

 University of Groningen

Off-diagonal low-rank preconditioner for difficult PageRank problems
Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming; Tan, Xue-
Yuan
Published in:
Journal of Computational and Applied Mathematics

DOI:
10.1016/j.cam.2018.07.015

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Shen, Z-L., Huang, T-Z., Carpentieri, B., Wen, C., Gu, X-M., & Tan, X-Y. (2019). Off-diagonal low-rank
preconditioner for difficult PageRank problems. Journal of Computational and Applied Mathematics, 346,
456-470. https://doi.org/10.1016/j.cam.2018.07.015

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1016/j.cam.2018.07.015
https://research.rug.nl/en/publications/2eeb4120-959f-445d-88ce-a6c5d778024d
https://doi.org/10.1016/j.cam.2018.07.015

Journal of Computational and Applied Mathematics 346 (2019) 456–470

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Off-diagonal low-rank preconditioner for difficult PageRank
problems
Zhao-Li Shen a,b, Ting-Zhu Huang a,*, Bruno Carpentieri c, Chun Wen a,
Xian-Ming Gu b,d, Xue-Yuan Tan e

a School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
b Johann Bernoulli Institute for Mathematics and Computer Science, Faculty of Science and Engineering, University of Groningen, 9700
AK Groningen, The Netherlands
c School of Science and Technology, Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
d School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, PR China
e Jiangsu Key Laboratory for NSLSCS, School of Mathematical Science, Nanjing Normal University, Nanjing 210046, PR China

a r t i c l e i n f o

Article history:
Received 26 February 2017
Received in revised form 16 December 2017

Keywords:
PageRank
Off-diagonal
Low-rank factorization
Matrix partition
Preconditioner

a b s t r a c t

PageRank problem is the cornerstone of Google search engine and is usually stated as
solving a huge linear system. Moreover, when the damping factor approaches 1, the
spectrum properties of this system deteriorate rapidly and this system becomes difficult
to solve. In this paper, we demonstrate that the coefficient matrix of this system can be
transferred into a block form by partitioning its rows into special sets. In particular, the
off-diagonal part of the block coefficient matrix can be compressed by a simple low-rank
factorization, which can be beneficial for solving the PageRank problem. Hence, a matrix
partition method is proposed to discover the special sets of rows for supporting the low-
rank factorization. Then a preconditioner based on the low-rank factorization is proposed
for solving difficult PageRank problems. Numerical experiments are presented to support
the discussions and to illustrate the effectiveness of the proposed methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of the Internet, Web search engines become very popular for information retrieval [1].
Because a web search engine can usually find an immense set of Web pages matching the search query, it is necessary
to rank higher the most important pages. For this purpose, Google has presented the PageRank model (also called PageRank
problem) that employs the link structure of Web pages to quantify the importance of each one.

The detailed mathematical background of the PageRank problem can be found in [2], here we give a brief review. The
link structure of the related Web pages is represented by a directed graph named the Web link graph. Denote its adjacency
matrix by G ∈ Nn×n where n is the number of nodes (pages), then G(i, j) is nonzero (being 1) only when page j has a link
pointing to page i. Then the transition matrix P ∈ Rn×n with respect to the Web link graph is defined as

P(i, j) =

⎧⎨⎩
1∑n

k=1 G(k, j)
, if G(i, j) = 1,

0, otherwise.
(1)

* Corresponding author.
E-mail addresses: szlxiaoyao@163.com (Z.-L. Shen), tingzhuhuang@126.com (T.-Z. Huang).

https://doi.org/10.1016/j.cam.2018.07.015
0377-0427/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2018.07.015
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2018.07.015&domain=pdf
mailto:szlxiaoyao@163.com
mailto:tingzhuhuang@126.com
https://doi.org/10.1016/j.cam.2018.07.015

Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470 457

Finally, the PageRank problem can be mathematically stated as solving the linear system:

Ax = v, with A = (I − αP), (2)

where 0 < α < 1 is the damping factor, v ∈ Rn×1 is called the personalization vector, and the solution x is the unknown
ranking vector [3].

The coefficient matrix A of the PageRank linear system (2) is usually extremely large and very sparse, thus iterative
methods are mandatory to use for solving this system [4,5]. Google initially assigns a moderate value 0.85 to α, and then
linear system (2) can be solved efficiently by the simple Power method [2]. However, larger values of α (not too close to 1)
such as 0.99 may sometimes give a better ranking result than α = 0.85 [6,7]. When α approaches 1, the smallest nonzero
eigenvalue of A approaches 0, and the convergence rate of the Power method deteriorates rather quickly [2]. Therefore, the
development of more robust and more efficient iterative methods is necessary for PageRank problems [4,7].

In the last decade or so, a series of techniques have been proposed to accelerate the Power method for PageRank
computations, such as the adaptive method [8], the inner–outer strategy [9], the extrapolation methods [10,11] and the
multi-step splitting iterationmethod [1,12].Meanwhile, a considerable amount ofwork has been devoted to Krylov subspace
methods in this context, see e.g. [7,13–17]. Inmany cases Krylov subspacemethods likeGMRES, BiCG, andBiCGSTABmethods
outperform the Power method and the Jacobi method by 50% in terms of computing time [16]. Moreover, the convergence
speed of these methods degrades more gently than that of the Power method when α approaches 1 [17]. Therefore, Krylov
subspace methods seem to be a promising way for solving difficult PageRank problems where α is close to 1. Nevertheless,
due to the ever-growing size of the World Wide Web, acceleration techniques become more and more attractive for these
methods when solving difficult PageRank problems.

Preconditioning is one of the most effective ways to accelerate Krylov subspace methods for solving general linear
systems. When solving huge and difficult PageRank problems, however, applying general-purpose preconditioners has
received unsatisfactory results. See for example the experiments reported with the polynomial preconditioner in [18,19]
and with the Incomplete LU (ILU) factorization preconditioner in [20]. To achieve a fast convergence rate of the iterative
process, the polynomial preconditioner is usually a high-order polynomial of the matrix P , which causes a large time
cost for computing the matrix–vector multiplications in the preconditioning process, meanwhile the ILU factorization
preconditioner often suffers from a large amount of fill-ins and thus high costs in storage and time. From these results,
preconditioning the PageRank system as same as a general linear system, its huge dimension and huge amount of nonzero
elements may often cause high computational cost of the preconditioning process. This defect motivates us to develop
preconditioners from the exclusive characteristics of PageRank problems.

Recently, an elimination strategy is proposed in [21]. This strategy exploits the properties of the PageRank coefficient
matrix A for eliminating its nonzero elements, and consequently the PageRank linear system (2) is transferred into a system
with higher sparsity. As the experiment results in [21] show, solving the linear system after elimination for seeking the
ranking vector generally decreases the computational cost of solving the PageRank problem. This inspires us to pay attention
on the properties of the PageRank coefficient matrix A for developing preconditioners.

In this study, we show that partitioning the rows of A into sets that satisfy a condition can derive a block form of A
where the rows in each off-diagonal block are identical. Therefore these off-diagonal blocks can be compressed efficiently
by a low-rank factorization, which may benefit the efficiency of solving the PageRank problem. Hence we propose a matrix
partition method that can efficiently discover the aforementioned sets of rows of A to support the low-rank factorization.
Finally a preconditioner based on the low-rank factorization is proposed to accelerate Krylov subspace methods for solving
difficult PageRank problems.

The paper is structured as follows. In Section 2, we introduce some notations, some definitions and a property of the
coefficient matrix A. In Section 3, we present the low-rank factorization for the PageRank problem. In Section 4, we propose
thematrix partitionmethod. The preconditioner is proposed and discussed in Section 5. Numerical experiments are reported
in Section 6. Finally, some conclusions arising from this work are given in Section 7.

2. Preliminaries

We use MATLAB [22] notations to represent elements of vectors and matrices, subvectors, submatrices, matrices in the
form of columns/rows. Besides, Table 1 lists several notations that frequently appear throughout this paper.

We then give two definitions and present a property of the PageRank coefficient matrix A.

