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Existence of Bifurcating Quasipatterns in
Steady Bénard–Rayleigh Convection

Boele Braaksma & Gérard Iooss

Communicated by P. Rabinowitz

Abstract

Extending the results obtained in the sixties for bifurcating periodic patterns,
the existence of bifurcating quasipatterns in the steady Bénard–Rayleigh convec-
tion problem is proved. These are two-dimensional patterns, quasiperiodic in any
horizontal direction, invariant under horizontal rotations of angle π/q. There is a
small divisor problem for q � 4.

Using the results of Berti–Bolle–Procesi in 2010, we adapt it to aNavier–Stokes
system ruling the Bénard–Rayleigh convection problem. Our solution is approxi-
mated by the truncated power series which was formally obtained by Iooss in 2009,
but which is divergent in general (Gevrey series). First, we formulate the problem
in introducing a suitable parameter, able to move the spectrum of the linearized
operator, as a whole, as for the Swift–Hohenberg PDE model. For using the Nash–
Moser process, we are faced with the problem of inverting a linear operator which
is the differential at a non zero point.

There are two new difficulties: (i) First, the extra dimension leading to a more
complicated spectrum of the linear operator. This first difficulty leads to use specific
projections for reducing the spectrum of the studied operator, which we want to
invert, to a finite set very close to 0. (ii) The second difficulty is the fact that the
linearization L(N ) at a non-zero point leads to a non-selfadjoint operator, contrary
to what occurs in previous works. This is more serious, and leads to use the spec-
trum of L(N )L(N )∗ which depends mainly quadratically on the main parameter. A
careful study of the “bad set” of parameters, with an assumption on the convexity
of the eigenvalues of this operator, allows us to obtain a good estimate, as it is
necessary for using the results of Berti et al. for solving ”the range equation”. We
again use separation properties of the Fourier spectrum (see the Bourgain and Craig
results) for obtaining an estimate in high Sobolev norms. It then remains to solve
the one-dimensional “bifurcation equation.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-018-1313-6&domain=pdf
http://orcid.org/0000-0002-6454-9233


1918 Boele Braaksma & Gérard Iooss

For any q � 4, and provided that a weak transversality conjecture is realized,
we prove the existence of a bifurcating convective quasipattern of order 2q, above
the critical Rayleigh number.

1. Introduction

The Bénard–Rayleigh convection system is one of the most popular in hydro-
dynamic stability theory, and it was the subject of numerous papers and books,
mostly in physics literature. The mathematical existence of steady convective pat-
terns, as rolls or hexagonal cells, was first proved by Yudovich et al. in a series of
papers in the sixties [21,25–27]. For other mathematical results on this problem,
see Rabinowitz [17], Görtler et al. [9], Kirchgässner et al. [14].

Here, about 50 years later, we are studying the same problem, but looking for
a different type of steady convective pattern. Quasipatterns are two-dimensional
patterns which have no translation symmetries and are quasiperiodic in any spatial
direction (see Fig. 1). The spatial Fourier transforms of quasipatterns have discrete
rotational order (most often, 8, 10 or 12-fold) and were first discovered in nonlinear
pattern-forming systems in the Faraday wave experiment [6,8], in which a layer of
fluid is subjected to vertical oscillation. Since their discovery, they have also been
observed in shaken convection [18,23].

In many of these experiments, the domain is large compared to the size of the
pattern, and the boundaries appear to have little effect. Furthermore, the pattern is
usually formed in two directions (x1 and x2), while the third direction (z) plays
little role. Mathematical models of the experiments are therefore often posed with
two unbounded directions, and the basic symmetry of the problem is the Euclidean
group of rotations, translations and reflections of the (x1, x2) plane. This is in
particular the case for the studies made in the works [3,11,19,20].

Quasipatterns do not fit into any spatially periodic domain and have Fourier
expansionswithwavevectors that live on a quasilattice (defined below).At the onset

Fig. 1. Example eightfold quasipattern. This is an approximate solution of the Swift–
Hohenberg equation, see [11].
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of pattern formation, the primary modes have zero growth rate, and there are other
modes on the quasilattice which have negative growth rates arbitrarily close to zero,
and techniques (like Lyapunov–Schmidt reduction, or center manifold reduction)
which are used for periodic patterns cannot be applied. These small growth rates
appear as small divisors, as seen below.

This paper is in the spirit on the paper [3] dealing with the Swift–Hohenberg
PDE. It is known that this PDE is a simplemodel ofBénard–Rayleigh convection for
the bifurcation to a steady spatially periodic convective regime. In the present paper
we solve the same problem but ruled by the full Boussinesq equations, which are
usually taken for the study of Bénard–Rayleigh convection between two horizontal
planes. This problem was studied in [10], where Gevrey estimates are given for the
formal series solution of the problem. Summing this series by an incomplete Borel
resummation, provides a solution of our problem only up to an exponentially small
term (as the Rayleigh number tends towards its critical value).

In the present paper, we first define the functional setting in Sections 2, 3 and
4 for our unknown u. In Section 5 we formulate the problem in suitable form. In
Section 6 we study in details the linearized operator, and the criticality conditions.
This determines the critical value λ0 of the bifurcation parameter λ, linked to the
Rayleigh number by λ = R−1/2, and the critical wave number kc. We then give
the formal series for (u, λ) in powers of the amplitude ε of the bifurcating solution.
We use the truncated series as the center of the neighborhood where one applies
later the Nash–Moser process. Section 7 reformulates the problem for adapting it
to the method used in [2,3] which exploits the fact that the parameter μ = λ0 − λ

appears in a way which moves the spectrum of the linearized operator, as a whole.
This introduces finally parameters ε, μ′, where μ′ is a scaling of μ (see (63)). We
are now faced with new difficulties: the problem is no longer in 2 dimensions,
since we now have the vertical coordinate z introducing a dependency of Fourier
coefficients in z. This leads to an infinite dimensional system, evenwhenwe truncate
the Fourier modes at a finite number N (as in [3]). This needs the use of a new
projection, complicating the operator to be inverted (see Section 7.4, Lemma 36
and Section 7.6).

The second new difficulty is that the linear operator which we have to invert
in the Nash–Moser process is no longer selfadjoint. This serious complication is
treated in Section 8. In particular, this requires the use of singular values of the
truncated operator, instead of its eigenvalues as in [3]. The square of these singular
values mainly behave quadratically in the parameter. We need an assumption on
the convexity of these singular values for being able to bound suitably the “bad set”
of parameters and obtain directly a good estimate for the inverse of the linearized
operator in the basic space with small Sobolev norm (denotedK0,s0 ). We then need
to use separation properties of the eigenvalues λ0(|k|2) of the unperturbed operator,
near λ0, where the wave vectors k of the Fourier modes are restricted to Nk � N
(Nk is the Z

d norm in the quasilattice). This tool, introduced by Bourgain [4]
and Craig [7], was already used on simpler systems in [1,3] and is necessary for
obtaining good estimates in high Sobolev norms.

We show in Section 9 that we can adapt the method developed in [2] by Berti,
Bolle, Procesi.
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The existence of bifurcating convective quasipatterns is proved in Section 10.
It results from the non empty intersection of a curve (H) defined by the bifurcation
equation in the plane of parameters (ε, μ), and the complement of the “bad set” of
parameters. This needs a transversality assumption depending on q.

We sum up our result in the following:

Theorem 1. Let q � 4 be an integer and let d � q be the dimension of the Q-vector
space spanned by the wave vectors k j , j = 1, . . . , 2q in R

2 equally spaced on a
circle centered at the origin (see the definition (4)). Assume that the neutral stability
curve R(|k|2) leading to the critical Rayleigh number Rc = 1/λ20 for |k| = kc

has a unique minimum, such that R"(k2c ) > 0 (see Fig. 4 and Condition 32). We
assume a convexity condition 47 and we assume that transversality Conjecture 58
is verified. Then, there exists s0 > d/2, ε0 > 0 such that, for ε < ε0, there exists a
1-dimensional set �ε centered on μ4, with the following property: for any ε < ε0,

belonging to a set of asymptotically full measure as ε → 0, there exists με ∈ �ε

such that the steady Bénard–Rayleigh system (35) admits a quasipattern solution
(u(ε), λ(ε)), C1 in the parameter ε, u(ε) ∈ K0,s0 (see Definition 19), invariant
under rotations of angle π/q, of the form

u = εu1 + ε2u2 + ε3u3 + ε4u4 + O(ε5),

λ = λ0 − μ2ε
2 − μ3ε

3 − ε4με

where μ2 > 0, με = μ4+ O(ε). The quasiperiodic function u1 spans the kernel of
λ0 −A, and coefficients μ j , u j occurring in formulae above, are the ones defined
in the truncated asymptotic expansion of the solution (see Section 6.3).

Remark 2. Condition 32 is “generic” and can be checked numerically, while
Transversality Conjecture 58 depends on q. This one is hard to check but maybe
weakened as indicated in Remarks 60 and 61. This is then probably valid for all q.
Notice that for any s′

0 > s0, the result of the Theorem above is still valid, maybe
for a smaller ε0.

Remark 3. Hypothesis 47 is used for bounding themeasure of the bad set of param-
eters. The quadratic dependence on μ̃ = O(ε4) of the truncated selfadjoint linear
operator, needs to control the convexity of its eigenvalues, while we have no means
to provide a reasonable bound for their second derivative. This is an open question
here.

Remark 4. The expression that we obtain for the bifurcating set, solution of (35),
is under parametric form. The bifurcating set (u, λ) lies on a C1 curve. At Fig. 2,
we sketch the projection of this curve in the (ε, λ) plane.

2. The Bénard–Rayleigh Convection Problem

Consider a viscous fluid filling the region between two horizontal planes. Each
planar boundary may be a rigid plane, or a “free” boundary. In addition, we assume
that the lower and upper planes are at temperatures T0 and T1, respectively, with



Existence of Bifurcating Quasipatterns in Steady 1921

0 ε

λ

λ0

0ε
Fig. 2. Bifurcation curve. The set of “good” ε’s is of asymptotically full measure.

T0 > T1. The difference of temperature between the two planes modifies the fluid
density, tending to place the lighter fluid below the heavier one. The gravity then
induces, through the Archimedian force, an instability of the “conduction regime”
where the fluid is at rest, while the temperature depends linearly on the vertical
coordinate z. This instability is prevented up to a certain level by viscosity ν, so
that there is a critical value of the temperature difference below which nothing
happens and above which a steady “convective regime” bifurcates.

TheNavier–Stokesmomentumequation needs to be completedwith an equation
for energy conservation. In the Boussinesq approximation, the dependency of the
density ρ in function of the temperature T reads

ρ = ρ0 (1 − α(T − T0)) ,

where the (constant) volume expansion coefficient α, is taken into account in the
momentum equation, only in the external volumic gravity force−ρgez , introducing
a coupling between the particles velocity and pressure (V, p), and T . We refer to
[12, Vol. II] for a very complete discussion and bibliography on various geometries
and boundary conditions in this problem.

Several different scalings are used in literature. We are only considering steady
solutions, so we adopt here the formulation derived in [15] (after a scaling byR1/2

for V and by R for θ), which leads to the following system:

V · ∇V + ∇ p = P(θez + R−1/2
V ),

V · ∇θ = R−1/2
θ + V · ez,

∇ · V = 0. (1)

Here Rθ is the deviation of the temperature from the conduction profile, which
satisfies the boundary conditions, and V = (V (H), v(z)), V (H) = (v1, v2), p, and
θ are functions of X = (x, z), with x = (x1, x2) ∈ R

2 the horizontal coordinates
and z ∈ (0, 1) the vertical coordinate, ez being the unitary ascendent vector. There
are two dimensionless constant numbers in this problem: the Prandtl numberP and
the Rayleigh number R defined as

P = ν

κ
, R = αgd3(T0 − T1)

νκ
,
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where d is the distance between the planes, κ is the thermal diffusivity. The system
(1) is completed by the boundary conditions

vz = θ = 0, z = 0, 1,

together with either a “rigid surface” condition

v1 = v2 = 0, (2)

or a “free surface” condition (in fact no tangential stress condition)

∂v1

∂z
= ∂v2

∂z
= 0, (3)

on the planes z = 0 or z = 1. Notice that we shall not consider here the case of free
surface condition on both planes z = 0 and 1, since this case induces an additional
(little) difficulty, which is exposed below.

Our next task is to formulate the problem ruled by the system (1) in a suitable
function space, and find critical values of the parameters, for being able to use a
method similar to the one in [3].

3. Quasilattices and Diophantine Bounds

Consider an integer q � 4, where 2q is the order of a quasipattern, and define
equally spaced wavevectors in R

2

k j = kc

(
cos

(
π

j − 1

q

)
, sin

(
π

j − 1

q

))
= R( j−1)π/qk1, j = 1, 2, . . . , 2q,

(4)
where kc is a positive number which is defined later, and Rθ is the rotation of angle
θ around the vertical axis (see Fig. 3a). We define the quasilattice  ⊂ R

2 to be
the set of points spanned by integer combinations km of the form

km =
2q∑
j=1

m j k j , where m = (m1, m2, . . . , m2q) ∈ N
2q . (5)

The set  is dense in R
2. Since k j and−k j = k j+q belong to , then km and−km

are both in . This, allows us to obtain real quantities of the form
∑
k∈

ukeik·x, x ∈ R
2, uk ∈ C,

provided that
u−k = uk.

Weknow (see [24]) that theQ− vector space spanned by {k j , j = 1, 2, . . . , 2q}
has dimension d = ϕ(2q) = 2(l0 + 1) where ϕ is the Euler totient function, and
l0 + 1 is the order of the algebraic integer ω := 2 cosπ/q (l0 = 1 for q = 4, 5, 6,
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(c)(b)(a)

k1

k2

k3

k4

k5

k6

k7

k8

Fig. 3. Example of quasilattice with 2q = 8, after [19]. a The 8 wavevectors with |k| = 1
which form the basis of the quasilattice. b, c The truncated quasilattices 9 and 27. The
small dots mark the positions of combinations of up to 9 or 27 of the 8 basis vectors on the
unit circle.

l0 = 2 for q = 7 . . .) with 2(l0 + 1) � q. Let us define the subset of the d vectors
{k∗

j , j = 1, 2, . . . , d} of {k j , j = 1, 2, . . . , 2q} which forms a basis. Then

k j =
d∑

s=1

α jsk∗
s , α js ∈ Q,

and any k ∈  may be written in two different ways,

k =
2q∑
j=1

m j k j =
d∑

s=1

rsk∗
s , m j ∈ N, rs ∈ Q,

where rs = ∑2q
j=1 m jα js .

Let us define α js := n js
d js

with irreducible fractions and

d = l.c.m j=1,...2q
s=1,...d

{d js}, then dα js = β js ∈ Z.

Remark 5. Notice thatwehaved = 1 for example forq = 4, 5, 6, 7, 8, 9, 10, 11, 12
where we can choose k∗

s = ks, s = 1, . . . , d (see [3]).

Then m∗
s := drs = ∑2q

j=1 m jβ js ∈ Z and

k = d−1
d∑

s=1

m∗
s k∗

s =: k(m∗), (6)

where m∗ := (m∗
1, . . . , m∗

d) and we define the following norm in the lattice ,

identified with a subset of Z
d :

d∑
s=1

|m∗
s | =: Nk.
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Remark 6. If d = 1 we can identify  with Z
d . If d > 1, for an arbitrary m∗ ∈

Z
d\{0}, we don’t know a priori if there exists k ∈  such that k(m∗) = k.

Remark 7. Whenever solutions are computed numerically, it is necessary to use
only a finite number of Fourier modes, so we define the truncated quasilattice N

to be
N = {

k ∈  : Nk � N
}
. (7)

Figure 3(b,c) shows the truncated quasilattices 9 and 27 in the case q = 4.

In what follows we need a lower bound of quantities as

(k2c − |k|2)2, k ∈ ,

which occur in the denominator of the inverse of the linear operator, when they are
not 0. We show, in [3] (after a trivial scaling),

Lemma 8. Assume q � 4, then for any k ∈  such that |k| �= kc, i.e. k �= k j , j =
1, . . . , 2q the following estimate holds true:

||k|2 − k2c | � c

(1 + N 2
k )l0

(8)

for a certain c > 0 only depending on q.

4. Function Spaces and Operators

We characterise the functions of interest by their Fourier coefficients on the
quasilattice  generated by the 2q basic vectors k j :

u(x) =
∑
k∈

ukeik·x, x ∈ R
2.

Define now the (Sobolev) space of scalar functions

Hs =
{

u =
∑
k∈

ukeik·x : ||u||2s =
∑
k∈

(1 + Nk
2)s |uk|2 < ∞

}
, (9)

which becomes a Hilbert space with the scalar product

〈w, v〉s =
∑
k∈

(1 + Nk
2)swkvk. (10)

The two following Lemmas are classical results on Sobolev spaces:

Lemma 9. Assume q � 4, then for s > d/2, for any u ∈ Hs and any v ∈ H0, we
have

||uv||0 � cs ||u||s ||v||0
for a certain constant cs > 0.
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Lemma 10. (Moser–Nirenberg inequality) Assume q � 4, and let s � s0 > d/2
and let u, v ∈ Hs . Then,

‖uv‖s � C(s, s0)(‖u‖s‖v‖s0 + ‖u‖s0‖v‖s)

for some positive constant C(s, s0) that depends only on s and s0. For � � 0 and
s > � + d/2, Hs is continuously embedded into C�.

In fact we need more complicate function spaces for our system (1). This is
due to the necessity to control in terms of |k| (instead of Nk) the gain of regularity
provided by the inverse of the linear operator on the complementary space of its
kernel (here, contrary to [3,11], the nonlinear term looses one derivative), hence
the inverse of the linear operator is used to regain this loss (for large |k|), while the
loss due to the small divisor problem (for |k| close to kc) is in terms of Nk.

4.1. Projection P

First, as is the “rule” for Navier–Stokes systems, we define a projection operator
P on divergence free vector fields. Let us consider a vector field V (x, z) under the
form

V (x, z) =
∑
k∈

Vk(z)eik·x,

which, for a fixed z belongs to (Hs)
3. We would like to decompose V as follows:

V = W + ∇φ, ∇ · W = 0, w(z)|z=0,1 = 0.

Then we consider the system

W (H)
k + ikφk = V (H)

k ,

w
(z)
k + dφk

dz
= v

(z)
k ,

ik · W (H)
k + dw

(z)
k

dz
= 0, (11)

where Vk = (V (H)
k , v(z)

k ), V (H)
k and v

(z)
k are, respectively, the horizontal and vertical

components of Vk, and where we want to satisfy the boundary condition

w
(z)
k |z=0,1 = 0 (12)

for the unknown vector field Wk = (W (H)
k , w

(z)
k ). We then obtain the following

equation for φk :

d2φk

dz2
− |k|2φk = ik · V (H)

k + dv(z)
k

dz
,

dφk

dz
|z=0,1 = v

(z)
k |z=0,1. (13)



1926 Boele Braaksma & Gérard Iooss

For k �= 0, it is well known that, if V (H)
k ∈ {L2(0, 1)}2, v

(z)
k ∈ H1(0, 1), then

there is a unique solution φk ∈ H2(0, 1) of this Neumann problem, which satisfies
the estimates

|k|2||φk||2 +
∥∥∥∥dφk

dz

∥∥∥∥
2

� ||Vk||2, (14)

and there exists a constant c1 > 0 (c1 = 7) such that

|k|4||φk||2 + |k|2
∥∥∥∥dφk

dz

∥∥∥∥
2

+
∥∥∥∥d

2φk

dz2

∥∥∥∥
2

� c1

⎧⎨
⎩
∥∥∥∥∥
dv(z)

k

dz

∥∥∥∥∥
2

+ |k|2||Vk||2
⎫⎬
⎭ . (15)

In the case when k = 0, we have w
(z)
0 = 0, W (H)

0 = V (H)
0 , and dφ0

dz = v
(z)
0 defines

φ0 up to a constant. Hence, this remark, with (14) and (15) and the identity

∫ 1

0

{
ikφk · W (H)

k + dφk

dz
w

(z)
k

}
dz = 0, (16)

lead to

||Wk||2L2 = 〈Vk, Wk〉L2 ,

hence

||Wk||L2 � ||Vk||L2 ,

|k|2||Wk||2L2 +
∥∥∥∥dWk

dz

∥∥∥∥
2

L2
� c2

{
|k|2||Vk||2L2 +

∥∥∥∥dVk

dz

∥∥∥∥
2

L2

}
(17)

for a constant c2 independent of k ∈ .

