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ARTICLE

An energy-based analysis of reduced-order models of
(networked) synchronous machines
T. W. Stegink a, C. De Persisa and A. J. Van Der Schaftb

aEngineering and Technology institute Groningen, University of Groningen, Groningen, The Netherlands;
bJohann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen,
The Netherlands

ABSTRACT
Stability of power networks is an increasingly important topic
because of the high penetration of renewable distributed gen-
eration units. This requires the development of advanced tech-
niques for the analysis and controller design of power
networks. Although there are widely accepted reduced-order
models to describe the power network dynamics, they are
commonly presented without details about the reduction pro-
cedure. The present article aims to provide a modular model
derivation of multi-machine power networks. Starting from
first-principle fundamental physics, we present detailed dyna-
mical models of synchronous machines and clearly state the
underlying assumptions which lead to some of the standard
reduced-order multi-machine models. In addition, the energy
functions for these models are derived, which allows to repre-
sent the multi-machine systems as port-Hamiltonian systems.
Moreover, the systems are proven to be shifted passive, which
permits for a power-preserving interconnection with other
passive components.
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1. Introduction

1.1. Problem statement/motivation

The control and stability of power networks has become increasingly challenging over
the last decades. As renewable energy sources penetrate the grid, the conventional
power plants have more difficulty in keeping the frequency around the nominal
value, e.g. 50 Hz, leading to an increased chance of network failures or, in the worst
case, even blackouts.

The current developments require a sophisticated stability analysis of more advanced
models for the power network as the grid is operating more frequently near its capacity
constraints. For example, using high-order models of synchronous machines that better
approximate the actual system allows us to establish results on the stability of power
networks that are more reliable and accurate.

However, in much of the recent literature, a rigorous stability analysis has been
carried out only for low-order models of the power network which have a limited
accuracy. For models of intermediate complexity, the stability analysis has merely been
done for the linearized system. Hence, a novel approach is required to make a profound
stability analysis of these more complicated models possible.

In this article, we propose a unifying energy-based approach for the modelling and
analysis of multi-machine power networks which is based on the theory of port-
Hamiltonian systems. Since energy is the main quantity of interest, the port-
Hamiltonian framework is a natural approach to deal with the problem [1].
Moreover, it lends itself to deal with large-scale nonlinear multi-physics systems like
power networks [2–5].

1.2. Literature review

The emphasis in the present article lies on the modelling and analysis of (networked)
synchronous machines since they have a crucial role in the stability of power networks
as they are the most flexible and have to compensate for the increased fluctuation of
both the supply and demand of power. An advanced model of the synchronous
machine is the first-principle model which is derived in many power-engineering
books [6–8], see in particular [7], Chapter 11] for a detailed derivation of the model.

Modelling the first-principle synchronous (multi-)machine model using the theory
of port-Hamiltonian systems has been done previously in [2]. However, in this work,
stabilization of the synchronous machine to the synchronous frequency could not be
proven. In [9] a similar model for the synchronous machine is used, but with the
damper windings neglected. Under some additional assumptions, asymptotic stability of
a single machine is proven using a shifted energy function. For multi-machine systems,
however, stability could not be proven using a similar approach.

Summarizing, the complexity of the full-order model of the synchronous machine
makes a rigorous stability analysis troublesome, especially when considering multi-
machine networks, see also [10]. Moreover, it is often not necessary to consider the full-
order model when studying a particular aspect of the electromechanical dynamics (e.g.
operation around the synchronous frequency) [7].

2 T. W. STEGINK ET AL.



On the other side of the spectrum, much of the literature using Lyapunov stability
techniques rely on the second-order (non)linear swing equations as the model for the
power network [7,11–17] or the third-order model as e.g. in [18]. For microgrids
similar models are considered in which a Lyapunov stability analysis is carried out
[19,20]. However, the models are often presented without stating the details on the
model reduction procedure or the validity of the model. For example, the swing
equations are inaccurate and only valid on a specific timescale up to the order of
a few seconds so that asymptotic stability results have a limited value for the actual
system [6–8,21].

Hence, it is appropriate to make simplifying assumptions for the full-order model and to
focus onmulti-machinemodels with intermediate complexity which provide amore accurate
description of the network compared to the second- and third-order models [6–8]. In doing
so, we explain how these intermediate-order models are obtained from the first-principle
model and what the underlying assumptions are. Here we follow the lines of [7], where
a detailed derivation of the reduced-order models is given.

1.3. Contributions

The main contribution of this chapter consists of establishing a unifying energy-based
analysis of intermediate-order models of (networked) synchronous machines. In doing
so, we first explain how these intermediate-order models are obtained from the first-
principle model and highlight what the underlying assumptions are, and then how these
synchronous machines are coupled through inductive lines. This part has a tutorial
value where we follow the lines of [7], in which a detailed derivation of the reduced-
order models is given. This forms the foundation of our second contribution which is
the systematic procedure to obtain the energy functions of the reduced order multi-
models. In particular, we show how the energy functions of the reduced order models
are obtained from the first-principle model, which is represented in a very different set
of variables and parameters, and that these energy functions contain a common factor
which is often ignored in power system stability studies. Another key contribution is
that, building on the expression of the energy functions (or Hamiltonians), port-
Hamiltonian representations of various synchronous machine models are obtained
which include the full-order model as well as the sixth-, third-, and classical second-
order models. In particular, this reveals the sparse but nontrivial interconnection and
damping structures of these systems, having the complexity mainly appearing in the
expression of the Hamiltonian. Specifically for a realistic sixth-order model, we show
that the system is dissipative by explicitly proving that the dissipation matrix is positive
definite which is far from trivial. Finally, by exploiting the specific structure of the port-
Hamiltonian systems (state-independent interconnection and damping structure),
shifted passivity of the reduced order multi-machine models is proven. To the authors’
best knowledge, except for our previous work [22], such shifted passivity properties
have not been established for (4,5,6-)order models. This allows to consider such
intermediate-order multi-machine models, having a quite accurate description of the
power network dynamics, while permitting a rigorous (Lyapunov-based) stability ana-
lysis of nontrivial equilibria. This is in contrast with the current literature which mainly
relies on linearization techniques for the stability analysis of such complex systems.
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1.4. Outline

The remainder of the article is structured as follows. First, we state the preliminaries in
Section 2. Then, in Section 3 the full-order first-principle model is presented and its
port-Hamiltonian form is given. The model reduction procedure is discussed in Section
4 in which models of intermediate order are obtained. In Section 5 these models are
used to establish multi-machine models, including the classical second-order model.
Then, in Section 6 energy functions of the reduced order models are derived, which in
Section 7 are used to put the multi-machine models in port-Hamiltonian form. Finally,
Section 8 discusses the conclusions and possible directions for future research.

2. Preliminaries

2.1. Notation

The set of real numbers and the set of complex numbers are, respectively, defined byR ;C .
Given a complex number α 2 C , the real and imaginary parts are denoted by <ðαÞ;=ðαÞ,
respectively. The imaginary unit is denoted by j ¼ ffiffiffiffiffiffiffi�1

p
. Let v1; v2; . . . ; vnf g be a set of

real numbers, then diagðv1; v2; . . . ; vnÞ denotes the n� n diagonal matrix with the entries
v1; v2; . . . ; vn on the diagonal and likewise colðv1; v2; . . . ; vnÞ denotes the column vector
with the entries v1; v2; . . . ; vn. Let f : R

n ! R be a twice differentiable function, then
�f ðxÞ denotes the gradient of f evaluated at x and �2f ðxÞ denotes the Hessian of f
evaluated at x. Given a symmetric matrix A 2 R

n�n, we write A> 0 ðA � 0Þ to indicate
that A is a positive (semi-)definite matrix.

2.1.1. Power network
Consider a power grid consisting of n buses. The network is represented by a connected
and undirected graph G ¼ ðV; EÞ, where the set of nodes, V ¼ 1; . . . ; nf g, is the set of
buses representing the synchronous machines and the set of edges, E � V � V, is the set
of transmission lines connecting the buses where each edge ði; kÞ ¼ ðk; iÞ 2 E is an
unordered pair of two vertices i; k 2 V. Given a node i, then the set of neighbouring
nodes is denoted by N i : ¼ fk j ði; kÞ 2 Eg.
Nomenclature

α Voltage angle with respect to dq0-reference frame of the rotor.
δ Rotor angle with respect to the synchronous rotating reference frame.
Δω Rotor frequency with respect to the synchronous rotating reference frame.
γ Rotor angle of the synchronous machine.
B Incidence matrix of the network.
Ψ0 0-axis stator winding flux linkage.
ΨD d-axis damper winding flux linkage.
Ψd d-axis stator winding flux linkage.
Ψf Field winding flux linkage.
Ψg Additional q-axis damper winding flux linkage.
ΨQ q-axis damper winding flux linkage.
Ψq q-axis stator winding flux linkage.
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θ Voltage angle with respect to the synchronous rotating reference frame.
ω Rotor frequency.
ωs Synchronous frequency (e.g. 50 Hz).
Bii Self-susceptance at node i.
Bij Line susceptance between nodes i and j.
D Asynchronous damping constant.
d Mechanical damping constant.
E0
d d-axis component of the transient internal emf.

E00
d d-axis component of the subtransient internal emf.

E0
q q-axis component of the transient internal emf.

E00
q q-axis component of the subtransient internal emf.