Definition 2.1 (Off-Diagonal Part). For any matrix U ∈ Rn×n, let R = {1 : n} and S = ∪i∈Ψ {U(i, :)} be a set of rows where
Ψ ⊂ R. We define the off-diagonal part of S as U(Ψ , R\Ψ).

Definition 2.2 (Core Hub). Let S be a set of rows of A. If the rows in the off-diagonal part of S have the same zero-nonzero
pattern, S is called as a core hub of rows.

Property 2.1. Let S be any core hub of rows of A. Then the rows in the off-diagonal part of S are identical.

Proof. See Appendix A.

458 Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470

Table 1
The notations that frequently appear throughout this paper.

Notation Meaning

u Arbitrary column vector of appropriate dimension
U Arbitrary matrix of appropriate dimensions
ρ(U) Spectral radius of matrix U
I Identity matrix of appropriate dimension
G Web adjacency matrix
P Transition matrix of (1)
A Coefficient matrix of (2)
n Dimension of matrix A
Ã Block form (4) of A
Π Permutation matrix that permutes A into Ã by Ã = ΠAΠ T

D Matrix of (8) that is formed by splitting Ã
Boff Matrix of (8) that is formed by splitting Ã
F ,H Low-rank factors (defined in (11) and (10)) of Boff
C Capacitance matrix formed by I + HD−1F
m Row dimension of H & column dimension of F & dimension of C
rownnz(i) Amount of the nonzero elements in G(i, :)
θ Parameter in partition algorithm for controlling the pre-marking

process
ω Parameter in partition algorithm for limiting the length of each inner

traversal

For example, let S = {A(i, :), A(j, :), A(k, :), A(l, :)} (1 ≤ i < j < k < l ≤ n), its off-diagonal part contains the elements
(marked by ∗) whose column indexes are from N = {1 : n}\{i, j, k, l}, in matrix (3).

⎡⎢⎣A(i, :)
A(j, :)
A(k, :)
A(l, :)

⎤⎥⎦ = i
j
k
l

1 2 · · · i · · · j · · · k · · · l · · · n⎡⎢⎣∗ ∗ · · · ⋄ · · · ⋄ · · · ⋄ · · · ⋄ · · · ∗∗ ∗ · · · ⋄ · · · ⋄ · · · ⋄ · · · ⋄ · · · ∗

∗ ∗ · · · ⋄ · · · ⋄ · · · ⋄ · · · ⋄ · · · ∗

∗ ∗ · · · ⋄ · · · ⋄ · · · ⋄ · · · ⋄ · · · ∗

⎤⎥⎦. (3)

If S is a core hub of rows, then the rows of this off-diagonal part must be identical, i.e.

A(i,N) = A(j,N) = A(k,N) = A(l,N).

3. Off-diagonal low-rank factorization

If we partition the rows of A into core hubs, permute the rows hub by hub in A, and permute the columns accordingly in
A, then we obtain a block matrix Ã of the form

Ã = ΠAΠ T
=

⎛⎜⎜⎜⎜⎜⎝
Ã1,1 Ã1,2 Ã1,3 · · · Ã1,l

Ã2,1 Ã2,2 Ã2,3 · · · Ã2,l

Ã3,1 Ã3,2 Ã3,3 · · · Ã3,l
...

...
...

. . .
...

Ãl,1 Ãl,2 Ãl,3 · · · Ãl,l

⎞⎟⎟⎟⎟⎟⎠ , (4)

where Π ∈ Nn×n is a permutation matrix, and l is the number of hubs. Accordingly, the PageRank system (2) can be
equivalently transferred into the block form:

Ãx̃ = ṽ, (5)

where ṽ = Πv and x̃ = Πx. We then focus on solving this block linear system. For each diagonal block Ai,i (1 ≤ i ≤ l) in (4),
its corresponding off-diagonal block row offi is defined as

offi = [Ãi,1, . . . , Ãi,i−1, 0, Ãi,i+1, . . . , Ãi,l], (6)

and the rows in offi must be identical. Thus each offi (1 ≤ i ≤ l) is a rank-one matrix and can be compressed by a low-rank
factorization. We call the combination of all the low-rank factorizations for off-diagonal block rows of Ã as the off-diagonal
low-rank factorization.

For convenience of describing this low-rank factorization, we split Ã into the form

Ã = D+ Boff , (7)

Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470 459

where Boff contains the off-diagonal block rows that will be compressed. It should be noted that the off-diagonal part of a
core hub of rows may contain few nonzero elements. As a result, compressing the off-diagonal block row corresponding to
such a hub is not that worthwhile, and thus this off-diagonal block row should not be classified into Boff . Suppose there are
s such hubs of rows, if we permute them to the top of Ã, then D and Boff in (7) are given by

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ã1,1 · · · Ã1,s Ã1,s+1 · · · Ã1,l
... . . .

...
...

...
...

Ãs,1 · · · Ãs,s Ãs,s+1 · · · Ãs,l

0 · · · 0 Ãs+1,s+1 · · · 0
... . . .

...
...

. . .
...

0 · · · 0 · · · 0 Ãl,l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Boff =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
offs+1

...

offl

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

At this stage, the off-diagonal low-rank factorization of Ã is given by

Ã = D+ FH with (9)

F ∈ Nn×m where F (i, j) =
{
1, if Boff (i, :) ∈ offj (s+ 1 ≤ j ≤ l),
0, otherwise. (10)

H =

⎛⎜⎜⎝
offs+1(1, :)
offs+2(1, :)

...

offl(1, :)

⎞⎟⎟⎠ ∈ Rm×n (m = l− s). (11)

That it, each offi (s+ 1 ≤ i ≤ l) in Boff is compressed into one single row in H . If offi (i = s+ 1, 2, . . . , l) are fairly dense,
then nnz(H) would be much smaller than nnz(Boff). Meanwhile, according to (10), F contains at most n nonzero elements.
Therefore, nnz(F) + nnz(H) would be much smaller than nnz(Boff). Accordingly, the storage and the time required by any
matrix–vector multiplication Ãu is likely to be reduced if it is computed by Ãu = Du + F (Hu). As nnz(F) is very small, such
reduction in relative terms is generally determined by the quantity

compression ratio =
nnz(Boff)− nnz(H)

nnz(A)
. (12)

Besides, a larger compression ratio would also lead to a Dwith higher sparsity or smaller ranks of F and H . This is helpful to
invert Ã efficiently by using such formulation Ã = D+ FH [23], which is the basis of constructing the preconditioner in the
following contents. Motivated by these factors, we propose a matrix partition algorithm to discover appropriate core hubs
of rows of A efficiently for maximizing the compression ratio.

4. Matrix partition method for supporting the low-rank factorization

For finding core hubs of rows of A = I − αP according to Definition 2.2, the partition method only needs the information
from the off-diagonal zero-nonzero pattern structure of A. This pattern structure is same as that of the adjacency matrix G,
because G and P have the same zero-nonzero pattern structure. Hence it is convenient to run the partition method on G that
is already a binary matrix to find core hubs of rows of A. The framework of this method can be described as follows:

1 Denote n hubs by hubi = {G(i, :)} (i = 1, 2, . . . , n).
2 Traverse the unmarked hubs. For each visited hubi (1 ≤ i ≤ n), traverse the rows G(j, :) (j = i+ 1, i+ 2, . . . , n), if a

visited row G(j, :) is unmarked and hubi ∪ G(j, :) is a core hub, then

2.1 Set hubi = hubi ∪ G(j, :).
2.2 Mark G(j, :) and hubj such that they will be skipped during the remaining traversals.
2.3 Stop the current inner traversal and restart it for the enlarged hubi.

3 Output the row indexes of each unmarked hub for determining core hubs of rows of A.

Each restart operation for inner traversals occurs after amarking operation thatwill reduce the number of inner traversals
by 1. Accordingly, this method still has n inner traversals and is very costly due to the large dimension of matrix G. Moreover
it may formmany hubs that contribute little to the compression ratio. Hence we employ some amendments for overcoming
these problems. Detailed descriptions (including the motivations and the effects) for these amendments are contained in
Appendix B.

