan ts aff ect ea ch othe r

Compartmentalization in microd ropl ets
• single mutants separated in micro-

compa rtmen ts surrounded  by oil
• ea ch compa rtmen t is a sing le  ba tch 

culture
• mutan ts do  no t aff ect ea ch othe r

(a) Micro-compartmentali zation concept

(b) Key elements of microdro pletpro duction

water-phas e
supp lemen ted  with e.g.:
• nu trien ts
• cell s
• po lymers  for hydroge l bead s 

(e.g. aga rose,  algina te)
• ass ay reagen ts

oil

gelation  bath

surfac tant
laye r

micr ofluidi c 
dev ice

5 – 500 µm 
(65 fL – 65  nL)

microd ropl etcell surfactant

Types
• water in oil  
• hydrogel beads in  oil *

Production rate:  106-1010/h

Types
• hydroge l bead s in 

med ium*

Production rate:  106/h

polydi spers e

stirr ed

Types
• water in oil
• hydroge l bead s in oil *

Production rate: 105-108/h

Types
•
•

water in oil  in water  
hydrogel beads in oil  in 
water*

Production rate:  105-108/h

monodi spers e

* hydrog el bead s can  be incuba ted surround ed by oil  (mutan ts do  no t aff ect each other)  or surround ed by medium lack ing  oil
(mutan ts aff ect each other) .

(c) Microdropletproduction tec hniques

Current Opinion in Biotechnology

Microdroplet types and their production techniques.

www.sciencedirect.com Current Opinion in Biotechnology 2020, 61:72–81



74 Food biotechnology
inoculated microdroplet acts as a single, monoclonal batch

culture (Figure 1a).

Hydrogel beads are generated by adding polymers such as

agarose or alginate to the water-phase of polydisperse or

monodisperse w/o emulsions following gelation [11,12],

or by dripping a solution containing polymers in a gelation

bath [9�,13]. Next to incubation surrounded by oil,

hydrogel beads can be incubated in medium. In that

case hydrogel beads (or more complex beads featuring

a surrounding shell architecture) resemble ‘semi-open’

vessels and can be engineered to specific molecular-

weight cutoffs ranging from the low kD-range to pores

almost of micrometer size [14].

The advantage of polydisperse microdroplets is that the

required set-up is inexpensive, easy to use and the

microdroplet production rate is high (106–1010/h). Their

disadvantage is that compartment volumes differ.

Depending on whether cells do or do not grow in

microdroplets, this leads to differences in either the

absolute product amount or the product concentration

in microdroplets respectively. When correction for

microdroplet-volume is not possible, it is therefore

hard to catch variants with only moderate levels of

improvement. In those cases the use of monodisperse

microdroplets is a powerful alternative, because they

typically have less than 3% volume variation. However,

compared to polydisperse microdroplets their production

rate is lower (105–108/h) and a more advanced set-up is

required [8].

Detailed protocols for the production of monodisperse

and polydisperse microdroplets can be found in [8,15],

and [5,16,17] contain information about advanced micro-

fluidic emulsion processing.

Encapsulation of cells in microdroplets
To couple the product concentration to its producer

genotype, encapsulation of a single cell-variant/genotype

per microdroplet is required (Figure 1a). This encapsula-

tion follows a Poisson distribution [8]. When the number

of added cells is for example ten times lower than the

number of generated microdroplets, 9% of the generated

microdroplets contain a single cell, and less than 0.5%

contain multiple cell-variants (Poisson distribution,

l = 0.1). When several rounds of enrichment are possible

and variant libraries are huge, higher encapsulation ratios

are often feasible. The l parameter can also be adjusted

to allow more than one cell-variant per microdroplet, for

instance to co-localize producer and sensor cells

[10,18,19��]. Special microfluidic devices can increase

the percentage of microdroplets with single cells to

70–100% by aligning cells before microdroplet formation

or post-encapsulation sorting [5,20], but good mixing of

the inlet streams is required, especially for hydrogel beads

[11]. A recent review that summarizes and discusses
Current Opinion in Biotechnology 2020, 61:72–81 
different encapsulation and cell-alignment techniques

can be found in [20].

