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Optimal generation in structure-preserving power networks with
second-order turbine-governor dynamics?

S. Trip1 and C. De Persis1

Abstract— Recently we have been exploring the role
of passivity and the internal model principle in power
network control in the presence of uncertainties due
to unmeasured demand and supply. In this work we
continue this line of research and extend our results
to include more complex dynamics at the generation
side. Namely, we study frequency stabilization by
primary control and frequency regulation by optimal
generation control, where we additionally incorporate
second-order turbine-governor dynamics. The power
network is represented by the structure-preserving
Bergen-Hill model [1]. Distributed controllers that
require local frequency measurements are proposed
and are shown to minimize the generation costs.
Asymptotic convergence is proven when the genera-
tors satisfy a local matrix condition. The effectiveness
of proposed controllers is demonstrated in a case
study.

I. Introduction

To guarantee reliable operation of the power net-
work it is important to keep the frequency close to
its nominal value of e.g. 50 Hz. This is traditionally
achieved by primary proportional control (droop-control)
and a secondary PI-control at the different generators
in the network. An increased penetration of uncertain
and volatile renewable energy sources created renewed
interest in this control issue, where computer-based con-
trol and communication networks offer new possibili-
ties to improve efficiency and reliability [2]. Especially,
economically efficient frequency regulation has gained
much attention over the recent years, where different
approaches to minimize generation costs are proposed.

Literature review. We briefly discuss some existing results
that are relevant to the presented work and focus on work
that studies frequency regulation rather than frequency
stabilization by primary control [3]. For a linearized
model of the power network distributed and centralized
controllers that require the knowledge of frequency de-
viations at their own bus and its neighboring buses are
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proposed in [4]. In [5] optimal frequency regulation is
investigated within a game-theoretical framework. Opti-
mal frequency regulation based on primal-dual gradient
dynamics is proposed in [6] and [7], where a suitable
optimal power flow problem is solved using primal-dual
decomposition. This approach has been also applied in
[8], where second-order turbine-governor dynamics are
incorporated and in [9] where it is formulated within
a port-Hamiltonian framework. Despite their capabil-
ity of handling various operational constraints, primal-
dual based algorithms (as well as the approach in [5])
generally suffer from required measurements of loads or
power flows. This issue is avoided in [10], [11], [12] where
optimal frequency regulation is treated within a frame-
work of incremental passivity and output regulation on
networks. Besides frequency regulation in high voltage
networks, there is related work on microgrids, where
research shifted from stability analysis of the frequency
[13], towards optimal regulation, solving similar opti-
mization problems as the aforementioned papers, [14],
[15], [16].

Main contributions. Detailed models of power networks
often include a second-order model of the turbine-
governor dynamics [17], [18]. In the aforementioned
works, these dynamics are however neglected in the
stability analysis (with a notable exception of [3] and
[8]). The presented results in this paper are noteworthy
as it is, to best of the authors knowledge, the first
time where second-order turbine-governor dynamics are
explicitly taken into account in the stability analysis of
the nonlinear structure-preserving ‘Bergen-Hill’ model,
where optimal frequency regulation is (practically) ob-
tained without direct measurements of the loads or the
power flows. This paper can therefore be regarded as a
continuation of our previous efforts ([11], [12]) to design
distributed controllers obtaining economically efficient
frequency regulation, exploring the role of incremental
passivity and the internal model principle [19], [20]. The
way we obtain our result appears to be relevant to related
research [3], [8], and can help to relax needed assump-
tions on the system parameters. To prove asymptotic
stability of the power network we study the eigenvalues
of a Hamiltonian matrix depending on (local) system
parameters. Doing so, we connect (optimal) frequency
regulation in power networks to the study of Hamiltonian
matrices. Although we do not aim at an extensive anal-
ysis of the obtained Hamiltonian matrices in the present
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work, we do believe that results on the (perturbation
of the) eigenvalues of Hamiltonian matrices ([21], [22])
are helpful to provide guidelines on how to stabilize a
potentially unstable network.