460 Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470

Fig. 1. A period of the partition process of Algorithm 1 for a small artificial Web adjacency matrix.

Amendment 1. We denote the amount of the nonzero entries of each row G(k, :) (1 ≤ k ≤ n) by rownnz(k). After the initial
setting (step 1), we mark the rows of G and their hubs in a rownnz increasing order until the amount of nonzeros in the
marked rows reaches θnnz(G), where 0 < θ < 1. We call this step as pre-marking step.

Amendment 2. We only traverse at most ω = 100 rows in each inner traversal.

Amendment 3. Let R = 1 : n and denote the set of the row indexes of hubi (1 ≤ i ≤ n) by Ni. For each inner traversal related
with hubi (1 ≤ i ≤ n), we compute a value key(j) for each visited unmarked row G(j, :) (i+ 1 < j < min(n, i+ ω)) by

key(j) =
∑

G(j,k)=1

k−
∑

G(i,k)=1

kwith k ∈ {R\{Ni ∪ j}}. (13)

If key(j) ̸= 0, thenG(j, :) should not be added to hubi. Otherwise, we implement an element-wise comparison for the nonzero
patterns of the rows of hubi ∪ G(j, :) to judge whether it is a core hub.

With these amendments, the complete version of the matrix partition method is presented in Algorithm 1, and a small
example is shown in Fig. 1 to illustrate the aspects of this method.

5. Off-diagonal low-rank preconditioner

Preconditioning a general linear system Uy = b can be represented as

M−1Uy = M−1b called left preconditioning,

UM−1z = b, y = M−1z called right preconditioning,

where M−1 ≈ U−1 is the applied preconditioner to make the spectrum properties of the linear system more favorable for
iterativemethods. Generally speaking, the acceleration effect of the preconditionerM−1 on iterativemethods depends on its
efficiency for approximating U−1. The pre-described techniques transfer the PageRank problem as solving the block linear
system (5) with the coefficient matrix Ã = D+ FH . This formulation may be helpful to compute Ã−1 efficiently, according to
the analysis in [23]. Hence, we propose a preconditioner based on this formulation for solving difficult PageRank problems
where the damping factor α is close to 1.

5.1. Formulation and implementation

The theoretical basis of this preconditioner is the Woodbury formula recalled in Lemma 5.1.

Lemma 5.1 (Woodbury Formula Stated in [24]). Let W ∈ Rn×n be a nonsingular matrix, X ∈ Rn×m and Y ∈ Rm×n (n ≥ m). If
I + YW−1X is nonsingular, then W + XY is nonsingular and its inverse can be given by

(W + XY)−1 = W−1 −W−1X(I + YW−1X)−1YW−1.

Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470 461

Algorithm 1 Partition method for finding core hubs of rows of A

Input: G, θ , ω
1: Compute the rownnz value for each row of G.
2: Set the hub of each row as itself, i.e. hubi = {G(i, :)} for i = 1 : n.
3: Mark the rows of G and their hubs in a rownnz increasing order until the amount of nonzero elements in the marked

rows reaches θnnz(G).
4: for i = 1 : n do
5: if hubi is unmarked then
6: for j = i+ 1 : min(n, i+ ω) do
7: if G(j, :) is unmarked then
8: Compute key(j) according to (22).
9: if key(j) = 0 then

10: if {G(j, :) ∪ hubi} is a core hub then
11: hubi ← {hubi ∪ G(j, :)}; hubj ← ∅.
12: mark G(j, :) and hubj.
13: back to step 6.
14: end if
15: end if
16: end if
17: end for
18: end if
19: end for
20: return the information of the row indexes of the non-empty hubs.

The matrix I + YW−1X is often called the capacitance matrix. For the formulation Ã = D + FH , the capacitance matrix is
I + HD−1F . We denote it by C . Then the following theorem gives a formulation of Ã−1.

Theorem 5.1. D is a nonsingular M-matrix and C = I + HD−1F is nonsingular. Therefore,

Ã−1 = D−1(I − FC−1HD−1). (14)

Proof. According to (1), P ≥ 0 and ρ(P) ≤ ∥P∥1 ≤ 1. Because 0 < α < 1, A = I − αP and Ã = ΠAΠ T must be
nonsingular M-matrices. According to (8), D is formed by changing some off-diagonal nonzero elements of Ã to 0, thus D is
also a nonsingularM-matrix.

To prove the invertibility of C , we construct a matrix T as

T =
(
D −F
H I

)
.

Then we can write(
I 0

−HD−1 I

)
T =

(
D −F
0 C

)
and

(
I F
0 I

)
T =

(
Ã 0
H I

)
.

Taking the determinants of the matrices in these two equations indicates the relation:

det(T) = det(D)det(C) = det(Ã).

As Ã and D are nonsingular, C must be nonsingular. Finally, based on Lemma 5.1, Ã−1 can be written as (14). □

With this theorem, formulation (14) can be used to construct preconditioners that approximate Ã−1. In a practical
PageRank problem, the related Web link graph is usually very large, thus forming a preconditioner M−1 ≈ Ã−1 explicitly
may need an inordinate amount of storage and time. Hence, we employ the implicit preconditioning, i.e.M−1 is not formed,
instead, the preconditioner is given by an algorithm (In Algorithm 2) for computing M−1u. We call this preconditioner as
off-diagonal low-rank (in short, ODLR) preconditioner.

In Algorithm 2, the linear systems with D at lines 1 and 5 may be solved approximately. We use D̃−1 to represent the
approximation of D−1 in this preconditioner, i.e. the result ỹ of solving such linear system Dy = u satisfies ỹ ≈ D̃−1u. At line
3, C = I+HD−1F is then approximated as I+HD̃−1F (denoted by C̄), and the systemwith C̄ may also be solved approximately.
We use C̃−1 to represent the overall approximation for C−1. Finally the ODLR preconditionerM−1 writes as

M−1 = D̃−1 − D̃−1F C̃−1HD̃−1. (15)

462 Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470

Algorithm 2Matrix–vector multiplication for the ODLR preconditioner: x← M−1u

1: Solve Dy = u.
2: Compute z ← Hy.
3: Solve Cx = z.
4: Compute z ← Fx.
5: Solve Dx = z.
6: Compute x← y+ x.
7: return x;

To summarize, using this preconditioner for solving a PageRank problem follows the steps:

1. run Algorithm 1 to discover core hubs of rows of A of the linear system (2);
2. permute the linear system (2) into the block form Ãx̃ = ṽ of (5), and then get the formulation Ã = D + FH by the

off-diagonal low-rank factorization (9)–(11);
3. apply Algorithm 2 at each step of an iterative method to solve ÃM−1ỹ = ṽ;
4. obtain the PageRank vector x by x = Π TM−1ỹ.

5.2. Performance analysis

Because the linear systems with D and the linear system with C in Algorithm 2 may be solved approximately, it is
necessary to study the relationship between the performance of the ODLR preconditioner M−1 of (15) and solving such
systems (generally called inner systems). We start by studying the value of ∥M−1 − Ã−1∥ (∥ · ∥ may be any type of matrix
norm) and the spectral properties of ÃM−1.

In the ODLR preconditioner, the accuracies of solving inner systems with D and those with C can be represented by
∥ED = D̃−1 − D−1∥ and ∥EC = C̃−1 − C−1∥, respectively. By subtracting Ã−1 of (14) fromM−1 of (15), we can get

M−1 − Ã−1 = (D̃−1 − D−1)+ (D−1FC−1HD−1 − D̃−1F C̃−1HD̃−1)

= (D̃−1 − D−1)+ (D−1 − D̃−1)FC−1HD−1 + D̃−1F (C−1HD−1 − C̃−1HD̃−1)

= ED(I − FC−1HD−1)+ D̃−1F (C−1 − C̃−1)HD−1 + D̃−1F C̃−1H(D−1 − D̃−1)

= EDD(D−1 − D−1FC−1HD−1)− (D−1 + ED)FECHD−1

− (D−1 + ED)F (C−1 + EC)HED
= EDDÃ−1 − D−1FECHD−1 − EDFECHD−1 − D−1FC−1HED
− D−1FECHED − EDFC−1HED − EDFECHED (16)

Formula (16) expressesM−1 − Ã−1 in terms of ED and EC with coefficients in matrix forms. We try to find upper-bounds
for the norm values of these coefficients to reveal some relationships between ∥M−1− Ã−1∥, ∥ED∥ and ∥EC∥. For this purpose,
we first introduce the following lemma.