Definition 11. The operator P is the linear operator defined as

V =
∑
k∈

Vk(z)eik·x P→ W =
∑
k∈

Wk(z)eik·x,

where Wk is solution of (11).

We notice that if V is divergence free and satisfies v(z)|z=0,1 = 0 then P acts
as the identity. Hence the operator P is a projection.

Remark 12. Notice that for Vk ∈ {L2(0, 1)}3 such that v
(z)
k ∈ H1(0, 1), k ∈ ,

(which is the case when V is divergence free), the boundary values v
(z)
k |z=0,1 have

a meaning, then we still have ||Wk||L2 � ||Vk||L2 .
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4.2. Function Spaces

Let us define function spaces for the 4-components vector field U = (V, θ) as
follows:

Hr,s =
{

U = (V, θ)(x, z) =
∑
k∈

Uk(z)eik·x;
∑
k∈

(
(1 + N 2

k)s ||Uk||2r
)

< ∞
}

,

(18)
where

||Uk||2r =
∑

0�l�r

|k|2(r−l)||Uk||2Hl .

Notice the following equivalence between (squared) norms in (18):

∑
0�l�r

|k|2(r−l)||Uk||2Hl ∼
∑

0�l�r

(1 + |k|2)(r−l)||dlUk

dzl
||2L2 .

The space Hr,s has a natural Hilbertian structure. For example, for U, U ′ ∈ H0,s,

the scalar product reads

〈U, U ′〉0,s =
∑
k∈

(
(1 + N 2

k)s
∫ 1

0
Uk · U ′

kdz

)
,

where Uk · U ′
k is the usual hermitian scalar product in C

4.

Now, denoting PU = (PV, θ), we have the following:

Proposition 13. The projection P is bounded in Hr,s for r � 1, and bounded in

the subspace H′
0,s of H0,s such that v(z)

k ∈ H1(0, 1), k ∈ . For any U, U ′ ∈ H1,s,

or H′
0,s, we have

〈U,PU ′〉0,s = 〈PU,PU ′〉0,s .
Remark 14. The above Propositionmeans that (I−P)H1,s is orthogonal toPH1,s
with the scalar product ofH0,s . In otherwords,P is an orthogonal projection inH0,s
restricted to subspaces H1,s and H′

0,s . Moreover, for U ∈ H′
0,s, then PU ∈ H0,s

is orthogonal to any (∇φ, 0) ∈ H0,s , and ||PU ||0,s � ||U ||0,s (see (16)).
Proof. The boundedness of P inH1,s results immediately from (17), and inH′

0,s
from Remark 12. For the boundedness in Hr,s for r > 1, this follows easily after
differentiating (11) and (13). Now assume U, U ′ ∈ H1,s or H′

0,s, and define
PU ′ = (V ′, θ ′), then from the form of Vk − Wk = (∇φ, 0)k indicated in (11), we
have (notice that V ′ satisfies de conditions required on W in (11))

〈(I − P)U,PU ′〉0,s =
∑
k∈

(
(1 + N 2

k)s
∫ 1

0

(
ikφk · V ′(H)

k + dφk

dz
v

′(z)
k + 0

)
dz

)

=
∑
k∈

⎛
⎝(1 + N 2

k )s
∫ 1

0
φk

⎛
⎝ik · V ′(H)

k − dv
′(z)
k

dz

⎞
⎠ dz

⎞
⎠

= 0.
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Now we need to extend the definition of the orthogonal projectorP in allH0,s .

Let us consider the orthogonal projectionP0 inH0,s on the orthogonal complement
of the subspace

G0,s = {U = (∇φ, 0);φ ∈ H(1)
1,s} ⊂ H0,s,

where we denote by an upper index (1) a space of scalar functions. Then, P0 is an
extension ofP obtained by density of H1(0, 1) in L2(0, 1) for all v(z)

k , k ∈ . This
then results in

Lemma 15. The projection P is bounded in Hr,s for r � 0. It is an orthogonal
projection in H0,s , orthogonal to elements of G0,s .

In what follows we need to use analogues of Lemma 10.

Lemma 16. Let u, v ∈ H(1)
1,s (scalar functions) with s � s0 > d/2. Then uv ∈ H(1)

1,s
and there exists c(s, s0) > 0 such that

||uv||1,s � c(s, s0)(||u||1,s ||v||1,s0 + ||u||1,s0 ||v||1,s).

Lemma 17. Let u, v be scalar functions respectively in H(1)
1,s and H(1)

0,s with s �
s0 > d/2. Then uv ∈ H(1)

0,s and there exists c(s, s0) > 0 such that

||uv||0,s � c(s, s0)(||u||1,s ||v||0,s0 + ||u||1,s0 ||v||0,s).

Lemma 18. Let u, v be scalar functions respectively in H(1)
1,s and H(1)

0,0 with s �
s0 > d/2. Then uv ∈ H(1)

0,0 and there exists c(s) > 0 such that

||uv||0,0 � c(s)||u||1,s ||v||0,0.
Lemma 19. Let u, v be scalar functions respectively in H(1)

1,0 and H(1)
0,s with s �

s0 > d/2. Then uv ∈ H(1)
0,0 and there exists c(s) > 0 such that

||uv||0,0 � c(s)||u||1,0||v||0,s .
The proofs of these Lemmas are made in “Appendix B”.

5. Formulation of the Convection Problem

5.1. Operators L , A and B

Definition 20. We say thatU satisfies Condition b.c. if one of the following bound-
ary conditions are satisfied:

(i) V (H)|z=0,1 = 0 (rigid-rigid),

(ii) V (H)|z=0 = dV (H)

dz |z=1 = 0 (rigid-free),

(iii) dV (H)

dz |z=0 = V (H)|z=1 = 0 (free-rigid).



Existence of Bifurcating Quasipatterns in Steady 1929

Then, we define the following function spaces for r and s non-negative integers:

Kr,s = PHr,s = {U = (V, θ) ∈ Hr,s; ∇ · V = 0, v(z)|z=0,1 = 0},
Ds(L) = K2,s ∩ {U satisfies Condition b.c., θ |z=0,1 = 0}, (19)

and we put on these subspaces the norms of Hr,s and H2,s . We notice that we do

not consider the case of conditions dV (H)

dz |z=0,1 = 0 (free–free) (see Remark 23
below).

Definition 21. For any U ∈ Ds(L) operators L and A are defined by

LU = (P
V,
θ) , U ∈ Ds(L)

AU = (P(θez), V · ez) , U ∈ K0,s,

and the quadratic operator B by

B(U, U ) =
(
1

PP(V · ∇V ), V · ∇θ

)
, U ∈ K1,s .

It is clear that L maps continuously Ds(L) to K0,s . For s > d/2 the quadratic
operator B maps continuously Ds(L) to K1,s as this results easily from the fact
that H1(0, 1) is an algebra, as well as Hs for s > d/2 (see Lemma 16 and see
“Appendix C” for the rest of the proof). This means that there exists c(s, s0) such
that for any U, U ′ ∈ Ds(L), and s � s0 > d/2 we have

||B(U, U ′)||1,s � c(s, s0)(||U ||2,s ||U ′||2,s0 + ||U ||2,s0 ||U ′||2,s), (20)

where we define the bilinear symmetric operator (U, U ′) → B(U, U ′) as

2B(U, U ′) =:
(
1

PP(V · ∇V ′ + V ′ · ∇V ), V · ∇θ ′ + V ′ · ∇θ

)
.

Moreover, we also have easily B(U, U ) ∈ K0,s for U ∈ K1,s, as this results from
the fact that the product of a function in H1(0, 1) with another in L2(0, 1) lies
in L2(0, 1), then V · ∇V ∈ H0,s (see “Appendix C”) and for U, U ′ ∈ K1,s and
s � s0 > d/2 we have the estimate

||B(U, U ′)||0,s � c(s, s0)(||U ||1,s ||U ′||1,s0 + ||U ||1,s0 ||U ′||1,s). (21)

Now solving the system (1) reduces to solving the equation

(λL + A)U − B(U, U ) = 0, U ∈ Ds(L), (22)

where λ =: R−1/2.

Then, we show the following useful basic properties of operators L , A and B:
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Lemma 22. For any s � 0, the unbounded operator L with domain Ds(L) is
selfadjoint, definite negative, in the space K0,s . Moreover, for U ∈ Ds(L), there
exits a scalar function c(λ) such that

〈(λL + A)U, U 〉0,s � c(λ)||U ||20,s (23)

holds, with c(λ) = 1 − 2λ < 0 for R < 4 (in the case of free–free boundary
condition, which we exclude, c(λ) = 0.)

For s > d/2, and U, U ′ ∈ K1,s and U, U ′ real, i.e. U = U , U ′ = U ′ we have

〈B(U, U ), U 〉0,0 = 0, (24)

〈2B(U, U ′), U 〉0,0 = −〈B(U, U ), U ′〉0,0. (25)

Proof. First we have, by using Lemma 15,

〈(λL + A)U, U ′〉0,s = 〈(P(λ
V + θez), λ
θ + V · ez) , (V ′, θ ′)〉0,s
= λ〈(
V,
θ) , (V ′, θ ′)〉0,s + 〈(θez, V · ez), (V ′, θ ′)〉0,s
= λ〈
V, V ′〉0,s + λ〈
θ, θ ′〉0,s + 〈θ, v′(z)〉0,s + 〈v(z), θ ′〉0,s .

Then we observe that 〈θ, v′(z)〉0,s +〈v(z), θ ′〉0,s is symmetric in (U, U ′).Moreover
by integrating by parts, since θk|z=0,1 = 0,

〈
θ, θ ′〉0,s =
∑
k∈

(1 + N 2
k)s
∫ 1

0

(
d2θk

dz2
− |k|2θk

)
θ ′

kdz

= −
∑
k∈

(1 + N 2
k)s
∫ 1

0

(
dθk

dz

dθ ′
k

dz
+ |k|2θkθ ′

k

)
dz,

which is symmetric in (U, U ′). The same computation holds by using the boundary
conditions satisfied by V for U ∈ Ds(L), and shows that 〈
V, V ′〉0,s is symmetric
in (U, U ′). This proves that

〈(λL + A)U, U ′〉0,s = 〈U, (λL + A)U ′〉0,s,
i.e. the operators L and A are symmetric in K0,s .

The operator L is selfadjoint inK0,s because it is easy to prove that L−1 is sym-
metric inK0,s, bounded fromK0,s into Ds(L) (with norm ofK2,s), see “Appendix
A”. The operator A is symmetric and bounded in K0,s . Hence by theorem 4.3 in
[13] p.287, the sum λL + A with domain Ds(L) is also selfadjoint in K0,s .

To prove the inequality (23), we come back to the computation above, valid for
U ∈ Ds(L):

〈(λL + A)U, U 〉0,s = −λ〈∇V,∇V 〉0,s − λ〈∇θ,∇θ〉0,s + 2Re〈θ, v(z)〉0,s
� 2||V ||0,s ||θ ||0,s � 2||U ||20,s . (26)

For all boundary conditions (see Definition 20) we have Poincaré inequalities:
θ, v(z) and V (H) cancel at z = 0 or (and) z = 1, so, for example,

|v(z)(z)|2 = |
∫ z

0
Dv(z)(s)ds|2 � z

∫ 1

0
|Dv(z)(s)|2ds,
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and integrating on (0, 1) leads to the Poincaré estimates

||V ||0,s � 1√
2
||∇V ||0,s, ||θ ||0,s � 1√

2
||∇θ ||0,s . (27)

Hence this leads to

|2Re〈θ, v(z)〉0,s | � ||∇V ||0,s ||∇θ ||0,s � 1/2||∇V ||20,s + 1/2||∇θ ||20,s
and

〈(λL+A)U, U 〉0,s � (1/2−λ)[||∇V ||20,s+||∇θ ||20,s] < 0 for λ > 1/2, i.e.R < 4.

Hence forR < 4 (i.e. λ > 1/2) we have

〈(λL + A)U, U 〉0,s � −(2λ − 1)[||V ||20,s + ||θ ||20,s] = c(λ)||U ||20,s,
with

c(λ) = 1 − 2λ.

Remark 23. In the case of free–free Boundary conditions which we exclude here,
we have not ||V (H)||0,s � 1√

2
||∇V (H)||0,s , hence we only have

〈(λL + A)U, U 〉0,s � (1/2 − λ)[||∇v(z)||20,s + ||∇θ ||20,s]
− λ||∇V (H)||20,s � 0 for λ � 1/2.

In such a case, 0 is an eigenvalue of λL + A corresponding to the eigenvector
U = (V (H), 0) where V (H) = Const.

In the same way as above, for U ∈ K1,s we have

〈B(U, U ), U 〉0,s = 1

P 〈V · ∇V, V 〉0,s + 〈V · ∇θ, θ〉0,s,

and by using θp+q = θr when p + q + r = 0, since θ is real, we have

〈V · ∇θ, θ〉0,0 =
∑

p+q+r=0, p,q,r∈

∫ 1

0

(
(iq · V (H)

p )θq + v(z)
p

dθq

dz

)
θrdz

=
∑

p+q+r=0, p,q,r∈

∫ 1

0

(
(ir · V (H)

p )θr + v(z)
p

dθr

dz

)
θqdz

= 1

2

∑
p+q+r=0, p,q,r∈

∫ 1

0

(
(−ip · V (H)

p )θqθr + v(z)
p

d(θqθr)

dz

)
dz

= 1

2

∑
p+q+r=0, p,q,r∈

∫ 1

0

(
dv(z)

p

dz
θqθr + v(z)

p
d(θqθr)

dz

)
dz = 0.
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In the same way, we have

〈V · ∇V, V 〉0,0 = 〈V · ∇V (H), V (H)〉0,s + 〈V · ∇v(z), v(z)〉0,s
= 1

2

∑
p+q+r=0, p,q,r∈

∫ 1

0

d(v(z)
p Vq · Vr)

dz
dz = 0,

which ends the proof of (24). Identity (25) is a consequence of (24); indeed let us
consider the identity

〈B(U + tU ′, U + tU ′), U + tU ′〉0,0 = 0 ,

which holds for any t ∈ R. It results that the coefficient of degree 1 in t of this
polynomial is zero, which is exactly the property (25). ��

5.2. New Formulation

For applying a method analogous to the one developed in [2,3], we need to
control a parameter able to move all of the spectrum of the linearized operator.
In the present problem, we are lucky enough to have λ in front of an invertible
operator, allowing us to suitably reformulate the problem.

We know that the operator −L is selfadjoint and positive, so we can define
the selfadjoint positive operator (−L)1/2 with dense domain (see [13] section V.11
p.281) as the inverse of

(−L)−1/2 = 1

π

∫ ∞

0
ζ−1/2(ζ − L)−1dζ,

which is selfadjoint and bounded, with the following properties: first, for U ∈
Ds(L) we have

(−L)1/2(−L)1/2U = −LU.

Let us define the Hilbert space, adapted to boundary conditions b.c. (see Defini-
tion 20),

K̃1,s = {U = (V, θ) ∈ K1,s; θ = v(z)|z=0,1 = 0, V (H)|z=0 = 0,

or (and) V (H)|z=1 = 0}.
We can take in K̃1,s the norm

||U ||1̃,s := {||∇V ||20,s + ||∇θ ||20,s}1/2, (28)

which is equivalent to the usual norm in K1,s, due to Poincaré inequalities (27).
Then, because of the identity

〈−LU, U 〉0,s = ||∇V ||20,s + ||∇θ ||20,s,
valid for any U ∈ Ds(L), it is clear that the following identity holds:

||(−L)1/2U ||0,s = ||U ||1̃,s . (29)
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This can be extended to any U ∈ Ds[(−L)1/2] the domain of (−L)1/2 acting in
K0,s . This then shows that the domain Ds[(−L)1/2] (dense in K0,s) satisfies

Ds[(−L)1/2] ⊂ K̃1,s (30)

with a continuous embedding.

Definition 24. We denote that

D1/2,s := Ds[(−L)1/2].
This is an Hilbert subspace of K1,s , with the scalar product associated with the

norm (28) in K̃1,s .

Remark 25. In the sequel, the norm in D1/2,s is denoted by || · ||1̃,s or || · ||1,s or
|| · ||D1/2,s as well.

Now let us consider the following equation in K0,s :

λu − Au + B(u, u) = 0, (31)

where operators A and B are defined as

A : = (−L)−1/2A(−L)−1/2,

B(u, u) : = (−L)−1/2B((−L)−1/2u, (−L)−1/2u).

Since the operator A is bounded in K0,s this is also the case for A. Now for the
quadratic operator B we have

Lemma 26. Assume s > d/2, then the quadratic operator B is bounded from K0,s

to D1/2,s ↪→ K̃1,s ↪→ K0,s . Moreover for u, u′ ∈ K0,s, with s � s0 > d/2 we
have

||B(u, u′)||0,s � ||(−L)−1/2||0,s ||B(u, u′)||̃ 1,s
� c(s, s0)(||u||0,s ||u′||0,s0 + ||u||0,s0 ||u′||0,s). (32)

Moreover, for u ∈ K0,s, with s > d/2, the linear operator v → B(u, v) is bounded
in K0,0 with the estimate

||B(u, v)||0,0 � c||u||0,s ||v||0,0. (33)

Proof. Using (29) and (21) we obtain

||B(u, u′)||1̃,s = ||B((−L)−1/2u, (−L)−1/2u′)||0,s
� c(s, s0)(||(−L)−1/2u||1̃,s ||(−L)−1/2u′||

˜1,s0

+ ||(−L)−1/2u||̃1,s0 ||(−L)−1/2u′|| 1̃,s)
� c(s, s0)(||u||0,s ||u′||0,s0 + ||u||0,s0 ||u′||0,s)
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and

||B(u, u′)||0,s � ||(−L)−1/2||0,s |B(u, u′)||1̃,s
= c1(s, s0)(||u||0,s ||u′||0,s0 + ||u||0,s0 ||u′||0,s). (34)

For finding estimate (33) we just need to prove that for ((−L)−1/2u, (−L)−1/2v) =
(U, V ) ∈ K1,s × K1,0 then ||B(U, V )||0,0 � c′||U ||1,s ||V ||1,0. This is proved in
“Appendix C”. ��

Then we have

Lemma 27. Assuming s > d/2 and λ > 0, finding a solution u ∈ K0,s of

λu − Au + B(u, u) = 0, (35)

where the linear operator A is bounded and selfadjoint in K0,s, implies that u ∈
D1/2,s, and is equivalent to finding a solution U = (−L)−1/2u ∈ Ds(L) of

λLU + AU − B(U, U ) = 0. (36)

Proof. Indeed, we notice that for u ∈ K0,s solution of (31), then (−L)−1/2u ∈
D1/2,s ⊂ K1,s, hence B((−L)−1/2u, (−L)−1/2u) ∈ K0,s (see (21)) and finally
B(u, u) ∈ D1/2,s . It is also clear that Au ∈ D1/2,s . For λ �= 0 this last property
and (31) show that u ∈ D1/2,s, and we can apply the operator (−L)1/2 to (31).
Then defining U = (−L)−1/2u gives U in Ds(L) verifying (36). Conversely, the
knowledge of a solution U of (36) gives a solution u = (−L)1/2U of (31). We
may observe that the quadratic operator B is bounded in K0,s (see (34)). Now due
to the selfadjointness of operators A and (−L)−1/2 in K0,s, the operator A is also
selfadjoint in K0,s . ��
Remark 28. Wemight think that itwould be advantageous towork inD1/2,s instead
of K0,s . However for the method we are using in what follows, it is necessary that
A be selfadjoint. If we consider this operator in D1/2,s, then it can be shown that
this is not true for boundary conditions (ii) and (iii) in Definition 20.

