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Data-Driven Chance Constrained Optimization
under Wasserstein Ambiguity Sets

Ashish R. Hota, Ashish Cherukuri and John Lygeros

Abstract— We present a data-driven approach for distri-
butionally robust chance constrained optimization problems
(DRCCPs). We consider the case where the decision maker
has access to a finite number of samples or realizations
of the uncertainty. The chance constraint is then required
to hold for all distributions that are close to the empirical
distribution constructed from the samples (where the distance
between two distributions is defined via the Wasserstein metric).
We first reformulate DRCCPs under data-driven Wasserstein
ambiguity sets and a general class of constraint functions.
When the feasibility set of the chance constraint program is
replaced by its convex inner approximation, we present a convex
reformulation of the program and show its tractability when
the constraint function is affine in both the decision variable
and the uncertainty. For constraint functions concave in the
uncertainty, we show that a cutting-surface algorithm converges
to an approximate solution of the convex inner approximation
of DRCCPs. Finally, for constraint functions convex in the
uncertainty, we compare the feasibility set with other sample-
based approaches for chance constrained programs.

I. INTRODUCTION

Numerous engineering applications encounter optimiza-
tion problems where constraints depend on uncertain param-
eters, and the goal is to compute a solution that satisfies
the constraint with high probability. This class of problems,
referred to as chance constrained programs (CCPs), are
increasingly being relevant in many applications, such as
stochastic model predictive control [1], [2], robotics [3],
energy systems [4], and autonomous driving [5].

In order to solve a CCP, the decision maker needs to
know the probability distribution of uncertain parameters.
In practice, this information is often unavailable and instead,
the decision maker has access to data about the uncertainty
in the form of samples. Scenario [6], [7], [8] and sample
approximation [9] approaches use this data to compute an
approximate solution of the CCP. Their main advantage
is that if the samples are drawn from a true underlying
distribution and the number of samples is sufficiently large,
the solutions are feasible for the original CCP with high
probability. However, in practice, samples may be few and
not be drawn from the true distribution. In such settings, it is
desirable to find a solution that satisfies the chance constraint
for a suitably defined family of distributions, or a so-called
ambiguity set. This class of problems is known as distribu-
tionally robust chance constrained programs (DRCCPs).
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In distributionally robust stochastic optimization (DRSO)
in general and DRCCPs in particular, the ambiguity set is
defined either as a set of probability distributions that satisfy
certain moment constraints [10], [11], [12] or that are close
under an appropriate distance function, such as the Prohorov
metric [13] or φ-divergence [14]. Recent work in DRSO has
shown that ambiguity sets based on Wasserstein distance [15]
have desirable out-of-sample performance and asymptotic
guarantees [16], [17]. DRSO with Wasserstein ambiguity sets
were recently applied in optimal power flow problems [4]
and uncertain Markov decision processes [18]. Motivated by
these attractive features, we consider a data-driven approach
for DRCCPs where the ambiguity set is defined as the set of
distributions that are close (in the Wasserstein distance) to
the empirical distribution induced by the observed samples.

The literature on DRCCPs with Wasserstein ambiguity
sets is limited. The authors in [19] first showed that it
is strongly NP-Hard to solve a DRCCP with Wasserstein
ambiguity sets and proposed a bi-criteria approximation
scheme for covering constraints. Two recent working papers
presented reformulations and approximations of DRCCPs
under Wasserstein ambiguity sets [20], [21] and for constraint
functions that are affine in both the decision variable and the
uncertainty. Both [20], [21] show that the exact feasibility
set of DRCCPs with affine constraints can be reformulated
as mixed integer conic programs. Xie [20] studies individual
chance constraints and joint chance constraints with right
hand side uncertainty, while Chen et. al., [21] consider
general affine joint chance constraints. Both papers appeared
subsequent to the appearance of the preprint of our work.
Summary of contributions: In this paper, we lay the foun-
dations for tractable computation of (approximate) solutions
of DRCCPs under data-driven Wasserstein ambiguity sets for
a broader class of constraint functions. We first reformulate
DRCCPs under Wasserstein ambiguity sets under general
continuity and boundedness assumptions on the constraint
functions (as opposed to the affine case studied in [20],
[21]). We then focus on developing tractable reformulations
and algorithms for DRCCPs. Since the feasibility set of
(DR)CCPs is nonconvex except for restrictive special cases
[22], we consider constraint functions that are convex in
the decision variable, and replace the exact feasibility set
of the DRCCP with its convex conditional value-at-risk
(CVaR) approximation following [23]. We then present a
tractable reformulation of the CVaR approximation when
the constraint function is the maximum of functions that
are affine in both the decision variable and the uncertainty,
and the support of the uncertainty is a polyhedron. When
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the constraint function is concave in the uncertainty, we
show that a central cutting-surface algorithm [24], [25] can
be used to compute an approximately optimal solution of
the CVaR approximation of the DRCCP. Finally, when the
constraint function is convex in the uncertainty, we compare
the feasibility set of the CVaR approximation with those
of the sample approximation approach [9] and the scenario
approach [6], [7]. We omit the proofs of several of our results
due to space constraints, and present them in [26].
Notation: The sets of real, positive real, non-negative real,
and natural numbers are denoted by R, R>0, R≥0, and N,
respectively. The extended reals are R = R ∪ {+∞,−∞}.
For N ∈ N, we let [N ] := {1, 2, . . . , N}. For brevity, we
denote max(x, 0) by x+. The closure of a set S is denoted
by cl(S). Feasibility sets constructed using data are denoted
by ·̂. For a set S and N ∈ N, we denote the N -fold cartesian
product as SN := ΠN