Lemma 5.2 (Corollary 2 in [25]). If a matrix B ∈ Rn×n is strictly diagonally dominant by columns (i.e., |B(k, k)| >
∑

i̸=k|B(i, k)|
for any 1 ≤ k ≤ n), and

β = min
k

(|B(k, k)| −
∑
i̸=k

|B(i, k)|),

then ∥B−1∥1 ≤ 1/β .

Based on this lemma, we give the following upper bounds in matrix 1-norm.

Lemma 5.3. For the formulation Ã = D+ FH, the following inequalities hold.

∥D−1∥1 ≤
1

1− α
, ∥H∥1 ≤ α

∥DÃ−1∥1 ≤
1

1− α
, ∥F∥1 ≤ ω,

∥FC−1H∥1 ≤
α

1− α
, ∥D−1FC−1H∥1 ≤

α

1− α
.

Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470 463

Proof. Recall that A = I − αP where P ≥ 0, ∥P∥1 ≤ 1 and 0 < α < 1. Thus A is strictly diagonally dominant by columns
and mink(|A(k, k)| −

∑
i̸=k|A(i, k)|) ≥ 1 − α. According to Lemma 5.2, ∥A−1∥1, ∥Ã−1∥1 ≤ 1/(1 − α). Because D of (8) is

formed by changing some off-diagonal nonzero elements of Ã to 0, D is also strictly diagonally dominant by columns and
mink(|D(k, k)| −

∑
i̸=k|D(i, k)|) ≥ 1− α. Thus ∥D−1∥1 ≤ 1/(1− α).

H of (11) can be regarded as a sub-matrix of Boff that only contains some off-diagonal elements of Ã = I − αΠPΠ T . Thus
∥H∥1 ≤ ∥Boff ∥1 ≤ ∥αΠPΠ T

∥1 ≤ α. As Ã = D+ Boff ,

∥DÃ−1∥1 = ∥(Ã− Boff)Ã−1∥1 ≤ ∥I∥1 + ∥Boff ∥1∥Ã−1∥1 =
1

1− α
.

Note that any hub formed by Algorithm 1 can contain at most ω rows. Then according to the definition (10) of F , we get
∥F∥1 ≤ ω.

For C−1 = (I + HD−1F)−1, we apply the Woodbury formula (Lemma 5.1) again and get

C−1 = I − HD−1(I + FHD−1)−1F

= I − H(D+ FH)−1F = I − HÃ−1F .

Then

FC−1H = FH − FHÃ−1FH = Boff − Boff Ã−1Boff ,

and thus

∥FC−1H∥1 ≤ ∥Boff ∥1 + ∥Boff ∥1∥Ã−1∥1∥Boff ∥1 = α +
α2

1− α
=

α

1− α
.

Finally, because Ã−1 = (I − D−1FC−1H)D−1,

∥D−1FC−1H∥1 = ∥I − Ã−1D∥1 = ∥Ã−1Boff ∥1 ≤ ∥Ã−1∥1∥Boff ∥1 =
α

1− α
. □

Then the following theorem is obtained directly by combining Lemma 5.3 and formula (16).

Theorem 5.2. The approximation error ∥M−1 − Ã−1∥1 of the ODLR preconditioner M−1 to Ã−1, and the errors ∥ED∥1 and ∥EC∥1
of solving inner systems when computing M−1u satisfy

∥M−1 − Ã−1∥1 ≤ σ1∥ED∥1 + σ2∥EC∥1 + σ3∥ED∥1∥EC∥1 + σ4∥ED∥21 + σ5∥ED∥21∥EC∥1, (17)

where

σ1 =
1+ α

1− α
, σ2 =

αω

(1− α)2
, σ3 =

2αω

1− α
, σ4 =

α

1− α
, σ5 = αω.

Based on this theorem, the spectral properties of ÃM−1 can be described as below.

Corollary 5.1. Let λ be an eigenvalue of ÃM−1, then

|λ− 1| ≤ η1∥ED∥1 + η2∥EC∥1 + η3∥ED∥1∥EC∥1 + η4∥ED∥21 + η5∥ED∥21∥EC∥1, (18)

where ηi = (1+ α)σi, i = 1, 2, 3, 4, 5.

Proof. The eigenvalue problem ÃM−1u = λu can be rewritten as Ã(M−1 − Ã−1)u = (λ− 1)u. Thus,

|λ− 1| ≤ ρ(Ã(M−1 − Ã−1)) ≤ ∥Ã∥1∥M−1 − Ã−1∥1.

Then based on Theorem 5.2 and ∥Ã∥1 = ∥A∥1 = ∥I + αP∥1 ≤ 1+ α, this corollary is proved. □

Theorem5.2 and Corollary 5.1 give the following indications. By increasing the accuracies of solving the inner systems, the
approximation error ∥M−1− Ã−1∥1 can be decreased to any degree, and the spectral properties of the preconditionedmatrix
ÃM−1 can be improved to be finally comparablewith those of I . Thus, theODLR preconditionerM−1 theoretically can give any
required acceleration effect on iterative methods and can be said well-defined. As the coefficients σi, ηi (i = 1, 2, 3, 4, 5)
of (17) and (18) increase with the damping factor α, the inner systems should be solved more accurately for larger α to
maintain the same degree of the acceleration effect. In (17), the first-order terms σ1∥ED∥1 and σ2∥EC∥1 contribute mostly to
∥M−1 − Ã−1∥1, and σ2 = αω/(1− α)2 is much larger and increases faster with α than σ1 = (1+ α)/(1− α). Thus the inner
systems with C should be solved more accurately than those with D, especially when α approaches 1.

Note that C = I+HD−1F is usually much denser than A, thus it is important for the efficiency of the ODLR preconditioner
M−1 to make C relatively small. If C is sufficiently small such that the inner systems with C̄ = I +HD̃−1F can be solved very
accurately or exactly by a small computational cost, then we can say C̃−1 = C̄−1. In this case,M−1 writes as

M−1 = D̃−1 − D̃−1F (I + HD̃−1F)−1HD̃−1,

464 Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470

Table 2
Characteristics of the Web adjacency matrices G tested in our experiments.
The symbol n is the dimension of the matrix, and nnz is the number of
nonzero elements (listed in increasing matrix size).

Name n nnz nnz/n2

uk-2007-100000 100,000 3,050,615 3.1e−4
web-Stanford 281,903 2,312,497 2.9e−5
cnr-2000 325,557 3,216,152 3.0e−5
web-BerkStan 685,230 7,600,595 1.6e−5
in-2004 1,382,908 16,917,053 8.8e−6
indochina-2004 7,414,866 194,109,311 3.5e−6
wb-edu 9,845,725 57,156,537 5.9e−7
uk-2002-13m 13,000,000 193,986,531 1.1e−6

and we obtain the expression M = (M−1)−1 = D̃ + FH . Accordingly, the eigenvalue problem ÃM−1u = λu considered in
Corollary 5.1 can be formulated as

(ÃM−1 − I)u = (Ã−M)M−1u = (D− D̃)M−1u = (λ− 1)u.