Strain selections using microdroplets
Organisms

Factors affecting the success of screening in microdro-

plets include the producing organism, the product of

interest, the product assay and the sorting set-up

(Figure 2).

Micro-organisms can be cultured aerobically or anaerobi-

cally in microdroplets [32,33]. Successful strain selections

in microdroplets include Escherichia coli [19��,23,28],
Saccharomyces cerevisiae [12,23,26], Bacillus subtilis [13],

Bacillus coagulans [29], Lactococcus lactis [1,9�,31], Yarrowia
lipolytica [3��], cyanobacteria [21,24,25] and algae [21,27].

As microdroplets are typically inoculated with a single cell

there is no competition between genotypes within a

droplet. The platform is therefore also well-suited for

slow growing micro-organisms. When cells clump, encap-

sulation of a single cell per microdroplet is not possible. If

clumps consist of multiple genotypes selection is in

theory possible, even though the selection efficiency will

be reduced because the final product-concentration

depends on a combination of genotypes. However, we

are not aware of examples of successful selections in such

a system. Mammalian cells and filamentous organisms can

also be encapsulated and sorted, but they require micro-

droplets in the nL volume range which reduces the

throughput [34,35]. For filamentous organisms apical

growth of hyphae should be prevented, to avoid uncon-

trolled microdroplet coalescence [35]. When this is not

possible, mutants can be selected using alternative

approaches such as conventional microtiter-plate set-ups.

Detection of relevant phenotypes often requires growth in

microdroplets. Best et al. for instance grew cyanobacteria

and algae in microdroplets to select mutants that reached

increased cell densities [21]. The minimal required micro-

droplet volume is determined by the desired number of

generations per microdroplet and the final cell concentra-

tion in the medium (Figure 2a). Microalgae could for

instance grow for 11 generations in 2 nL microdroplets,

reaching a final cell concentration of 109/mL [27].

Hydrogel beads can also be taken up in growth medium

before they are incubated surrounded by oil. This allows

uncoupling of growth, product formation and product

detection, making it a versatile selection system. Schmitt

et al. for example grew single L. lactis cells in hydrogel

beads taken up in growth medium. After micro-colony

formation they induced the expression of lantibiotic

production genes, re-emulsified the hydrogel beads in

oil to prevent cross-talk between microdroplets and

assessed the lantibiotic effectivity using co-localized

sensor cells [9�].
www.sciencedirect.com
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Figure 2
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Table 1

Overview recent literature on strain selections using microdroplets

Producer organism Droplet characteristics Product Assay Selection Ref

Type Dispersity Volume (pL) Type Throughput

On-chip sorting

L. lactis w/o emulsion Monodisperse 50 Riboflavin Riboflavin

auto-fluorescence

On-chip sorting 2�105/h [1]

Cyanobacteria w/o emulsion Monodisperse 65 Biomass

(chlorophyll fluorescence)

Chlorophyll

auto-fluorescence

On-chip sorting 1�106/h [21]

Algae w/o emulsion Monodisperse 34 Biomass

(chlorophyll fluorescence)

Chlorophyll

auto-fluorescence

On-chip sorting 1�106/h [21]

S. cerevisiae w/o emulsion Monodisperse 34 Tyrosine Fluorophore binding aptamer On-chip sorting – [22�]
S. cerevisiae w/o emulsion Monodisperse 221 Consumption of xylose Enzyme assay

pyranose oxidase coupled to a

H2O2-dependent fluorogenic

conversion

On-chip sorting 1�104/h [23]

E. coli w/o emulsion Monodisperse 221 Lactate Enzyme assay

lactate oxidase coupled to a

H2O2-dependent fluorogenic

conversion

On-chip sorting 1�104/h [23]