5.3. Rotationnal Symmetry

The system (1), completed with the boundary conditions included in the defi-
nition of Ds(L), is invariant under horizontal rotations of angle π/q. To make this
precise, let us define the linear operator Rπ/q by

Rπ/qU (x, z) = (
Rπ/q V (R−π/qx, z), θ(R−π/qx, z)

)
,

where Rφ is the horizontal rotation of angle φ.More precisely, by using the identity
k · R−φx = Rφk · x we have

Rπ/q

∑
k∈

Uk(z)eik·x =
∑
k∈

(
Rπ/q Vk(z), θk(z)

)
ei Rπ/q k·x. (37)
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Definition 29. We say that U = (V, θ) is invariant under Rπ/q if

Rπ/q Vk(z) = VRπ/q k(z), θk(z) = θRπ/q k(z).

Then, we have the following:

Lemma 30. The linear operators L , A,A and the quadratic operators B and B
commute with Rπ/q : for U ∈ Ds(L) and u ∈ K0,s

Rπ/q(λL + A)U = (λL + A)Rπ/qU, Rπ/qAu = ARπ/qu

Rπ/q B(U, U ) = B(Rπ/qU, Rπ/qU ), Rπ/qB(u, u) = B(Rπ/qu, Rπ/qu).

(38)

Proof. This results from the commutation of the original system (1) under any
horizontal rotations, and from the commutation property

Rπ/qP = PRπ/q ,

which is easy to check from the construction of projectionP.Moreover the operator
L commutes with Rπ/q , hence this is also valid for (−L)−1/2. ��

6. Criticality for A − λI and Formal Bifurcation

6.1. Study of Criticality

Let us consider the linear system

(A − λ)u = G ∈ K0,s, (39)

where we look for u ∈ K0,s . This system is equivalent to looking for U =
(−L)−1/2u ∈ D1/2,s such that

(λL + A)U = G ′ = (−L)1/2G = (F, g) ∈ (D1/2,s)
∗, (40)

where G ′ = (F, g) is given in (D1/2,s)
∗ (see the definition and properties of this

dual space at Section A.1 of “Appendix A”).
Let us define the Fourier components

Uk = (V (H)
k , v

(z)
k , θk),

G ′
k = (F, g)k = (F (H)

k , f (z)
k , gk),

then for a fixed k, the system has the form

(λLk + Ak)Uk = G ′
k, (41)

which is exactly the same as the one obtained in the periodic case, described in
details for example in Chapter II of [5] and solved in details by Yudovich [25].
Notice that for each |k| the linear operator λLk + Ak is selfadjoint in the space
{K0,s}k spanned by the k-th Fourier components of elements inK0,s, and operator
Lk is studied in particular in “Appendix A”.
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Remark 31. Notice that in [5] and in [25] only the case of λ > 0 is considered,
since λ = 1/

√R, by definition. The result of this is that we don’t know anything a
priori on the operator, for λ � 0. However we may observe that the homogeneous
system associated with (41) is invariant when changing λ into −λ and θ into −θ

(see also (1) in changing
√R into its opposite). Consequently, the spectrum of A

is symmetric with respect to 0. Moreover, λ = 0 is an eigenvalue with infinite
multiplicity.

Then, it is known (seeYudovich [25]) that for a fixed |k| there is a denumerable
sequence of R j (= 1/λ2j ) such that the system (41) has a non-trivial solution for

(F, g)k = 0, and there is a variational principle for finding R0(|k|2) = minR j

(see Velte [22]). It is also known mathematically (see Yudovich [25]) that the
function R0(|k|2) is analytic, tends towards ∞ as |k|2 → 0 and as |k|2 → ∞,

and that there is a minimumRc obtained for a critical value k2c . However, it is only
known numerically (see [5]) that this minimum is unique and the kernel of λLk + Ak
for k = k1 = (kc, 0) is one-dimensional ([25]).

We now define λ0 = 1/
√Rc. The result is that the kernel of the linear operator

(A − λ0I) is 2q-dimensional, spanned by ξ j = (−L)1/2ξ ′
j , with

ξ ′
j = R π( j−1)

q

(
Ûk1(z)e

ik1·x
)

, j = 1, 2, . . . , 2q (42)

in the kernel of λ0L + A, where

Ûk1 = (V (H)
k1

, v
(z)
k1

, θk1)

is solution of the homogeneous system (41) for k = k1, and with G ′
k = 0, and

R = Rc.
We now need to estimate the inverse of the linear operator defined by the system

(41) for R = Rc and |k| �= kc. We follow the now standard study of the resolvent
operator for a Navier–Stokes type of system ([28]), but here, with a periodic frame,
we deduce that there is a function c(|k|2) bounded as |k| → ∞ and |k| → 0 such
that (we notice that ||G ′||(D1/2,s )∗ � c||G||0,s for a certain c > 0)

||Uk||21 = ||DUk||2L2 + (1 + |k|2)||Uk||2L2 � [c(|k|2)]2||Gk||2L2 . (43)

For |k| near kc, we know that c(|k|2) diverges as |k|2 → k2c . In fact let us consider
the dispersion equation, obtained when we look for eigenvectors of the homoge-
neous system (41), which has constant coefficients (see [5]). Then, the modulus of
the dispersion equation, which cancels for |k| = kc, is bounded from below by the
inverse c(|k|2)−1. This dispersion equation depends analytically on |k|2 ( [25]) and
we now need

Condition 32. We assume that the second derivative R′′
0(|k|2) �= 0 for |k| = kc

at R0(k2c ) = Rc.
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Notice that we give a formula for d2

d|k|2 (1/
√Rc) in “Appendix D”. The disper-

sion relation cancels with a (only) double root for |k|2 = k2c . This means that we
have, in fact,

c(|k|2) = c1(|k|2)(|k|2 − k2c
)2 for |k| �= kc, (44)

where c1 is bounded for all bounded |k|2 and is O(|k|4) as |k| → ∞.

For |k| = kc and k ∈ , this implies that k belongs to the basis of the quasi-
pattern. Then, following [5,25] and [26], the system (41) is solvable provided that
the compatibility conditions

〈G, ξ j 〉0,0 = 〈G ′, ξ ′
j 〉0,0 =

∫ 1

0
G ′

k j
· Ûk j dz =

∫ 1

0
(Fk j · V̂k j + gk j · θ̂k j )dz = 0,

j = 1, . . . , 2q

hold. The result of this is that

||uk||0 = ||Uk||1 � c(|k|2)||Gk||0. (45)

Remark 33. The classical linear stability theory ([5,27]) says that

〈(λ0L + A)U, U 〉0,0 < 0 for all U ∈ Ds(L) not in ker(λ0L + A), (46)

i.e., using that D1/2,s is dense in K0,s ,

〈(A − λ0)u, u〉0,0 < 0 for all u ∈ K0,s not in ker(A − λ0). (47)

We also know, from the discussion above, that for any fixed |k| we have a decreas-
ing sequence of positive eigenvalues, and a sequence of symmetric ones, for the
selfadjoint bounded operator A :

λ0(|k|2) > λ1(|k|2)... � λn(|k|2) � ... � 0... � −λn(|k|2)
� ... − λ1(|k|2) > −λ0(|k|2),

(see Fig. 4 for positive eigenvalues) corresponding to eigenvectors, depending on
x as eik·x. The largest eigenvalue reaches a maximum λ0 at k2c . Now the lattice
 is well defined, thanks to (4). When k varies in , the set of values for |k| is
dense on the half positive line. As a result, the spectrum (closed in R) of A is the
closed interval [−λ0, λ0]. Moreover, as this will be useful later, we notice that for
all k ∈ ,

λ0−λ j (|k|2) > δ0, λ0(|k|2)−λ j (|k|2) � δ0(|k|) > 0, j = 1, 2, . . . ,∞, (48)

with δ0(|k|) > δ0 > 0 for |k| close to kc.
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kc k|  |

λ

0 δ1

0λ
2k|  |0λ ( )

2k|  |jλ ( ), j>0

+- δ1kckc

Fig. 4. Sketch of positive eigenvalues of A in function of |k|, and definition of critical
lambda λ0. δ1 is used to define the projection π0 in section 7.4

6.2. Pseudo-Inverse of A − λ0I

Let us define the orthogonal projection P0 on the kernel of A − λ0I: for any
u ∈ K0,s ,

P0u =
∑

1� j�Q

γ jξ j , γ j = 〈u, ξ j 〉0,0
〈ξ1, ξ1〉0,0

, (49)

where we notice that

〈ξ1, ξ1〉0,0 = 〈ξ j , ξ j 〉0,0, j = 2, . . . , 2q.

We denote by Q0 = I − P0 the projection on the complementary space (of codi-
mension 2q). Since the eigenvectors ξ j belong to K0,s for any s, the projection
Q0 is bounded in K0,s for any s. Notice that when u is invariant under Rπ/q , then
γ j = γ1 for j = 2, . . . , 2q.

Now, coming back to the linear system,

(A − λ0)u = G,

where G ∈ K0,s satisfies the compatibility condition P0G = 0, the above estimate
(45), and the form (44) of c(|k|2) show that there is a unique solution u satisfying
P0u = 0 and there exists a constant c > 0 such that

||uk||0 � c

[
(1 − δkc (|k|))(1 + |k|2)2(|k|2 − k2c

)2 + δkc (|k|)
]

||Gk||0,

where δkc (|k|) = 1 if |k| = kc, and = 0 otherwise. By using the diophantine
inequality (8), this leads to the following:
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Lemma 34. Assuming λ′′
0(|k|2)||k|=kc �= 0 (see (138)) for the second derivative of

λ0 at |k| = kc, then for any s � 0, the linear operator (A − λ0) has a bounded
inverse from the subspace Q0K0,s to the subspace Q0K0,s−4l0 . In other words, for
any δ1 > 0 small enough, there exists c > 0 such that for u solution in Q0K0,s−4l0
of (A − λ0)u = G ∈ Q0K0,s, the following estimate holds:

||uk||0 � c(1 + N 2
k)2l0 ||Gk||0, for ||k| − kc| < δ1,

||uk||0 � c

δ21
||Gk||0, for ||k| − kc| � δ1.

6.3. Formal Power Series for Bifurcating Solution

Let us rewrite the system (35) as

(A − λ0)u = −μu + B(u, u), (50)

where

λ0 = 1√Rc
, λ = λ0 − μ.

We are looking for a solution of (50) inK0,s, s > d/2,which is invariant under
Rπ/q under the form of a formal expansion

u =
∑
n�1

εnun, (51)

μ =
∑
n�1

εnμn, (52)

where, in fact, un ∈ D1/2,s (see Lemma 27). Identifying powers of ε at orders ε,
ε2, ε3, leads to the system

(A − λ0)u1 = 0, (53)

(A − λ0)u2 = −μ1u1 + B(u1, u1) (54)

(A − λ0)u3 = −μ1u2 − μ2u1 + 2B(u1, u2). (55)

Equation (53) gives (here we choose the coefficient in front of the eigenvector,
which determines the parameter ε)

u1 =
∑

1� j�2q

ξ j , (56)

which is invariant under Rπ/q , and we observe, thanks to property (24), still valid
for B, that

〈B(u1, u1), u1〉0,0 = 0,

and since
Rπ/qB(u1, u1) = B(u1, u1),
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this means that (see the definition of projection P0 in (49))

P0B(u1, u1) = 0,

hence Equation (54) is solvable with μ1 = 0, and since the Fourier series of
B(u1, u1) is finite, we find a unique u2 ∈ D1/2,s , orthogonal to u1 in K0,0, such
that

u2 = ˜(A − λ0)
−1B(u1, u1), (57)

which is invariant under Rπ/q , and where ˜(A − λ0)
−1

is the pseudo-inverse of
(A − λ0) as defined by Lemma 34. Now, the compatibility condition for solving
(55) gives

〈μ2u1 − 2B(u1, u2), u1〉0,0 = 0. (58)

Then we use the identity (25) to obtain

〈2B(u1, u2), u1〉0,0 = −〈B(u1, u1), u2〉0,0
= −〈(A − λ0)u2, u2〉0,0 > 0.

The result above, in the periodic case, was first obtained by Yudovich in [26]. The
last inequality results from the fact that P0u2 = 0, and from the property (47).
Then μ2 is positive, determined by

μ2 = −〈(A − λ0)u2, u2〉0,0
〈u1, u1〉0,0 > 0. (59)

Now the unique solution u3 of (55), orthogonal to u1 in K0,0, takes the form

u3 = 2 ˜(A − λ0)
−1

Q0B(u1, u2), (60)

and is invariant under Rπ/q and again lies in D1/2,s because of the finiteness of its
Fourier series. Now, from

(A − λ0)u4 = −μ2u2 − μ3u1 + 2B(u1, u3) + B(u2, u2),

we observe that μ2u2 is orthogonal to u1. The factors eik·x in the expression for
2B(u1, u3) + B(u2, u2) are such that

k =
∑

1� j�2q

m j k j , and
∑

m j = 4,

so that the scalar product with u1 may be different from 0, as this can be seen in
the case when q is a multiple of 3. It results from the compatibility condition that

μ3 = 〈2B(u1, u3) + B(u2, u2), u1〉0,0
〈u1, u1〉0,0 , (61)

and

u4 = ˜(A − λ0)
−1

Q0[−μ2u2 + 2B(u1, u3) + B(u2, u2)]
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is invariant under Rπ/q and still in D1/2,s . Going on the computation, we obtain,
in particular, that

μ4 = 〈2B(u1, u4) + 2B(u2, u3), u1〉0,0
〈u1, u1〉0,0 . (62)

We show in [10] thatwe cangoon in computing the successive termsof the series
which appear to be of Gevrey type. Making an incomplete Borel resummation of
these series, invariant underRπ/q , provides a solution of (50) up to an exponentially
small term as ε tends towards 0. Our purpose now is to improve such a result in
proving that there indeed exist quasipatterns solutions of (50).

7. Adapted Formulation and Splitting of the Space

7.1. Decomposition of u

In all what follows, we study functions u, v in K0,s, invariant under rotations
Rπ/q . In this frame the kernel of the linear operator (A − λ0) is one-dimensional.
Let us define the new unknown function ṽ in rewriting the solution of ( 50) inK0,s,

s > d/2 as

u = uε + ε4ṽ, μ = με + ε3μ′,
uε = εu1 + ε2u2 + ε3u3 + ε4u4,

με = ε2μ2 + ε3μ3, ṽ ∈ {u1}⊥ ∩ K0,s, (63)

where the coefficients u1, u2, u3, u4, μ2, μ3 are defined above, and we assume
below that ε > 0 (the same proof applies for ε < 0). Then

(A − λ0)uε = −μεuε + B(uε, uε) + ε5 fε,

where fε is a known quasiperiodic function with a finite Fourier expansion with
Nk � 8. Now, we have, by (50), that

(A − λ0)(uε + ε4ṽ) + (με + ε3μ′)(uε + ε4ṽ) − B(uε + ε4ṽ, uε + ε4ṽ) = 0,

which becomes

Lεv + ε3μ′ṽ + μ′ε−1uε + ε fε − ε4B(̃v, ṽ) = 0, (64)

with

Lεṽ = (A − λ0 + με)̃v − 2B(uε, ṽ). (65)
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7.2. Decomposition of the System

Let us use the projection Q0 = I − P0 on the orthogonal complement of u1 in
the subspace ofK0,0 invariant under Rπ/q , defined at Section 6.2. We might notice
that the formal computation made at Section 6.3 gives ṽ = εu5 +O(ε2) in {u1}⊥,

with μ′ = εμ4 + O(ε2).

Equation (64) decomposes into the bifurcation equation, using the projection
P0 onto the kernel {u1} of (A − λ0) :

μ′u1 + εP0 fε − 2P0B(̃v, uε) − ε4P0B(̃v, ṽ) = 0, (66)

with
P0 f0 = −μ4u1,

and the range equation (projection onto {u1}⊥) :
Q0Lεṽ + ε3μ′ṽ + g̃(ε, μ′) − ε4Q0B(̃v, ṽ) = 0, (67)

where

Q0Lε = Q0(A − λ0 + με) − 2Q0B(uε, ·),
g̃(ε, μ′) := μ′ε(u2 + εu3 + ε2u4) + εQ0 fε.

7.3. Optimization of Variables

In what follows, we need to obtain a solution of (67) which is C2− bounded in
μ̃, so we need to have operators and functions in (67) with bounded first and second
derivatives with respect to μ̃ = ε3μ′. This is not the case for the term g̃(ε, μ′),
so we need to slightly modify the definition of ṽ in such a way that g̃(ε, μ′) has a
more suitable form.

Let us define (see Lemma 26, using that uε ∈ K0,t for all t > 0) the linear
operator Sε bounded by csε in Q0K0,s for any s � 0, as

Q0Lε = Q0(A − λ0) + Sε,

Sε : = με − 2Q0B(uε, ·).
We notice that g̃(ε, μ′) has a finite Fourier expansion with Nk � 8 (because of fε).
Hence [Q0(A − λ0)]−1g̃(ε, μ′) ∈ Q0K0,s for any s � 0. In the same way, we can
define

h(ε, μ′) =
⎧⎨
⎩I +

∑
n=1,2,3,4

(−1)n
(
[Q0(A − λ0)]−1(Sε + μ̃)

)n

⎫⎬
⎭

×[Q0(A − λ0)]−1g̃(ε, μ′), (68)

which is still well-defined in Q0K0,s for s � 0, and h is analytic in its arguments
(ε, μ′). Indeed, the operator

([Q0(A − λ0)]−1(Sε + μ̃)
)n

is bounded on a finite
Fourier series in eik·x leading to a finite Fourier series with Nk increased by 4n.
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Finally h(ε, μ′) has a finite Fourier expansion with wave vectors bounded by Nk =
16 + 8 = 24.

We can now check that

(Q0Lε + μ̃)h(ε, μ′) = g̃(ε, μ′) +
(
(Sε + μ̃)[Q0(A − λ0)]−1

)5
g̃(ε, μ′).

We do not use Neumann series for inverting (Q0Lε + μ̃) because of the small
divisor difficulty. We notice that ε2 g̃(ε, μ′) = μ̃(u2 + εu3 + ε2u4) + ε3Q0 fε,
hence ε2h(ε, μ′) := h̃(ε, μ̃) is analytic in (ε, μ̃) with

||̃h(ε, μ̃)||0,s � cs(ε
3 + |μ̃|).

Now we define the new v as

v = ṽ + h(ε, μ′), (69)

so that (67) becomes

Lε,μ̃v + g(ε, μ̃) − ε4Q0B(v, v) = 0, (70)

with

Lε,μ̃ = Q0Lε + μ̃ + 2ε2Q0B(̃h(ε, μ̃), ·), (71)

g(ε, μ̃) = −
(
(Sε + μ̃)[Q0(A − λ0)]−1

)5
g̃(ε, μ′) − Q0B(̃h(ε, μ̃), h̃(ε, μ̃)).