i=1S. Similar notation holds for the N -
fold product of any probability distribution.

II. TECHNICAL PRELIMINARIES

Here we collect preliminary notions and results on CCPs,
conditional value-at-risk, and Wasserstein ambiguity sets.

A. Chance Constrained Programs and CVaR Approximation

Throughout we consider Ξ to be a complete separable
metric space with metric d. Let B(Ξ) and P(Ξ) be the Borel
σ-algebra and the set of Borel probability measures on Ξ,
respectively. A canonical CCP is of the form

min
x∈X

cᵀx

s. t. P(F (x, ξ) ≤ 0) ≥ 1− α,
(1)

where X ⊆ Rn is a closed convex set, c ∈ Rn, α ∈ (0, 1),
P ∈ P(Ξ), and F : Rn × Ξ → R. With the exception of a
restricted class of distributions and constraint functions, the
feasibility set of (1) is nonconvex even when X is convex
and F is convex in x for every ξ [22].

Several convex approximations exist that overcome this
intractability. We now describe the approximation framework
developed in [23] that plays a central role in our results.
Consider the function ψ(z) : R → R, given as ψ(z) =
max(z+1, 0). This function belongs to the class of moment
generating functions defined in [23]. For a given P ∈ P(Ξ),
define ΨP : Rn × R→ R as

ΨP(x, t) := tEP[ψ(t−1F (x, ξ))]. (2)

Note that if x 7→ F (x, ξ) is convex for every ξ ∈ Ξ, then
ΨP is convex in x and t. Furthermore, we have

inf
t>0

[ΨP(x, t)− tα] ≤ 0 =⇒ P(F (x, ξ) ≤ 0) ≥ 1− α. (3)

Therefore, replacing the chance constraint by
inft>0[ΨP(x, t) − tα] ≤ 0 gives a convex conservative
approximation of the CCP (1). This approximation is
equivalent to replacing the probabilistic constraint with its
conditional value-at-risk (CVaR). Formally, the CVaR of a
random variable Z with distribution P at level α is [27]

CVaRP
1−α(Z) := inf

t∈R

[
α−1EP[(Z + t)+]− t

]
. (4)

One can show (as done in [23]) that

inf
t>0

[ΨP(x, t)− tα] ≤ 0⇐⇒ CVaRP
1−α(F (x, ξ)) ≤ 0. (5)

We note that (5) is stronger than simply requiring F (x, ξ) ≤
0 with probability at least 1 − α as in this case, F (x, ·)
could take arbitrarily large values for realizations of ξ with
measure at most α. In contrast, (5) requires the expected
value of F (x, ·) for the worst possible realizations of ξ with
measure α to be at most zero. We refer the program where the
constraint (1) is replaced by (5), as its CVaR approximation.

B. Wasserstein ambiguity sets

Let Pp(Ξ) ⊆ P(Ξ) be the set of Borel probability
measures with finite p-th moment for p ∈ [1,∞). Recall
that d is the metric on Ξ. Following [15], for p ∈ [1,∞), the
p-Wasserstein distance between measures µ, ν ∈ Pp(Ξ) is

(Wp(µ, ν))p := min
γ∈H(µ,ν)

{∫
Ξ×Ξ

dp(ξ, ω)γ(dξ, dω)

}
, (6)

where H(µ, ν) is the set of all distributions on Ξ × Ξ with
marginals µ and ν. The minimum in (6) is attained because
d is lower semicontinuous [16].