The remainder of this paper is organized as follows.
In Section II, we introduce the dynamic model of the
power network, including turbine-governor dynamics and
load buses. In Section III, we discuss a passivity prop-
erty of the power network. In Section IV, we discuss
primary frequency control and show that it leads to a
nonzero frequency deviation. In Section V, we propose a
distributed dynamic controller which ensures frequency
regulation and achieves economic optimality. In Section
VI, we test our controllers for an academic case study
using simulations. In Section VII, conclusions are given.

II. System model

We consider a nonlinear structure-preserving model
of the power network, which is commonly referred to
as the Bergen-Hill model [1]. The network consists of
nG generator and nL load buses. Each bus is assumed,
without loss of generality, to be either a generator or
a load bus, such that the total number of buses in the
network is n = nG + nL. The network is represented by
a connected and undirected graph G = (VG ∪ VL, E),
where VG = {1, . . . , nG} is the set of generator buses,
VL = {1, . . . , nL} is the set of load buses and E ⊂

(
VG ∪

VL
)
×
(
VG ∪ VL

)
= {1, . . . , e} is the set of transmission

lines connecting the buses. The network structure can
be represented by its corresponding incidence matrix
D ∈ Rn×e. The ends of edge k are arbitrary labeled with
a ‘+’ and a ‘−’. Then

dik =

 +1 if i is the positive end of k
−1 if i is the negative end of k
0 otherwise.

Generator bus i ∈ VG is modelled as

δ̇i = ωGi
Miω̇Gi = −AGiωGi

−
∑
j∈Ni

ViVjBij sin(δi − δj) + Pmi,

where Ni is the set of buses connected to bus i. The
generated power Pmi is modeled as the output of a
second-order model, describing the turbine and governor
dynamics [8], [17], [18], and is given by

TgiṖgi = −Pgi −K−1i ωGi + uGi
TmiṖmi = −Pmi + Pgi,

(1)

where uGi is an additional control input. The loads Pli
are assumed to be frequency dependent and we model a
load bus i ∈ VL as

δ̇i = ωLi
0 = −ALiωLi −

∑
j∈Ni

ViVjBij sin(δi − δj)− Pli.

An overview of the used symbols is provided in Table
1. For all nodes the power system including turbine-

State variables

δi Voltage angle
ωGi Frequency deviation at the generator bus
ωLi Frequency deviation at the load bus
Pgi Steam power
Pmi Mechanical power

Parameters

Mi Moment of inertia
AGi Damping constant of the generator
ALi Damping constant of the load
Bij Susceptance of the transmission line
Vi Voltage
Tgi Governor time constant
Tmi Steam chest time constant
Ki Permanent droop constant

Controllable input

uGi Power generation control

Uncontrollable input

Pli Unknown power demand

Table 1: Description of main variables and parameters
appearing in the system model.

governor dynamics is written as

η̇ = DTω
Mω̇G = −AGωG −DGΓ sin(η) + Pm

0 = −ALωL −DLΓ sin(η)− Pl
TgṖg = −Pg −K−1ωG + uG
TmṖm = −Pm + Pg,

(2)

where ω = (ωTG , ω
T
L)T , η = DT δ and Γ =

diag{γ1, . . . , γm}, with γk = ViVjBij = VjViBji and
the index k denoting the line {i, j}. The matrices DG ∈
RnG×e and DL ∈ RnL×e are obtained by collecting from
D the rows indexed by VG and VL respectively.

III. Incremental cyclo-passivity of the power
network

We recall in this section a notable result from [12],
which is fundamental to the subsequent analysis in this
paper. Namely, the power network, without the turbine-
governor dynamics, is an incrementally cyclo-passive
system with respect to its steady state solution, if we
consider ωG as the output and Pm as the input.