We notice that the first term on the right hand side of g(ε, μ̃) is now C4− bounded
in μ̃ since, up to order μ̃4 it is analytic, and the non analyticity only occurs at orders
ε2μ′μ̃4 and εμ′μ̃5. Since we restrict to μ̃ ∈ [−ε, ε] the values for μ̃, we finally
obtain in (70) the required properties for all terms, with

||g(ε, μ̃)||0,s � csε
2, ||∂ε,μ̃g(ε, μ̃)||0,s � csε

2, (72)

||∂2
μ̃2g(ε, μ̃)||0,s � cs, ||∂2ε2g(ε, μ̃)||0,s � csε

2, ||∂2εμ̃g(ε, μ̃)||0,s � csε
2.

Let us define the linearized operator

Lε,μ̃,V := Lε,μ̃ − 2ε4Q0B(V, ·)
for V ∈ K0,s for s > d/2. Then, we need a careful study of this linearized operator
for applying the result of [2].

Lemma 35. The operator Lε,μ̃,V is analytic in its arguments for (ε, μ̃, V ) ∈
(0, ε0)×[−ε, ε]× Q0K0,s, s � s0 > d/2; it is acting in Q0K0,t for t ∈ [0, s] (see
the result of Lemma 26),with

Lε,μ̃,V : = Q0(A − λ0) + μ̃ + Rε,μ̃ − 2ε4Q0B(V, ·)
Rε,μ̃ = με − 2Q0B(uε − ε2h̃(ε, μ̃), ·), (73)

and, for ||V ||0,s0 � 1, we have the estimates

||Rε,μ̃v||0,s � csε||v||0,s,
||∂μ̃Rε,μ̃v||0,s + ||∂2

μ̃2Rε,μ̃v||0,s + ||∂2εμ̃Rε,μ̃v||0,s � csε
2||v||0,s,

||∂εRε,μ̃v||0,s + ||∂2
ε2
Rε,μ̃v||0,s � cs ||v||0,s,

||2ε4Q0B(V, v)||0,s � csε
4(||v||0,s + ||V ||0,s ||v||0,s0).
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Fig. 5. Spectrum of π0Q0(A − λ0)Q0π0

7.4. First Splitting of the Space (Operator π0)

We are interested in the inversion of the operator Lε,μ̃,V in a certain subspace.
The first difficulty comes from the infinite dimension of the system, despite of the
use of a projection �N suppressing the Fourier modes eik·x such that Nk > N .

Thus, we now use the property described in (48) for the spectrum of the operator
Q0(A − λ0)Q0, which is selfadjoint in K0,s :

λ0 − λ0(|k|2) � 0,

λ0 − λ j (|k|2) > δ0 > 0, j = 1, 2, . . .

λ0(|k|2) → 0 as |k| → 0 or ∞.

Let us consider δ1 > 0, defined at Lemma 34. Then for k ∈ , the inequality
||k| − kc| > δ1 implies that λ0 − λ0(|k|2) > δ′

0 (= O(δ21) (recall that λ0(|k|2) is
analytic in |k|2 with a maximum λ0 in kc) and we choose δ1 small enough to have
δ′
0 < δ0/2. We now define the projection π0, orthogonal in Q0K0,s, for any s � 0,
which consists in eliminating the Fourier modes k ∈  such that ||k|−kc| > δ1.We
give at Fig. 5 a sketchof the spectrumof the selfadjoint operatorπ0Q0(A−λ0)Q0π0.
We notice that the selfadjoint operator

(I − π0)Q0(A − λ0)Q0(I − π0)

has an inverse bounded by 1/δ′
0, since its eigenvalues (dense in the spectrum) are

in absolute value larger than δ′
0.

Then, for |μ̃| � ε and ||V ||0,s0 � 1, s0 > d/2, the operator

(I − π0)Lε,μ̃,V (I − π0)

is a perturbation of order ε of (I − π0)Q0(A − λ0)Q0(I − π0) (see (73)). For ε0
small enough, we have, for s ∈ [0, s0], that

||μ̃ + με − 2Q0B(uε, ·) − 2ε4Q0B(V, ·)||0,s � cε, (74)

hence, for ε0 small enough, and δ′
0 > 2cε, the operator (I − π0)Lε,μ̃,V (I − π0)

has an inverse bounded by 2/δ′
0 in (I − π0)Q0K0,s0 . Notice that a true estimate of

the inverse in Q0K0,s for s > s0 would need a bound for ||V ||0,s, which we do not
have, except for s = s0. Let us now show that the inversion of Lε,μ̃,V reduces to the
inversion of a small perturbationL′

ε,μ̃,V of π0Lε,μ̃,V π0 in π0Q0K0,s0 for d/2 < s0.
Indeed, let us consider the linear system

Lε,μ̃,V v = f ∈ Q0K0,s0 . (75)
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This leads to

π0Lε,μ̃,V (v0 + v1) = π0 f,

(I − π0)Lε,μ̃,V (v0 + v1) = (I − π0) f,

where
v0 = π0v, v1 = (I − π0)v.

Solving first with respect to v1 gives

v1 = Q(1,1)(I − π0) f + Q(1,0)v0, (76)

with bounded operators Q(1,1) and Q(1,0) defined by

Q
(1,1)
ε,μ̃,V = : [(I − π0)Lε,μ̃,V (I − π0)]−1 ∈ L((I − π0)Q0K0,s0), (77)

Q
(1,0)
ε,μ̃,V = : −Q

(1,1)
ε,μ̃,V (I − π0)Lε,μ̃,V ∈ L(π0Q0K0,s0 , (I − π0)Q0K0,s0). (78)

Then the system satisfied by v0 becomes

L′
ε,μ̃,V v0 = π0 f + Q

(0,1)
ε,μ̃,V (I − π0) f, (79)

with

Q
(0,1)
ε,μ̃,V =: −π0Lε,μ̃,VQ

(1,1)
ε,μ̃,V ∈ L((I − π0)Q0K0,s0 , π0Q0K0,s0) (80)

L′
ε,μ̃,V := π0Lε,μ̃,V [I + Q

(1,0)
ε,μ̃,V ]π0 ∈ L(π0Q0K0,s0). (81)

We show in the next subsection, for V ∈ Q0K0,s such that ||V ||0,s0 < 1 and δ′
0

well chosen, that there exists c(s) > 0 with the following tame estimates, valid for
d/2 < s0 � s � s and 0 � ε � ε1(s) :

||Q(1,1)
ε,μ̃,V v||0,s � c(s)

δ′
0

{||v||0,s + ε4||V ||0,s ||v||0,s0} ∀v ∈ (I − π0)Q0K0,s,

||Q(1,0)
ε,μ̃,V v||0,s � c(s)

δ′
0

ε{||v||0,s + ε4||V ||0,s ||v||0,s0} ∀v ∈ π0Q0K0,s,

||Q(0,1)
ε,μ̃,V v||0,s � c(s)

δ′
0

ε{||v||0,s + ε4||V ||0,s ||v||0,s0} ∀v ∈ (I − π0)Q0K0,s .

(82)

7.5. Structure of L′
ε,μ̃,V

We need to study the structure of L′
ε,μ̃,V defined by (81). This is summed up in

Lemma 36. For s such that s � s � s0 > d/2, there exists ε0 > 0 such that for
0 < ε � ε1(s) � ε0, |μ̃| � ε0, and V ∈ Q0K0,s, with ||V ||0,s0 � 1, we have

L′
ε,μ̃,V = π0Q0(A − λ0)Q0π0 + μ̃ + Bε + ε2μ̃Cε,μ̃ + Rε,μ̃,V , (83)

with
Bε = −2π0Q0B(uε, ·)Q0π0 + O(ε2),
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Bε, Cε,μ̃ and Rε,μ̃,V depend analytically on their arguments, with Rε,μ̃,0 = 0 and
a constant c(s) such that for any v ∈ π0Q0K0,s

||Bεv||0,s � cε||v||0,s,
||Cε,μ̃v||0,s + ||∂μ̃Cε,μ̃v||0,s � c||v||0,s,

||Rε,μ̃,V v||0,s � cε4{||v||0,s + ||V ||0,s ||v||0,s0}, (84)

||∂μ̃Rε,μ̃,V v||0,s � cε4{||v||0,s + ||V ||0,s ||v||0,s0},
||∂εRε,μ̃,V v||0,s � cε3{||v||0,s + ||V ||0,s ||v||0,s0}.

Proof. We examine first Q(1,1)
ε,μ̃,V which is the inverse of (I − π0)Lε,μ̃,V (I − π0).

Thanks to (73), we can write

(I − π0)Lε,μ̃,V (I − π0) = (I − π0)Q0(A − λ0)Q0(I − π0) + μ̃Id

+ (I − π0)P(ε, μ̃, V )(I − π0), (85)

where Id is the identity in the subspace (I − π0)Q0K0,s and

P(ε, μ̃, V ) =: με − 2Q0B(uε − ε2h̃(ε, μ̃), ·) − 2ε4Q0B(V, ·).
Now, for V ∈ Q0K0,s, the operator P(ε, μ̃, V ) takes values in L((I − π0)Q0K0,s)

for d/2 < s0 � s � s , and satisfies for ε ∈ [0, ε0], ε0 small enough and
||V ||0,s0 � 1, |μ̃| � ε,

||(I − π0)P(ε, μ̃, V )(I − π0)v||0,s � c{ε||v||0,s + ε4||V ||0,s ||v||0,s0}.
Let us define the operator

S =: [(I − π0)Q0(A − λ0)Q0(I − π0)]−1(I − π0){μ̃ + P(ε, μ̃, V )(I − π0)},
then

[(I − π0)Lε,μ̃,V (I − π0)]−1 = (I + S)−1[(I − π0)Q0(A − λ0)Q0(I − π0)]−1,

then we need to invert (I + S) in checking a tame estimate.
For ε < ε1(s) � ε0, |μ̃| � ε and ||V ||0,s0 � 1, there exists a constant c > 0

such that for any v ∈ (I − π0)Q0K0,s

||Sv||0,s � c

δ′
0
[ε||v||0,s + ε4||V ||0,s ||v||0,s0 ],

and for ε0 small enough such that (ε + ε4) � 2ε, we have for any p ∈ N

||Spv||0,s � c

δ′
0

(
2cε0
δ′
0

)p−1

[(|μ̃| + ε)||v||0,s + ε4||V ||0,s ||v||0,s0 ],

hence for any v ∈ (I − π0)Q0K0,s

||(I + S)−1v||0,s � ||v||0,s + c

δ′
0

(
1 − 2cε0

δ′
0

)−1

[ε||v||0,s + ε4||V ||0,s ||v||0,s0 ].
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It results that, for δ′
0 > 4cε0, [(I − π0)Lε,μ̃,V (I − π0)]−1 = Q

(1,1)
ε,μ̃,V is analytic in

its arguments and satisfies, for ε0 small enough, the estimate

||Q(1,1)
ε,μ̃,V v||0,s � c′/δ′

0(||v||0,s + ε4||V ||0,s ||v||0,s0) ∀v ∈ (I − π0)Q0K0,s,

which is the first part of (82). Coming back to (81) with (78) and (80), we observe
that

(I−π0)Q0[(A−λ0)+με + μ̃]Q0π0 = π0Q0[(A−λ0)+με + μ̃]Q0(I−π0) = 0,

because the coefficients of the linear operator are independent of x. Then

(I − π0)Lε,μ̃,V π0

= −2(I − π0)Q0B(uε − ε2h̃, ·)Q0π0 − 2ε4(I − π0)Q0B(V, ·)π0,

π0Lε,μ̃,V (I − π0)

= −2π0Q0B(uε − ε2h̃, ·)Q0(I − π0) − 2ε4π0Q0B(V, ·)(I − π0),

both operators being of order ε (with the tame estimates), and depending analyti-
cally on their arguments. It finally results from (78) and (80) that the rest of estimate
(82) holds. Finally

π0Lε,μ̃,VQ
(1,0)
ε,μ̃,V = C(1)

ε + ε2μ̃Cε,μ̃ + R′
ε,μ̃,V , (86)

withC(1)
ε ,Cε,μ̃ andR′

ε,μ̃,V analytic in their arguments, takingvalues inL(π0Q0K0,s)

for s0 � s ≤ s , and a careful examination of (77), (78), (81), (73) leads
∀v ∈ π0Q0K0,s, to

C(1)
ε = O(ε2),

||R′
ε,μ̃,V v||0,s � cε5(||v||0,s + ||V ||0,s ||v||0,s0),

||∂ε,μ̃R
′
ε,μ̃,V v||0,s � cε4(||v||0,s + ||V ||0,s ||v||0,s0).

Finally, from (81), we can write

L′
ε,μ̃,V = π0Lε,μ̃,V π0 + C(1)

ε + ε2μ̃Cε,μ̃ + R′
ε,μ̃,V , (87)

whereR′
ε,μ̃,V is at least linear in V . This leads to (83), (84) and to the result of the

Lemma. ��
Remark 37. We may observe that the spectrum of L′

ε,μ̃,V in π0Q0K0,s0 results
from a perturbation of order ε of the spectrum of the selfadjoint operator π0Q0(A−
λ0)Q0π0, the spectrumofwhich is the closure of the set of eigenvaluesλ j (|k|2)−λ0,
j = 0, 1, . . ., k ∈ , with

−δ′
0 � λ0(|k|2) − λ0 < 0, and ± λ j (|k|2) − λ0 < −δ0, j = 1, 2, . . .

and − λ0(|k|2) − λ0 < −δ0 where k ∈  with 0 < ||k| − kc| � δ1.

It results that, for ε small enough, the spectrum of L′
ε,μ̃,V in π0Q0K0,s0 has a gap

in its real part, between −3δ0/4 and −δ0/2. Hence the eigenvalues which might
be close to 0, are those coming from λ0(|k|2) − λ0 uniquely, and this allows us to
come back to a situation analogue to the one in [3], except for the selfadjointness
of the operator which is not true here, starting at order ε.
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Remark 38. Wenotice that the restriction on δ1 leads to a restriction on δ′
0 = O(δ21).

The restriction on δ′
0 made in the proof of Lemma above is independent of ε0, for

ε0 small enough.

Remark 39. The operator L′
ε,μ̃,V depends analytically on (ε, μ̃, V ), therefore, we

can give its expression for ε = 0. From Lemma 36 we have

L′
0,μ̃,V = π0Q0(A − λ0)Q0π0 + μ̃I. (88)

Coming back to the linear Equation (75), we finally have

Lemma 40. For s0 > d/2, s > s0, 0 < ε � ε1(s) � ε0, |μ̃| � ε0, V ∈ Q0K0,s
such that ||V ||0,s0 � 1, and s ∈ [s0, s], assume that there exists C(s) > 0 such
that

||L′−1
ε,μ̃,V f0||0,s � C(s)[|| f0||0,s + ||V ||0,s || f0||0,s0 ], for any f0 = π0 f,

with f ∈ Q0K0,s .

Then, for s ∈ [s0, s], ε0 small enough and f ∈ Q0K0,s ,

||L−1
ε,μ̃,V f ||0,s � C ′(s)[|| f ||0,s + ||V ||0,s || f ||0,s0 ], (89)

where C ′(s) = 3Cs) + c(s)/δ′
0.

Proof. We start with (79) and the estimate for Q(0,1)
ε,μ̃,V in (82). We obtain, for ε

small enough

||v0||0,s � C(s)[||π0 f + Q
(0,1)
ε,μ̃,V (I − π0) f ||0,s

+ ||V ||0,s ||π0 f + Q
(0,1)
ε,μ̃,V (I − π0) f ||0,s0 ]

� 2C(s)[|| f ||0,s + ||V ||0,s || f ||0,s0 ].
Now, using (76) with (82), we obtain, successively,

||Q(1,0)
ε,μ̃,V v0||0,s � 2ε

c(s)

δ′
0

C(s)[|| f ||0,s + ||V ||0,s || f ||0,s0 ],

||v1||0,s � 2c(s)

δ′
0

[|| f ||0,s + ||V ||0,s || f ||0,s0 ],

and v0 + v1 is L
−1
ε,μ̃,V f for which (89) holds in the norm Q0K0,s . ��

7.6. Projection �N

We define the projection �N as the suppression of Fourier modes with k ∈ 

such that Nk > N . The range of this projection is then

EN := �N π0Q0K0,s,

which is in fact independent of s (however its norm depends on s), and where we
do not forget that coefficients are functions of z ∈ [0, 1], here in L2. A difference
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with the spaces EN occurring in [2,3] (for example), is that our EN is infinite
dimensional. However the spectrum of the linear operator �NL

′
ε,μ̃,V �N is discrete

since, for a given V , it is a perturbation of the operator�N π0Q0(A−λ0)Q0π0�N ,

where the number of Fourier modes eik·x is finite (number N bounded by bN d ,

d being defined in Section 3 and b independent of N ), and that for any fixed
|k|, the spectrum of �N π0Q0(A − λ0)Q0π0�N is discrete, only composed with
eigenvalues of finite multiplicities. Notice also that

�N π0 = π0�N ,

and that Lemma 40 is still valid, when restricted to EN .

8. Estimates of the Inverse of (�NL
′
ε,μ̃,V �N )

8.1. Estimate of (�NL
′
ε,μ̃,V �N )−1 in �N π0Q0K0,s0 for small N

Lemma 41. Let s0 > d/2, V ∈ K0,s0 satisfies ||V ||0,s0 � 1, and assume (ε, μ̃) ∈
[0, ε0] × [−ε, ε]. Then for N � Mε, where Mε is defined by (92), we have the
following estimates:

||(�NL
′
ε,μ̃,V �N )−1v||0,s0 � 2c(1 + N 2)2l0 ||v||0,s0 , for v ∈ �N π0Q0K0,s0 ,

(90)

||(�NLε,μ̃,V �N )−1v||0,s0 � 2cc′(1 + N 2)2l0 ||v||0,s0 for v ∈ �N Q0K0,s0 .

(91)

Proof. We use Lemma 36 and

�N π0Q0L
′
ε,μ̃,V Q0π0�N = �N π0Q0(A − λ0)Q0π0�N + μ̃ +

+�N π0Q0[Bε + ε2μ̃Cε,μ̃ + Rε,μ̃,V ]Q0π0�N ,

with the estimates (for |μ̃| � ε)

||�N π0Q0[μ̃ + Bε + ε2μ̃Cε,μ̃ + Rε,μ̃,V ]Q0π0�N ||0,s0 � c1ε.

Now, by construction, and from Lemma 34, we have

||(�N π0Q0(A − λ0)Q0π0�N )−1||0,s0 � c(1 + N 2)2l0 .

Then, if we have
cc1ε(1 + N 2)2l0 � 1/2,

wecanuseNeumann series to invert the operator (�NL
′
ε,μ̃,V �N ) in�N π0Q0K0,s0 ,

and obtain (90) provided that

N � Mε =
[ c2
ε1/4l0

]
�
(

1

(2cc1ε)1/2l0
− 1

)1/2

, (92)

where the brackets [·] mean the integer part of. The result for (�NLε,μ̃,V �N )−1

comes from Lemma 40. ��
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8.2. Good Set of μ̃

Let us define for M > 0, s0 > d/2 the set

U (N )
M : = {u ∈ C2([0, ε1[×[−ε, ε], EN ); u(0, μ̃) = 0,

||u||0,s0 � 1, ||∂ε,μ̃u||0,s0 � M, ||∂2ε,μ̃u||0,s0 � M}. (93)

We do not forget that Lemma 36 says that operator L′
ε,μ̃,V is analytic in (ε, μ̃, V ).

Now, for V ∈ U (N )
M we need to study the inverse of �NL

′
ε,μ̃,V (ε,μ̃)�N , when it

exists, in function of μ̃ for ε fixed. As an operator in L(EN ) with the norm induced
by L(K0,s0), its eigenvalues result from a small perturbation of the selfadjoint
operator�N π0Q0(A−λ0)π0�N Q0 which has a discrete set of eigenvalues (notice
that since we do not impose a bound on ||V ||0,s, the perturbationmight not be small
for s > s0). Since we are only interested in the eigenvalues very close to 0, the
eigenvalues which interest us are the ones which perturb the (negative) eigenvalues
λ0(|k|2) − λ0 close to 0, obtained for |k| near kc.