In this paper, we define the ambiguity set as the set of
all distributions that are close to the empirical distribution
induced by the observed samples. Specifically, let P̂N :=
1
N

∑N
i=1 δξ̂i be the empirical distribution constructed from

the observed samples {ξ̂i}i∈[N ]. We define the data-driven
Wasserstein ambiguity set as

Mθ
N := {µ ∈ Pp(Ξ)|Wp(µ, P̂N ) ≤ θ}, (7)

which contains all distributions that are within a distance
θ ≥ 0 of P̂N . We now present a duality theorem for
distributionally robust stochastic optimization over Wasser-
stein ambiguity sets from [16] that is central to proving our
reformulations. Let H : Ξ → R and consider the following
primal and dual problems

vP := sup
µ∈Pp(Ξ)

{∫
Ξ

H(ξ)µ(dξ)
∣∣∣Wp(µ, P̂N ) ≤ θ

}
, (8a)

vD := inf
λ≥0

[
λθp +

1

N

N∑
i=1

sup
ξ∈Ξ

[H(ξ)− λdp(ξ, ξ̂i)]
]
. (8b)

Theorem II.1. (Zero-duality gap [16]): Assume that H is
upper semicontinuous and either Ξ is bounded, or there
exists ξ0 ∈ Ξ such that

lim sup
d(ξ,ξ0)→∞

H(ξ)−H(ξ0)

dp(ξ, ξ0)
<∞.

Then, the dual problem (8b) always admits a minimizer λ∗

and vp = vD <∞.

III. DRCCPS AND EXACT REFORMULATION

In this section, we describe our problem of interest:
distributionally robust chance constrained program (DRCCP)
with Wasserstein ambiguity sets. Following that, we present
two exact reformulations of the DRCCP that have simpler
representations. Let {ξ̂i}Ni=1 be a set of N samples of ξ
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available to the decision maker. Given this data and θ > 0,
the DRCCP for the Wasserstein ambiguity sets (7) is

min{cᵀx : x ∈ X̂DCP}, where

X̂DCP :=
{
x ∈ X

∣∣∣ sup
P∈Mθ

N

P(F (x, ξ) > 0) ≤ α
}
. (9)

Note that if F : Rn × Ξ → RK , then we can instead
define F as the component-wise maximum of K constraints.
We assume F to be continuous. The probabilistic constraint
defining X̂DCP can be equivalently written as

sup
P∈Mθ

N

P(F (x, ξ)>0)≤α ⇐⇒ inf
P∈Mθ

N

P(F (x, ξ)≤0)≥1−α.

Note that (9) involves optimization over a set of distribu-
tions. In order to get a handle on this infinite-dimensional
optimization problem, we provide below exact reformula-
tions that involve optimization over finite dimensions. The
reformulations presented below were independently shown
in [20] for F affine in both x and ξ. Here we note that the
results hold more generally.

Theorem III.1. (Exact reformulations of DRCCP): Let the
function G : Rn × Ξ→ R be given as

G(x, ξ̂) :=

 inf
{ξ | F (x,ξ)>0}

dp(ξ, ξ̂), {ξ | F (x, ξ) > 0} 6= ∅,

+∞, otherwise.
(10)

Suppose Ξ = Rm and there exists ξ0 ∈ Ξ such that

lim sup
d(ξ,ξ0)→∞

F (x, ξ)− F (x, ξ0)

dp(ξ, ξ0)
<∞, ∀x ∈ X. (11)

Then, the feasibility set of the DRCCP (9) satisfies

X̂DCP=

{
x ∈ X

∣∣∣∣∣ ∃λ ≥ 0, λθp + 1
N

∑N
i=1 si ≤ α,

si = max{1− λG(x, ξ̂i), 0}

}
. (12)

In addition, if {ξ | F (x, ξ) > 0} is nonempty for every
x ∈ X , then

X̂DCP =

{
x ∈ X

∣∣∣∣∣θpα + CVaRP̂N
1−α(−G(x, ξ)) ≤ 0

}
. (13)

The proof is presented in the preprint [26]. The condi-
tion (11) is met if F is bounded or ξ 7→ F (x, ξ) is Lipschitz
for every x ∈ X with p = 1. In [19], authors show that
DRCCPs under Wasserstein ambiguity sets (9) are strongly
NP-Hard even for affine F . In light of this fact, we now
focus on developing tractable approximations of DRCCPs
using CVaR of the constraint function.