I0 0-axis stator winding current.
ID d-axis damper winding current.
Id d-axis stator winding current.
If Field winding current.
Ig Additional q-axis damper winding current.
IQ q-axis damper winding current.
Iq q-axis stator winding current.
p Angular momentum.
Rs Stator winding resistance.
T0
doi d-axis open-circuit transient time constant.

T00
doi d-axis open-circuit subtransient time constant.

Tdq0 The dq0-transformation or Park transformation.
T0
qoi q-axis open-circuit transient time constant.

T00
qoi q-axis open-circuit subtransient time constant.

Vd d-axis component of the external emf (of the synchronous machine).
Vq q-axis component of the external emf (of the synchronous machine).
Xdi d-axis synchronous reactance.
Xqi q-axis synchronous reactance.
X0
di d-axis transient reactance.

X0
qi q-axis transient reactance.

X00
di d-axis subtransient reactance.

X00
qi q-axis subtransient reactance.

2.2. The dq0-transformation

An important coordinate transformation used in the literature on power systems is the
dq0-transformation [2,7] or Park transformation [23 ] which is defined by

Tdq0ðγÞ ¼
ffiffiffi
3
2

r cosðγÞ cosðγ� 2π
3 Þ cosðγþ 2π

3 Þ
sinðγÞ sinðγ� 2π

3 Þ sinðγþ 2π
3 Þ

1ffiffi
2

p 1ffiffi
2

p 1ffiffi
2

p

2
4

3
5: (2:1)

Observe that the mapping Equation (2.1) is orthogonal, i.e. T�1
dq0ðγÞ ¼ TT

dq0ðγÞ. The dq0-
transformation offers various advantages when analyzing power system dynamics and is
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therefore widely used in applications. In particular, the dq0-transformation maps
symmetric or balanced three-phase AC signals (see [24], Section 2] for the definition)
to constant signals. This significantly simplifies the modelling and analysis of power
systems, which is the main reason why the transformation Equation (2.1) is used in the
present case. In addition, the transformation Equation (2.1) exploits the fact that, in
a power system operated under symmetric conditions, a three-phase signal can be
represented by two quantities [23].

For example, for a synchronous machine with AC voltage VABC ¼ colðVA;VB;VCÞ
in the static ABC-reference frame, see Figure 1, the dq0-transformation is used to map
this AC voltage to the (local) dq0-coordinates as Vdq0 ¼ colðVd;Vq;V0Þ ¼ Tdq0ðγÞVABC.
Note that the local dq0-reference is aligned with the rotor of the machine which has
angle γ with respect to the static ABC-reference frame, see again Figure 1. In case more

that one synchronous machine is considered, then the voltage Vdq0k in local dq0-
coordinates of machine k can be expressed in the local dq0-coordinates of machine i as

Vdq0i ¼ Tdq0ðγiÞVABCi ¼ Tdq0ðγiÞVABCk ¼ Tdq0ðγiÞTdq0ðγkÞTVdq0k : (2:2)

An analogous expression can be obtained for relation between the currents Idq0
i
; and

Idq0
k
. Here we can verify that

Tdq0ðγiÞTdq0ðγkÞT ¼
cos γik � sin γik 0
sin γik cos γik 0
0 0 1

2
4

3
5

where γik : ¼ γi � γk represents the rotor angle difference between synchronous
machines i and k respectively.

Figure 1. Schematic illustration of a (salient-pole) synchronous machine [7].
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2.3. Phasor notation

When considering operation around the synchronous frequency, the voltages and
currents can be represented as phasors in the dq-coordinates rotating at the synchro-
nous frequency. We use the following notation for the phasor1 [7]:

�V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
q þ V2

d

q
exp j arctan

Vd

Vq

� �� �
¼ �Vq þ �Vd ¼ Vq þ jVd;

�I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2q þ I2d

q
exp j arctan

Id
Iq

� �� �
¼ �Iq þ �Id ¼ Iq þ jId;

which is commonly used in the power system literature [7,23]. Here the bar-
notation is used to represent the complex phasor and we define �Vq ¼ Vq; �Vd ¼
jVd and a likewise �Iq ¼ Iq;�Id ¼ jId for the currents. In this case, the mapping
between the voltages (and current) from one dq-reference frame to another is
given by

�Vdqi ¼ e�jγik �Vdqk ¼ ðcos γik � j sin γikÞðVdqk
q þ jVdqk

d Þ
¼ Vdqk

q cos γik þ Vdqk

d sin γik þ jðVdqk

d cos γik � Vdqk
q sin γikÞ:

(2:3)

By equating the real and imaginary parts, this exactly corresponds to the transformation
Equation (2.2) as expected.

3. Full-order model of the synchronous machine

A synchronous machine is a multi-physics system characterized by both mechanical
and electrical variables, i.e. an electromechanical system. Derived from physical first-
principle laws, the dynamics can be described in terms of certain specific physical
quantities such as the magnetic flux, voltages, angles, momenta and torques. The
complete model can be described by a system of ordinary differential equations
(ODE’s) where the flux-current relations are represented by algebraic constraints.
The generator rotor circuit is formed by a field circuit and three amortisseur
circuits, which is divided into one d-axis circuit and two q-axis circuits. The stator
is formed by three-phase windings which are spatially distributed in order to
generate three-phase voltages at machine terminals. For convenience, magnetic
saturation effects are neglected in the model of the synchronous machine. After
applying the dq0-transformation Tdq0ðγÞ on the ABC-variables with respect to the
rotor angle γ, its dynamics in the dq0-reference frame is governed by the following
ninth-order system of differential equations [2,7,8]2:

_γ ¼ ω (3:1a)

J _ω ¼ ΨqId � ΨdIq � dωþ τ: (3:1b)

_Ψd ¼ �RsId � Ψqω� Vd (3:1c)
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_Ψq ¼ �RsIq þ Ψdω� Vq (3:1d)

_Ψ0 ¼ �RsI0 � V0 (3:1e)

_Ψf ¼ �Rf If þ Vf (3:1f)

_Ψg ¼ �RgIg (3:1g)

_ΨD ¼ �RDID (3:1h)

_ΨQ ¼ �RQIQ (3:1i)

Here Vd;Vq;V0 are instantaneous external voltages, τ is the external mechanical torque
and Vf is the excitation voltage. The rotor angle γ, governed by Equation (3.1a), is taken
with respect to the static ABC-reference frame, see also Figure 1. The quantities
Ψd;Ψq;Ψ0 are stator winding flux linkages and Ψf ;Ψg ;ΨD;ΨQ are the rotor flux
linkages, respectively, and are related to the currents as [7]

Ψd

Ψf

ΨD

2
4

3
5 ¼

Ld κMf κMD

κMf Lf LfD
κMD LfD LD

2
4

3
5

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ld

Id
If
ID

2
4

3
5 (3:2)

Ψq

Ψg

ΨQ

2
4

3
5 ¼

Lq κMg κMQ

κMg Lg LgQ
κMQ LgQ LQ

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lq

Iq
Ig
IQ

2
4

3
5 (3:3)

Ψ0 ¼ L0I0; (3:4)

where κ ¼
ffiffi
3
2

q
, see also the nomenclature in Section 2.1. Note that in the dq0-

coordinates, the inductor equations can be split up in each of the three axes, resulting
into the three completely independent Equations (3.2)–(3.4). For a physically relevant
model, the inductance matrices Ld;Lq 2 R

3�3 are assumed to be positive definite. An
immediate observation from Equations (3.1e) and (3.4) is that the dynamics associated
with the 0-axis is fully decoupled from the rest of the system. Therefore, without loss of
generality, we omit this differential equation in the sequel and focus solely on the
dynamics in the d- and q-axes.

Remark 3.1 (Additional damper winding) Many generators, and in particular
turbogenerators, have a solid-steel rotor body which acts as a screen in the q-
axis [7]. It is convenient to represent this by the additional winding in the q-axis
represented by the symbol g, see Equation (3.1g). However, for salient-pole
synchronous generators, this winding is absent. For completeness, both cases are
considered in this article.
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3.1. Port-Hamiltonian representation

Inspired by the work [2], it can be shown that full-order model (3.1) admits a port-
Hamiltonian representation, see [1] for a survey. More specifically, by defining the state
vector x ¼ ðγ; p;Ψd;Ψq;Ψf ;Ψg ;ΨD;ΨQÞ; p ¼ Jω, the dq-dynamics of a single synchro-
nous machine can be written in port-Hamiltonian form as

_γ
_p
_Ψd
_Ψq
_Ψf
_Ψg
_ΨD
_ΨQ

2
66666666664

3
77777777775

¼

0 1 0 0 0 0 0 0
�1 �d Ψq �Ψd 0 0 0 0
0 �Ψq �Rs 0 0 0 0 0
0 Ψd 0 �Rs 0 0 0 0
0 0 0 0 �Rf 0 0 0
0 0 0 0 0 �Rg 0 0
0 0 0 0 0 0 �RD 0
0 0 0 0 0 0 0 �RQ

2
66666666664

3
77777777775
�HðxÞ þ Gu

y ¼ GT�HðxÞ ¼
ω
Id
Iq
If

2
664

3
775; GT ¼

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

2
664

3
775; u ¼

τ
Vd

Vq

Vf

2
664

3
775

(3:5)

where the Hamiltonian is given by the sum of the electrical and mechanical energy:

HðxÞ ¼ HdðxÞ þ HqðxÞ þHmðxÞ

¼
Ψd

Ψf

ΨD

2
4

3
5T Ld κMf κMD

κMf Lf LfD
κMD LfD LD

2
4

3
5�1

Ψd

Ψf

ΨD

2
4

3
5

þ
Ψq

Ψg

ΨQ

2
4

3
5T Lq κMg κMQ

κMg Lg LgQ
κMQ LgQ LQ

2
4

3
5�1

Ψq

Ψg

ΨQ

2
4

3
5þ J�1p2:

Here the power-pairs ðVd; IdÞ; ðVq; IqÞ correspond to the external electrical power
supplied by the generator. In addition, the power-pair ðVf ; If Þ corresponds to the
power supplied by the exciter to the synchronous machine. Finally, the pair ðτ;ωÞ is
associated with the mechanical power injected into the synchronous machine. As
noted from the port-Hamiltonian structure of the system (3.5), it naturally follows
that the system is passive with respect to the previously mentioned input/output
pairs, i.e.