Remark 1 In our previous work [11], [12] we refer to
the system as being incrementally passive, instead of
incrementally cyclo-passive. The latter property is more
appropriate in this section, since we do not yet assume
the existence of a (local) minimum of the considered
incremental storage function. For the stability analysis
a local minimum is however required and is ensured
by Assumption 1 in the next section. A more in depth
treatment on incremental passivity and cyclo-passivity is
e.g. provided in respectively [23] and [24].

To establish this incremental cyclo-passivity prop-
erty, we eliminate ωL in (2) by exploiting the identity
ωL = A−1L (−DLΓ sin(η)− Pl) and realizing that DTω =

917



DT
GωG +DT

LωL [25]. As a result we rewrite (2) as

η̇ = DT
GωG +DT

LA
−1
L (−DLΓ sin(η)− Pl)

Mω̇G = −AGωG −DGΓ sin(η) + Pm.

TgṖg = −Pg −K−1ωG + uG
TmṖm = −Pm + Pg,

(3)

In this section we focus on the first and second equation
of (3), which corresponds to the classic Bergen-Hill model
without turbine-governor dynamics

η̇ = DT
GωG +DT

LA
−1
L (−DLΓ sin(η)− Pl)

Mω̇G = −AGωG −DGΓ sin(η) + Pm.
(4)

The incremental (cyclo-)passivity property of (4) has
been stated before in [12] and is repeated below for the
sake of completeness.

Theorem 1 System (4) with input Pm and output ωG
is an output strictly incrementally cyclo-passive system,
with respect to the constant equilibrium (η, ωG) satisfying

0 = DT
GωG +DT

LA
−1
L (−DLΓ sin(η)− Pl)

0 = −AGωG −DGΓ sin(η) + Pm.
(5)

Namely, there exists a storage function U(ωG , ωG , η, η)
which satisfies the following incremental dissipation in-
equality

U̇(ωG , ωG , η, η) ≤ −ρ(ωG − ωG)
+(ωG − ωG)T (Pm − Pm),

where U̇ represents the directional derivative of U along
the solutions to (4) and ρ is a positive definite function.

The result of Theorem 1 plays a key role in the remainder
of this work, since the considered incremental storage
function will be employed in the following sections to
establish convergence properties of the power network
with additional second-order turbine-governor dynamics.

Remark 2 There is an increased interest in utilizing
load control for frequency regulation [7], [8]. Due to space
limitations the incorporation of load control in the present
setting is left to a future work. We remark however that
an additional control input uL will lead to the following
algebraic relation at the load buses:

0 = −ALωL −DLΓ sin(η)− Pl − uL.

It can be shown by adapting Theorem 1, that the incre-
mental storage function U then satisfies U̇ ≤ −(ωL −
ωL)T (uL − uL). This incremental passivity property can
be exploited in a similar fashion as in [11], [12] to design
optimal distributed load controllers.

IV. Primary frequency control

In this section we study the stability of the structure
preserving power network presented in Section II under
a constant control input uG = uG . The steady state

solution (η, ω = (ωTG , ω
T
L)T , P g, Pm) to (2) necessary

satisfies

0 = DTω
0 = −AGωG −DGΓ sin(η) + Pm
0 = −ALωL −DLΓ sin(η)− Pl
0 = −P g −K−1ωG + uG
0 = −Pm + P g.

(6)

Before proceeding we make two assumptions on the
solution to (6).

Assumption 1 The steady state differences in voltage
angles η satisfy η ∈ (−π2 ,

π
2 )e.

The purpose of Assumption 1 is to guarantee that the
storage function introduced in Theorem 1 has local
minimum at steady state (see [26] for related results
on convexity of the storage function). We note that
Assumption 1 is generally satisfied in high voltage net-
works that are studied here. Additionally we make the
natural assumption that a solution to (6) exists, which
corresponds to assuming that the network is able to
transfer the required power at its steady state.

Assumption 2 For a given uG and Pl, there exist η ∈
R(DT ), ω ∈ N (DT ), P g ∈ RnG and Pm ∈ RnG such that
(6) is satisfied.