Cyanobacteria w/o emulsion Monodisperse 524 Ethanol Enzyme assay

ethanol oxidase coupled to a

H2O2-dependent fluorogenic

conversion

On-chip sorting 4�105/h [24]

Cyanobacteria w/o emulsion Monodisperse 10 Lactate Enzyme assay

lactate dehydrogenase coupled

to a NADH-dependent

fluorogenic conversion

On-chip sorting 4�106/h [25]

E. coli w/o emulsion Monodisperse 87/1,023 2-ketoisovalerate Biosensor

E. coli, cross-feeding between

two auxotrophic strains, sensor

is fluorescent

On-chip sorting 1�106/h [19��]

S. cerevisiae w/o emulsion Monodisperse 22 p-Coumaric acid Biosensor

E. coli, transcription factor-

based fluorescence

On-chip sorting 1�106/h [26]

Algae w/o emulsion Monodisperse 2,145 Biomass

(droplet weight)

Magnetic separation based on

microdroplet weight

On-chip sorting – [27]

Particle sorters

E. coli agarose beads in oil Monodisperse 65 pBAD promoters with

desired characteristics

Promotor-dependent

fluorescence

FACS – [28]

Y. lipolytica w/o/w emulsion Monodisperse 34 Riboflavin Riboflavin

auto-fluorescence

FACS 4�106/h [3��]

B. coagulans w/o/w emulsion Monodisperse 12 Lactate Fluorescent pH indicator FACS 1�106/h [29]

Siberian bear oral

microbial community

w/o/w emulsion Monodisperse 4 Antimicrobials against S.

aureus

Biosensor

S. aureus, viability staining

FACS 1�108/h [30]

S. cerevisiae agarose beads in medium Polydisperse 22 Antimicrobials against S.

aureus

Biosensor

S. aureus, viability staining

FACS 1�107/h [12]
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In microdroplets surrounded by oil, the oil-phase pre-

vents diffusion of hydrophilic compounds (e.g. charged

molecules, sugars, (poly-)peptides) between compart-

ments, and therefore ensures coupling of the product

concentration to its producer (Figure 1a). However,

hydrophobic compounds leak into the oil-phase and

therefore are not compartmentalized. One might circum-

vent this limitation by rapid enzymatic conversion of the

hydrophobic product into a hydrophilic compound [24].

When assay reagents are oil-soluble, chemical modifica-

tion can reduce their hydrophobicity to allow compart-

mentalization [36].

Product assays and microdroplet sorting

Assays for the produced extracellular compounds aim to

couple the product-concentration to a measurable signal

(Figure 2c). Developing these assays is often the most

demanding task in a screening campaign. Assays that

require direct analysis on, for example, an HPLC, MS,

NMR or GC setup are less suited for the microdroplet

format. Although compound libraries have been screened

in microdroplets using MALDI-TOF MS [37,38], the

method has a low-throughput. However, microdroplet-

based screening campaigns are well suited for a wide

range of spectroscopy methods (Table 1).

For w/o and w/o/w emulsions it is recommended to use

assays with reagents that are not oil-soluble, and that can

be added to the water-phase during microdroplet

production. The addition of reagents after microdroplet

generation and incubation is possible [23–25], but

droplet fusion or liquid injection requires specialized

equipment and know-how. Hydrogel beads are more

flexible in this regard, because they can also be

surrounded by a water-phase. This allows for instance

viability staining of biosensors after incubation [12].

Once a measurable signal is obtained, microdroplets

can be sorted either on-chip or with particle sorters

(Figure 2d). For on-chip sorting generally w/o emulsions

are used (Table 1). Particle sorters use water as carrier

phase and therefore they can sort w/o/w double emul-

sions or hydrogel beads taken up in a water-phase

(Table 1).