_H � τωþ VdId þ VqIq þ Vf If :

Remark 3.2 (State-dependent interconnection matrix) A crucial observation is that the
interconnection structure of the port-Hamiltonian system (3.5) depends on the state x.
This property significantly increases the complexity of a Lyapunov based stability
analysis of equilibria that are different from the origin, see [2,9,24,25] for more details
on this challenge.
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4. Model reduction of the synchronous machine

To simplify the analysis of (networked) synchronous machines, it is preferable to
consider reduced-order models with decreasing complexity [7,8,26]. In this section
we, following the exposition of [7], discuss briefly how several well-known lower
order models are obtained from the first-principle model (3.1). In each reduction
step, the underlying assumptions and validity of the reduced-order model are
discussed.

The main assumptions rely on timescale separation implying that singular per-
turbation techniques can be used to obtain reduced-order models [27]. In particular,
in the initial reduction step, this allows the stator windings of the synchronous
machine to be considered in quasi-steady state. In [28] this quasi-steady-state
assumption is validated by the use of iterative timescale separation. In doing so, it
is assumed that the frequency is around the synchronous frequency3 ωs and that
_Ψd; _Ψq are assumed to be small [7].

Assumption 4.1 (Operation around ω � ωs) The synchronous machine is operating
around synchronous frequency (ω � ωs) and in addition _Ψd and _Ψq are small compared
to � ωΨq and ωΨd which implies

Vd

Vq

� �
� � Rs 0

0 Rs

� �
Id
Iq

� �
þ ωs

�Ψq

Ψd

� �
: (4:1)

Remark 4.2 (Singular perturbation process) It is known that during transients Ψd;Ψq

oscillate with high frequency equal to ω � ωs such that _Ψd; _Ψq become very large. The
validation of the contradicting Assumption 4.1 is part of a singular perturbation process
where the slow variables are approximated by taking the averaging effect of the fast
oscillatory variables [27,28].

By Assumption 4.1, the two differential Equations (3.1c) and (3.1d) corresponding to
Ψd;Ψq are replaced by algebraic Equation (4.1), so that a system of differential-algebraic
equations (DAEs) is obtained [7]. For many power system studies, it is desirable to rephrase
and simplify themodel (3.1f)–(3.1a) together with the algebraic Equation (4.1) so that they are
in a more acceptable form and easier to interface to the power system network equations. In
the following sections, under some additional assumptions based on timescale separation, we
eliminate the two algebraic constraints obtained by putting an equality in Equation (4.1).
Before examining how this is done, it is necessary to relate the circuit equations to the flux
conditions inside the synchronousmachine when it is in the steady state, transient state or the
subtransient state.

4.1. Distinction of operation states

Following the established literature on power systems [6–8,26], a distinction between
three different operation states of the synchronous machine is made. Each of the three
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characteristic operation states correspond to different stages of rotor screening and
a different timescale [27,28], see Figure 2.

Immediately after a fault, the current induced in both the rotor field and
damper windings forces the armature reaction flux completely out of the rotor
to keep the rotor flux linkages constant (this is also referred to as the Lenz effect),
see Figure 2(a), and the generator is said to be in the subtransient state [7,8].

As energy is dissipated in the resistance of the rotor windings, the currents
maintaining constant rotor flux linkages decay with time allowing flux to enter the
windings. As for typical generators the rotor DQ-damper winding resistances are the
largest, the DQ-damper currents are the first to decay, allowing the armature flux to
enter the rotor pole face. However, it is still forced out of the field winding and the
g-damper winding itself, see Figure 2(b). Then, the generator is said to be in the
transient state.

The field and g-winding currents then decay with time to their steady-state values
allowing the armature reaction flux eventually to enter the whole rotor and assume
the minimum reluctance path. Then, the generator is in steady state as illustrated in
Figure 2(c) [7].

Remark 4.3 (Properties of the g-damper winding) Since the field winding and g-
damper winding resistances are comparable and are typically much smaller compared
to the DQ-damper winding resistances, the field winding f and the g-damper winding
have similar properties in the different operation states.

4.1.1. Synchronous machine parameters
Depending on which state the synchronous machine is operating in, the effective
impedance of the armature coil to any current change will depend on the para-
meters of the different circuits, their mutual coupling and whether or not the
circuits are closed or not [7]. The (positive scalar) inductances and timescales
associated with transient and subtransient operation are defined by [7]

Figure 2. The path of the armature flux in: (a) the subtransient state (screening effect of the damper
windings and the field winding); (b) the transient state (screening effect of the field and g-damper
winding only); (c) the steady state [7].
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L0d ¼ Ld � κ2M2
f

Lf
; T0

do ¼ Lf
Rf
;

L0q ¼ Lq � κ2M2
g

Lg
; T0

qo ¼ Lg
Rg
;

L00d ¼ Ld � κ2
M2

f LDþM2
DLf�2MfMDLfD

Lf LD�L2fD

� �
;

L00q ¼ Lq � κ2
M2

g LQþM2
QLg�2MgMQLgQ

LgLQ�L2gQ

� �
;

T00
do ¼ 1

RD
LD � L2fD

Lf

� �
; T00

qo ¼ 1
RQ

LQ � L2gQ
Lg

� 	
:

(4:2)

Based on the two-reaction theory of [29], the corresponding d- and q-axis reactances for
steady-state operation (Xd ¼ ωsLd;Xq ¼ ωsLq), transient operation (X0

d ¼ ωsL0d;
X0
q ¼ ωsL0q) and subtransient operation (X00

d ¼ ωsL00d;X
00
q ¼ ωsL00q) are defined.

Remark 4.4 (Relation between (sub)transient reactances) For realistic synchronous
machines it holds that Xd >X0

d >X
00
d > 0 and Xq � X0

q >X
00
q > 0, where Xq ¼ X0

q holds
for a salient-pole synchronous machine (where the g-damper winding is absent), see
also [7], Table 4.3] and [8], Table 4.2] for typical values of these reactances.

Definition 4.5 (Saliency) The (sub)transient saliency is defined as the difference
between the (sub)transient reactances, i.e. X0

d � X0
q; ðX00

d � X00
q Þ. We say that the (sub)

transient saliency is negligible if X0
d ¼ X0

q; ðX00
d ¼ X00

q Þ.

For both transient and subtransient state of the machine, different assumptions can be
made to obtain the corresponding (differential) equations of the synchronous machine.

4.2. Synchronous machine equations

In this section, we discuss the assumptions for transient and subtransient operation and
state their corresponding algebraic and differential equations appearing in the synchro-
nous machine models. More detailed derivations can be found in [7], Chapter 11].

4.2.1. Transient operation
In transient operation state, the armature flux has penetrated the damper circuits and
the field and g windings screen the rotor body from the armature flux. The damper
windings are no more effective ( _ΨD ¼ _ΨQ ¼ 0) and thus the damper currents are zero.

Assumption 4.6 (Transient operation) During transient operation ID ¼ IQ ¼ 0.

From Equations (3.2) and (3.3), we can express Ψd;Ψq can be expressed in terms of
Id;Ψf and Iq;Ψg , respectively. In this way, we obtain the following relationship between
the internal (transient) and external emfs given by

Vq ¼ �RsIq þ X0
dId þ E0q (4:3)
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Vd ¼ �RsId � X0
qIq þ E0d (4:4)

where the internal emfs E0
q;E

0
d are defined as E0q :¼ ωs

κMf

Lf

� 	
Ψf and E0d :¼ �ωs

κMg

Lg

� 	
Ψg .

However, the flux linkages Ψf ;Ψg do not remain constant during transient operation but
change slowly as the armature flux penetrates through the windings [7]. By substituting
Equations (3.1f) and (3.1g), the differential equations for E0

q;E
0
d are derived as

_E0q ¼
Ef þ ðXd � X0

dÞId � E0q
T0

do
(4:5)

_E0d ¼
�ðXq � X0

qÞIq � E0d
T0
qo

: (4:6)

where we used that ID ¼ IQ ¼ 0;T0
do ¼ Lf =Rf ;T0

qo ¼ Lg=Rg and the definition Ef :¼
ωsκMfVf =Rf for the scaled excitation voltage.

4.2.2. Subtransient operation
During the subtransient period, the rotor damper coils screen both the field winding
and the rotor body from changes in the armature flux. The field and g flux linkages
Ψf ;Ψg remain constant during this period while the damper winding flux linkages
decay with time as the generator moves towards the transient state [7]. Therefore, we
make here a different assumption compared to Section 4.2.1.

Assumption 4.7 (Subtransient operation) During subtransient operation the flux lin-
kages Ψf ;Ψg are constant.