For s = s0, let us introduce the projection �′ commuting with �NL
′
ε,μ̃,V �N ,

which is associated with this group of eigenvalues close to 0 (separated from the
rest of the spectrum at a distance at least δ0/4). We then apply the results (such as
[13] Theorem 6.17 p.178) on bounded operators with a separation of the spectrum
in two bounded parts. We then obtain that the spectrum of the operator

(I − �′)�NL
′
ε,μ̃,V (ε,μ̃)�N (I − �′)

lies at a distance at least 3δ0/4 from 0, hence its inverse is bounded by a constant
C. We can then proceed exactly as with the projection π0 at Section 7.4 and prove
the following:

Lemma 42. For s0 > d/2, 0 < ε � ε0, |μ̃| � ε, V ∈ Q0K0,s0 such that
||V ||0,s0 � 1, there exists c" > 0 such that

||(�NL
′
ε,μ̃,V �N )−1||0,s0 � c"||(�′�NL

′
ε,μ̃,V �N �′)−1||0,s0 .

We are in the same finite-dimensional space as in [3]. The definition of the good
set of μ̃ is only linked with the finite set of eigenvalues perturbing λ0(|k|2) − λ0
for k ∈ , ||k| − kc| � δ1, and located in the strip

−3δ0/4 < Re(·) < δ0/4

for ε small enough. However, we cannot use directly the method of [3], since the
operator �′�NL

′
ε,μ̃,V �N �′ is not selfadjoint.

From Lemma 36 we have

�′�NL
′
ε,μ̃,V �N �′ = �′�N π0Q0(A − λ0)Q0π0�N �′ + μ̃Id +

+�′�NBε�N �′ + ε2μ̃�′�NCε,μ̃�N �′

+�′�NRε,μ̃,V �N �′,
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where Id is the identity in �′EN . The new property is that the negative selfadjoint
operator �′�N π0Q0(A − λ0)Q0π0�N �′ satisfies

||�′�N π0Q0(A − λ0)Q0π0�N �′||0,s0 � δ′
0, (94)

which is the size of its spectrum even in absence of �N (the norm in L(EN ) is the
norm induced by L(K0,s0)).

In the sequel of this subsection and the next one, we simplify the notations in
defining

L
(N ,V )
ε,μ̃ =: �′�NL

′
ε,μ̃,V (ε,μ̃)�N �′, (95)

which is analytic in (ε, μ̃) when V = 0. Then we define

V (ε, μ̃) = V0(ε) + V1(ε, μ̃),

where V0, V1 are C2 in their arguments, and V1 satisfies (see properties required in
U (N )

M )

||V1(ε, μ̃)||0,s0 � M |μ̃|, ||∂μ̃V1(ε, μ̃)||0,s0 � M, ||∂μ̃V1(ε, μ̃2) − ∂μ̃V1(ε, μ̃1)||
� M |μ̃2 − μ̃1|.

Then we also decompose Rε,μ̃,V (ε,μ̃) as

Rε,μ̃,V (ε,μ̃) = ε4R(0)
ε + ε4R

(1)
ε,μ̃,

where R(0)
ε , R

(1)
ε,μ̃ are C2 in their arguments, and R(1)

ε,μ̃ satisfies

||R(1)
ε,μ̃v||0,s0 � M |μ̃|||v||0,s0 , ||∂μ̃R

(1)
ε,μ̃v||0,s0 � M ||v||0,s0

||(∂μ̃R
(1)
ε,μ̃2

− ∂μ̃R
(1)
ε,μ̃1

)v||0,s0 � M |μ̃2 − μ̃1|||v||0,s0 .
Then,

L
(N ,V )
ε,μ̃ = ˜(A − λ0)N + B′(N )

ε + μ̃Id + ε2C
′(N )
ε,μ̃ ,

with
˜(A − λ0)N =: �N π0Q0(A − λ0)Q0π0�N

B′(N )
ε = �N (Bε + ε4R(0)

ε )�N ,

C
′(N )
ε,μ̃ = �N (μ̃Cε,μ̃ + ε2R

(1)
ε,μ̃)�N ,

Let us now consider the selfadjoint operator L(N ,V )
ε,μ̃ L

(N ,V )∗
ε,μ̃ , which may now

be written as
L

(N ,V )
ε,μ̃ L

(N ,V )∗
ε,μ̃ = μ̃2

Id + C̃
(N )
ε,μ̃ + B̃(N )

ε , (96)

where (we simplify in omitting below the writting of �′)

B̃(N )
ε = ˜(A − λ0)

2

N + B′(N )
ε

˜(A − λ0)N + ˜(A − λ0)NB
′(N )∗
ε + B′(N )

ε B′(N )∗
ε ,

C̃
(N )
ε,μ̃ = μ̃[2 ˜(A − λ0)N + B′(N )

ε + B′(N )∗
ε ] + ε2[ ˜(A − λ0)N + B′(N )

ε + μ̃]C′(N )∗
ε,μ̃ +

+ ε2C
′(N )
ε,μ̃ [ ˜(A − λ0)N + B′(N )∗

ε + μ̃] + ε4C
′(N )
ε,μ̃ C

′(N )∗
ε,μ̃ ,
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where the adjoint is taken with the scalar product in EN induced by the scalar
product in K0,s0 . Operators B̃

(N )
ε and C̃

(N )
ε,μ̃ are C1 in their arguments. Moreover

there exists c > 0 such that

||B̃(N )
ε2

− B̃(N )
ε1

||0s0 � c(δ′
0 + ε)|ε2 − ε1|, C̃

(N )
ε,0 = 0

||̃C(N )
ε2,μ̃2

− C̃
(N )
ε1,μ̃1

||0,s0 � c(δ′
0 + ε)(|ε2 − ε1| + |μ̃2 − μ̃1|),

||∂μ̃C̃
(N )
ε,μ̃2

− ∂μ̃C̃
(N )
ε,μ̃1

||0,s0 � cε2|μ̃2 − μ̃1|. (97)

Let us now define

Definition 43. For V ∈ U (N )
M and τ, γ > 0 (to be determined later), the “good” set

of μ̃ is the set

G(N )
ε,γ (V ) :=

{
μ̃ ∈ [−ε, ε]; ||(�′�NL

′
ε,μ̃,V �N �′)−1v||0,s0

� N τ

γ
||v||0,s0 , for any v ∈ �′EN

}
,

where || · ||0,s means the norm in L(EN ) induced by L(K0,s).

Saying that μ̃ is “good”, i.e. μ̃ ∈ G(N )
ε,γ (V ), implies that the positive selfadjoint

operator L(N ,V )
ε,μ̃ L

(N ,V )∗
ε,μ̃ has all its eigenvalues larger than (

γ
N τ )2. It is now possible

to give a bound for the measure of the bad set for μ̃.

8.3. Bad Set of μ̃

By definition, the bad set of μ̃ is the complement of the good set. Hence, for
V ∈ U (N )

M ,

B(N )
ε,γ (V ) :=

{
μ̃ ∈ [−ε, ε]; ∃v ∈ �′EN such that

||(�′�NL
′
ε,μ̃,V �N �′)−1v||0,s0 > N τ

γ
||v||0,s0 .

}
.

Now we prove the following:

Lemma 44. Assume that N > Mε, d/2 < s0, τ > d + 12l0, (ε, μ̃) ∈ (0, ε1] ×
[−ε, ε], and V ∈ U (N )

M . Moreover assume that Condition 47 holds, then there exists

a constant C > 0, such that the measure of B(N )
ε,γ (V ) is bounded by

Cγ

N τ−d
.

The following proof only considers eigenvalues close to 0, i.e., we use, without
mentioning it, the projection�′ which eliminates the infinite dimensional subspace
corresponding to “large” eigenvalues.

Let us prove the following:
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Lemma 45. For ε small enough, μ̃ ∈ [−ε, ε], s0 > d/2, the eigenvalues of
L

(N ,V )
ε,μ̃ L

(N ,V )∗
ε,μ̃ take the form

σ j (ε, μ̃) = μ̃2 + f j (ε, μ̃), (98)

where f j (ε, μ̃) is Lipschitz in (ε, μ̃) with

| f j (ε2, μ̃2) − f j (ε1, μ̃1)| � c(δ′
0 + ε)(|ε2 − ε1| + |μ̃2 − μ̃1|. (99)

Moreover, for ε fixed, f j (ε, μ̃) is C2 with respect to μ̃.

Proof. Weuse the Lidskii theorem (see [13] theorem 6.10 p.126) for comparing the
eigenvalues f j of operators C̃

(N )
ε2,μ̃2

+B̃
(N )
ε2 and C̃(N )

ε1,μ̃1
+B̃

(N )
ε1 , and the estimate (97),

which directly leads to (99). Then, it remains to add μ̃2 for obtaing the eigenvalues
σ j of L

(N ,V )
ε,μ̃ L

(N ,V )∗
ε,μ̃ . The property that f j (ε, μ̃) is C2 with respect to μ̃ results

from the selfadjointness and from [13]; see p.115 and the proof of theorem 6.8
p.122 applied on the reduced operator (using the eigenprojection associated with a
group of eigenvalues which split for μ̃ close to μ̃0).

Remark 46. Let us consider eigenvalues μ̃g j (ε, μ̃) of the selfadjoint operator C̃(N )
ε,μ̃

which we write as
C̃

(N )
ε,μ̃ = μ̃C̃(1)

ε + μ̃C̃
(2)
ε,μ̃,

where C̃(2)
ε,μ̃ is C1 in μ̃ and

C̃
(2)
ε,0 = 0, ∂μ̃C̃

(2)
ε,0 = 0, ||̃C(2)

ε,μ̃||0,s0 � cε2|μ̃|. (100)

By the Lidskii theorem we know that

μ̃g j (ε, μ̃) = μ̃g(1)
j (ε) + μ̃g(2)

j (ε, μ̃),

with
g(1)

j (ε) eigenvalue of C̃(1)
ε ,

and {g(2)
1 (ε, μ̃), . . . , g(2)

N (ε, μ̃)} belongs to the convex hull of the vectors obtained
from {γ1, . . . γN } by all possible permutations, where γ j ’s are the eigenvalues of

C̃
(2)
ε,μ̃ in EN . Then, because of (100), we obtain

|g(2)
j (ε, μ̃)| � cε2|μ̃|.

Applying again the Lidskii theorem, in considering the eigenvalues f j (ε, μ̃) of the

selfadjoint operator C̃(N )
ε,μ̃ + B̃

(N )
ε , this leads to

f j (ε, μ̃) = sε + μ̃ f (1)
j (ε, μ̃),

where μ̃ f (1)
j (ε, μ̃) belongs to the convex hull of the vectors obtained from

{μ̃g1(ε, μ̃), . . . μ̃gN (ε, μ̃)} by all possible permutations, where μ̃g j (ε, μ̃)’s are the

eigenvalues of C̃(N )
ε,μ̃ in EN , and we cannot decompose f (1)

j (ε, μ̃) as f (1)
j (ε, 0) +
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f (2)
j (ε, μ̃), with f (2)

j (ε, μ̃) Lipschitz in μ̃. For being able to claim such a decom-
position, we need to control the Lipschitz constant with respect to μ̃ of the second
derivative with respect to μ̃, in 0 of f j (ε, μ̃). It is shown for example in [13] that

such information uses a bound for the pseudo-inverse of B̃(N )
ε − sε, which is of the

size of the inverse of the distance of sε from the spectrum of B̃(N )
ε . This distance

is unfortunately very small, of order N−4l0 .

Let us now try another way. For a given ε, let us consider an eigenvalue sε

of B̃(N )
ε , and define the associated orthogonal eigenprojection Pε. Then, because

B̃
(N )
ε is selfadjoint, we have

Pε(B̃
(N )
ε − sε) = 0.

The operator C̃(N )
ε,μ̃ acts as a perturbation, and let us consider f j which belongs to

the sε-group of eigenvalues, resulting from the perturbation of sε, and denote by
Pε,μ̃ the orthogonal eigenprojection associated with the sε-group of eigenvalues.
Then, by definition, there is an eigenvector ζ j (ε, μ̃) satisfying

{̃C(N )
ε,μ̃ + B̃(N )

ε − f j (ε, μ̃)}ζ j (ε, μ̃) = 0,

which is equivalent to

Pε {̃C(N )
ε,μ̃ + sε − f j (ε, μ̃)}ζ j (ε, μ̃) = 0.

We have Pεζ j (ε, μ̃) ∈ Pε EN , and also, since PεPε,μ̃ is one to one from Pε,μ̃EN

onto Pε EN ,
ζ j (ε, μ̃) = (PεPε,μ̃)−1Pεζ j (ε, μ̃),

which means that Pεζ j (ε, μ̃) is an eigenvector belonging to the eigenvalue

f j (ε, μ̃) − sε for the operator PεC̃
(N )
ε,μ̃ (PεPε,μ̃)−1Pε acting in the subspace Pε EN .

We just need to decompose into a part which is linear in μ̃ plus a rest of order
μ̃2. Then, the problem is that we have no nice bound for the derivative ∂μ̃(PεPε,μ̃)

because there again occurs (see [13] p.77 formula (2.14)) the pseudo-inverse of
B̃

(N )
ε − sε, only bounded by the inverse of the (very small) distance of sε from the

rest of spectrum of B̃(N )
ε .

Proof of Lemma 44. Assume that μ̃ ∈ B(N )
ε,γ (V ), then it results that the norm of

(L
(N ,V )
ε,μ̃ L

(N ,V )∗
ε,μ̃ )−1 is > ( N τ

γ
)2 and that there exists j such that

0 � σ j (ε, μ̃) < η2 =:
( γ

N τ

)2
. (101)

We need to measure the set (depending on ε) of μ̃ such that

0 � μ̃2 + f j (ε, μ̃) < η2.

Let us consider the function of μ̃

φε(μ̃) =: μ̃2 + f j (ε, μ̃),
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defined for |μ̃| � ε. Thanks to (99), we then have

μ̃2 − c(δ′
0 + ε)|μ̃| + f j (ε, 0) � φε(μ̃) � μ̃2 + c(δ′

0 + ε)|μ̃| + f j (ε, 0), (102)

which means that the graph of μ̃ → φε(μ̃) is situated between two close parabolas.
This implies that the roots μ̃ of φε(μ̃) = η2 are bounded, when they exist. The
maximal and minimal roots are denoted μ̃±. Thus we have

μ̃+2 + f j (ε, μ̃
+) = η2,

with the same equation for μ̃−. In the case when these roots do not exist, the bad
set is empty for the eigenvalue σ j (ε, μ̃).

In all cases, we have (positive operator)

φε(μ̃) � 0 for μ̃ ∈ [μ̃−, μ̃+],
and the function has at least a minimum in μ̃m such that

μ̃− < μ̃m < μ̃+, 0 � φε(μ̃m) < η2.

Then this leads to

μ̃+2 − μ̃2
m + f j (ε, μ̃

+) − f j (ε, μ̃m) < η2,

and applying (99), we obtain

μ̃+2 − μ̃2
m − c(δ′

0 + ε)(μ̃+ − μ̃m) < η2,

hence,

(μ̃+ − c

2
(δ′

0 + ε))2 −
(
μ̃m − c

2

(
δ′
0 + ε

))2
< η2.

If μ̃m − c
2 (δ

′
0 +ε) and μ̃+ − c

2 (δ
′
0 +ε) have the same sign, we use now the property

that 0 < a2 − b2 < η2 leads to |a − b| < η, when a and b have the same sign. This
allows us to conclude that, in such a case

μ̃+ − μ̃m < η.

In the same way, if μ̃m + c
2 (δ

′
0 + ε) and μ̃− + c

2 (δ
′
0 + ε) have the same sign,

(μ̃− + c

2
(δ′

0 + ε))2 −
(
μ̃m + c

2

(
δ′
0 + ε

))2
< η2

gives
μ̃m − μ̃− < η,

and finally the bad interval would be bounded by 2η.
Since we are unable to prove the suitable property for f j (ε, μ̃), we need the

following:

Condition 47. Functions f j (ε, μ̃) defined in (98) have their derivative with respect
to μ̃ which are Lipschitz: for μ̃ ∈ [−ε, ε], there exists 0 < k < 2 with

|∂μ̃ f j (ε, μ̃2) − ∂μ̃ f j (ε, μ̃1)| � k|μ̃2 − μ̃1|. (103)
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Wemayobserve that this assumption takes into account of a loss of boundedness
from the estimate (97) for the operator C̃(N )

ε,μ̃ , since the Lipschitz constant for the

derivative is k < 2 in place of cε2. However, this is a true assumption, with no
proof at this time.

Now, in using Hypothesis (103), we claim that the function μ̃ → φε(μ̃) is
convex, i.e., that

∂μ̃φε(μ̃) = 2μ̃ + ∂μ̃ f j (ε, μ̃)

is an increasing function of μ̃, cancelling in μ̃ = μ̃m . This property, combined
with the property (102), leads to a unique minimum in μ̃m, and to a measure of bad
μ̃ in the (worse) case given when the graph of φε is tangent to the axis. We have

φε(μ̃) − φε(μ̃m) =
∫ μ̃

μ̃m

(2μ̃ + ∂μ̃ f j (ε, μ̃))dμ̃

=
∫ μ̃

μ̃m

(2(μ̃ − μ̃m) + ∂μ̃ f j (ε, μ̃) − ∂μ̃ f j (ε, μ̃m))dμ̃

� (2 − k)

2
(μ̃ − μ̃m)2.

Since φε(μ̃
±) = η2, we obtain

μ̃+ − μ̃− � 2η√
(1 − k/2)

.

Summing up for all eigenvalues, using that the dimensionN of EN is bounded
by bN d , the measure of the set of bad μ̃ is bounded by

2bγ√
(1 − k/2)N τ−d

. (104)

��
Remark 48. We give precise results in Section 10 on the structure of the bad set in
the plane (ε, μ̃). It is shown that the curves μ̃−(ε), μ̃+(ε) are H ölder continuous
functions of ε with exponent 1/2.

The estimate of Lemma 44 is then proved with C = 2b√
(1−k/2)

. Finally let us

observe that this measure is small with respect to the length 2ε3 of the interval for
μ̃ = ε3μ′, provided that

ε3N τ−d � ε3M12l0
ε N τ−d−12l0 � c′

2N τ−d−12l0

is large enough. This is the case as soon as τ > d + 12l0. ��
Then we have

Proposition 49. Let d = 2(l0+1) be the dimension of the Q- vector space spanned
by the wave vectors k j , j = 1, . . . , 2q, and τ > d + 2 + 24l0. Let N be � 1.

Assume moreover that 0 < γ � γ̃ = c′
c22l0+1 , (where c is the constant occurring

in (90)) and (ε, μ̃, V ) ∈ [0, ε1] × [−ε, ε] × U (N )
M with μ̃ ∈ G(N )

ε,γ (V ), ε1 small
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enough. For s0 > d
2 , there exists c′ > 0 independent of N and γ, such that for any

v ∈ �′π0EN , we have

||(�′�NL
′
ε,μ̃,V (ε,μ̃)�N �′)−1v||0,s0 � c′ N τ

γ
||v||0,s0 , (105)

and the same estimate holds for (�NLε,μ̃,V (ε,μ̃)�N )−1 for v ∈ EN .

Proof. If N � 1, then 2cγ � c′/22l0 � c′ N τ

(1+N2)2l0
, i.e.

2c(1 + N 2)2l0 � c′ N τ

γ
.