The required product assay, sorting set-up and compart-

mentalization method are highly intertwined (Figure 2c and

d). Assay read-outs that are regularly used to select micro-

droplets are fluorescence emission and cell-concentrations.

Fluorescence

Direct selection for fluorescence is only possible when the

product itself is highly fluorescent. Auto-fluorescence of

riboflavin was for instance used to select L. lactis mutants

producing four times more riboflavin [1]. When the com-

pound of interest is not highly fluorescent, (bio)chemicals,

enzymes or biosensors can couple the presence of the
Current Opinion in Biotechnology 2020, 61:72–81
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product to a fluorescence signal. Zhu et al. for instance used a

chemical fluorescent pH indicator to select lactate producing

B. coagulans strains [29]. Biochemicals which can be used are

for instance fluorophore-binding aptamers, which yield a

fluorescence signal when both a dye and the target molecule

are bound [39]. Abatemarco et al. used these aptamers to

select S. cerevisiae mutants that secreted 28-fold more

tyrosine compared to their wildtype ancestor [22�].

Enzymes can also couple the presence of a compound to a

fluorescence signal [23,24,36]. Hammar et al. connected

lactate production of cyanobacteria to a fluorescence signal

by coupling NADH production via lactate dehydrogenase

combined to an NADH-dependent conversion of a fluoro-

genic substrate [25]. When the compound of interest is an
Figure 3

Type 2. Biosensor  is constitutively
presence of produ

DNA

compound  of interest
requ ired  by biosen sor t o grow

Type 1. Biosensor con tains sens
responsive promotor) coupled 
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Biosensor types.
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enzyme itself, the addition of fluorogenic substrates can

couple the enzyme activity to fluorescence [15,39–41].

Lastlywhole-cellbiosensors canalsocouple thepresenceof

an extracellular product to a fluorescence signal. In general

genetically accessible strains are used (Table 1), as biosen-

sor development often requires genetic engineering.

Biosensors are relatively cheap, since a high number of

cells can be obtained in low-cost media, whereas other

conversion systems (e.g. chemical or enzymatic) require

tedious purification processes and analytical instruments

such as chromatography and spectrophotometry [42,43].

We here classify biosensors in three types (Figure 3).

Type 1 biosensors harbor reporter genes that respond to a
 fluoresce nt and only gro ws in 
ct (auxotro phy)

gfp

constitutive
promoter

ing  element for pro duct (e.g. 
 to a reporter gene (e.g. gfp)

gfp

respon sive 
promoter

uct and its lys is ca uses loss of 
 cell s are stained

cell  dea th/lysis

Current Opinion in Biotechnology

www.sciencedirect.com



Microdroplet screening for extracellular compounds van Tatenhove-Pel et al. 79
product based on promotor activation or repression [39].

The transcriptional regulator PadR was for instance used

to couple the p-coumaric acid concentration to YFP

production [26]. A more generic approach is the develop-

ment of specific riboswitches, which was used by Meyer

et al. to couple the presence of riboflavin to GFP produc-

tion [13]. Type 2 biosensors are auxotrophic for the

compound of interest and constitutively express a fluo-

rescent protein [19��]. A computational analysis in E. coli
predicted that auxotrophy-dependent biosensors can be

generated for 53 metabolites [44], highlighting the broad

applicability of this sensing mechanism. Growth of type

3 biosensors is inhibited when the producer strain releases

effective antimicrobials. Fluorescent Micrococcus flavus
cells were for instance used to select producers of effec-

tive lantibiotics [9�], and fluorescent Staphylococcus aureus
cells were used to select antibiotic producers from the oral

microbiota of the Siberian bear [30].

A recent review on different types of genetically encoded

biosensors can be found in Ref. [39].