Using Equation (3.2) we can express Ψd in terms of id;Ψf ;ΨD. Similarly, using
Equation (3.3) one can express Ψd in terms of id;Ψf ;ΨD:

Ψd ¼ L00dId þ k1Ψf þ k2ΨD;

Ψq ¼ L00qIq þ k3Ψg þ k4ΨQ;

where

k1 ¼ κ �Mf LD �MDLfD
Lf LD � L2fD

; k2 ¼ κ �MDLf �Mf LfD
Lf LD � L2fD

;

k3 ¼ κ �MgLQ �MQLgQ
LgLQ � L2gQ

; k4 ¼ κ �MQLg �MgLgQ
LgLQ � L2gQ

Together with Assumption 4.1, we obtain

Vq ¼ �RsIq þ X00
d Id þ E00

q (4:7)

Vd ¼ �RsId � X00
q Iq þ E00d (4:8)

where the subtransient emfs are defined as
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E00
q :¼ ωsðk1Ψf þ k2ΨDÞ

E00d :¼ � ωsðk3Ψg þ k4ΨQÞ (4:9)

Using Assumption 4.7, and by eliminating the If ;Ψd from (Equation (3.2) and Ig ;Ψq

from (Equation (3.3) we obtain, respectively, the differential equations of E00
q and E00

d :

T00
do
_E00
q ¼ E0q � E00q þ ðX0

d � X00
dÞId; (4:10)

T00
qo
_E00d ¼ E0

d � E00
d � ðX0

q � X00
q ÞIq: (4:11)

4.2.3. Frequency dynamics
Recall that the frequency dynamics of the full-order model is described by
Equation (3.1b):

J _ω ¼ ΨqId � ΨdIq � dωþ τ: (4:12)

Since the mechanical damping force Fd ¼ �dω is often very small in large machines, it
is neglected in many synchronous machine models [7,8].

Assumption 4.8 (Negligible mechanical damping) The mechanical damping of the
synchronous machine is negligible, i.e. d ¼ 0.

It is convenient to express the frequency dynamics in terms of the frequency devia-
tion Δω :¼ ω� ωs with respect to the synchronous frequency ωs. By using Assumptions
4.1, 4.8 the dynamics of the frequency deviation is governed by

MΔ _ω ¼ � VdId þ VqIq þ RsðI2d þ I2qÞ
� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pe

þ ωsτ|{z}
Pm

¼ �Pe þ Pm:
(4:13)

Here it is common practice to multiply Equation (4.12) by the synchronous frequency
ωs and to define the quantity M :¼ ωsJ . Here Pm is the mechanical power injection and
Pe is the electrical power produced by the synchronous generator.

Remark 4.9 (Alternative formulation of frequency dynamics) Note that by Equations
(4.7) and (4.8) the electrical power Pe produced by the synchronous generator alter-
natively takes the form

Pe ¼ E00
dId þ E00qIq þ ðX00

d � X00
q ÞIdIq (4:14)

such that the differential Equation (4.14) can be rewritten as

MΔ _ω ¼ �E00
dId � E00qIq � ðX00

d � X00
q ÞIdIq þ Pm: (4:15)
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4.3. Synchronous machine models

Based on the results established in Section 4.2, several generator models with decreasing
complexity and accuracy are developed. In each model reduction step, the validity and
assumptions made in the corresponding model are discussed.

4.3.1. Sixth-order model
By combining the equations derived in Section 4.2, a sixth-order model describing the
synchronous generator is obtained. In particular, by Equations (4.5), (4.6), (4.11), (4.12)
and (4.16) we obtain the following system of ordinary differential equations describing
the generator dynamics [7]:

_δ ¼ Δω (4:16a)

MΔ _ω ¼ Pm � E00
dId � E00qIq � ðX00

d � X00
q ÞIdIq (4:16b)

T0
do
_E0q ¼ Ef � E0q þ IdðXd � X0

dÞ (4:16c)

T0
qo
_E0d ¼ �E0d � IqðXq � X0

qÞ (4:16d)

T00
do
_E00q ¼ E0

q � E00
q þ IdðX0

d � X00
dÞ (4:16e)

T00
qo
_E00
d ¼ E0d � E00d � IqðX0

q � X00
q Þ; (4:16f)

where δðtÞ :¼ γðtÞ � ωst represents the rotor angle with respect to the synchronous
rotating reference frame. By Equations (4.7) and (4.8) the internal and external voltages
of the synchronous generator are related by

Vd

Vq

� �
¼ E00d

E00q

� �
� Rs X00

q

�X00
d Rs

� �
Id
Iq

� �
: (4:17)

It is worth noting the similar structure of these (differential) equations. Equation (4.17)
and the right-hand side of Equations (4.16c)–(4.16f) relates to the equivalent d- or q-axis
generator circuits, with the resistances neglected, as shown in Figure 3. In particular, the
algebraic Equation (4.17) corresponds to the right-hand side of Figure 3. In addition, the
subtransient dynamics Equations (4.16e), (4.16f) corresponds to the centre reactances
X0
d � X00

d ;X
0
q � X00

q illustrated in Figure 3 and the transient dynamics Equations (4.16c)

and (4.16d) correspond to the left-hand side of Figure 3. Observe that there is no
additional voltage in the q-axis due to the absence of a field winding on this axis.

4.3.2. Fifth-order model
In a salient-pole generator, the laminated rotor construction prevents eddy currents
flowing in the rotor body such that there is no screening in the q-axis implying that
Xq ¼ X0

q [7]. In that case, the g-winding is absent in the full-order model (1).

Consequently, Ed0 is absent so that the fifth-order model becomes
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_δ ¼ Δω
MΔ _ω ¼ Pm � E00dId � E00

qIq � ðX00
d � X00

q ÞIdIq
T0
do
_E0
q ¼ Ef � E0q þ IdðXd � X0

dÞ
T00
do
_E00
q ¼ E0q � E00

q þ IdðX00
d � X00

dÞ
T00
qo
_E00
d ¼ �E00d � IqðX0

q � X00
q Þ:

(4:18)

4.3.3. Fourth-order model
In this model, the subtransient dynamics of the sixth-order model induced by the
damper windings is neglected. This is motivated by the fact that T00

do 	 T0
do;T

00
qo 	 T0

qo.
Therefore, the dynamics corresponding with E00q ;E

00
d is at a much faster timescale

compared to the E0
q;E

0
d dynamics. As a result, at the slower timescale we obtain the

quasi-steady-state condition [27]:

E00q ¼ E0
q þ IdðX0

d � X00
dÞ

E00d ¼ E0
d � IqðX0

q � X00
q Þ: (4:19)

Substitution of the latter algebraic equations in the remaining four differential equa-
tions yields the fourth-order model

_δ ¼ Δω
MΔ _ω ¼ Pm � DΔω� Ed0Id � Eq0Iq � ðX0

d � X0
qÞIdIq

T0
do _E

0
q ¼ Ef � E0q þ IdðXd � X0

dÞ
T0

qo _Ed ¼ �E0d � IqðXq � X0
qÞ:

(4:20)

Remark 4.10 (Transient operation) Note that Equation (4.19) together with Equation
(4.17) also implies Equations (4.3) and (4.4) as expected since the subtransient
dynamics is neglected.

Ef

j(Xd − X ′
d) j(X ′

d − X ′′
d ) jX ′′

d Id

E
′
q E

′′
qT ′′

doT ′
do

j(Xq − X ′
q) j(X ′

q − X ′′
q ) jX ′′

q Iq

E
′
d E

′′
d

T ′′
qoT ′

qo

V q

V d

Figure 3. The generator equivalent circuits for both dq-axes in case the stator winding resistance Rs
is neglected [7].
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As the damper windings are ignored, the air-gap power appearing in the frequency
dynamics neglects the asynchronous torque produced by the damper windings. To
compensate the effects of the damper windings typically a linear asynchronous damping
power DΔω with damping constant D> 0 is introduced. However, more accurate non-
linear approximations of the damping power exist as well, see [7], Chapter 5.2].

4.3.4. Third-order model
Starting from the fourth-order model, we make here the same assumptions as done in
the transition from the sixth-order model to the fifth-order model (no E0d) so that the
third-order model, which also referred to as the flux-decay model or one-axis model [8],
is given by

_δ ¼ Δω (4:21a)

MΔ _ω ¼ �DΔωþ Pm � E0
qIq � ðX0

d � X0
qÞIdIq (4:21b)

T0
do
_E0q ¼ Ef � E0q þ IdðXd � X0

dÞ: (4:21c)

4.3.5. Second-order classical model
The second-order model is derived from the fourth-order (or third-order) model by
assuming that the internal emfs E0q;E

0
d are constant [6–8]. This can be validated if the

timescales T0
qo;T

0
do are large (of the order of a few seconds) so that the internal emfs

E0
q;E

0
d can be approximated by a constant (on a bounded time interval) provided that

Ef ; Id; Iq do not change much. From this assumption, a constant voltage behind the
transient reactance model is obtained which is commonly referred to as the constant
flux linkage model or classical model [6–8]:

_δ ¼ Δω
MΔ _ω ¼ �DΔωþ Pm � E0

qIq � E0dId � ðX0
d � X0

qÞIdIq
(4:22)

The assumption that the changes in dq-currents and the internal emfs are small implies
that only generators located a long way from the point of the disturbance should be
represented by the classical model [7]. In addition, since the assumption that E0

q;E
0
q is

constant is only valid on a limited time-interval, the classical model is only valid for
analyzing the first swing stability [6]. Indeed, in for example [21] it was shown that
the second-order swing Equation (4.22) is not valid for asymptotic stability analyses.