Thus

|λ− 1| ≤ ∥(D− D̃)M−1∥1 ≤ ∥(D− D̃)∥1∥M−1∥1. (19)

When a general-purpose preconditioner (denoted byMA
−1) is applied to the PageRank system (2), the preconditioned system

can be given by AMA
−1y = v with x = M−1A y. According to the derivation above, any eigenvalue λAM−1A

of AM−1A satisfies

|λAM−1A
− 1| ≤ ∥(A−MA)∥1∥M−1A ∥1. (20)

For this preconditioner, such computation ỹ = MA
−1u is implemented by (or regarded as) solving Ay = u to get an

approximation ỹ of y. Comparing (19) and (20) indicate that: if the computational costs of M−1u and MA
−1u are roughly

the same, but the inner systems with D required by computing M−1u are solved more accurately than the linear systems
with A required by computing MA

−1u, then the ODLR preconditioner M−1 is likely to be more efficient than the general-
purpose preconditioner. Recall that two inner systems with D need to be solved for computing M−1u while only one linear
system with A needs to be solved for computing MA

−1u. Therefore, the computational properties, e.g. sparsity and spectral
properties, of D should be much more favorable for solvers than those of A to meet the assumption above.

According to (8), D is more sparse than Ã, and the degree of its sparsity will be increased if the splitting (7) drops
more off-diagonal nonzero elements of Ã = I − ΠPΠ T into Boff . Denote this dropping operation by drop(), and then
D = I − drop(ΠPΠ T). If operation drop1 drops more nonzero elements than another operation drop2(), then

∥drop1(ΠPΠ T)∥1 ≤ ∥drop2(ΠPΠ T)∥1 ≤ 1.

Note that ρ(U) ≤ ∥U∥1 for any matrix U . Thus if more off-diagonal nonzero elements of Ã are dropped into Boff , the smallest
eigenvalue of D whose modulus equals 1 − ρ(drop(ΠPΠ T)) may get better separated from 0. Besides, after such dropping
process for Ã, the center of each Gershgorin disc [26] of Ã keeps unchanged while the radius of some discs becomes smaller.
Consequently, the eigenvalues of D are likely to be more clustered than those of A, especially when the dropping process
drops more nonzero elements.

In conclusion, to achieve a high efficiency of the ODLR preconditioner or to let it outperform general-purpose precon-
ditioners, probably a large proportion of the off-diagonal nonzero elements of Ã should be dropped into Boff . Meanwhile,
Boff should be compressed into a small number of rows in H , as this number equals the dimension of C . Thus, for the same
purpose, a large compression ratio of the PageRank problem would be required. Besides, assigning a suitable value to the
parameter θ for the partition method (Algorithm 1) is important. The reason is that: the sizem of C is bounded above by the
number of unmarked rows after the pre-marking step in Algorithm 1; nnz(D)/nnz(A) would be roughly equal to θ when θ is
not close to 0, as D of (8) contains all the elements of the pre-marked rows but only a small fraction of the elements of the
remaining rows. Finally, it is also important to choose suitable solvers for efficiently solving the inner systems with D and
those with C .

6. Numerical experiments

In this section, we report some numerical experiments that were carried out by a MATLAB R2015b implementation
on a 64-bit Ubuntu computer equipped with an Intel core i5-6500 processor and 16 GB RAM memory. The test Web
adjacency matrices G are extracted from the matrix repository of [27] and the Laboratory for Web Algorithmics [28–30].
Table 2 summarizes the characteristics of each G. For the PageRank linear system (2) corresponding to each G, we set the
personalization vector v = [1, 1, . . . , 1]T/n, and set the damping factor α = 0.99 that makes this system difficult to solve.

We first test the effect of the parameter θ on the performance of the matrix partition method (Algorithm 1). Then we
discuss choices of solvers to solve the inner systems in theODLR preconditioner. Finally, we present some comparison results
between the ODLR preconditioner and several other methods for solving PageRank problems.

Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470 465

Table 3
Results of running the partition method. Pmark denotes the proportion of the
rows in G that are pre-marked, Tp is the time cost (in seconds) of the partition
method, and C .R. represents the compression ratio defined in (12).

Problem & θ Pmark Tp C .R. nnz(D)
nnz(A)

m
n

uk-2007-100000
0 0 3.34 36.1% 6.6% 45.8%
0.1 83.5% 1.08 33.7% 13.6% 12.5%
0.2 94.0% 0.77 32.6% 22.6% 3.7%
0.3 97.7% 0.64 29.8% 30.7% 1.5%
0.4 99.0% 0.61 27.7% 40.5% 0.6%

cnr-2000
0 0 9.28 42.9% 14.2% 44.2%
0.1 53.1% 4.73 39.2% 19.2% 30.6%
0.2 81.7% 2.31 37.3% 26.3% 11.7%
0.3 93.5% 1.33 35.2% 34.5% 2.9%
0.4 97.4% 0.94 31.5% 41.7% 1.4%

web-BerkStan
0 0 19.41 32.5% 13.3% 61.4%
0.1 55.8% 9.41 30.6% 18.7% 34.3%
0.2 80.6% 5.18 29.8% 26.3% 12.5%
0.3 92.2% 3.14 27.5% 34.7% 4.1%
0.4 97.3% 2.17 24.5% 43.0% 1.2%

in-2004
0 0 41.00 45.5% 15.9% 46.8%
0.1 58.5% 19.10 42.1% 21.3% 27.7%
0.2 83.7% 9.88 40.6% 28.8% 8.7%
0.3 94.6% 5.73 38.0% 36.3% 2.3%
0.4 98.2% 4.18 34.4% 44.3% 0.6%

6.1. The effect of the parameter θ on the partition method

We test four PageRank problems constructed from the Web adjacency matrices: uk-2007-100000, cnr-2000, web-
BerkStan and in-2004. For each problem, we run thematrix partitionmethod (Algorithm 1) with θ = 0, 0.1, 0.2, 0.3, 0.4.
The results are reported in Table 3.

The following observations are drawn from Table 3. When θ = 0, no row of G is pre-marked, thus the partition method
deals with all the rows of G and achieves a very large compression ratio (refer to the values of C .R.), but meanwhile it
becomes time-consuming (See Tp). Besides, θ = 0 leads to the most sparse D (refer to nnz(D)/nnz(A)) but also causes the
largest capacitance matrix C (m/n > 44%). Thus θ = 0 is not an advisable choice for either controlling the time cost of the
partitionmethod or achieving a high efficiency of the ODLR preconditioner.When θ increases from 0 to 0.1, more than 50% of
the rows of G are pre-marked. As a result, the time cost of the partitionmethod and the dimension of C decrease significantly
while the compression ratio C .R. and the sparsity of D decrease marginally. Such trend continues when θ increases from 0.1
to 0.2, from 0.2 to 0.3 and from 0.3 to 0.4. Besides, the results in Table 3 also verify the previous deduction that the dimension
m of C is bounded from above by the amount of the unmarked rows after the pre-marking step, i.e. m/n ≤ 1 − Pmark, and
nnz(D)/nnz(A) roughly equals θ when θ is not close to 0. Based on these results, setting 0.2 ≤ θ ≤ 0.3 is reliable for the
partition method to make the compression ratio close to the largest value that can be achieved, to let D have a good level
of sparsity and the dimension of C be relatively small, by a moderate computational cost. We set θ = 0.3 in the following
experiments.

6.2. Discussion of solvers to solve inner systems with D and those with C

As previously demonstrated, the partition method with a suitable value of θ may well lead to a very sparse D and a
very small C , relative to A. For the ODLR preconditioner in this situation, we first focus on the choices of solvers for solving
the inner systems with D, since C = I + HD−1F is very small and the construction of it depends on the selected solver
for D−1 or said for the inner systems with D. Unlike solving the PageRank system (2) with A, direct solvers are applicable
for solving the inner systems with D, because D is much more sparse than A and these systems are usually not required
to be solved very accurately. Iterative solvers are clearly another type of applicable choices. Recall that D is a M-matrix
and strictly diagonally dominant by columns, and its spectral properties would be more favorable for iterative methods,
compared to A. Thus, Krylov subspace methods such as the Generalized Minimum Residual Method (GMRES) [31] may be
a good choice for solving the inner systems with D iteratively, as their convergence rates depend heavily on the spectral
properties of linear systems. Meanwhile, Incomplete LU (ILU) factorization algorithms are generally robust and efficient for
directly solving the linear systems with diagonally dominantM-matrices that are very sparse [32,33]. Thus, such algorithms

466 Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470

Table 4
ILUPACK (in short, ILU) and GMRES (20) (in short, GME) for solving Dy = bwith b = [1, . . . , 1]T until obtaining a solution ỹ that satisfies: ∥Dỹ−b∥2/∥b∥2 ≤
10−1, 10−2, 10−4 . LUD denotes the ILU factors of D, Iter is the number of iterations, Tf and Ts are the time costs (in seconds) required by the ILU factorization
and the solving phase, respectively, and Ttotal = Tf + Ts is the total time.