From algebraic manipulations of (6) we can derive the
following lemma that makes the frequency deviation at
steady state ω explicit.

Lemma 1 Let Assumption 1 hold, then necessarily ω =
1nω∗, with

ω∗ =
1TnGuG − 1TnLP

l

1TnGAG1nG + 1TnLAL1nL + 1TnGK
−11nG

,

where 1n ∈ Rn is the vector consisting of all ones.

It is clear from Lemma 1 that it is desirable to have
a small value of Ki in order to have a small frequency
deviation at steady state. Furthermore, we can prove
asymptotic stability if the following assumption is sat-
isfied, which relates the parameters of generator i to a
Hamiltonian matrix.

Assumption 3 Let for all i ∈ VG the Hamiltonian
matrix

Hi =

(
ARi BRiB

T
Ri

−CTRiCRi −ATRi

)
be such that it has no eigenvalues on the imaginary axis,
where

ARi =

(
− 1

2T
−1
gi − 1

4T
−1
gi K

−1
i A−1Gi

1
2T
−1
mi − 1

2T
−1
mi

)
BRiB

T
Ri =

(
1
4A
−1
Gi T

−2
gi T

−2
mi 0

0 0

)
CTRiCRi =

(
0 0
0 1

4A
−1
Gi

)
918



Remark 3 Determining the eigenvalues of Hi ∈ R4×4 in
Assumption 3 is straightforward and can be done locally
for every generator. It is possible to give an analytic
expression of the eigenvalues of matrix Hi, since the
associated characteristic polynomial is of fourth order.
Obtaining explicit bounds on the generator parameters
such that Assumption 3 is satisfied is left for future
research. Furthermore, an interesting question is how
system parameters should be altered if the Hamiltonian
matrix does have eigenvalues on the imaginary axis [21],
[22].

We are now ready to present the main result of this
section, namely that the solution to (6) is asymptotically
stable under the assumptions discussed.

Theorem 2 Consider system (2) with constant power
demand P l and constant control input uG = uG Let
Assumptions 1, 2 and 3 hold. Then, the solutions of
system (2) that start in a neighborhood of (η, ω =
1nGω

∗, P g, Pm) converge asymptotically to the largest
invariant set where ω = 1nGω

∗ characterized in Lemma
1, Pg = P g and Pm = Pm.

The proof is provided in [27].

Remark 4 A related study on primary frequency control
is performed in [3] and requires K−1i < AGi for the system
at hand in order to prove asymptotic stability of the steady
state.

A consequence of the analysis in this section is that
the power network will generally converge to a steady
state frequency deviation ω∗ unequal to zero. In the
next section we address this issue by designing additional
secondary control, which regulates the frequency and
minimizes generation costs.

V. Economically efficient frequency
regulation

Before we turn our attention to the design of dis-
tributed controllers that regulate the frequency, we dis-
cuss the possibility of minimizing generation costs. To
this end, we assign to every generator a convex linear-
quadratic cost function that relates the generated power
Pmi to the generation costs Ci(Pmi), typically expressed
in AC/MWh, i.e. Ci(Pmi) = 1

2qiP
2
mi + riPmi + si. From

Lemma 1 we notice that it is required that 1TnGuG −
1TnLP

l = 0 to have a steady state where ω = 1nGω
∗ =

0, i.e. a zero frequency deviation. From (2) it follows
furthermore that at this steady state where ω = 0, also
uG = P g = Pm. In order to achieve economic optimality
we design a controller adjusting uG such that the steady
state uG = uG = P g = Pm is a solution to the following
optimization problem:

minPm C(Pm) = minPm

∑
i∈VG Ci(Pmi)

s.t. 0 = 1TnGPm − 1TnLP
l.

(7)

The total costs can compactly be expressed as C(Pm) =
1
2P

T
mQPm+RTPm+1TnGS. Notice that the equality con-

straint in (7) implies a steady state frequency deviation
of zero when uG = Pm. The solution to (7), indicated by
the superscript opt, therefore satisfies

0 = DT0

0 = −AG0−DGΓ sin(η) + P
opt

m

0 = −AL0−DLΓ sin(η)− Pl
0 = −P optg −K−10 + uoptG
0 = −P optm + P

opt

g .