Then the estimate for (L
(N ,V )
ε,μ̃ )−1v follows for N � Mε from (90). For N > Mε

by definition of the good set of μ̃, the estimate on (�′�NL
′
ε,μ̃,V (ε,μ̃)�N �′)−1v

follows. For (�NLε,μ̃,V (ε,μ̃)�N )−1 the estimate follows from Lemma 42.

Remark 50. The choice to take τ > d + 2 + 24l0 will be explained later (see
Lemma 55). With such a choice, we have 1

N τ−d−2 � 1

M
24l0
ε

� cε6.

Definition 51. For V ∈ U (N )
M and τ, γ > 0, we define the set of good μ̃ for all

K � N , as
G(N )

ε,γ (V ) = ∩K�N G(K )
ε,γ (V ),

where we notice that G(K )
ε,γ (V ) = [−ε, ε] for K < Mε, thanks to Lemma 41.

Our aim is now to obtain an estimate for (�NLε,μ̃,V (ε,μ̃)�N )−1 in K0,s for
s > s0. We may observe that it is not possible to obtain directly such an estimate
in K0,s for s > s0, because the norm ||V ||0,s would appear in the estimates for f j

in the eigenvalues σ j , and this is far to be controlled.

8.4. Separation Properties (H1) and (H2)

The eigenvalues close to 0 of the unperturbed operator �N π0Q0(A −
λ0)Q0π0�N are the negative numbers λ0(|k|2) − λ0 where |k| �= kc, and
1 � Nk � N . Let ρ > 0. We need to have good separation properties of the
singular set

S(N ) =
{

k ∈ ; λ0 − λ0(|k|2) < ρ, 1 � N k � N
}

, (106)

which contains thek’s corresponding to the small denominators,whereas the regular
set is

R(N ) :=
{

k ∈ ; λ0 − λ0(|k|2) � ρ, 1 � Nk � N
}

. (107)

We have a bijection between S(N ) and S(N ) := {x ∈ (N ); λ0−λ0(|k(x)|2) < ρ}
where k(x) is defined in (6) and

(N ) := {x ∈ Z
d; 0�|x | � N , k(x) ∈ }.
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We use the fact that for ||k| − kc| � δ1, there exist c1 and c2 > 0 such that

c1(|k|2 − k2c )2 � λ0 − λ0(|k|2) � c2(|k|2 − k2c )2, (108)

and (8) holds. Then, as in [3], we use the results of Bourgain in [4], Craig in [7],
and [1], so that we obtain

Proposition 52. There exists ρ0 > 0 independent of N such that if ρ ∈]0, ρ0] then
there exists a decomposition of S(N ) = ⋃

α∈A �α into a union of disjoint clusters
�α satisfying:

• (H1), for all α ∈ A, Mα � 2mα where Mα = maxx∈�α |x | and mα =
minx∈�α |x |;

• (H2), there exists δ = δ(d) ∈]0, 1[ independent of N such that if α, β ∈ A, α �=
β then

dist(�α,�β) := min
x∈�α,y∈�β

|x − y| � (Mα + Mβ)δ

2
.

8.5. Estimate of (�NL
′
ε,μ̃,V (ε,μ̃)�N )−1in �N π0Q0K0,s

We use the proof of [1] (see pages 628 to 636). In fact, we need the selfadjoint-
ness in �N π0Q0K0,s (i.e. EN with the adapted scalar product) of the operator

DN =: �N π0Q0(A − λ0)Q0π0�N ,

diagonal (see “Appendix E”) with respect to Fourier components in �N π0Q0K0,s ,
for which we know all eigenvalues. Moreover, we have

�NL
′
ε,μ̃,V �N = DN + εT (ε, μ̃, V ),

where the second part εT is a bounded operator (not diagonal) of order ε having
the properties of a multiplication operator, as it is needed in [1] (see Lemma 3.9 in
[1]); see the proof in “Appendix E”.

Lemma 53. Let A, B ⊂ S(N ) ∪ R(N ), and let s0 > d/2. Then for any s �
s0 > d/2 there exists C(s) > 0 such that the following estimate holds for any
V ∈ Q0K0,s such that ||V ||0,s0 � 1, and h ∈ �N π0Q0K0,0

||T A
B h||0,0 � C(s)ε(1 + ε3||V ||0,s)||h||0,0

(1 + d(A, B))s−d/2 ,

where d(A, B) is the distance in Z
d between A and B, and T A

B is the operator T
acting in EN restricted to elements with Fourier spectrum with {k(x); x ∈ A}, the
action being projected on elements with the Fourier spectrum such that {k(x); x ∈
B}.

This property, and the estimate (105) used for any K � N (replaces the use of
eigenvalues of �NLε,μ̃,V (ε,μ̃)�N as it is done in [1]), are the basic ingredients for
the proof of the following:
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Proposition 54. Let d = 2(l0+1) be the dimension of the Q- vector space spanned
by the wave vectors k j , j = 1, . . . , 2q, and τ > d + 2 + 24l0 as in Lemma 49.

Assume moreover that 0 < γ � γ̃ = c′
c22l0+1 , and (ε, μ̃, V ) ∈ [0, ε1] × [−ε, ε] ×

U (N )
M , with μ̃ ∈ G(N )

ε,γ (V ) , ε1 small enough. There exists s0(d, δ, τ ) > d
2 where δ

is the number introduced in separation property (H2), and let s > s0. There exists
m(d, δ, τ ) such that for all s ∈ [s0, s] there exists K (s) > 0 such that for any
h ∈ �N π0Q0K0,s, we have

||(�NL
′
ε,μ̃,V (ε,μ̃)�N )−1h||0,s � K (s)

N m

γ
(||h||0,s + ||V (ε, μ̃)||0,s ||h||0,s0),

(109)
and the same estimate holds for (�NLε,μ̃,V (ε,μ̃)�N )−1.

9. Resolution of the Range Equation

In this section we use [2] for finding v = V (ε, μ̃) in U (N )
M , defined for (ε, μ̃)

in [0, ε1] × [−ε, ε], bounded by O(ε), of class C2 in its arguments, solution of
F(ε, μ̃, v) = 0 (see (110) below) in a suitably large subset of (0, ε1) × [−ε, ε].

All operators (linear and non linear) satisfy good tame estimates in the scale of
Sobolev spaces �N π0Q0K0,s s > d/2 and the projection �N plays the role of a
smoothing operator (see [3]):

||�N u||0,s+r � (1 + N 2)r/2||u||0,s, ∀u ∈ K0,s,

||(I − �N )u||0,s � (1 + N 2)−r/2||u||0,r+s, ∀u ∈ K0,s+r .

Indeed, we have the good functional setting and the good “tame” properties of the
map (see Lemmas 26, 35, 54):

F(ε, μ̃, v) = : Lε,μ̃v + g(ε, μ̃) − ε4Q0B(v, v)

(ε, μ̃, v) → F(ε, μ̃, v) : [0, ε1] × [−ε, ε] × Q0K0,s → Q0K0,s for s � s0 > d/2,

(110)

with (see (67))

Lε,μ̃ = Q0(A − λ0 + μ̃ + με) − 2Q0B(uε − ε2h̃(ε, μ̃), ·),
F(0, 0, 0) = 0 (for ε = 0, we have μ̃ = 0).

The mapping F appears to be C3 with the following estimates for v ∈ Q0K0,s,

s ∈ [s0, s], s0 > d/2, and ||v||0,s0 � 1:

||Lε,μ̃v||0,s � C(s)||v||0,s,
||ε4Q0B(v, v′)||0,s � ε4C(s)[||v||0,s ||v′||0,s0 + ||v′||0,s],
||g(ε, μ̃)||0,s � ε2C(s),

||∂ε,μ̃g(ε, μ̃)||0,s + ||∂2
ε2

g(ε, μ̃)||0,s + ||∂2εμ̃g(ε, μ̃)||0,s +||∂2
μ̃2g(ε, μ̃)||0,s �C(s),

||∂εLε,μ̃v||0,s � C(s)||v||0,s .
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We may notice that

DvF(ε, μ̃, v)[u] = Lε,μ̃u − 2ε4Q0B(v, u),

D2
vF(ε, μ̃, v)[v1, v2] = −2ε4Q0B(v1, v2),

D3
vF(ε, μ′, v) = 0,

hence

||∂ε DvF(ε, μ̃, v)[u]||0,s � C(s)[||u||0,s + ε3||v||0,s ||u||0,s0 ],
||∂μ̃DvF(ε, μ̃, v)[u]||0,s � C(s)||u||0,s .

Moreover, Lemma 54 says that for any (ε, μ̃, V ) ∈ [0, ε1] × [−ε, ε] × U (N )
M , V ∈

K0,s with μ̃ ∈ G(N )
ε,γ (V )

||(�N DvF(ε, μ̃, V (ε, μ̃))�N )−1v||0,s � K (s)
N m

γ
(||v||0,s+||V (ε, μ̃)||0,s ||v||0,s0),

so that assumptions (F1), (F2), (F3), (F4) and on the invertibility of the lin-
earized operator, made in [2] are satisfied. We also satisfy additionnal properties
(F2)+, (F4)+ required in “Appendix F” on higher order derivatives, useful for
getting a solution V which is C2 in (ε, μ̃). Moreover the required property (L) in
[2] needs to be satisfied, which brings us to

Lemma 55. Choose N2 � N1 � Mε, and V1 ∈ U (N1)
M , V2 ∈ U (N2)

M . For ε ∈
(0, ε1), consider the set of μ̃ which are “good” for V1, but “bad” for V2 :

μ̃ ∈
(
G(N2)

ε,γ (V2)
)c ∩ G(N1)

ε,γ (V1),

where the apex c denotes the complementary in [−ε, ε]. Assume that ||V2 −
V1||0,s0 � N−σ

1 , with σ > 2d − 6 + 32l0, and τ > d + 2 + 24l0, then for
ε1 small enough, in particular for ε1 � γ 4l0 :

meas
{(

G(N2)
ε,γ (V2)

)c ∩ G(N1)
ε,γ (V1)

}
∩ [−ε, ε] � C1γ

ε6

N1
.

Proof.
(
G(N2)

ε,γ (V2)
)c ∩ G(N1)

ε,γ (V1) =
(
∪Mε�K�N2

B(K )
ε,γ (V2)

)
∩
(
∩Mε�K�N1

G(K )
ε,γ (V1)

)

⊂
(
∪Mε�K�N1

B(K )
ε,γ (V2) ∩ G(K )

ε,γ (V1)
)

∪
(
∪N1�K�N2

B(K )
ε,γ (V2)

)
.

Moreover, according to Lemmas 35 and 36 and a careful study of the form of
operator L(N ,V )

ε,μ̃ L
(N ,V )∗
ε,μ̃ in (96), we have for K � N1 that

||L(K ,V2)
ε,μ̃ L

(K ,V2)∗
ε,μ̃ − L

(K ,V1)
ε,μ̃ L

(K ,V1)∗
ε,μ̃ ||0,s0 � cε4||V2 − V1||0,s0 � cε4

Nσ
1

.
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Let us assume that μ̃ ∈ B(K )
ε,γ (V2) ∩ G(K )

ε,γ (V1), then there is at least one eigen-

value (> 0) of L(K ,V2)
ε,μ̃ L

(K ,V2)∗
ε,μ̃ which is < (

γ
K τ )2. Then, by the Lidskii theo-

rem (see [13] p.126), the selfadjoint operator L(K ,V1)
ε,μ̃ L

(K ,V1)∗
ε,μ̃ has an eigenvalue

< (
γ

K τ )2 + cε4
Nσ
1
. Since μ̃ ∈ G(K )

ε,γ (V1), this eigenvalue is > (
γ

K τ )2. Hence, the bad
μ̃ correspond to an interval

[( γ

K τ

)2
,
( γ

K τ

)2 + cε4

Nσ
1

]
,

containing the above eigenvalue of L(K ,V1)
ε,μ̃ L

(K ,V1)∗
ε,μ̃ . The same proof as the one

made for Lemma 44, shows that the measure of corresponding bad set of μ̃ is
bounded by

2√
(1 − k/2)

√
cε4

Nσ
1

.

Hence,

meas
(
∪Mε�K�N1

B(K )
ε,γ (V2) ∩ G(K )

ε,γ (V1)
)

� 2√
(1 − k/2)

√
cε4

Nσ
1

∑
Mε�K�N1

bK d

� 2b
√

c√
(1 − k/2)

ε2

Nσ/2−d−1
1

� 2b
√

c√
(1 − k/2)

ε2

N1

1

Mσ/2−d−2
ε

� c′γ
N1

ε
2+ σ/2−d−3

4l0 � c′γ ε6

N1
.

Now

meas
(
∪N1�K�N2

B(K )
ε,γ (V2)

)
�

∑
N1�K�N2

Cγ

K τ−d
� Cγ (τ − d − 1)

N τ−d−1
1

� c′′γ
N1

ε
τ−d−2
4l0 � c′′γ ε6

N1
.

Finally

meas
(
G(N2)

ε,γ (V2)
)c ∩ G(N1)

ε,γ (V1) � (c′ + c′′)γ ε6

N1
,

which is the result of the Lemma. ��
Wemay then apply a simple adaptation of theorem3ofBerti--Bolle--Procesi

[2] to solve equation F(ε, μ̃, V ) = 0 , and find the solution V which is C2 in the
parameters (ε, μ̃), and such that V ∈ U (N )

M . Let γ, m, s0 be as in Proposition 54.
Moreover, let s > s0 + 4(m + 1) + 8m = s0 + 4 + 12m.
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From proposition 54, it follows that if (ε, μ̃, V ) ∈ [0, ε1] × [−ε, ε] × U (N )
M ,

V ∈ K0,s and μ̃ ∈ G(N )
ε,γ (V ) then (ε, μ̃, V ) ∈ J (N )

γ,m (as defined in (4) of [2], that is
(109) holds for s ∈ [s0, s].

In [2] [theorem 3] one considers N � N0 = N0(γ ) with N0(γ ) sufficiently
large and 0 < ε � ε2(γ ) with ε2(γ ) sufficiently small. We may choose N0 =
N0(γ ) = Mε2(γ ) with a suitable ε2(γ ) and we consider, in that which follows,
0 < ε � ε2(γ ).

Theorem 56. Let s0 and γ̃ be as in Proposition 54. Then for all 0 < γ < γ̃ there
exist ε2(γ ) ∈ [0, ε0] and a C2−map V : (0, ε2(γ )) × [−ε, ε] → �N π0Q0K0,s0 ,
such that V (0, 0) = 0, ||∂μ̃V ||0,s0 � M, and if ε ∈ (0, ε2(γ )), μ̃ ∈ ([−ε, ε]\Cε,γ ),
the function V (ε, μ̃) is solution of F(ε, μ̃, V ) = 0 (110). Here Cε,γ is a subset
of [−ε, ε] which is a Hölder continuous function of ε, and has Lebesgue-measure
less than Cγ ε6 for some constant C > 0 independent of ε and γ .

The proof is the same as in [3], except for Hölder continuity which is proved in
the next section. In fact Cε,γ is a union of intervals I (Nn)

ε (see definition 57, with
Nn = (N0(γ ))2

n
, so that each end of each interval is a fonction of ε which is Hölder

continuous in ε with exponent 1/2.

10. Resolution of the Bifurcation Equation

Let V be the function obtained in Theorem 56. It is C2 in (ε, μ̃). Replacing
V (ε, μ̃) in the bifurcation equation (66), and replacing μ̃ by ε3μ′, we can solve
with respect to μ′ and find a function h̃(ε) which is C1 in (ε), such that

μ′ = εμ4 + εh̃(ε), (H), h̃(ε) = O(ε) (111)

for ε ∈ (0, ε2(γ )), provided that ε2 is small enough, and μ′ ∈ [−1, 1].
For obtaining solutions valid for our system, the condition μ4 �= 0 is not

required (see (62) for μ4). Indeed, in case μ4 = 0, the curve (H) in the (ε, μ′)
plane is just more flat near ε = 0. This coefficient μ4 has not been computed yet,
but it can be computed in principle, depending a priori on q only.

Let us show that in the plane (ε, μ′) the bad set is located in “bad strips”. Then
we shall need a transversality condition to ensure that these bad strips intersect
transversally the “curve” (H), such that any point of this curve, which does not
belong to bad strips, indeed gives an eligible solution of our problem.

10.1. Transversality Condition for “Bad Strips”

In the plane (ε, μ′), the bad strips are bounded by the curves given by the
solutions μ̃± (ε) (where μ̃ = ε3μ′) of

σ j (ε, μ̃) = μ̃2 + f j (ε, μ̃) = η2,

where η = γ /N τ , not forgetting that σ j depends on N .
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Definition 57. For N and V fixed, a set of “bad strips” is defined by

BSN (V ) = {(ε, μ′) ∈ [0, ε2(γ )] × [−1, 1]; ε3μ′ ∈ I (N )
ε },

where I (N )
ε is one of the intervals (μ̃−

j (ε), μ̃+
j (ε)), or with one of the bounds

replaced by ε3 (right bound), or by −ε3 (left bound), as defined at Section 8.3.

Let us show that the limiting curves μ̃−
j (ε), μ̃+

j (ε) are Hölder continuous with
exponent 1/2. We have for ε2 > ε1, along a limiting curve, that

σ j (ε2, μ̃2) − σ j (ε1, μ̃1) = 0, μ̃ j = μ̃(ε j ),

σ j (ε2, μ̃2) − σ j (ε1, μ̃1) = μ̃2
2 − μ̃2

1 + f j (ε2, μ̃2) − f j (ε1, μ̃1),

and thanks to (99)), assuming μ̃2 > μ̃1,

μ̃2
2 − μ̃2

1 � c(δ′
0 + ε)(|ε2 − ε1| + μ̃2 − μ̃1),

hence
[
μ̃2 − c

2
(δ′

0 + ε)
]2 −

[
μ̃1 − c

2
(δ′

0 + ε)
]2

� c′(δ′
0 + ε)(ε2 − ε1),

and since the two quantities in brackets have the same sign when |μ̃2 − μ̃1| is small
enough, if [

μ̃2 − c

2
(δ′

0 + ε)
]2 −

[
μ̃1 − c

2
(δ′

0 + ε)
]2

> 0,

we may use the argument that when 0 < a2 − b2 < η2, with ab � 0, then
|a − b| � |η|, which leads to

μ̃2 − μ̃1 �
√

c′(δ′
0 + ε)(ε2 − ε1),

which is the Hölder continuity. If, on the contrary,

[
μ̃2 − c

2
(δ′

0 + ε)
]2 −

[
μ̃1 − c

2
(δ′

0 + ε)
]2

< 0,

we need to use Condition 47, as in Section 8.3. For |μ̃2−μ̃1| small enough, wemay
assume that either μ̃m(ε1) < μ̃1 < μ̃2 (upper limit curve), or μ̃1 < μ̃2 < μ̃m(ε2)

(lower limit curve). In the first case, we obtain

σ j (ε1, μ̃2) − σ j (ε1, μ̃1) � (1 − k/2)[(μ̃2 − μ̃m(ε1))
2 − (μ̃1 − μ̃m(ε1))

2]
� (1 − k/2)(μ̃2 − μ̃1)

2.

In the second case, we obtain

|σ j (ε2, μ̃2) − σ j (ε2, μ̃1)| � (1 − k/2)[(μ̃m(ε2) − μ̃1)
2 − (μ̃m(ε2) − μ̃2)

2]
� (1 − k/2)|μ̃2 − μ̃1|2.
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On the other hand, we have

|σ j (ε1, μ̃2) − σ j (ε1, μ̃1)| = |σ j (ε1, μ̃2) − σ j (ε2, μ̃2)| � c′(δ′
0 + ε)|ε2 − ε1|

|σ j (ε2, μ̃2) − σ j (ε2, μ̃1)| = |σ j (ε2, μ̃1) − σ j (ε1, μ̃1)| � c′(δ′
0 + ε)|ε2 − ε1|.