∥Dỹ− b∥2/∥b∥2
nnz(LUD)
nnz(A) Iter Tf Ts Ts Ttotal Ttotal

uk-2007-100000 ILU GME ILU ILU GME ILU GME
10−1 0.37 19 0.70 0.02 0.18 0.72 0.18
10−2 0.46 39 0.77 0.02 0.40 0.79 0.40
10−4 0.64 77 0.88 0.02 0.92 0.90 0.92

cnr-2000
10−1 0.44 35 0.92 0.02 1.47 0.94 1.47
10−2 0.53 82 0.93 0.03 3.63 0.96 3.63
10−4 0.57 163 0.96 0.03 7.12 0.99 7.12

wb-berk
10−1 0.48 75 2.22 0.06 8.39 2.28 8.39
10−2 0.56 230 2.34 0.07 25.51 2.41 25.51
10−4 0.59 571 2.33 0.07 63.88 2.40 63.88

in-2004
10−1 0.42 36 5.15 0.12 7.86 5.27 7.86
10−2 0.52 95 5.20 0.14 20.93 5.34 20.93
10−4 0.55 202 5.38 0.15 45.19 5.43 45.19

may be another good choice. We test both options in MATLAB, using the built-in implementation of GMRES (20),1 and the
ILUPACK implementation proposed by Bollhöfer and Saad [34] for ILU factorizations.

We test the same set of Web adjacency matrices G as the previous subsection. For the PageRank problem corresponding
to each G, we implement the partition method and the off-diagonal low-rank factorization to get the matrix D. Then for
each D, we solve the system Dy = b where b = [1, . . . , 1]T until obtaining an approximate solution ỹ that satisfies:
∥Dỹ− b∥2/∥b∥2 ≤ 10−1, 10−2, 10−4. The numerical results are reported in Table 4.

Seen from Table 4, for the first also the smallest problem, the total time cost (Ttotal) of GMRES (20) is less than that of
ILUPACK for reducing ∥Dỹ− b∥2/∥b∥2 to 10−1, but this advantage decays rapidly when higher accuracies 10−2 and 10−4 are
required. For the last three problems, ILUPACK requires significantly less total time than GMRES (20) in each case, especially
in the cases where higher accuracies of ỹ are required. Moreover, the solving time (Ts) of ILUPACK is always much smaller
than that of GMRES (20). Because a number of inner systemswithDwill be solved during solving the preconditioned system,
the smaller solving time of ILUPACK becomes a large advantage over GMRES (20) here. Besides, the values of nnz(LUD)/nnz(A)
in Table 4 show that: solving the systems with D causes just moderate memory costs even when highly accurate ILU
factorizations are implemented. Overall, in these experiments, ILUPACK performs as a better choice than GMRES (20) for
solving linear systems with matrices D.

The implemented ILU factorization ofD can be reused to compute the approximate capacitancematrix C̄ = I+HD̃−1F . The
comparison results of applying ILUPACK and GMRES (20) for solving linear systems with C̄ are very similar as the previous
results of solving systemswithD. Thuswe omit these results here. In conclusion, directmethods such as the ILU factorization
algorithms may well be better choices than iterative methods such as GMRES for solving the inner systems. Hereafter, we
use ILUPACK for solving the inner systems in the ODLR preconditioner.

6.3. ODLR preconditioner against some other methods for solving PageRank problems

We first compare the performances of the ODLR preconditioner, ILUPACK as a preconditioner, and the elimination
strategy [21] combinedwith the ILUPACK preconditioner. The iterative solver is GMRES (20). Because ILUPACK is also applied
to solve the inner systems in the ODLR preconditioner, comparing the ILUPACK and the ODLR preconditioners can intuitively
demonstrate some behaviors of the ODLR preconditioner (as a preconditioning strategy). The elimination strategy also
exploits properties of PageRank problems and inspires the development of the ODLR preconditioner, thus we add it into
the comparison here. Note that because the elimination strategy implements operations of subtracting some rows from
some other rows in A, the resulting matrix loses the property of 2.1. Thus an effective combination of this strategy and the
ODLR preconditioner cannot be achieved by simple ways and needs further study.

The memory cost (denoted bymem) is recorded as

mem =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

nnz(LUD)+ nnz(LUC)+ nnz(H)+ nnz(F)
nnz(A)

for the ODLR preconditioner,

nnz(LUA)
nnz(A)

for the ILUPACK preconditioner,

nnz(LUAE)
nnz(A)

for the elimination strategy,

(21)

1 The conventional GMRES algorithm restarted every 20 iterations.

Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470 467

Table 5
Numerical results of solving PageRank problems with α = 0.99. C .R. represents the compression ratio defined in (12), mem denotes the memory cost
recorded as (21), Iter is the number of iterations, Tp , Tf and Ts are the time costs (in seconds) required by the partition method (or the elimination process),
the ILU factorization process and the solving process respectively, Ttotal is the total time cost, ‘#’ means convergence is not reached, and ‘–’ means no
corresponding index in the given run.

Problem & Method C .R. Mem Iter Tp Tf Ts Ttotal
uk-2007-100000
ODLR 29.83% 1.02 7 0.63 1.73 0.22 2.58
ILUPACK – 1.04 90 – 28.28 1.77 30.05
Elimination – 0.20 47 0.32 6.53 0.73 7.58

web-Stanford
ODLR 14.04% 1.55 6 1.48 1.80 0.28 3.56
ILUPACK – 1.56 10 – 6.33 0.42 6.75
Elimination – 0.85 16 1.31 3.38 0.61 5.30

cnr-2000
ODLR 35.20% 1.00 7 1.03 1.27 0.32 2.62
ILUPACK – 1.04 66 – 7.12 2.26 9.38
Elimination – 0.38 23 0.74 2.19 0.74 3.67

web-BerkStan
ODLR 27.50% 1.15 6 2.32 6.31 0.68 9.31
ILUPACK – 1.13 74 – 48.09 6.29 54.38
Elimination – 0.42 19 1.85 9.01 1.48 12.34

in-2004
ODLR 38.00% 0.88 6 4.17 6.23 1.24 11.64
ILUPACK – 0.89 148 – 29.75 22.96 52.71
Elimination – 0.14 19 3.19 11.01 2.61 16.81

indochina-2004
ODLR 48.10% 0.71 41 33.55 64.88 66.43 164.86
ILUPACK – 0.71 162 – 695.57 217.87 913.43
Elimination – 0.20 24 88.36 258.08 30.05 376.49

wb-edu
ODLR 18.20% 1.62 7 48.64 44.42 9.15 102.21
ILUPACK – 1.58 38 – 90.72 39.99 130.71
Elimination – 1.16 11 41.15 79.43 10.74 131.32

uk-2002-13m
ODLR 38.70% 0.85 15 41.48 76.64 51.19 169.31
ILUPACK – 0.85 232 – 287.53 525.88 813.41
Elimination – 0.34 9 116.27 160.39 62.90 339.56

where LUD, LUC , LUA and LUAE are the ILU factors of D, C , A, and the coefficient matrix AE of the PageRank system eliminated
by the strategy [21], respectively.We compare the ODLR and the ILUPACK preconditioners in the situation that theirmemory
costs are roughly the same. Because the eliminated PageRank system is often much more sparse than the original system
(2), the memory cost of the elimination strategy is often much smaller than those of the other two preconditioners, even if
the eliminated system is preconditioned by very accurate ILU factorizations.

Then we also put into comparisons the Power method and some recently proposed methods: the algorithm proposed
by [11] that combines the Arnoldi method and an extrapolation technique (hereafter, Ext-Arnoldi), the multi-step splitting
iteration (hereafter, M-Iter) method from [12] and the preconditioned and extrapolation-accelerated GMRES (hereafter,
PEGMRES) from [18].