(8)

It is possible to explicitly characterize the solution to (7)
and we do so in the following lemma.

Lemma 2 Let C(Pm) = 1
2P

T
mQPm+RTPm+1TnGS, with

Q > 0 and diagonal. The solution P
opt

m to (7) must satisfy

P
opt

m = Q−1(θ −R), (9)

where θ =
1nG (1

T
nL
Pl+1T

nG
Q−1R)

1T
nG
Q−11nG

∈ R(1nG ).

The proof is omitted here, but is provided in [12, Lemma

2]. From (9) it is immediate to see that QP
opt

m + R =
θ ∈ R(1nG ), which implies that at the solution to (7) all
marginal costs are identical. In order to achieve optimal-
ity, the controllers exchange information over a commu-
nication network, leading to the following assumption.

Assumption 4 The undirected graph reflecting the
topology of information exchange among the controllers
is connected.

Before stating the main result of this section, that is,
the design of distributed controllers that (practically)
regulate the frequency and minimize the generation
costs, we state an assumption that play a similar role
as Assumption 3 in the previous section.

Assumption 5 Let for all i ∈ VG, viβi < 2 + 2TgiT
−1
mi ,

vi ∈ (0, 1], Ji > 0 and the matrix

Hi =

(
ARi BRiB

T
Ri

−CTRiCRi −ATRi

)
be such that it has no eigenvalues on the imaginary axis,
where

ARi =

(
− 1

4T
−1
gi (2− βivi) 1

4T
−1
gi (vi − βivi −K−1i A−1Gi )

1
2T
−1
mi − 1

2T
−1
mi

)
BRiB

T
Ri = 1

4

(
A−1Gi T

−2
gi K

−2
i + JiT

−2
gi v

2
i 0

0 0

)
CTRiCRi = 1

4

(
Jiβ

2
i Jiβi(1− βi)

Jiβi(1− βi) (A−1Gi + Ji(1− βi)2)

)

We now provide the distributed controllers that
achieve (practical) frequency regulation and economic
efficiency.
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Theorem 3 Consider system (2) with demand P l and
let Assumptions 1, 2, 4 and 5 hold. Consider the con-
trollers at the nodes i ∈ VnG
Tφiφ̇i = −Jiφi + JiβiPgi + Ji(1− βi)Pmi

−qi
∑
j∈N comm

Gi
(qiφi + ri − (qjφj + rj))

uGi = viφi,
(10)

where N comm
Gi denotes the set of neighbours that exchange

information with node i. Then the controllers (10) guar-
antee the solutions of the closed-loop system that start
in a neigborhood of (η, ω, P g, Pm, φ) to converge asymp-
totically to the largest invariant set where ω = 1nGω

∗

characterized in Lemma 1, Pg = P g, Pm = Pm and φ = φ

The proof is provided in [27].

Remark 5 We refer to ‘practical’ frequency regulation
and economic efficiency, because of the appearance of the
tuning variable vi ∈ (0, 1], in the controller stated in
Theorem 3. As a rule of thumb, the closer the value of
vi is to 1, the better the obtained frequency regulation
and economic efficiency is. Choosing vi = 1 for all
i ∈ VG allows for a steady state where we have ‘exact’
frequency regulation and economic efficiency, i.e. ω = 0

and φ = P g = Pm = P
opt

m , where P
opt

m is characterized in
Lemma 4. It appears however that Assumption 5 becomes
more difficult to satisfy when vi approaches 1. The case
study in the next section shows nevertheless asymptotic
stability with the choice vi = 1. Relaxing Assumption 5
is left to a future research.

Remark 6 The value of βi can be chosen arbitrarily as
long as Assumption 5 is satisfied. The choice βi ∈ {0, 1}
is however most relevant as it corresponds to measure
either Pgi or Pmi instead of both.