IV. CVAR APPROXIMATION OF DRCCPS

When F is convex in x, the CVaR approach of [23]
provides a convex inner approximation of the feasibility set
of the original (DR)CCP (see Section II-A for details). In the
remainder of the paper, we study this CVaR approximation
of the DRCCP (9) under the following assumptions.

Assumption IV.1. (F is convex-bounded): The set Ξ is a
subset of Rm. The function F : Rn × Ξ→ R satisfies:

(i) for every ξ ∈ Ξ, x 7→ F (x, ξ) is convex on X ,
(ii) for every x ∈ X , ξ 7→ F (x, ξ) is bounded on Ξ.

Note that the second property in the above assumption
implies (11). Following our earlier discussion in Section II-
A, the CVaR approximation of the DRCCP (9) is

min{cᵀx : x ∈ X̂CDCP}, where

X̂CDCP :=
{
x∈X

∣∣∣ sup
P∈Mθ

N

inf
t∈R

[EP[(F (x, ξ) + t)+]−tα]≤0
}
.

(14)
We start by reformulating the expression of X̂CDCP and
establishing its convexity.

Proposition IV.2. (Convex reformulation of (14)): Under
Assumption IV.1, the CVaR approximation of the DRCCP
problem (14) is equivalent to the following convex program

min cᵀx

s. t. λθp +
1

N

N∑
i=1

si ≤ tα,

si ≥ sup
ξ∈Ξ

[F (x, ξ) + t−λdp(ξ, ξ̂i)],∀i ∈ [N ],

λ ≥ 0, t ∈ R, x ∈ X, si ≥ 0,∀i ∈ [N ].

(15)

Specifically, x lies in the feasibility set of (14) if and only
if there exists (λ, t, {si}Ni=1) such that (x, λ, t, {si}Ni=1) is a
feasible point for (15).

In the interest of space, the proof is omitted, and can
be found in [26]. The above result shows that the CVaR
approximation of DRCCPs under Wasserstein ambiguity sets
can be reformulated as a convex optimization problem. How-
ever, the constraints involving si in (15) involve supremum
operators. In the remainder of the paper, we develop tractable
reformulations and algorithms to solve (15) under suitable
assumptions on the constraint function F .

V. REFORMULATIONS AND ALGORITHMS FOR SEVERAL
CLASSES OF CONSTRAINT FUNCTIONS

A. F Piecewise Affine in Uncertainty

We now present a tractable reformulation (15) when F is
the maximum of a set of functions that are affine in ξ. The
analysis is inspired by a similar reformulation in [17] shown
for distributionally robust stochastic optimization. The proof
can be found in [26].

Proposition V.1. (Reformulation of DRCCP for piecewise
affine F ): Let Ξ = {ξ ∈ Rm | Cξ ≤ h} be compact, where
C ∈ Rp×m and h ∈ Rp for some p > 0. Suppose that
for some positive integer K, F (x, ξ) := maxk≤K x

ᵀAkξ +
bk(x), where Ak ∈ Rn×m and bk : Rn → R are convex
functions for all k ∈ [K]. Let the ambiguity set Mθ

N be
defined using the 1-Wasserstein metric and d be the standard
Euclidean distance. Then, the DRCCP (15) is equivalent to
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the following tractable convex optimization problem

min cᵀx

s. t. λθ +
1

N

N∑
i=1

si ≤ tα,(
bk(x) + t+ (xᵀAk − Cᵀηik)ᵀξ̂i + ηᵀikh

)
+
≤ si,

‖xᵀAk − Cᵀηik‖ ≤ λ, ηik ≥ 0,

x ∈ X, t ∈ R, λ ≥ 0,

where the inequality involving the set of variables ηik hold
for i ∈ [N ] and k ∈ [K].

Remark V.2. (Comparison with literature and exactness of
CVaR approximation): In [20], [21], authors derive the refor-
mulation given in Proposition V.1 for the case when Ξ = Rm.
In addition, they show that when Ξ = Rm and Nα ≤ 1, the
CVaR approximation is exact, i.e., X̂DCP = X̂CDCP. •

In the following subsection, we present an algorithm
that solves the CVaR approximation of DRCCPs when the
constraint function is concave in uncertainty.