Hence, in all cases

|μ̃2 − μ̃1|2 � (1 − k/2)−1c′(δ′
0 + ε)|ε2 − ε1|,

which is Hölder continuity. ��
In the case when μ̃ is not exceptional, i.e. if the eigenvalue σ j is not multiple,

the slope of the tangent to the curves μ̃−
j (ε), μ̃+

j (ε) is

t (ε) = − ∂εσ j (ε, μ̃
+
j )

∂μ̃σ j (ε, μ̃
+
j )

, (112)

given here for μ̃+
j (ε) (analogous formulae holding for the other curve). Now in a

more precise way, for (ε, μ̃) not exceptional, and taking into account the form (96),
we obtain by standard arguments for simple eigenvalues that

∂μ̃σ j (ε, μ̃
+) = 2〈(A − λ0)ζ j (ε, μ̃

+), ζ j (ε, μ̃
+)〉 + 2μ̃+ + O(ε) = O(δ′

0 + ε),

∂εσ j (ε, μ̃
+) = −4〈B(u1, (A − λ0)ζ j (ε, μ̃

+), ζ j (ε, μ̃
+)〉 + O(ε) = O(δ′

0 + ε),

where ζ j (ε, μ̃
+) is the eigenvector with norm 1 belonging to the eigenvalue

σ j (ε, μ̃
+) of the operatorL(N ,V )

ε,μ̃ L
(N ,V )∗
ε,μ̃ .Even though the operator (A−λ0) is def-

inite negative in the subspace where ζ j lives, we may notice that (A−λ0)ζ j (ε, μ̃
+)

may be very small, so the term O(ε) above might be the dominant order in ∂μ̃σ j

and ∂εσ j . It is then difficult to be more precise for any transversallity condition of
the strips BSN (V ) with respect to the curve (H) defined by (111).

Now, let us consider for (N , ε) fixed, the bad set of μ̃ which we know is of
a measure bounded by c3γ ε6/N (see Proposition 49 and Lemma 55). In case of
the intersection of a bad strip with (H), we need to measure the corresponding
set of “bad ε′′. The proof of Theorem 56 via a Nash–Moser process considers a
sequence Nn = (N0(γ ))2

n
and successive approximations Vn of the solution V .

For estimating the intersections of the bad strips with the curve (H) we are led to
make a transversality conjecture.

Conjecture 58. Let μ̃±(Nn)(ε) be any one of the limiting curves of the bad strips of
BSNn (Vn−1) , n ∈ N. Then we assume that for any of these curves there exists c > 0
independently of Nn, such that for h ∈ R in a neighborhood of 0, the following
inequality holds:

|μ̃(ε + h) − μ̃(ε)| � cε2|h|.
Remark 59. This is indeed a very weak assumption for the slopes defined by (112),
since this means that the slopes t (ε) have a lower bound |t (ε)| > cε2. This insures
transversality with the bifurcation curve (H) , the slope of which is O(ε3). How-
ever we have no means to check its validity. Moreover, if, unluckily, a curve μ̃(ε)
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belonging to one of the bad strips of BSNn (Vn−1) intersects (H) at an exceptional
point (ε, μ̃(ε), where an eigenvalue σ j is multiple, then we cannot a priori define
the “slope” of the corresponding limiting curve of the bad strip. This is why we
took the above formulation for the Transversality conjecture even though we might
just eliminate the corresponding exceptional values of ε (we have no bound for
their measure).

Remark 60. In taking με in (63) at a higher order than ε3, we should find μ̃ of
higher order than ε4 which flattens the slope of the bifurcation curve (H). Then we
could weaken the transversality condition and replace ε2 by a an order in ε larger
than 2, which still guarantees the transversality with (H).

Let us denote by δμ̃ the measure of the bad μ̃, and by δε the corresponding
measure for bad ε. Then we have (see the right side of Fig. 6)

δε <
δμ̃

|t | <
δμ̃

cε2
.

Let us define for ε fixed the set BεSN (V ), which is the section of BSN (V ) for
some ε. In summing the measure of the bad set for ε after all iterations, we obtain a
measure of the bad set for ε, bounded by the measure ofCε,γ = ∪n�1BεSNn (Vn−1)

divided by cε2, i.e. a bad set bounded by Cγ ε4 (see Theorem 56). The comple-
mentary subset in (0, ε3) constitutes the good set of ε, which is of asymptotic full

measure, since ε−Cγ ε4

ε
→ 1 as ε → 0.

Remark 61. In the case when we need to weaken the transversality condition 58,
as indicated in the Remark above, we can also increase the order (here ε6) for the
size of bad μ̃ in Theorem 56, just in increasing τ in Proposition 54, so that we can
keep an order of smallness ε4 for the bad ε’s.

Remark 62. If we consider μ̃ in an interval independent of ε, we can look at the
situation for ε = 0, as in Remark 39. We see that the eigenvalues σ j (0, μ̃) have
the form

σ j (0, μ̃) = (μ̃ + λ0(|k|2) − λ0)
2, Nk � N .

This leads to bad intervals for μ̃ of the form

[λ0 − λ0(|k|2) − γ

N τ
, λ0 − λ0(|k|2) + γ

N τ
], with k such that Nk � N . (113)

We notice that λ0 −λ0(|k|2) ∼ c(|k|2 −k2c )with c �= 0 because of Assumption 32.
Hence

λ0 − λ0(|k|2) >
c′

N 4l0
,

which gives intervals (113) “far” from 0 for τ large enough (which is one of our
assumptions in Proposition 54).
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0

(H)

ε

ε3
μ~

(H)

bad strip

δε
slope t

slope ε3

μ~

ε

δμ~
δμ~
|t|

Fig. 6. Sketch of the bad set in the plane (ε, μ̃). (H) is the “curve” given by (111) approxi-
mated by ε4μ4 (μ4 > 0 is assumed here). The drawing on the right side explains the bound
for the measure of δε.

10.2. Final Result

If the Transversality Conjecture 58 is verified, then there is a good set for ε,

with asymptotic full measure as ε → 0, such that there exists a couple (ε, μ̃(ε)) on
the curve (H) which lies in the good set (see Fig. 6). Then this gives the existence
of a solution (ε, μ′(ε)) of (111), as ε tends towards 0.

Nowwe observe that we can writeμ′ = εμ,withμ centered inμ4. This defines
the good 1-dimensional set �ε of all good με.

Finally with (63), we obtain a solution of (35) under the form

u = εu1 + ε2u2 + ε3u3 + ε4u4 + ε4(V (ε, ε4με) − h(ε, εμε))

λ = λ0 − μ2ε
2 − μ3ε

3 − ε4με.

This ends the proof of Theorem 1, with little adaptation of notations. Notice that
the solution (λ, u)(ε) is C1, restricted to the “good” values of ε. (see Fig. 2).
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A. Inverse of L

In this appendix we compute and estimate the inverse of the operator L . By con-
struction, solving the equation

LU = G = (F, g) ∈ K0,s, with U ∈ Ds(L), (114)

means that we have


V − ∇q = F, ∇ · V = 0,


θ = g,
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i.e.

(D2 − k2)v(z)
k − Dqk = f (z)

k , (115)

(D2 − k2)V (H)
k − ikqk = F (H)

k , (116)

(D2 − k2)θk = gk, (117)

Dv
(z)
k + ik · V (H)

k = 0, (118)

where k = |k|, and with the boundary conditions

θ = v
(z)
k = 0 in z = 0, 1,

V (H)
k |z=0,1 = 0, or V (H)

k |z=0 = DV (H)
k |z=1 = 0, or V (H)

k |z=1= DV (H)
k |z=0=0.

The above system is a classical one (Stokes operator and Laplace operator), already
obtained in the periodic case. The only thing to check concerns the estimates with
respect to k ∈ . The scalar product of (115) with v

(z)
k plus the scalar product of

(116) with V (H)
k and integration by parts, taking into account Dv

(z)
k + ik ·V (H)

k = 0
and the boundary values, leads to

||DVk||20+k2||Vk||20 = −
∫ 1

0
Fk·V kdz � ||Fk||0||Vk||0 � k2

2
||Vk||20+

1

2k2
||Fk||20.
(119)

Moreover, thanks to the boundary conditions, we have also the Poincaré estimate
(see (27))

||Vk||0 � 1√
2
||DVk||0.

It results that there exists c > 0 such that for any k ∈  we have

(1 + k2)||DVk||20 + (1 + k2)2||Vk||20 � c||Fk||20. (120)

The same is valid for θ :

(1 + k2)||Dθk||20 + (1 + k2)2||θk||20 � c||gk||20. (121)

Now (117) leads to

||D2θk||0 � k2||θk||0 + ||gk||0 � c′||gk||0,
hence, using (121),

||θk||2 � c1||gk||0. (122)

Let us show that the same type of estimate holds for Vk = (V (H)
k , v

(z)
k ).We observe

that the divergence free condition on F leads to

D f (z)
k + ik · F (H)

k = 0,

which implies

(D2 − k2)qk = 0, (123)

(D2 − k2)2v(z)
k = (D2 − k2) f (z)

k , (124)
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with boundary conditions on v
(z)
k as v(z)

k |z=0,1 = 0, Dv
(z)
k |z=0,1 = 0 or Dv

(z)
k |z=0 =

0, D2v
(z)
k |z=1 = 0, or Dv

(z)
k |z=1 = 0, D2v

(z)
k |z=0 = 0. Now taking the scalar

product of (124) with v
(z)
k in L2(0, 1), and integrations by parts, leads to

||D2v
(z)
k ||2 + 2k2||Dv

(z)
k ||2 + k4||v(z)

k ||2

=
∫ 1

0
ik · F (H)

k Dv
(z)
k dz − k2

∫ 1

0
f (z)
k v

(z)
k dz

� k||Dv
(z)
k ||0||F (H)

k ||0 + k2||v(z)
k ||0|| f (z)

k ||0.
Taking into account of (120), we immediately obtain

||v(z)
k ||2 � c2||Fk||0. (125)

Now, in using (115) we can say that

||Dqk|| � c3||Fk||0, (126)

where c3 is independent of k ∈ . Now (123) gives

qk = αkekz + βke−kz,

and
Dqk = kαkekz − kβke−kz

should satisfy (126). It is easy to check that this implies that

kα2
ke2k + kβ2

k − 4k2αkβk

is bounded by 2c23||Fk||20 for large k. Now, since

|4k2αkβk| � 8k3α2
k + k

2
β2

k,

and since, for large k, 8k3 << ke2k, we conclude that for large k the quantity
kα2

ke2k + kβ2
k is bounded by c4||Fk||20. Now computing ||kqk||2, we see the same

behavior in kα2
ke2k + kβ2

k for large k. It follows that we have

||kqk|| � c5||Fk||0,
and (116) allows us to conclude that

||V (H)
k ||2 � c6||Fk||0.

Collecting all the above estimates gives, for a certain constant c > 0,

||Uk||2 � c||Gk||0,
which is the desired estimate for L−1 now bounded from K0,s to Ds(L) ⊂ K2,s .
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A.1. Extension of the Inverse of L

Let us consider now the same Equation (114) but with a less regular right hand
side. Now we take G ∈ (D1/2,s)

∗ which is the dual of D1/2,s defined in (24). This
means that for any V ∈ D1/2,s, we have the following bound for the semi-linear
form 〈G, V 〉0,s :

|〈G, V 〉0,s | � ||G||(D1/2,s)∗ ||V ||1̃,s .
We are now looking for U ∈ D1/2,s defined by a variational formulation (also
classical for the Stokes linear operator, as well as for the Laplace operator (see
[28]), both written in Fourier components)

〈U, V 〉1̃,s = −〈G, V 〉0,s for any V ∈ D1/2,s,

where the definition of 〈U, V 〉1̃,s comes from ( 28). For the type of discussionwhich
follows, we may also refer to [16] p. 223–224, adapted to each Fourier component
here.
It is easy to check, in looking at the first equality in (119) and its analogue for θk,
that

〈LU, V 〉0,s = 〈G, V 〉0,s for any V ∈ D1/2,s

holds, where the brackets are dual products. This proves that the unique solution
U ∈ D1/2,s , hence by definition, (−L)1/2U ∈ K0,s and

||U ||1̃,s � ||G||(D1/2,s)∗ , (127)

which means that the operator L which is bounded fromD1/2,s to (D1/2,s)
∗ has its

inverse bounded from (D1/2,s)
∗ to D1/2,s .

B. Proof of Lemmas 16

Let u be a scalar function inH(1)
1,s , which means that

u(x, z) =
∑
k∈

uk(z)eik·x,

with

∑
k∈

(1 + N 2
k)s ||uk||21 < ∞, ||uk||21 =

∫ 1

0

(
|Duk|2 + (1 + |k|2)|uk|2

)
dz.

Assume now that u and v are scalar functions in H(1)
1,s, then

||uv||2H1,s
=
∫ 1

0

∑
k∈

(1 + N 2
k)s
(
|D(uv)k|2 + (1 + |k|2)|(uv)k|2

)
dz,

and using (a + b)2 � 2a2 + 2b2,

�
∫ 1

0

∑
k∈

(1 + N 2
k)s
(
2|(vDu)k|2 + 2|(u Dv)k|2 + (1 + |k|2)|(uv)k|2

)
dz.
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From Lemma 10 we have that∑
k∈

(1 + N 2
k)s |(u Dv)k(z)|2

� 2C(s, s0)
2

(∑
l∈

(1 + N 2
l )s |ul(z)|2

)(∑
m∈

(1 + N 2
m)s0 |Dvm(z)|2

)
+

+ 2C(s, s0)
2

(∑
l∈

(1 + N 2
l )s0 |ul(z)|2

)(∑
m∈

(1 + N 2
m)s |Dvm(z)|2

)
,

and the analogue holds for vDu.
Now, introduce u′ and ũ defined by

ũk = |uk| u′
k =

√
1 + k2ũk,

then, in using (1 + |l + m|2) � 2((1 + |l|2) + 2(1 + |m|2),
√
1 + k2|(uv)k| �

√
1 + k2

∑
k=l+m

u′
lv

′
m√

1 + l2
√
1 + m2

�
√
2
∑

k=l+m

ũlv
′
m + u′

lṽm = √
2[(̃uv′)k + (u′ṽ)k].

Hence
(1 + k2)|(uv)k|2 � 4(|(̃uv′)k|2 + |(u′ṽ)k|2),

and using Lemma 10 again we obtain
∑
k∈

(1 + N 2
k)s(1 + |k|2)|(uv)k|2

� 8C(s, s0)
2

(∑
l∈

(1 + N 2
l )s(1 + |l|2)|ul|2

)(∑
m∈

(1 + N 2
m)s0 |vm|2

)
+

+ 8C(s, s0)
2

(∑
l∈

(1 + N 2
l )s |ul|2

)(∑
m∈

(1 + N 2
m)s0(1 + |m|2)|vm|2

)
+

+ 8C(s, s0)
2

(∑
l∈

(1 + N 2
l )s0(1 + |l|2)|ul|2

)(∑
m∈

(1 + N 2
m)s |vm|2

)
+

+ 8C(s, s0)
2

(∑
l∈

(1 + N 2
l )s0 |ul|2

)(∑
m∈

(1 + N 2
m)s(1 + |m|2)|vm|2

)
.

Now we can use ∫ 1

0
|Dul|2|vm|2dz � c||ul||2H1 ||vm||2H1∫ 1

0
(1 + |l|2)|ul|2|vm|2dz � c(1 + |l|2)||ul||2L2 ||vm||2H1
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and the similar symmetric estimates to show that there is a constant c2(s, s0) =
10cC2(s, s0) such that finally

||uv||21,s � c2(s, s0)(||u||21,s ||v||21,s0 + ||u||21,s0 ||v||21,s),
Lemma 16 is proved.
Assume now that u and v are scalar functions, respectively in H(1)

1,s and H(1)
0,s with

s � s0 > d/2. Then

||uv||2
0,s

=
∫ 1

0

∑
k∈

(1 + N 2
k)s |(uv)k|2dz

which gives, by Lemma 10

∑
k∈

(1 + N 2
k)s |(uv)k|2 � 2C(s, s0)

2

(∑
l∈

(1 + N 2
l )s |ul|2

)

×
(∑

m∈

(1 + N 2
m)s0 |vm|2

)
+

+ 2C(s, s0)
2

(∑
l∈

(1 + N 2
l )s0 |ul|2

)

×
(∑

m∈

(1 + N 2
m)s |vm|2

)
.

Now we use ∫ 1

0
|ul|2|vm|2dz � c||ul||2H1 ||vm||2L2 ,

which leads to

||uv||2
0,s

� 2cC(s, s0)
2(||u||21,s ||v||20,s0 + ||u||21,s0 ||v||20,s)

which gives Lemma 17.
Now by Lemma 9 we have for all z ∈ (0, 1) the two inequalities

∑
k∈

|(uv)k|2 � 2cs

(∑
l∈

(1 + N 2
l )s |ul|2

)(∑
m∈

|vm|2
)

, (128)

and ∑
k∈

|(uv)k|2 � 2cs

(∑
l∈

|ul|2
)(∑

m∈

(1 + N 2
m)s |vm|2

)
. (129)

We also have, for some c > 0, that∫ 1

0
|ul|2|vm|2dz � cmin{||ul||2H1 ||vm||2L2 , ||ul||2L2 ||vm||2H1}.

Then summing (128) on (0, 1) and using the last inequality leads to Lemma 18,
while summing (129) and using the last inequality leads to Lemma 19.
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C. Proofs of the Bounds for the Quadratic Term

ForU ∈ K2,s,we have all components of∇V and∇θ which are inH(1)
1,s .Moreover,

for U ∈ K2,s and U ′ ∈ K2,s Lemma 16 says that the components of

V · ∇V ′, V · ∇θ ′, V ′ · ∇V, V ′ · ∇θ

satisfy estimates given by this Lemma in H1,s . The projection P does not change
the estimates, hence

||B(U, U ′)||1,s � c(s, s0)(||U ||2,s ||U ′||2,s0 + ||U ||2,s0 ||U ′||2,s),
which is (20).
For proving (21) we have U ∈ K1,s, hence components of ∇V and ∇θ ∈ H(1)

0,s and

Lemma 17 show that the components of V · ∇V ′ and V · ∇θ ′ lie inH(1)
0,s . To obtain

B(U, U ′) we just need to apply the projectionP to V · ∇V ′ and to V ′ · ∇V . Then
estimate (21) results immediately from estimate of Lemma 17.
For proving (33) we need to prove that for (U, V ) ∈ K1,s × K1,0,

||B(U, V )||0,0 � c′||U ||1,s ||V ||1,0.
Indeed, components of ∇U and ∇V belong toH0,s andH0,0, respectively, and we
need to consider products of functions of the formsH0,s ×H1,0 andH1,s ×H0,0.

Then Lemmas 18 and 19, and projecting by P (as above), allow us to prove that
B(U, V ) ∈ K0,0 with the required estimate (33).