5. Multi-machine models

To obtain a representation of the power grid, we consider a multi-machine network.
For simplicity, we consider the case that each node in the network represents
a synchronous machine, that is, each node represents either a synchronous generator,
or a synchronous motor. In addition, we assume that the stator winding resistances and
the resistances in the network are negligible. This assumption is valid for networks with
high voltage transmission lines where the line resistances are negligible.
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Assumption 5.1 (Inductive lines and Rs ¼ 0) The network is considered to be purely
inductive and the stator winding resistances are negligible, i.e. Rs ¼ 0.

In this section, the multi-machine models starting from the sixth-, third-,
and second-order models for the synchronous generator are established. The
derivations of the fourth- and fifth-order multi-machine models are omitted as
these are very similar to ones presented in this section. To obtain reduced-order
multi-machine models, the equations for the nodal currents in the network are
derived which are then substituted in the single generator models reformulated in
Section 4.3.

5.1. Sixth-order multi-machine model

For the sixth- (and fifth-)order model(s), it is convenient to make the following
assumption which is valid for synchronous generators with damper windings in both
d- and q-axes [7].

Assumption 5.2 (X00
di ¼ X00

qi ) For each synchronous machine in the network, the sub-
transient saliency is negligible, i.e. X00

di ¼ X00
qi "i 2 V.

By Assumption 5.2, the second term of the electrical power Equation (4.14)
appearing in the frequency dynamics (4.16b) vanishes. Moreover, the assumption
of X00

d ¼ X00
q allows the two individual d- and q-axis circuits in Figure 3 to be

replaced by one equivalent circuit, see Figure 4. As a result, all the voltages, emfs
and currents are phasors in the synchronous rotating reference frame of rather
than their components resolved along the d- and q-axes. An important advantage
of this is that the generator reactance may be treated in a similar way as the
reactance of a transmission line, as we will show later. This has particular impor-
tance for multi-machine systems when combining the algebraic equations describ-
ing the generators and the network [7].

As illustrated in Figure 4, the internal and external voltages are related to each
other by

�E00i ¼ �Vi þ jX00
di
�Ii; "i 2 V: (5:1)

E
′′
i

jX ′′
di Ii

V i

Figure 4. Subtransient emf behind a subtransient reactance.
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Consider a power network where each node i 2 V ¼ 1; 2; . . . ; nf g represents
a synchronous machine and each edge ði; kÞ 2 E a transmission line, see Figure 5 for
a two-node case.

To derive the algebraic equations associated with the network, we assume that the network
operates at steady state. Under this assumption, the network equations take the form

�Is ¼ Y �VS ¼ Y�E00S

where �Is; �Vs; �E00s 2 C
n represent the nodal current and external/internal voltage

phasors with respect to the synchronous rotating reference frame and Y 2 C
n�n

is the admittance matrix of the network. The admittance matrix Y 2 C
n�n is

obtained by adding the reactances X00
di; i 2 V to the transmission line reactances,

i.e. Y takes the form Yii ¼ Gii þ jBii;Yik ¼ �Gik � jBik; i � k where the suscep-
tances are given by [23]

Bik ¼
0 if nodes and k are not connected

� 1
Xik

if nodes and k are connected

(

Bii ¼
X
k2N i

Bik

(5:2)

and where Xik :¼ XTik þ X00
di þ X00

dk is the total reactance between the subtransient
voltage sources as illustrated in Figure 5. As we assumed purely inductive lines, see
Assumption 5.1, the conductance matrix equals the zero matrix and thus
Gik ¼ 0"i; k 2 V. We note that in the derivations in Section 4 the currents �I ¼ Vq þ
jVd and internal voltages �E00 ¼ E00

q þ jE00
d are expressed with respect to the local dq0-

reference frame of the synchronous machine. Thus, according to Equation (2.3), �Is ¼
diagðe�jðωst�γiÞÞ�I ¼ diagðejδiÞ�I and similarly �E00s ¼ diagðejδiÞ�E00. Consequently,

�I ¼ diagðe�jδiÞY diagðejδiÞ�E00; (5:3)

where �I ¼ colð�I1; . . . ;�InÞ; �E00 ¼ colð�E00
1; . . . ; �E00nÞ. Then, the dq-current phasor at node i

takes the form

E
′′
i

jX ′′
di jXTik Iik

jX ′′
dk

E
′′
kV i V k

Figure 5. Interconnection of two synchronous machines governed by the fifth- or sixth-order model
by a purely inductive transmission line with reactance XTik .
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�Ii ¼ Yii�E
00
i þ

X
k2N i

Yike
�jδik�E00

k : (5:4)

Using the phasor representation �E00i ¼ E00
qi þ jE00

di;
�Ii ¼ Iqi þ jIdi, and equating both the

real and imaginary part of Equation (5.4), we obtain after rewriting

Idi ¼ BiiE00
qi �

P
k2N i

BikðE00
dk sin δik þ E00qk cos δikÞ

h i
;

Iqi ¼ �BiiE00di �
P
k2N i

BikðE00qk sin δik � E00
dk cos δikÞ

h i
:

(5:5)

Remark 5.3 (Nonzero transfer conductances) Compared to (5.5), a slightly more
complicated expression for the dq-currents can be derived in the more general case
where the transfer conductances are nonzero, see e.g. [23].

By substituting the network Equation (5.5) into the sixth-order model of the
synchronous machine derived in Section 4.3.1, the multi-machine model Equation
(5.6) is obtained. A subscript i is added to the model Equation (4.16) to indicate that
this is the model of the synchronous machine i 2 V.

_δi ¼ Δωi

MiΔ _ωi ¼ Pmi þ
X
k2N i

Bik ðE00diE00dk þ E00qiE00qkÞ sin δik þ ðE00diE00
qk � E00qiE00

dkÞ cos δik

 �

T0
doi _E

0
qi ¼ Efi � E0qi þ ðXdi � X0

diÞ BiiE
00
qi �

X
k2N i

BikðE00dk sin δik þ E00qk cos δikÞ

 � !

T0
qoi _E

0
di ¼ �E0di þ ðXqi � X0

qiÞ BiiE
00
di �

X
k2N i

BikðE00
dk cos δik � E00qk sin δikÞ


 � !

T00
doi _E

00
qi ¼ E0

qi � E00qi þ ðX0
di � X00

diÞ BiiE
00
qi �

X
k2N i

BikðE00
dk sin δik þ E00qk cos δikÞ


 � !

T00
qoi _E

00
di ¼ E0

di � E00di þ ðX0
qi � X00

qiÞ BiiE
00
di �

X
k2N i

BikðE00
dk cos δik � E00qk sin δikÞ


 � !

(5:6)

The electrical power Pei produced by synchronous machine i is obtained from
Equations (4.14) and (5.5), and is given by

Pei ¼ E00diIdi þ E00
qiIqi

¼ P
k2N i

�Bik½ðE00diE00dk þ E00qiE00qkÞ sin δik þ ðE00diE00
qk � E00qiE00

dkÞ cos δik
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pik

: (5:7)

Remark 5.4 (Energy conservation) Since the transmission lines are purely inductive by
assumption, there are no energy losses in the transmission lines implying that the
following energy conservation law holds: Pik ¼ �Pki where Pik given in Equation (5.7)
represents the power transmission from node i to node k. In particular, we also haveP
i2V

Pei ¼ 0 with Pei is given by Equation (5.7).
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Remark 5.5 (Including resistances) While in the above model the resistances of the
network and the stator windings are neglected, the model easily extends to the case of
nonzero resistances. This can be done following the same procedure as before but
instead substituting the more complicated expression for the currents Idi; Iqi, see
Remark 5.3.

5.2. Third-order multi-machine model

The derivation of the third-order multi-machine models proceeds along the same lines
as for the sixth-order model. For similar reasons as for the sixth- and fifth-order
models, it is convenient for the second-, third-, and fourth-order multi-machine models
to assume that the transient saliency is negligible.

Assumption 5.6 (X0
di ¼ X0

qi) The transient saliency is negligible: X0
di ¼ X0

qi "i 2 V.

By making the classical assumption that X0
d ¼ X0

q, the second term of the electrical
power appearing in the frequency dynamics Equation (4.21b) vanishes [7]. In addition,
the assumption of X0

d ¼ X0
q allows the separate d- and q-axis circuits shown in Figure 3

to be replaced by one simple equivalent circuit, see Figure 6, representing a transient
voltage source behind a transient reactance.

Remark 5.7 (Negligible transient saliency) Although there is always some degree of
transient saliency implying that X0

di � X0
qi, it should be noted that if the network

reactances are relatively large, then the effect of the transient saliency on the power
network dynamics is negligible making Assumption 5.6 acceptable [7].

Similar as before, the interconnection of two synchronous machines can be repre-
sented as in Figure 7.