Remark 7 The amount of literature on economically ef-
ficient frequency regulation is growing rapidly. A popular
approach to solve (7) is based on primal-dual gradient
dynamics (see e.g. [6], [7], [8], [9]). These approaches
generally require knowledge of the loads or the power
flows. A remarkable property of our work is that the dis-
tributed controllers solve (7) without such measurements.

VI. Case study

We test the proposed controllers on a 6-bus system
proposed in [28] (see Figure 1). Generator, load and
transmission line parameters are based on the values
provided in [18] and [28], and are provided in Table 2 and
Table 3. Every generator is equipped with the controller
presented in Theorem 3. The underlying communication
network is also indicated in Figure 1 by the dashed
lines. The system is initially at steady state with load
Pl = (1.01, 1.20, 1.18)T pu (assuming a base power of
100 MVA). After 10 seconds the load is increased to
Pl = (1.15, 1.30, 1.21)T pu. From Figure 2 we can see
how the frequency deviation is regulated back to zero in
such a way that total generation costs are minimized.

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

G1

G2

G3

L4

L5

L6

Fig. 1: Diagram for the 6-bus power system model,
consisting of 3 generator and 3 load buses. The commu-
nication links are represented by the dashed lines.

B
u

s
1

B
u

s
2

B
u

s
3

B
u

s
4

B
u

s
5

B
u

s
6

Mi (pu) 4.53 4.27 5.10 – – –
Ai (pu) 1.81 1.48 1.92 0.52 0.58 0.63
Vi (pu) 1.05 0.98 1.04 1.01 1.03 1.00
Tgi (pu) 0.08 0.10 0.09 – – –
Tmi (pu) 0.51 0.41 0.35 – – –
Ki (pu) 0.34 0.29 0.41 – – –
Tφi (pu) 0.10 0.10 0.10 – – –
Ji (pu) 1.00 1.00 1.00 – – –
βi (–) 0.00 0.00 0.00 – – –
vi (–) 1.00 1.00 1.00 – – –
qi (102 $/h) 2.40 3.81 3.44 – – –
ri (102 $/h) 10.5 5.70 8.00 – – –
si (102 $/h) 9.10 14.4 13.2 – – –

Table 2: Numerical values of the generator and load
parameters.

VII. Conclusions

In this paper we have presented an approach to in-
corporate second-order turbine-governor dynamics in the
design of distributed controllers aiming at economically
efficient frequency regulation. Although the considered
second-order dynamics are widely used in power network
studies, it has been left out in the vast majority of
stability studies concerning optimal frequency regulation
(see [8] for a notable exception, where however knowledge
of loads and power flows is required). This work provides
therefore an extension to our previous results and is in-
strumental to obtain a firm analytical basis of frequency
regulation in an interconnected power network (including

Bij (pu) 1 2 3 4 5 6 j
1 – -4.0 – -4.7 -3.1 –
2 -4.0 – -3.8 -8.0 -3.0 -4.5
3 – -3.8 – – -3.2 -9.6
4 -4.7 -8.0 – – -2.0 –
5 -3.1 -3.0 -3.2 -2.0 – -3.0
6 – -4.5 -9.6 – -3.0 –
i

Table 3: Susceptance Bij of the transmission line con-
necting bus i and bus j. Values are per unit on a base of
100 MVA.
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0.6

0.8

1

1.2

1.4

1.6

1.8

Pm1

Pm2

Pm3

Fig. 2: Frequency response and generated power at the
generator buses using the controller of Theorem 3. The
constant load is increased at timestep 10, whereafter
the frequency deviation is regulated back to zero and
generation costs are minimized. The cost minimizing

generation P
opt

m for t > 10, characterized in Lemma 2,
is given by the dashed lines.

voltage dynamics [11]) and electricity market [17]. In a
future work we will focus on incorporating optimal load
control, which we now only briefly addressed in Remark
2, and extending the analysis to include convex cost
functions.
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