Each iterative process is started from the initial guess x0 = [0, 0, . . . , 0]T and is stopped when either ∥Axi − v∥2/∥v∥2 ≤
10−8, where xi is the latest approximate solution, or the number of iterations reaches 5000. The numerical results are
presented in Tables 5 and 6.

Seen from Table 5, a large compression ratio (C .R.) is achieved by the ODLR preconditioner for most tested problems.
Accordingly, the matrix D would be much more sparse than A, and the matrix C would be very small. As a result, when
the ODLR and the ILUPACK preconditioners cause similar memory costs, the ILU factorizations of D and C in the ODLR
preconditioner would be much more accurate than those of A in the ILUPACK preconditioner. Therefore, compared with
the ILUPACK preconditioner, the ODLR preconditioner would let the spectral properties of the preconditioned system more
favorable for iterative methods, according to the analysis in Section 5.2. Thus, as Table 5 shows, the ODLR preconditioner
converges in much fewer iterations (Iter) and less time (Ts) than the ILUPACK preconditioner. Besides, the time cost
(Tf) required by the ILU factorizations in the ODLR preconditioner is also remarkably smaller than that in the ILUPACK
preconditioner. As the time cost (Tp) for the partition process is moderate, the ODLR preconditioner finally shows a much
better overall performance (Ttotal) than the ILUPACK preconditioner. The overall performance (Ttotal) of the elimination
strategy is better than that of the ILUPACK preconditioner, thanks to the high sparsity of the eliminated PageRank systems.
However, this strategy is not competitive with the ODLR preconditioner in time costs Tf , Ts and Ttotal. In Table 6, the
comparison results of all the testedmethods show that: the total time (Ttotal) required by theODLRpreconditioner is generally

468 Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470

Table 6
Numerical results of solving PageRank problems with α = 0.99. MV denotes the number of matrix–vector multiplications that have been computed for
achieving convergence, Ttotal is the total time cost (in seconds)

Method MV Ttotal MV Ttotal MV Ttotal MV Ttotal
uk-2007-100000 web-Stanford cnr-2000 web-BerkStan

ODLR – 2.58 – 3.56 – 2.62 – 9.31
Power 1976 4.70 2150 7.74 2142 7.83 2116 19.93
M-Iter 1824 4.25 1879 5.91 1904 7.09 1886 17.05
PEGMRES 864 3.12 1078 4.74 941 4.94 1293 13.11
Ext-Arnoldi 650 2.03 1100 4.28 700 3.44 1300 13.00
ILUPACK – 30.05 – 6.75 – 9.38 – 54.38

in-2004 indochina-2004 wb-edu uk-2002-13m

ODLR – 11.64 – 164.86 – 102.21 – 169.31
Power 2120 39.91 2070 380.67 1999 190.00 2096 466.03
M-Iter 1993 38.29 1903 355.73 1860 191.02 2047 469.40
PEGMRES 1089 24.79 1324 288.39 1523 162.81 1450 348.47
Ext-Arnoldi 840 17.21 1430 293.91 1560 150.59 1440 336.23
ILUPACK – 52.71 – 913.43 – 130.71 – 813.41

much smaller than those required by other tested methods, when solving each of these difficult PageRank problems. We
consider that the results in Tables 5 and 6 have demonstrated the potential of the ODLR preconditioner for accelerating the
computations of difficult PageRank problems.

7. Conclusions

In this paper, we have defined a special set of rows (named core hub of rows) of the PageRank coefficient matrix A. We
demonstrated that A can be transferred into a block form Ã by partitioning its rows into core hubs, and the rows of each
off-diagonal block in Ã are identical. Then we present a low-rank factorization for compressing the off-diagonal blocks that
are relatively dense, and thus Ã is formulated as Ã = D + FH . This formulation is beneficial for inverting Ã if the low-rank
factorization compresses a large proportion of the nonzero elements of A such that D is much more sparse and the ranks
of F and H are much smaller, relative to A. Hence, we propose a matrix partition method to discover core hubs of rows
of A for supporting the low-rank factorization. Then a preconditioner based on the formulation Ã = D + FH is proposed.
Numerical experiments demonstrate that: thematrix partitionmethod can generally discover quality core hubs of rows of A
efficiently such that a large compression ratio is achieved, andmeanwhileD iswith high sparsity, and F andH have very small
ranks; direct solvers such as ILU factorization methods are suitable choices for solving the inner systems in the proposed
preconditioner; finally the proposed preconditioner generally shows better performance than some other preconditioners
and methods for solving difficult PageRank problems.

Acknowledgments

The authors would like to express sincere gratitude to the anonymous referees and editor Prof. Michael Ng for their
insightful comments and suggestions that improved this paper. This research is supported by NSFC (61772003, 11501085).

Appendix A. The proof of Property 2.1

We first introduce the following lemma.

Lemma A.1 (Property 2.1 in [21]). In P of (1), nonzero entries of each column are positive and have the same value.

Suppose the set of row indexes of the rows in S is Ns. Let R = {1 : n}, then the off-diagonal part of S can be written as
A(Ns, R\Ns). Because A = I − αP , it is clear that A(Ns, R\Ns) is a sub-matrix of αP .

For any two rows row1 and row2 of A(Ns, R\Ns), their zero-nonzero patterns must be the same, because S is a core hub
satisfying Definition 2.2. Therefore the nonzero elements of row1 are distributed at the same set of columns as the nonzero
elements of row2. Meanwhile, based on Lemma A.1, any nonzero element of row1 and any nonzero element of row2 must
have the same value if they are in the same column. Thus row1 = row2. That is, the rows in the off-diagonal part of S are all
identical.

Appendix B. Motivations and effects of the amendments for the partition method

Amendment 1. Suppose a core hub hubi (1 ≤ i ≤ n) has ni rows, and each row of its off-diagonal part has d nonzero
entries. If the off-diagonal block row corresponding to this hub is compressed by the low-rank factorization (10)–(11),
actually this hub increases the compression ratio (12) by (ni − 1)d/nnz(A) since the off-diagonal block row is compressed

Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470 469

into one single row. We denote the amount of the nonzero entries of each row G(j, :) (1 ≤ j ≤ n) by rownnz(j). Because
d ≤ minG(j,:)∈hubinnz(G(j, :)), rows with small rownnz values will contribute little to the compression ratio. Hence, after the
initial setting (step 1), we mark the rows of G and their hubs in a rownnz increasing order until the amount of nonzeros in
the marked rows reaches θnnz(G), where 0 < θ < 1. We call this step as pre-marking step. For example, if θ is set as 25%,
the partitionmethod indeed only deals with the relatively dense rows that contain about 75% of the nonzero entries of G and
contribute most to the compression ratio. Because the pre-marked rows are more sparse than the remaining rows, a large
proportion of rows can be pre-marked and be skipped during the remaining process of the partition method, even with a
tiny θ . Therefore, applying this pre-making step would reduce the time cost of the partition method, without decreasing
much the compression ratio. Meanwhile, the sizem of F and H will be bounded from above by the amount of the unmarked
rows after this pre-marking step. Suppose s rows of G are pre-marked. The corresponding rows of A can be permuted to the
top and be regarded as the prior s block rows of Ã that should be contained in D (8) and not be compressed.

Amendment 2. In the Web link graph, few pages can contain more than 50 hyperlinks. Thus few columns of G can get more
than 50 nonzero elements. As a result, each core hub of rows of G is unlikely to contain more than 50 rows. Moreover,
after the pre-marking step, only the unmarked rows, which are relatively dense, will be traversed by the inner traversals to
enlarge hubs. Thus, indeed, each set of rows that can be classified into a core hub is listed closer with each other in the inner
traversals. Based on these factors, we only traverse atmostω = 100 unmarked rows in each inner traversal. This amendment
makes the length of each inner traversal be smaller than 100, and thus will decrease the time cost of the partition method.
Moreover it will not worsen much the quality of the core hubs that will be discovered.