As illustrated in this figure, the internal and external voltages are related to each
other by [7]

E
′
i

jX ′
di Ii

V i

Figure 6. Single generator equivalent circuit in case the transient saliency is neglected [7].
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�E0i ¼ �Vi þ jX0
di
�Ii; "i 2 V: (5:8)

The algebraic equations associated with the network amount to [23]

�I ¼ diagðe�jδiÞY diagðejδiÞ�E0; (5:9)

resulting in a similar expression for the dq-currents as for the sixth-order model:

Idi ¼ BiiE0
qi �

P
k2N i

BikðE0
dk sin δik þ E0qk cos δikÞ


 �
;

Iqi ¼ �BiiE0
di �

P
k2N i

BikðE0qk sin δik � E0
dk cos δikÞ


 �
:

(5:10)

Remark 5.8 (Susceptance matrix for 4th,3rd and 2nd-order models) Note that in
contrast to the 6th and 5th-order models, for the 4rd, 3rd and 2nd-order model the
susceptances satisfy Bik ¼ � 1

Xik
; for all ði; kÞ 2 E where Xik :¼ XTik þ X0

di þ X0
dk is the

total reactance between the transient voltage sources as illustrated in Figure 7.
By using the third-order model of the synchronous machine (4.21), the network

Equation (5.10), and the fact that Edi0 ¼ 0 for the third-order model, the flux-decay (or
one-axis) multi-machine model is obtained.

_δi ¼ Δωi

MiΔ _ωi ¼ Pmi � DiΔωi þ
P
k2N i

BikE0qiE0
qk sin δik

T0
doi _E

0
qi ¼ Efi � E0

qi þ ðXdi � X0
diÞðBiiE0

qi �
P
k2N i

BikE0
qk cos δikÞÞ

(5:11)

It is observed that similar to the sixth-order multi-machine model (5.6), Remark 5.4
and Remark 5.5 also hold for the third-order model (5.11).

5.3. The classical multi-machine network

The derivation of the classical second-order swing equations takes a slightly different
approach compared to the multi-machine models obtained previously. Suppose that
Assumption 5.6 holds. Let the transient voltage phasor be represented as �E0i ¼ ejαi �E0i

�� ��,
then by Equation (5.9) we have

E
′
i

jX ′
di jXTik Iik

jX ′
dk

E
′
kV i V k

Figure 7. Interconnection of two synchronous machines governed by the second-, third-, or fourth-
order model by a purely inductive transmission line with reactance XTik .
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�Ii ¼ Yiie
jαi �E0i
�� ��þ X

k2N i

Yike
�jδik ejαk �E0k

�� ��; "i 2 V:

By defining the angles4 θi :¼ δi þ αi it can be shown that the electrical power supplied
by the synchronous machine amounts to

Pei ¼ <ð�E0i�I�i Þ ¼ <ð�E0�i �IiÞ ¼ <ðYiij�E0ij2 þ
X
k2N i

Yike
�jðδikþαikÞ �E0i

�� �� �E0
k

�� ��Þ
¼ �

X
k2N i

Bik sin θik �E0
i

�� �� �E0k�� ��:
It is convenient to express the system dynamics in terms of the voltage angles θi. By

noting that αi is constant5 it follows that _θi ¼ _δi ¼ Δωi. Hence, the multi-machine
classical model is described by the well-known swing equations

_θi ¼ Δωi

MiΔ _ωi ¼ �DiΔωi þ Pmi þ
P
k2N i

Bik sin θik �E0i
�� �� �E0k�� ��; i 2 V: (5:12)

Remark 5.9 (Load nodes) In the multi-machine models constructed in this section
it is assumed that each node in the network represents a synchronous machine.
However, a more realistic model of a power network can be obtained by making
a distinction between generator and load nodes [30,31]. This is beyond the scope
of the present article. Instead, we assume that some synchronous machines act as
synchronous motors for which the injected mechanical power is negative.

6. Energy functions

When analyzing the stability of a synchronous machine (or a multi-machine network) it
is desired to search for a suitable Lyapunov function. Often the physical energy stored
in the system can be used as a Lyapunov function for the zero-input case. In this
section, we derive the energy functions of the reduced order models of the synchronous
machine. In addition, the energy functions corresponding to the transmission lines are
obtained.

6.1. Synchronous machine

The physical energy stored in a synchronous machine consists of both an electrical part
and a mechanical part. We first derive the electrical energy of the synchronous
machine.

6.1.1. Electrical energy
In this section, we search for an expression for the electrical energy of the reduced order
models for the synchronous machine. A natural starting point is to look at the electrical
energy of the full-order system and rewrite this in terms of the state variables of the
reduced order system. Recall that the electrical energy in the d- and q-axis of the full-
order system is, respectively, given by6
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Hdq ¼ Hd þ Hq ¼
Ψd

Ψf

ΨD

2
64

3
75
T Ld kMf kMD

kMf Lf LfD
kMD LfD LD

2
64

3
75
�1

Ψd

Ψf

ΨD

2
64

3
75

þ
Ψq

Ψg

ΨQ

2
64

3
75
T Lq kMg kMQ

kMg Lg LgQ
kMQ LgQ LQ

2
64

3
75
�1

Ψq

Ψg

ΨQ

2
64

3
75:

Using the definitions of E0
q;E

00
q and the reactances Xd;X0

d;X
00
d we can express the

electrical energy in the d-axis as

Hd ¼ 1
2

Ψd

E0q
E00q

2
4

3
5T

ωs
X00
d

0 � 1
X00
d

0 1
ωsðXd�X00

d Þ
þ 1

ωsðX0
d�X00

d Þ
� 1

ωs X0
d�X00

dð Þ
� 1

X00
d

� 1
ωs X00

d�X00
dð Þ

Xd0
ωs X0

d�X00
dð ÞX00

d

2
664

3
775

Ψd

E0q
E00q

2
4

3
5 (6:1)

and a similar expression for the energy Hq can be derived for the q-axis.

Remark 6.1 (Complexity in derivating:Hdpsid) To obtain (6.1) requires not only
computing the inverse of the inductance matrices Ld;Lq but also to eliminate the
appropriate parameters (such as Ld; Lq; etc.) and variables (Ψf ;Ψg ;ΨD;ΨQ) used in the
model (3.1). Interestingly, with the help of the computer algebra program Mathematica
11 we eventually obtain a relatively sparse expression of the electrical energy Hd (and
Hq) given by Equation (6.1).

6.1.1.1. Sixth-order model. We can also express the electrical energy Equation (6.1) in
term of the currents Id; Iq as follows. First, by Assumption 4.1 we eliminate Ψd;Ψq by
substitutingΨq ¼ �ω�1

s ðVd þ RsIdÞ;Ψd ¼ ω�1
s ðVq þ RsIqÞ. ThenVd;Vq can be eliminated

by substituting Equation (4.17), that is, Vd ¼ E00
d � RsId � X00

q Iq;Vq ¼ E00
q � RsIq þ X00

d Id.

Consequently, for the sixth-order model, the electrical energy stored in the machine takes
the simpler form

Hd ¼ 1
2ωs

Id
E0
q

E00
q

2
4

3
5T X00

d 0 0
0 1

Xd�X0
d
þ 1

X0
d�X00

d
� 1

X0
d�X00

d

0 � 1
X0
d�X00

d

1
X0
d�X00

d

2
64

3
75 Id

E0q
E00q

2
4

3
5; (6:2)

and a similar expression is obtained for the q-axis by exchanging the dq-subscripts.

Remark 6.2 (Energy storage in generator circuits) One interesting observation is that
Equation (6.2) is identical to the energy stored in the generator equivalent circuits
illustrated in Figure 3 in the zero input case (Ef ¼ 0). Here we observe that the energy
stored in the centre reactances as in Figure 3 is given by
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1
2
LI2d ¼

1
2ωs

ðX0
d � X00

dÞI2d ¼
1
2ωs

ðX0
d � X00

dÞ
1

X0
d � X00

d
ðE0q � E00qÞ

� �2

¼ 1
2ωs

1
X0
d � X00

d
E0
q E00q


 � 1 �1
�1 1

� �
E0
q

E00q

� �
: (6:3)

6.1.1.2. Fifth-order model. For the fifth-order model, we have that E0d ¼ 0 implying
that the electrical energy in the q-axis modifies to

Hq ¼ 1
2ωs

Iq
E00d

� �T X00
q 0
0 1

X0
q�X00

q

" #
Iq
E00d

� �
; (6:4)

while the expression for Hd remains identical to the one for the sixth-order model, see
Equation (6.2).

6.1.1.3. Lower-order models. Since for the fourth-, third- and second-order model the
subtransient dynamics is neglected, we can substitute Equation (4.19) into (6.2) such
that the electrical energy Hdq :¼ Hd þHq can be written as

Hdq ¼ 1
2ωs

Id
E0
q

� �T X0
d 0
0 1

Xd�X0
d

� �
Id
E0q

� �
þ 1
2ωs

Iq
E0d

� �T X0
q 0
0 1

Xq�X0
q

� �
Iq
E0d

� �
(6:5)

and for the third-order model we have E0
d ¼ 0.

Remark 6.3 (Synchronous machines reactances as part of line reactances) If the (sub)
transient saliency is neglected then the reactance X0

d ðX00
dÞ can considered as part the

(transmission) network, see Section 5. Therefore, the energy stored in this reactance will
be part of the energy stored in the transmission lines which will be discussed in Section 6.2.
As a result, the part of the energy Equation (6.5) corresponding with Id; Iq can be
disregarded here. For example, for the fourth-, third- and second-order model the energy
function associated to the electrical energy stored in the generator circuit is given by

Hdq ¼ 1
2ωs

E0
q
2

Xd � X0
d
þ 1
2ωs

E0d
2

Xq � X0
q
; (6:6)

where E0d ¼ 0 for the third-order model.

Bearing in mind Remark 6.3 and noting that for the second-order model the voltages
E0
q;E

0
d are constant, it follows that the electrical energy Equation (6.6) is constant as well.