B. F Concave in Uncertainty

Here we aim to develop an algorithm for (15) when F is
concave in ξ. The roadblock in solving (15) is the supremum
operator present in the constraint that makes implementing
first- or second-order methods almost impossible. To con-
struct the algorithm, we view (15) as a semi-infinite program
and employ the central cutting surface algorithm proposed
in [24]. The algorithm requires the feasibility set of the
problem to be compact. Thus, as a first step, we identify
a compact set which contains the optimizers of (15). Our
results hold under the following assumption.

Assumption V.3. (F concave in uncertainty and existence of
robustly feasible point): The sets X and Ξ are compact. For
every x ∈ X , the function ξ 7→ F (x, ξ) is concave. There
exists x̄ ∈ X such that F (x̄, ξ) ≤ −δ < 0 for all ξ ∈ Ξ.

The next result provides bounds on the optimizers of (15).

Lemma V.4. (Optimizers of (15) belong to a compact set):
Under Assumption IV.1 and V.3, the optimizers of (15) belong
to the set X × [0, tM ]× [0, λM ]× [0, αNtM ]N , where

tM :=
1

1− α
sup

x∈X,ξ∈Ξ
−F (x, ξ), and λM =

αtM

θp
.

The proof is relegated to [26] in the interest of space.
Using the above result, one can restrict the feasibility set
of (15) without disturbing its optimizers. We denote the
decision variables of (15) as y := (x, t, λ, {si}Ni=1), and
its feasibility set as the compact set Y := X × [0, tM ] ×
[0, λM ]× [0, αNtM ]N . The optimization problem (15) over

the restricted domain written as semi-infinite program is

min cᵀx

s. t. λθp +
1

N

N∑
i=1

si ≤ tα,

si ≥ F (x, ξ) + t−λdp(ξ, ξ̂i),∀ξ ∈ Ξ, ∀i ∈ [N ],

(x, t, λ, {si}Ni=1) ∈ Y.

(16)

Now, for each i ∈ [N ], we define the function

Hi(y, ξ) := F (x, ξ) + t− λdp(ξ, ξ̂i)− si.

Next, set the parameter B > 0 satisfying

B > ‖gi(y, ξ)‖,∀y ∈ Y, ∀ξ ∈ Ξ,∀i ∈ [N ]

where gi(y, ξ) = (giy(y, ξ), giξ(y, ξ)) ∈ ∂yHi(y, ξ) ×
∂ξHi(y, ξ). That is, B bounds the set of subgradients of Hi,
for all i, over the feasibility set Y . Semi-infinite optimization
problems are difficult to solve in general. Thus, our objective
is to design an algorithm that can find an approximate
solution to the problem (16). This is made precise below.

Definition V.5. (Approximate feasibility and optimality of
(16)): We say that a point y = (x, t, λ, {si}Ni=1) ∈ Y is
η-feasible for the problem (16) if it satisfies

λθp + 1
N

∑N
i=1 si ≤ tα,

si + η ≥ F (x, ξ) + t−λdp(ξ, ξ̂i),∀ξ ∈ Ξ, ∀i ∈ [N ],

Further, a point (x?η, t
?
η, λ

?
η, {s?i,η}Ni=1) is an η-optimal so-

lution of (16) if it is η-feasible and cᵀx?η ≤ cᵀx? where
(x?, t?, λ?, {s?i }Ni=1) is an optimizer of (16).

We propose an algorithm that finds an η-optimal solution
of (16). Our scheme involves solving a convex optimization
problem, termed the master problem, at every iteration of the
algorithm. The master problem for the kth iteration is

max σ

s. t. cᵀx+ σ ≤M (k−1),

λθp +
1

N

N∑
i=1

si ≤ tα,

Hi(y, ξi) + σB ≤ 0,∀ξi ∈ Q(k−1)
i ,

(x, t, λ, {si}Ni=1) ∈ Y.

(17)

Various terms of the above optimization are introduced below
where we elaborate on the steps of Algorithm 1.