Once a fluorescence assay is established, microfluidic

devices and particle sorters can be used for microdroplet

selection [45�]. Abalde-Cela et al. sorted w/o emulsions

based on their resorufin signal using a microfluidic device

[24], and Zhu et al. used fluorescence activated cell sorting

(FACS) to sort w/o/w double emulsions based on a

fluorescent pH indicator to identify lactate overproducers

[29]. While emulsions and double emulsions form ‘closed’

compartments with respect to compounds not soluble in

the oil-phase, templated hydrogel beads or more complex

beads featuring a surrounding shell architecture can also

be incubated in a water-phase, resembling ‘semi-open’

vessels which can be engineered to specific molecular-

weight cutoffs ranging from the low kD-range to pores

almost of micrometer size [14]. Because of their big size,

entrapment of biosensors is relatively easy. Duarte et al.
for instance incubated GFP-expressing E. coli in hydrogel

beads surrounded by oil, transferred the beads to a

water-phase after incubation and sorted them based on

fluorescence [28].

Cell-concentration

Compartmentalization of cells in microdroplets elimi-

nates competition between mutants and therefore allows

selection of mutants with a low growth rate, but a high

biomass/cell yield [31]. An increase in cell concentration

can also be coupled to the production of a specific product

using cross-feeding. Saleski et al. for instance coupled

2-ketoisovalerate production by a lysine auxotrophic

E. coli to the growth of a 2-ketoisovalerate auxotrophic

sensor, which in turn secreted lysine to stimulate the

growth of the 2-ketoisovalerate producer [19��]. In this

way, cross-feeding creates a positive feedback loop, in

which overproducers reach high cell concentrations.
www.sciencedirect.com 
Mutants with a high cell concentration can be enriched by

serial propagation in microdroplets. Bachmann et al. for

instance used this method to enrich L. lactis mutants that

produced 71% more cells which coincided with a 26%

higher biomass yield [31]. Next to serial propagation,

microdroplets or hydrogel beads with increased cell con-

centrations can also be selected by sorting based on

increased scattering of light [46], or weight-based mag-

netic sorting on a microfluidic device [27].

Conclusions
Screening in microdroplets allows selection for increased

microbial production of extracellular compounds relevant to

the (food) fermentation industry (Table 1). Multiple micro-

droplet production techniques are available (Figure 1c).

They can be combined with different assays to generate

fluorescence and cell concentration-based signals, which can

be sorted in various ways (Figure 2). The optimal combina-

tionofproductiontechnique,assayandsortingsystemdiffers

per screening question (Figure 2).

The applicability of microdroplets for screening is limited

by the availability of suitable assays for the compound of

interest. Current assays often require substantial tuning

before they can be used in microdroplets, which is time-

consuming [19��,36,39]. The most generic set-ups that are

currently available use metabolite oxidases or dehydro-

genases coupled to the generation of fluorescence

[23–25], or viability staining of biosensors [9�,12,30].
Future research could focus on high-throughput screen-

ing for targeted aptamers [47] and (automated) biosensor

development with a focus on enhanced sensitivity and

specificity, increased dynamic ranges and improved trans-

fer of sensing elements between organisms [39,48]. For

filamentous fungi, future studies need to focus on increas-

ing droplet stability, to prevent coalescence caused by

apical growth of hyphae.

Screening in microdroplets is furthermore limited by the

lack of a set-up to select for oil-soluble compounds. This

is especially relevant for the food industry, because flavor

volatiles are often oil-soluble. Possible solutions could

focus on capturing and measuring oil-soluble compounds

in microdroplets, for instance by measuring concentration

gradients rather than absolute concentrations [49], or by

capturing oil-soluble compounds in microdroplets by

chemical or enzymatic conversion/modification [36].

Overall the recent technological progress on microdroplet

production and sorting brings this technology within

reach for strain selection in the (food) fermentation

industry. While there are still a number of challenges,

it has a high potential for (non GMO) strain improvement

and due to its high throughput it should allow to select for

phenotypes that are not accessible with conventional

screening methods.
Current Opinion in Biotechnology 2020, 61:72–81
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