Amendment 3. When we judge whether an unmarked row G(j, :) (1 ≤ j ≤ n) could be added to a hub hubi (1 ≤ i ≤ n), we
have to check whether the rows in the off-diagonal part of hubi∪G(j, :) have the same zero-nonzero patterns. This check can
be done by an element-wise comparison for the rows of hubi∪G(j, :), however, which is costly. Hencewe employ a strategy to
deal with this problem. Let R = 1 : n and denote the set of the row indexes of hubi (1 ≤ i ≤ n) by Ni. For each inner traversal
related with hubi (1 ≤ i ≤ n), we compute a value key(j) for each visited unmarked row G(j, :) (i+ 1 < j < min(n, i+ω)) by

key(j) =
∑

G(j,k)=1

k−
∑

G(i,k)=1

kwith k ∈ {R\{Ni ∪ j}}. (22)

If key(j) ̸= 0, thenG(j, :) should not be added to hubi. Otherwise, we implement an element-wise comparison for the nonzero
patterns of the rows of hubi ∪ G(j, :) to judge whether it is a core hub. This amendment generally can decrease the times of
implementing element-wise comparison of the nonzero patterns of different rows without affecting the information of the
core hubs that will be discovered.

References

[1] C.-Q. Gu, F. Xie, K. Zhang, A two-step matrix splitting iteration for computing PageRank, J. Comput. Appl. Math. 278 (2015) 19–28.
[2] D.F. Gleich, PageRank beyond the web, SIAM Rev. 57 (2015) 321–363.
[3] A.N. Langville, C.D. Meyer, A reordering for the PageRank problem, SIAM J. Sci. Comput. 27 (2006) 2112–2120.
[4] A.N. Langville, C.D. Meyer, Google’s Pagerank and Beyond: The Science of Search Engine Rankings, Princeton University Press, Princeton, NJ, USA, 2006.
[5] W. Zhang, W. Tong, Z. Chen, R. Glowinski, Current Trends in High Performance Computing and Its Applications, Springer Press, Berlin, Germany, 2005.
[6] P. Boldi, M. Santini, A deeper investigation of PageRank as a function of the damping factor: In Dagstuhl Seminar Proceedings of Web Information

Retrieval and Linear Algebra Algorithms, 2007.
[7] G.H. Golub, C. Greif, An Arnoldi-type algorithm for computing PageRank, BIT Numer. Math. 46 (2006) 759–771.
[8] S.D. Kamvar, T.H. Haveliwala, G.H. Golub, Adaptive methods for the computation of the PageRank, Linear Algebra Appl. 386 (2004) 51–65.
[9] D.F. Gleich, A.P. Gray, C. Greif, T. Lau, An inner-outer iteration for computing PageRank, SIAM J. Sci. Comput. 32 (2010) 349–371.

[10] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, G.H. Golub, Extrapolation methods for accelerating PageRank computation, in: Proc. of the 12th
International World Wide Web Conference, 2003, pp. 261-270.

[11] X. Tan, A new extrapolation method for PageRank computations, J. Comput. Appl. Math. 313 (2017) 383–392.
[12] C. Wen, T.-Z. Huang, Z.-L. Shen, A note on the two-step matrix splitting iteration for computing PageRank, J. Comput. Appl. Math. 315 (2017) 87–97.
[13] H.-F. Zhang, T.-Z. Huang, C. Wen, Z.-L. Shen, FOM accelerated by an extrapolation method for solving PageRank problems, J. Comput. Appl. Math. 296

(2016) 397–409.
[14] G. Wu, Y.-M. Wei, An Arnoldi-Extrapolation algorithm for computing PageRank, J. Comput. Appl. Math. 234 (2010) 3196–3212.
[15] G. Wu, Y.-M. Wei, Arnoldi versus GMRES for computing PageRank: A theoretical contribution to Google’s PageRank problem, ACM Trans. Inf. Syst.

28 (3) (2010), Article 11.
[16] D.F. Gleich, L. Zhukov, P. Berkhin, Fast Parallel Pagerank: A Linear System Approach, Yahoo! Tech. Rep., 2005.
[17] P. Berkhin, A survey on PageRank computing, Internet Math. 2 (2005) 73–120.
[18] B.-Y. Pu, T.-Z. Huang, C. Wen, A preconditioned and extrapolation-accelerated GMRES method for PageRank, Appl. Math. Lett. 37 (2014) 95–100.
[19] G. Wu, Y.-C. Wang, X.-Q. Jin, A preconditioned and shifted GMRES algorithm for the PageRank problem with multiple damping factors, SIAM J. Sci.

Comput. 34 (2012) 2558–2575.
[20] G.M. Del Corso, A. Gullí, F. Romani, Comparison of Krylov subspace methods on the PageRank problem, J. Comput. Appl. Math. 210 (2007) 159–166.
[21] Z.-L. Shen, T.-Z. Huang, B. Carpentieri, X.-M. Gu, C. Wen, An efficient elimination strategy for solving PageRank problems, Appl. Math. Comput. 298

(2017) 111–122.
[22] The MathWorks, Inc., MATLAB Reference Guide, Natick, USA, 1992.
[23] W.W. Hager, Updating the inverse of a matrix, SIAM Rev. 31 (1989) 221–239.
[24] C. Wang, H. Li, D. Zhao, An explicit formula for the inverse of a pentadiagonal Toeplitz matrix, J. Comput. Appl. Math. 278 (2015) 12–18.
[25] J.M. Varah, A lower bound for the smallest singular value, Linear Algebra Appl. 11 (1975) 3–5.
[26] S. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk 6 (1931) 749–754.

http://refhub.elsevier.com/S0377-0427(18)30435-7/sb1
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb2
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb3
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb4
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb5
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb7
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb8
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb9
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb11
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb12
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb13
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb13
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb13
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb14
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb15
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb15
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb15
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb16
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb17
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb18
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb19
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb19
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb19
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb20
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb21
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb21
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb21
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb23
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb24
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb25
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb26

470 Z.-L. Shen et al. / Journal of Computational and Applied Mathematics 346 (2019) 456–470

[27] T.A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software 38 (1) (2011) 1:1–1:25. Available at the URL:
http://www.cise.ufl.edu/research/sparse/matrices.

[28] P. Boldi, S. vigna, the webgraph framework I: Compression techniques, in: Proc. of the 13th international conference on World Wide Web, 2004, pp.
595-602.

[29] P. Boldi, M. Rosa, M. Santini, S. Vigna, Layered label propagation: Amultiresolution coordinate-free ordering for compressing social networks, in: Proc.
of the 20th International Conference on World Wide Web, 2011, pp. 587-596.

[30] P. Boldi, B. Codenotti, M. Santini, S. Vigna, Ubicrawler: A scalable fully distributed Web crawler, Softw. - Pract. Exp. 34 (2004) 711–726.
[31] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986)

856–869.
[32] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys. (182) (2002) 418–477.
[33] J. Diaz, Mathematics for Large Scale Computing, CRC Press, 1989.
[34] M. Bollhöefer, Y. Saad, O. Schenk, ILUPACK — preconditioning software package, 2010. Available online at http://ilupack.tu-bs.de/. Release V2.3,

December 2010.

http://www.cise.ufl.edu/research/sparse/matrices
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb30
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb31
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb31
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb31
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb32
http://refhub.elsevier.com/S0377-0427(18)30435-7/sb33
http://ilupack.tu-bs.de/

	Off-diagonal low-rank preconditioner for difficult PageRank problems
	Introduction
	Preliminaries
	Off-diagonal low-rank factorization
	Matrix partition method for supporting the low-rank factorization
	Off-diagonal low-rank preconditioner
	Formulation and implementation
	Performance analysis

	Numerical experiments
	The effect of the parameter θ on the partition method
	Discussion of solvers to solve inner systems with D and those with C
	ODLR preconditioner against some other methods for solving PageRank problems

	Conclusions
	Acknowledgments
	The proof of Property 2.1
	Motivations and effects of the amendments for the partition method
	References