6.1.2. Mechanical energy
The rotational kinetic energy of the synchronous machine is given by

Hm ¼ 1
2
Jω2 ¼ 1

2ωs
M�1ðΔωþ ωsÞ2 (6:7)

where we recall that M is defined as M ¼ ωsJ as discussed in Section 4.2.3.
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6.2. Inductive transmission lines

6.2.1. Sixth- and fifth-order models
Consider an inductive transmission line between nodes i and k at steady state, see
Figure 8.

When expressed in the local dq-reference frame of synchronous machine i, we
observe from Figure 8 that

jXik�Iik ¼ �E00i � e�jδik�E00k : (6:8)

By equating the real and imaginary part of (6.8) we obtain

Xik
Iqik
�Idik

� �
¼ E00

di � E00dk cos δik þ E00qk sin δik
E00qi � E00dk sin δik � E00qk cos δik

� �
: (6:9)

Note that the energy of the inductive transmission line between nodes i and k is
given by

Hik ¼ 1
2
Lik�I

�
ik
�Iik ¼ Xik

2ωs
ðI2dik þ I2qikÞ

which by Equation (6.9) can be written as

Hik ¼ � Bik
ωs
½ E00diE

00
qk � E00dkE

00
qi

� 	
sin δik � E00diE

00
dk þ E00qiE

00
qk

� 	
cos δik

þ 1
2 E

00
di
2 þ 1

2E
00
dk

2 þ 1
2 E

00
qi
2 þ 1

2E
00
qk

2
:
(6:10)

6.2.2. Fourth- and third-order models
For the fourth-, third- (and second-)order model the transient reactances7 X0

di can be
considered as part of the network (resulting in a different susceptance matrix, see
Remark 5.8) implying that the energy in the transmission lines can be obtained by
replacing the subtransient voltages by the transient voltages in Equation (6.10). For the
third-order model E0

di ¼ 0 for all i 2 V so that the energy function associated with the
transmission line between nodes i and k simplifies to

E
′′
i

jXik Iik

E
′′
k

Figure 8. An inductive transmission line at steady state. The internal voltages �E00i ;�E
00
k are expressed in

the corresponding local dq0-reference frame.
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Hik ¼ � Bik
ωs

1
2E

0
qi
2 þ 1

2E
0
qk

2 � E0qiE
0
qk cos δik

� 	
: (6:11)

6.2.3. Second-order model
For the second-order model, it is convenient to represent transient voltages as �E0i ¼
�E0i
�� ��ejαi where αi is the voltage angle of �E0i with respect to the rotor angle. Then, by
defining the voltages angles θi ¼ δi þ αi as in Section 5.3, the energy in the transmission
line8 Equation (6.10) takes the much simpler form

Hik ¼ � Bik
2ωs

ð�E0
i � �E0

ke
�jδikÞ�ð�E0i � �E0ke

�jδikÞ
¼ � Bik

2ωs
ð �E0ij2 � 2
�� ���E0ijj�E0k cos θikþj j�E0

kj2Þ:
(6:12)

6.3. Total energy

The total energy of the multi-machine system is equal to the sum of the previously
mentioned energy functions

H ¼
X
i2V

Hdi þHqi þHmi
 �þ X

ði;kÞ2E
Hik; (6:13)

where the expressions for each individual energy function depends on the order of
the model. The resulting energy function H could serve as a candidate Lyaponuv
function for the stability analysis of the multi-machine power network (with zero
inputs).

Remark 6.4 (Common factor ω�1
s in energy functions) It is observed that each of the

individual energy functions appearing in Equation (6.13) contains a factor ω�1
s .

Therefore, a modified version of the energy function defined by U ¼ ωsH can also be
used as a Lyapunov function for the multi-machine system. However, the function U
does not have the dimension of energy anymore, but has the dimension of power
instead. In fact, in most of the literature these modified energy functions9 (without the
factor ω�1

s ) are (part of) the collection of Lyapunov functions used to analyze the
stability of the power network, see e.g. [4,11,13,15,18,32].

7. Port-Hamiltonian framework

By using the energy function established in the previous section, a convenient repre-
sentation of the multi-machine models of Section 5 can be obtained. This is based on
the theory of port-Hamiltonian systems, which yields a systematic framework for
network modelling of multi-physics systems. In particular, we show in this section
that the complex multi-machine systems Equations (5.6), (5.11) and (5.12) admit
a simple port-Hamiltonian representation. Finally, some important passivity properties
are proven for the resulting systems.
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7.1. Sixth-order model

7.1.1. Energy in the transmission lines
Recall from Equation (6.10) that the energy stored in the inductive transmission line
between node i and k is given by

Hik ¼ � Bik
ωs
½ E00diE

00
qk � E00

dkE
00
qi

� 	
sin δik � E00diE

00
dk þ E00

qiE
00
qk

� 	
cos δik

þ 1
2E

00
di
2 þ 1

2E
00
dk

2 þ 1
2E

00
qi
2 þ 1

2E
00
qk

2
:
(7:1)

Observe that the gradient of Hik takes the form

@Hik
@δi
@Hik
@E00qi
@Hik
@E00di

2
664

3
775 ¼ Bik

ωs

ðE00qiE00dk � E00diE
00
qkÞ cos δik � ðE00

diE
00
dk þ E00qiE

00
qkÞ sin δik

�E00qi þ E00qk cos δik � E00dk sin δik
�E00

di þ E00dk cos δik þ E00
qk sin δik

2
64

3
75:

After defining the total energy stored in the transmission lines by HT ¼ P
ði;kÞ2E

Hik, we
obtain likewise

@HT
@δi
@HT
@E00qi
@HT
@E00di

2
664

3
775 ¼ 1

ωs

P
k2N i

Bik½ðE00
qiE

00
dk � E00diE

00
qkÞ cos δik � ðE00

diE
00
dk þ E00qiE

00
qkÞ sin δik


�BiiE00qi þ
P

k2N i
BikðE00

qk cos δik þ E00dk sin δikÞ
�BiiE00

di þ
P

k2N i
BikðE00dk cos δik þ E00

qk sin δikÞ

2
64

3
75

¼ 1
ωs

Pei
�Idi
Iqi

2
4

3
5

where we have used the fact that Bii ¼
P
k2N i

Bik and Equations (5.5) and (5.7).

7.1.2. Electrical energy synchronous machine
Further notice that the electrical energy stored in the d-axis in machine i is given by

Hdi ¼ 1
2ωs

E0qi E00qi

 � 1

Xdi�X0
di
þ 1

X0
di�X00

di
� 1

X0
di�X00

di

� 1
X0

di�X00
di

1
X0

di � X00
di

" #
E0

qiE
00
qi


 �
and satisfies

Xdi � X0
di Xdi � X0

di


 � @Hdi
@E0qi
@Hdi
@E00qi

" #
¼ 1

ωs
E0
qi

0 X0
di � X00

di


 � @Hdi
@E0qi
@Hdi
@E00qi

2
4

3
5 ¼ 1

ωs
ðE00

qi � E0qiÞ:

Observe that a similar result can be established for the energy function Hqi by exchan-
ging the d- and q-subscripts.
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7.1.3. Mechanical energy
To obtain a port-Hamiltonian representation of the multi-machine models, it is con-
venient to rephrase and shift the energy function Equation (6.7) with respect to the
synchronous frequency to obtain

�Hmi ¼ 1
2
JiΔω

2
i ¼

1
2ωs

MiΔω
2
i ¼

1
2ωs

M�1
i p2i ;

where Mi ¼ ωsJi and we define the variable pi ¼ MiΔωi.

Remark 7.1 (Modified ‘moment of inertia’) Note that the quantity pi does not represent
the angular momentum of the synchronous machine but instead it is equal to pi ¼
ωsJΔωi so it has a different physical dimension. In addition, it is shifted with respect to
the synchronous frequency.

Using this definition of the Hamiltonian �HmiðpiÞ, it follows that its gradient satisfies

@ �Hmi

@pi
ðpiÞ ¼

1
ωs

M�1
i pi ¼

Δωi

ωs
:

7.1.4. Port-Hamiltonian representation
By the previous observations, the dynamics of a single synchronous machine in a multi-
machine system Equation (5.6) can be written in the form
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p
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Efi

� �
|fflfflffl{zfflfflffl}
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0 1
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0 0
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T0
doi
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0 0

0 0

" #
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(7:2)

where

H ¼
X
i2V

ð�Hmi þ Hdi þ HqiÞ þ
X
ði;kÞ2E

Hik

and X̂di :¼ Xdi � X0
di; X̂

0
di :¼ X0

di � X00
di; X̂qi :¼ Xqi � X0

qi; X̂
0
qi :¼ X0

qi � X00
qi and �iH

denotes the gradient of H with respect to the variables colðδi; pi;E0qi;E0di;E00
qi;E

00
diÞ.

Note that the mechanical energy �Hmi is shifted around the synchronous frequency.
By aggregating the states of the synchronous machines, i.e. δ ¼ colðδ1; . . . ; δnÞ etc.,

the multi-machine system is described by
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7777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J�R

�H

þg
Pm
Ef

� �
|fflffl{zfflffl}

u

; y¼ gT�H; g¼ 0 I 0 0 0 0

0 0 ðT 0
doÞ�1 0 0 0

� �T
;

(7:3)

where X̂d ¼ diagðX̂d1; . . . ; X̂dnÞ;T0
do ¼ diagðT0

do1; . . . ;T
0
donÞ and likewise definitions are

used for the quantities X̂0
d; X̂q; X̂0

q;T
0
qo;T

00
do;T

00
qo. The matrix J � R depicted in Equation

(7.3) consists of a skew-symmetric matrix J ¼ �JT and a symmetric matrix R ¼ RT

often called the dissipation matrix [1].