D. Study of the Nondegeneracy Condition Leading to (44)

Let us come back to the homogeneous system associated with (41), which gives for
every fixed k ∈  the discrete set of eigenvalues λ j (|k|), j = 0, 1, 2, . . . (below,
for the sake of simplicity, we omit to consider λ0 as a function of |k|2). Below,
we only consider k in R

+ since we know that only its modulus matters. We are
interested in the concavity of the graph of λ0(k) in the neighborhood of k = kc > 0,
where dλ0

dk (kc) = 0.
By construction, we have

λ0(D2 − k2)v(z)
k + θk − Dqk = 0,

λ0(D2 − k2)V (H)
k − ike1qk = 0,

λ0(D2 − k2)θk + v
(z)
k = 0,

Dv
(z)
k + ike1 · V (H)

k = 0, (130)

where D = d/dz, e1 is the unit vector along the positive x axis, and where

v
(z)
k |z=0,1 = θk|z=0,1 = 0,

and either

V (H)
k |z=0,1 = 0, or V (H)

k |z=0= DV (H)
k |z=1 = 0, or V (H)

k |z=1= DV (H)
k |z=0=0.
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For k = kc > 0 the eigenvalue λ0(k) reaches λ0 > 0 where dλ0
dk (kc) = 0, as this

results from the analyticity of the function λ0(k) with λ0 → 0 as k → 0 and as

k → ∞ (see [25,26]). Our purpose is to compute d2λ0
dk2

(kc). We need d2λ0
dk2

(kc) �= 0
for establishing (44) since the denominator in (44) corresponds, up to a factor, to
λ(k)−λ0 in a neighborhood of kc (notice that the function λ(k) is even in k). In fact
it is only known numerically that there is only one maximum and that the graph is

concave at this point, so we intend to just give a formula for λ′′
0 = d2λ0

dk2
(kc).

More precisely, let us differentiate (130) with respect to k as follows:

λ′
0(D2 − k2)v(z)

k − 2λ0kv
(z)
k + λ0(D2 − k2)v′(z)

k + θ ′
k − Dq ′

k = 0,

λ′
0(D2 − k2)V (H)

k − 2λ0kV (H)
k − ie1qk + λ0(D2 − k2)V ′(H)

k − ike1q ′
k = 0,

λ′
0(D2 − k2)θk − 2λ0kθk + λ0(D2 − k2)θ ′

k + v
′(z)
k = 0,

Dv
′(z)
k + ike1 · V ′(H)

k + ie1 · V (H)
k = 0, (131)

which, for k = kc, gives

−2λ0kcv
(z)
k + λ0(D2 − k2c )v

′(z)
k + θ ′

k − Dq ′
k = 0,

−2λ0kcV (H)
k − ie1qk + λ0(D2 − k2c )V ′(H)

k − ikce1q ′
k = 0, (132)

−2λ0kcθk + λ0(D2 − k2c )θ ′
k + v

′(z)
k = 0,

Dv
′(z)
k + ikce1 · V ′(H)

k + ie1 · V (H)
k = 0,

with the same boundary conditions for (V ′(H)
k , v

′(z)
k , θ ′

k) as for the eigenvector

Uk = (V (H)
k , v

(z)
k , θk). Before going further we need to determine the derivative

with respect to k of the eigenvector Uk in k = kc. We observe that the last equation
in (132) is not exactly as in (130), so we need to make a little change of notation
for being able to use the pseudo-inverse of λ0Lkc + Akc in kc = kce1.
Let us define

Ũ ′
k = (Ṽ ′(H)

k , v
′(z)
k , θ ′

k), with Ṽ ′(H)
k = V ′(H)

k + 1

kc
V (H)

k ,

then (132) becomes

λ0(D2 − k2c )v
′(z)
k + θ ′

k − Dq ′
k = 2λ0kcv

(z)
k ,

λ0(D2 − k2c )Ṽ ′(H)
k − ikce1q ′

k = 2λ0kcV (H)
k + 2λ0

kc
(D2 − k2c )V (H)

k ,

λ0(D2 − k2c )θ ′
k + v

′(z)
k = 2λ0kcθk,

Dv
′(z)
k + ikce1 · Ṽ ′(H)

k = 0. (133)

The system (133) holds because of the property λ′
0 = 0, which implies that the

compatibility condition is realized for the right hand side (cancelling the scalar
product of the 3 first lines resp. with (v

(z)
k , V (H)

k , θk)), so we have

2λ0kc||Uk||20 + 2λ0
kc

∫ 1

0
(D2 − k2c )V (H)

k · V (H)
k dz = 0,
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i.e., after integrating by parts

k2c (||v(z)
k ||20 + ||θk||20) − ||DV (H)

k ||20 = 0. (134)

Notice that for k = ke1, the functions v
(z)
k , θk, v

′(z)
k , θ ′

k are real valued, while V (H)
k

and V ′(H)
k are purely imaginary.

Remark 63. We can also give a formula for any k in using (131):

λ′
0(k)||Uk||2

1̃
= 2λ0

k

[
||DV (H)

k ||20 − k2(||v(z)
k ||20 + ||θk||20)

]
, (135)

where
||Uk||2

1̃
= ||DUk||20 + |k|2||Uk||2, (136)

which corresponds to the norm of the k-component in the definition (28) of norm
|| · ||1̃,s .
From (133) we can now write

Ũ ′
k = ˜(λ0Lkc + Akc)

−1
[
2λ0kcUk + Pk

(
2λ0
kc

(D2 − k2c )V (H)
k , 0, 0

)]
,

where ˜(λ0Lkc + Akc)
−1

is the pseudo-inverse of (λ0Lkc + Akc) taking values in
the orthogonal of its kernel (selfadjoint operator) andPk is the k-component of the
projection P defined in Section 4.1. Hence

U ′
k = ˜(λ0Lkc + Akc )

−1
[
2λ0kcUk + Pk

(
2λ0
kc

(D2 − k2c )V (H)
k , 0, 0

)t]

−
(
1

kc
V (H)

k , 0, 0

)t

. (137)

Differentiating (135) with respect to k in k = kc then gives

λ′′
0||Uk||2

1̃
= 2λ0

d

dk

(
1

k
||DV (H)

k ||20 − k(||v(z)
k ||20 + ||θk||20)

)
|k=kc , (138)

which is the desired formula, where all terms are now known.

E. Proof of Lemma 53

We refer extensively to [1], pages 628–636, here adapted to an operator in an
infinite-dimension space (since we do not consider the projection �′).
The operator (A − λ0) is diagonal (all k-th Fourier components are uncoupled
for operators 
,P, L , A) as well as for orthogonal projections π0 and �N . The
projection Q0 = I − P0 is also diagonal, since it just modifies each Fourier com-
ponent eik j ·x, j = 1, 2, . . . , 2q. Moreover, notice that k j belongs to the singular
set S(N ) for any N since |k j | = kc. However 0 is not an eigenvalue because of
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the z dependency of coefficients of eik j ·x, the corresponding eigenvalues being
λ j (k2c ) − λ0 < −δ0 < 0, j = 1, 2, . . ..
Eigenvalues of DN = �N π0Q0(A−λ0)Q0π0�N are λ j (|k|2)−λ0, j = 0, 1, . . .
with ||k| − kc| � δ1, and Nk � N , the eigenvalues close to 0 corresponding to
j = 0,with the estimate (108) (notice that the operatorQ0 eliminates the eigenvalue
0). Then, the required estimates on (DN )−1 restricted to the subspace corresponding
to parts of �N = R(N ) + S(N ) are valid. For example, since we have for k ∈ R(N ),
λ0 − λ0(|k|2) � ρ, and since the operator is self adjoint in K0,s ,

||DRh||0,s � ρ||h||0,s for any h ∈ EN ,

where DR is the operator DN restricted to Fourier modes with k ∈ R(N ).

Let us now show the “multiplication property” of operator εT, where Lemma 36
gives, for (ε, μ̃, V ) ∈ [0, ε1] × [−ε, ε] × Q0K0,s, ||V ||0,s0 � 1,

εT (ε, μ̃, V ) =: �N (μ̃ + Bε + ε2μ̃Cε,μ̃ + Rε,μ̃,V )�N , (139)

with estimates (84).
First, for U ∈ K1,s , s � s0 > d/2 and H ∈ K1,0, we see with the definition 21 of
B(U, H) that for U = (V, θ) and H = (VH , θH ) there are functions occurring in
components of

V · ∇VH , VH · ∇V, V · ∇θH , VH · ∇θ,

each one denoted by T1H that lies inH0,0 (see Lemmas 18, 19), satifying a bound
such that, for A, B ⊂ �(N ) (see definition of T A

B at Lemma 53),

||[T1]A
B H ||0,0 � c(s)

||U ||1,s
(1 + d(A, B))s−d/2 ||H ||1,0,

as is obtained by the same proof as Lemma 3.9 in [1].We observe that the projection
P is diagonal in Fourier components, so that the above estimate stays valid for
B(U, H) in K0,0. Now the operator (−L)−1/2 is also diagonal, and bounded from
K0,s to K1,s for all s � 0. It then results from the definition of B that we have the
following generalization of ( 26) for any V ∈ K0,s , s � s0 > d/2 and h ∈ K0,0 :

||[B(V, ·)]A
Bh||0,0 � c(s)

||V ||0,s
(1 + d(A, B))s−d/2 ||h||0,0. (140)

We then look at the operator appearing in (73):

μ̃ + με − 2Q0B(uε, ·) − 2ε4Q0B1(V, ·).
The operator Q0 is diagonal, hence the above estimate (140) leads to a bound in
K0,0 as

c(s)
(ε + ε4||V ||0,s)

(1 + d(A, B))s−d/2 ||h||0,0. (141)

Now we need to track the estimate for the transformed operator after the splitting
by π0 (see Section 7.5). For its computation we need first to look at operatorQ(1,1)

ε,μ̃,V
acting in (I−π0)Q0K0,0. It is obtained via a Neumann series of powers of operators
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satisfying estimates as (141), provided that ||V ||0,s0 � 1, and proofs of Lemmas
3.10, 3.11 of [1] apply analogously, leading to

||[Q(1,1)
ε,μ̃,V ]A

Bh||0,0 � c(s)
(1 + ε4||V ||0,s)

(1 + d(A, B))s−d/2 ||h||0,0.
The composition of two operators satisfying the estimates, as above, also satisfies
the same estimate, with modified constants, so that finally, for (139) and for any
V ∈ K0,s , ||V ||0,s0 � 1, s � s0 > d/2 and h ∈ K0,0,

||εT (ε, μ̃, V )]A
Bh||0,0 � c(s)

ε(1 + ε3||V ||0,s)
(1 + d(A, B))s−d/2 ||h||0,0.

F. A C2 Property for the Nash–Moser Theorem in [2]

The starting point is the Nash–Moser theorem 3 in Berti--Bolle--Procesi [2].
We want to extend this theorem from the C1-case to the C2-case. We assume the
conditions of that theorem with ν = 0, and moreover that F(ε, λ, u) is C3 in
(ε, λ, u) on [0, ε0) × � × Xs0 and that the following conditions are fulfilled for
z := (ε, λ) ∈ [0, ε0) × � and u ∈ Xs, s ∈ [s0, S), with ||u||s0 � 1:

(F2)+ ||∂2λ F(z, u)||s � C(s)(||u||s + 1)

(F3)+ ||D3
u F(z, u)[v1, v2, v3]||s � C(s)(||u||s ||v1||s0 ||v2||s0 ||v3||s0

+||v1||s ||v2||s0 ||v3||s0 + ||v2||s ||v1||s0 ||v3||s0 || + ||v3||s ||v1||s0 ||v2||s0)
(F4)+ ||∂2λ Du F(z, u)[v]|s � C(s)(||u||s ||v||s0 + ||v||s),

||∂λD2
u F(z, u)[v1, v2]||s � C(s)(||u||s ||v1||s0 ||v2||s0

+ ||v1||s ||v2||s0 + ||v2||s ||v1||s0).
Then Theorem 1 of [2] holds with ν = 0 and ∂2λu exists and belongs to
C([0, ε2) × �, Xs0). To prove this we show that the sequence (∂2λun)n�0 con-
verges in C([0, ε2) × �, Xs0), where un is as in [2]. Moreover, given η ∈ (0, 1),
we may choose N0(γ ) large enough such that for ∂2λun : [0, ε2) × � → En+1, the
properties (P j)n, j = 1, 2, 3, 4 are supplemented by

(P1)+n 1 + ||∂2λun||s0 � C(γ )Nσ
0 , (142)

(P2)+n ||∂2λ(un+1 − un)||s0 � N−1+η
n+1 , (143)

(P4)+n B ′′
n = 1 + ||∂2λun||s � 2Nσ/2+2μ+3η

n+1 . (144)

Finally in (P4)n we have Bn � 2Nμ+η
n+1 , B ′

n � 2Nσ/4+μ+2η
n+1 .

Wedenote formula numbers from [2] inwhat follows by adding a zero in front of that
number. Thus (041) corresponds to (41) in [2]. First we remark that corresponding
to (034) and (038) we also have, for z ∈ N (An+1, 2γ N−σ/2

n+1 ), that

||h̃n+1||s � N 2μ+2η
n+1 , (145)

||∂z h̃n+1||s0 � N−3σ/4−1+2η
n+1 , (146)

||∂z h̃n+1||s � Nσ/2+2μ+3η
n+1 , (147)
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and ||hn+1||s � N 2μ+2η
n+1 with a proof quite similar to that in [2]. Similarly, it follows

from this that [2, Theorem 1] holds in case ν = 0.
To prove the C2 property in λ we will follow the induction process in [2]. First
functions ũ0 and h̃n are constructed. Then u0 := ψ0ũ0, hn := ψnh̃n, un+1 :=
un +hn+1, where the cut-off functionψn is defined in (050), but now with the extra
property that it is C2 and

|∂zψn| � Cγ −1Nσ/2
n , |∂2z ψn| � C2γ −2Nσ

n . (148)

From the implicit function theorem it follows that h̃n is C2 in λ and then the same
follows for hn and un .
Next we have to estimate the norms of these functions in order to show that the
sequence ∂2λun ∈ C([0, ε2) × �, En) converges in C([0, ε2) × �, Xs0).
By (032) we have �n+1F(z, u) = 0 if u = un + h̃n+1 =: u+

n and z ∈
N (An+1, 2γ N−σ/2

n ). This also holds for n = −1 with u−1 = 0, u+
−1 = ũ0 = h̃0.

Applying ∂2λ to this equation leads to

L+
n+1∂

2
λ h̃n+1 + Mn+1 = 0,

where L+
n+1(z) := �n+1Du F(z, u+

n ) which is invertible by [2, Lemma 2.3] and

Mn+1 := �n+1[∂2λ(F(z, u+
n )) + 2∂λDu(F(z, u+

n )[∂λu+
n ]

+D2
u(F(z, u+

n ))[∂λu+
n , ∂λu+

n ] + Du(F(z, u+
n ))[∂2λun]

for z as above.
First let n = −1. Then ||M0||s may be estimated using (F2)+, (F3) and F(4).
Thus

||M0||s � C(s)[||ũ0||s(1 + 2||∂λũ0||s0 + ||∂λũ0||2s0)
+2||∂λũ0||s(1 + ||∂λũ0||s0) + 1].

From [2, p. 385] we have

||ũ0||s0 � ρ0 = C0γ
−1Nμ

0 ε, ||∂λũ0||s0 � Kγ −1Nμ
0 ,

||ũ0||s � K (γ )Nμ
0 ε, ||∂λũ0||s � K (γ )Nμ

0 .

Then we get

||M0||s � C1(γ )N 2μ
0

for both s = s0 and s = s. Then we apply (015) and (016) to ∂2λ ũ0 = −(L+
0 )−1M0

and obtain ||∂2λ ũ0||s � C(γ )N 3μ
0 for both values of s.

From u0 := ψ0ũ0 and (148) we deduce (P1)0 and (P4)0 for η > 0 and N0
sufficiently large.
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For n � 0 we write Mn+1 = �n+1
∑6

j=0 A j with

A0 = ∂2λ F(z, un) + 2∂λ Du F(z, un)[∂λun] + D2
u F(z, un)[∂λun, ∂λun]

+Du F(z, un)[∂2λun]
A1 = ∂2λ(F(z, u+

n ) − F(z, un)) =
∫ 1

0
∂2λ Du(F(z, un + θ h̃n+1))dθ [h̃n+1]

A2 = 2∂λ Du(F(z, u+
n ) − F(z, un))[∂λu+

n ]
= 2

∫ 1

0
∂λD2

u(F(z, un + θ h̃n+1))dθ [h̃n+1, ∂λu+
n ]

A3 = 2∂λ Du F(z, un))[∂λh̃n+1]
A4 = D2

u(F(z, u+
n ) − F(z, un))[∂λu+

n , ∂λu+
n ]

=
∫ 1

0
D3

u(F(z, un + θ h̃n+1))dθ [h̃n+1, ∂λu+
n , ∂λu+

n ]
A5 = D2

u F(z, un)([∂λu+
n , ∂λu+

n ] − [∂λun, ∂λun]),
A6 = Du(F(z, u+

n ) − F(z, un))[∂2λun]
=
∫ 1

0
D2

u(F(z, un + θ h̃n+1))dθ [h̃n+1, ∂
2
λun].

Similarly as to [2], using (S1), (F4), (F4)+, (F3)+ and the estimates for
||h̃n+1||s, ||∂z h̃n+1||s, ||un||s , we obtain that there are constants C1(s, γ ) indepen-
dent of n such that

||�n+1(A1 + A2 + A4)||s0 � C1(s0, γ )N−σ−1
n+1 (149)

||�n+1(A1 + A2 + A4)||s � C1(s, γ )N 2(μ+η)
n+1 . (150)

Furthermore, using (F4) it follows that there exist positive constants K independent
of n, which may be different in different places such that

||�n+1A3||s0 � K N−3σ/4−1+2η
n+1 , ||�n+1A3||s � K Nσ/2+2μ+3η

n+1 . (151)

In A5 we may replace [∂λu+
n , ∂λu+

n ] − [∂λun, ∂λun] by [∂λh̃n+1, ∂λ(2un + h̃n+1)]
and then with (F3), (142), (145), (146) and (P4)n we obtain

||�n+1A5||s0 � K N−3σ/4−1+2η
n+1 , (152)

||�n+1A5||s � K Nσ/2+2μ+3η
n+1 . (153)

Also, using (144), we have

||�n+1A6||s0 � K N−σ−1
n+1 , (154)

||�n+1A6||s � K N 2(μ+η)
n+1 . (155)

Finally, using (F2)+, (F3), (F4), (F6), (P4)n and (P4)+n , we get

||�n+1A0||s � K Nσ/2+2μ+3η
n+1 .
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With [2, (S2)] it follows as in (047) that

||�n+1A0||s0 = ||�n+1(I − �n)A0||s0 � K N−s+s0
n ||�n+1A0||s � K ′N−σ/2−2+3η

n+1 .

Combining the estimates for A j , j = 0, . . . 6 it follows that

||Mn+1||s0 � K N−σ/2−2+3η
n+1

and

||Mn+1||s � K Nσ/2+2μ+3η
n+1 .

From (P4)+n and [2, Lemma 2.3] we obtain

||∂2λ h̃n+1||s0 � K N−σ/2+μ−2+3η
n+1 , ||∂2λ h̃n+1||s � K Nσ/2+3(μ+η)

n+1 . (156)

With hn+1 = ψn+1h̃n+1 and (148) it follows that

||∂2λhn+1||s � ||∂2λ h̃n+1||s + 2|∂λψn+1|||∂λh̃n+1||s + |∂2λψn+1|||h̃n+1||s, (157)

and from the corresponding estimates for h̃n+1 in (145), (146), (147) and (156), we
get that

||∂2λhn+1||s0 � N−1+η
n+1 , ||∂2λhn+1||s � Nσ+2μ+4η

n+1 . (158)

From this and un+1 = un + hn+1 we deduce (P2)+n+1 and (P1)+n+1. Furthermore,
with (P4)+n it follows that

B ′′
n+1 � B ′′

n + ||∂2λhn+1||s � 2Nσ/2+2μ+3η
n+1 + Nσ+2μ+4η

n+1 � 2Nσ+2μ+4η
n+1

= 2Nσ/2+μ+2η
n+2 ,

and so (P4)n+1 holds and the induction step is proven. Finally this implies, as in
[2, section 2.4], the statement on the convergence of the maps ∂2λun in C([0, ε2) ×
�, Xs0) to ∂2λu.
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