Each iteration k starts by solving (17). The aim of this
step is to find y(k) that is robustly feasible to the constraints
sampled till the kth iteration, Q(k−1)

i , i ∈ [N ], and that also
improves the upper bound on the objective value M (k−1).
The variable σ(k) denotes this improvement. Upon solv-
ing (17), two cases arise. First, y(k) is η-feasible and so,
there does not exist, for any i, a violating constraint ξ(k)

i

that can be added to Q(k−1)
i . In this case, we move to Step 5

where the constraint set is kept same, the best estimate of
the optimizer ỹ(k−1) is updated to the η-feasible solution
found in this iteration, and the upper bound is updated. In the
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Algorithm 1: A central cutting-surface algorithm
for (16)

Input: Assumption V.3 holds. For a given y and
i ∈ [N ], whenever supξ∈ΞHi(y, ξ) > η, then
there exists an oracle that determines a point
ξ ∈ Ξ such that Hi(y, ξ) > 0.

Initialize: Set k = 1, M (0) = U := maxx∈X c
ᵀx,

Q
(0)
i = ∅ for all i ∈ [N ], ỹ(0) = 0.

1 Determine the optimizer (y(k), σ(k)) of the master
problem (17)

2 If σ(k) = 0, stop and return ỹ(k−1)

3 For each i ∈ [N ], find (if possible) ξ(k)
i ∈ Ξ such that

Hi(y
(k), ξ

(k)
i ) > 0 and then go to Step 4; if no such

point exists for any i, then go to Step 5
4 Set for each i ∈ [N ], Q(k)

i = Q
(k−1)
i ∪ {ξ(k)

i }
whenever a point ξ(k)

i is found in Step 3, otherwise
Q

(k)
i = Q

(k−1)
i ; Set ỹ(k) = ỹ(k−1) and

M (k) = M (k−1); Go to Step 6
5 Set Q(k) = Q(k−1), ỹ(k) = y(k), and M (k) = c>x(k)

6 Increase k by one and go to Step 1

second case, a violating constraint is determined for each i
(if possible) in Step 3. Subsequently, in Step 4, the constraint
set is updated while the best estimate of the optimizer and
the upper bound are kept the same. The algorithm converges
when the objective value cannot be improved anymore over
the set of all η-feasible solutions.

The next result states the correctness of Algorithm 1.
The proof involves arguments similar in reasoning to those
presented in [24]. An important ingredient is the compactness
of the feasibility set which we achieved due to Lemma V.4.

Proposition V.6. (Convergence guarantee of Algorithm 1):
Let Assumptions IV.1 and V.3 hold. Consider the iterates
(ỹ(k))∞k=1 generated by Algorithm 1.

(i) If Algorithm 1 terminates in the kth iteration, then
ỹ(k−1) is an η-optimal solution to (16).

(ii) If Algorithm 1 does not terminate, then there exists an
index k̂ such that the sequence {ỹ(k̂+i)}∞i=1 consists
entirely of η-feasible solutions of (16).

(iii) If Algorithm 1 does not terminate, then the sequence
{ỹ(k)}∞k=1 has an accumulation point, and each accu-
mulation point is an η-optimal solution to (16).

C. F Convex in Uncertainty

We now consider F to be convex in ξ. For this class of
functions, unlike the case dealt in the previous section, the
supremum present in the definition of the constraint set of
(15) is nonconvex, as it involves maximizing a difference
of convex functions. In this section, we provide a convex
inner approximation of (15) which is computable using
standard convex optimization tools. We then compare the
feasibility set of this convex inner approximation with two
other feasibility sets obtained from sample based approaches
for CCPs. We consider Ξ ⊆ Rm and the 1-Wasserstein

distance in this section, i.e., p = 1. All proofs in this section
are omitted in the interest of space, and can be found in [26].
The results rely on the following assumption.

Assumption V.7. (F Lipschitz in uncertainty): For every x ∈
X , the function ξ 7→ F (x, ξ) is convex. Moreover, there exists
a convex function LF : X → R>0, such that ξ 7→ F (x, ξ) is
Lipschitz continuous with constant LF (x).

Under the above assumption, we derive the following inner
approximation of the feasibility set of the CVaR approxima-
tion of DRCCP X̂CDCP given by (14).

Lemma V.8. (Inner approximation of X̂CDCP): Let Assump-
tions IV.1 and V.7 hold. Define

X̂in
CDCP :=

{
x ∈X

∣∣∣θLF (x)+inf
t∈R

1

N

N∑
i=1

(F (x, ξ̂i)+t)+− tα≤0
}
.

Then, X̂in
CDCP ⊆ X̂CDCP and these sets are equal when Ξ = Rm.

Observe that above, we upper bound the supremum over
the Wasserstein ambiguity set in (14) with the sample average
and a regularizer term. The proof is a consequence of [17,
Theorem 6.3,Proposition 6.5]. The Lipschitz continuity of
ξ 7→ F (x, ξ) is a sufficient condition for [17, Theorem 6.3],
and thus, Lemma V.8 may indeed hold for a more general
class of functions.

Due to Lemma V.8, instead of minimizing the objective
over X̂CDCP, one could perform the minimization over X̂in

CDCP.
The later problem is easier to deal with and the obtained so-
lution will be feasible with respect to X̂CDCP and hence X̂DCP.
Consequently, the optimal value will provide an upper bound
on the cost of (15). We now compare the set X̂in

CDCP with the
feasibility sets of the sample approximation approach [9],
and the scenario approach [6]. Given δ ∈ [0, 1] and samples
{ξ̂i}Ni=1, the sample approximation feasibility set is

X̂SA,δ :=
{
x ∈ X

∣∣∣ 1

N

N∑
i=1

1{F (x,ξ̂i)≤0} ≥ 1− δ
}
. (18)

Specifically, if x ∈ X̂SA,δ , then at most δ fraction of samples
{ξ̂i} violate the constraint F (x, ξ) ≤ 0. Similarly, given δ ≥
0 and samples {ξ̂i}Ni=1, we define

X̂SCP,δ :=
{
x ∈ X

∣∣∣ F (x, ξ̂i) + δ ≤ 0, i ∈ N
}
. (19)

Note that the feasibility set of the scenario program is X̂SCP,0.
Thus, X̂SCP,δ defines a “robust" scenario program, and for
any δ > 0, X̂SCP,δ ⊆ X̂SCP,0. Also note that X̂SCP,0 = X̂SA,0.
The main result of this subsection is stated below.

Proposition V.9. (Subset of X̂in
CDCP): Let Assumptions IV.1

and V.7 hold. Assume LF is constant over X . Let t∗ :=
sup

x∈X,ξ∈Ξ
− F (x, ξ), δ1 := α − θLF

t∗ , and δ2 := θLF
α . Then,

X̂SCP,δ2 ⊆ X̂in
CDCP ⊆ X̂SA,δ1 .

The above result shows that the feasibility set of the robust
scenario program (19) is contained in the set X̂in

CDCP. Further-
more, by the definition of the sample approximation set (18),
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the above result implies that if x̄ ∈ X̂in
CDCP, then at most

δ1 < α fraction of samples violate the constraint F (x, ξ) ≤
0. Both δ1 and δ2 depend on the Lipschitz constant, the
probability of constraint violation α, the Wasserstein radius,
and δ1 depends additionally on t∗.

Independent of our work, [20] showed the above relation-
ships between the feasibility sets X̂in

CDCP, X̂SA,α and X̂SCP,δ

when the constraint function is affine in x and ξ. We show
that the above comparison holds more generally when the
constraint function is convex in both x and ξ.

We conclude with the following comparison between dif-
ferent feasibility sets studied in this paper. For δ1 = α− θLF

t∗

and δ2 = θLF
α , we have

X̂SCP,0 = X̂SA,0

⊆

⊆

X̂SCP,δ2 ⊆ X̂in
CDCP ⊆ X̂SA,δ1⊆

X̂CDCP ⊆ X̂DCP.

Note that X̂SA,δ1 and X̂SCP,0 are in general incomparable
with X̂CDCP. Thus, the objective values obtained by optimiz-
ing over these sets are not necessarily upper or lower bounds
on the optimal solution of (15).

VI. CONCLUSION

We studied distributionally robust chance constrained opti-
mization under Wasserstein ambiguity sets defined as the set
of all distributions that are close to the empirical distribution.
We presented a convex reformulation of the program when
the original chance constraint is replaced by its convex
CVaR counterpart. We then showed the tractability of this
convex reformulation for affine constraint functions. Further-
more, for constraint functions concave in the uncertainty, we
presented a cutting-surface algorithm that converges to an
approximately optimal solution of the CVaR approximation
of the DRCCP. Finally, for constraint functions convex in the
uncertainty, we compared the feasibility sets of DRCCP and
its approximations with those of the scenario and sample ap-
proximation approaches. A rigorous comparison of DRCCPs
and the scenario approach vis-a-vis finite sample guarantees
and asymptotic convergence of optimal solutions remain as
challenging open problems.
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