Remark 7.2 (Port-Hamiltonian structures of 6th- and 9th-order models) By com-
paring the port-Hamiltonian structures (i.e. the J and R matrices) of the 6th- and
9th-order models we see several fundamental changes. First, compared to the first-
principle model, in the 6th-order model there is no interconnection structure
present between electrical and mechanical part of the system (and therefore we
expect lesser oscillatory behavior between the two subsystems, see also Remark 4.2).
Instead, for a multi-machine model, in the 6th-order model this coupling comes
through the Hamiltonian, in particular from the part corresponding to the transmis-
sion line energy.

Another fundamental change compared to the full-order model is that self-
interconnection and self-dissipation structure of the electrical part of the system is
different. Specifically, for the first-principle model, there is only a resistive structure
present while in the sixth-order model also a nonzero interconnection structure is
present. We argue that the reason for this difference comes from the somewhat contra-
diction Assumptions 4.6, 4.7 in Section 4.2. In addition, dissipation structure of the
sixth-order model is not diagonal anymore compared to the full-order model due to the
fact that state transformation is not ‘diagonal’, see the definitions of E00

q ;E
00
d in Section

4.2.2 (observe from Equation (4.9) for example that Eq0 0 not only depends on ΨD but
also on Ψf ). Furthermore, for the sixth-order model, it is not immediate that this
dissipation matrix is positive (semi)-definite. This is needed to verify that the system
Equation (7.3) is indeed a port-Hamiltonian representation of the sixth-order multi-
machine network Equation (5.6).

Proposition 7.3 (System:6multiphall is port-Hamiltonian with R � 0). Equation (7.3)
defines a port-Hamiltonian representation of the 6th-order multi-machine network
Equation (5.6). In particular, the matrix R is positive semi-definite.
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Proof. The dissipation matrix of the system Equation (7.3) is equal to the symmetric
part of the matrix in Equation (7.3) and amounts to

R ¼ ωs

0 0 0 0 0 0
0 0 0 0 0 0
0 0 ðT0

doÞ�1X̂d 0 1
2 ðT0

doÞ�1X̂d 0
0 0 0 ðT0

qoÞ�1X̂q 0 1
2 ðT0

qoÞ�1X̂q

0 0 1
2 ðT0

doÞ�1X̂d 0 ðT00
doÞ�1X̂0

d 0
0 0 0 1

2 ðT0
qoÞ�1X̂q 0 ðT00

qoÞ�1X̂0
q

2
66666664

3
77777775
:

By invoking the Schur complement, R ¼ RT � 0 if and only if

2
Xdi�X0

di
T0
doi

Xdi�X0
di

T 0
doi

Xdi�X0
di

T0
doi

2
X0
di�X00

di
T 00
doi

2
4

3
5 � 0 and

2
Xqi�X0

qi

T0
qoi

Xqi�X0
qi

T0
qoi

Xqi�X0
qi

T0
qoi

2
X0

qi�X00
qi

T00
qoi

2
64

3
75 � 0; "i 2 V;

which holds if and only if

4ðX0
di � X00

diÞT0
doi � ðXdi � X0

diÞT00
doi � 0; (7:4a)

4ðX0
qi � X00

qiÞT0
qoi � ðXqi � X0

qiÞT00
qoi � 0; (7:4b)

holds for all i 2 V. By substituting the quantities from Equation (4.2) and simplying the
equations using computer algebra program Mathematica 11, we obtain

4ðX0
di � X00

diÞT0
doi � ðXdi � X0

diÞT00
doi

¼ κ2ωs �
4L2f ðLfMD � LfDMf Þ2RD þ ðLDLf � L2fDÞ2M2

f Rf

L2f ðLDLf � L2fDÞRDRf
ji > 0

(7:5a)

4ðX0
qi � X00

qiÞT0
qoi � ðXqi � X0

qiÞT00
qoi

¼ κ2ωs �
4L2gðLgMQ � LgQMgÞ2RQ þ ðLQLg � L2gQÞ2M2

gRg

L2gðLQLg � L2gQÞRQRg
ji > 0

(7:5b)

where by ji we mean the constants (e.g. Lf ; Lg) associated to machine i 2 V. We
claim that the inequality holds in Equation (7.5). This follows from the fact for
a realistic synchronous machine we have that RD;RQ;Rf ;Rg ; Lf ; Lg ; LD; LQ > 0 and,
since Xq � X0

q > 0;Xd � X0
d > 0 (see Remark 4.4), we have that Mf � 0;Mg�0. In addi-

tion, LDLf � L2fD > 0; LQLg � L2fQ > 0 as the inductance matrices Ld;Lq defined in

Equations (3.2) and (3.3) are positive definite. Hence, Equation (7.4) holds in the strict
sense and consequently R is positive semi-definite and therefore Equation (7.3) defines
a port-Hamiltonian system.

Remark 7.4 (Hamiltonian representations of 5th- and 4th-order models) We can show
that similar port-Hamiltonian structures appear for the 5th- and 4th-order multi-
machine networks using the corresponding (shifted) energy functions derived in
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Section 6 and Section 7.1.3 as the Hamiltonian. Specifically, we can verify that the
interconnection and damping matrices for the 5th-order model are given by

J � R ¼ ωs

0 I 0 0 0
�I 0 0 0 0
0 0 �ðT0

doÞ�1X̂d �ðT0doÞ�1X̂d 0

0 0 0 �ðT00
doÞ�1X̂

0
d 0

0 0 0 0 �ðT 00
qoÞ�1X̂

0
q

2
666664

3
777775;

g ¼

0 0
I 0
0 ðT0

doÞ�1

0 0
0 0

2
66664

3
77775 (7:6)

and for the fourth-order model these take the form

J � R ¼ ωs

0 I 0 0
�I �D 0 0
0 0 �ðT0

doÞ�1X̂d 0
0 0 0 �ðT0

qoÞ�1X̂q

2
664

3
775; g ¼

0 0
I 0
0 ðT0

doÞ�1

0 0

2
664

3
775: (7:9)

In particular, we observe that for fifth-order model also a nontrivial interconnection
and damping structure is present. Similarly, in Proposition 7.3 we can verify the
positive semi-definiteness of the dissipation matrix R but now only using Equation
(7.5a). For the fourth-order model, we observe again a diagonal dissipation matrix as
also apparent in the full-order model (3.5).

For the third-order model we now give a more detailed derivation of its port-
Hamiltonian representation.

7.2. Third-order model

Recall from (6.11) that the energy stored in the inductive transmission line between
node i and k is given by

Hik ¼ � Bik
ωs

1
2E

0
qi
2 þ 1

2E
0
qk

2 � E0qiE
0
qk cos δik

� 	
: (7:8)

Observe that the gradient of Hik is given by

@Hik
@δi
@Hik
@E0qi

" #
¼ Bik

ωs

�E0qiE
0
qk sin δik

�E0
qi þ E0qk cos δik

� �
:

Define now the total energy stored in the transmission lines by HT ¼ P
ði;kÞ2E

Hik. Then
we obtain likewise
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@HT
@δi
@HT
@E0qi

" #
¼ 1

ωs

P
k2N i

Bik � E0qiE
0
qk sin δik

�BiiE0
qi þ

P
k2N i

BikE0
qk cos δik

2
64

3
75 ¼ 1

ωs

Pei
�Idi

� �
:

Further notice that the electrical energy stored in machine i is given by

Hdqi ¼ 1
2ωs

E0
qi
2

Xdi � X0
di

and satisfies

ðXdi � X0
diÞ

@Hdqi

@E0qi
¼ 1

ωs
E0qi:

By the previous observations and aggregating the states, the dynamics of the third-order
multi-machine system Equation (5.11) can now be written in port-Hamiltonian form as

_δ
_p
_E0q

2
4

3
5 ¼ ωs

0 I 0
�I �D 0
0 0 �ðT0

doÞ�1ðXd � X0
dÞ

2
4

3
5�H þ g

Pm
Ef

� �
|fflffl{zfflffl}

u

;

y¼ gT�H; gT ¼ 0 I 0
0 0 ðT0

doÞ�1

� �
; H ¼P

i2V
ð�Hmi þ HdqiÞ þ

P
ði;kÞ2E

Hik

(7:9)

where Xd ¼ diagðXd1; . . . ;XdnÞ;X0
d ¼ diagðX0

d1; . . . ;X
0
dnÞ; and in addition T0

do ¼
diagðT0

do1; . . . ;T
0
donÞ.

7.3. Swing equations

Recall from Equation (6.12) that the energy stored in the inductive transmission line
between node i and k is given by

Hik ¼ ¼ � Bik
2ωs

ð �E0ij2 � 2
�� ���E0

ijj�E0k cos θikþj j�E0kj2Þ: (7:10)

Define now the total energy stored in the transmission lines by HT ¼Pði;kÞ2E Hik and
observe that the gradient of HT with respect to the transformed angle θ is given by

@HT

@θi
¼ �

X
j2N i

Bik

ωs

�E0i
�� �� �E0

k

�� �� sin θik:
For the second-order model the electrical energy stored in the generator circuits is
constant and can therefore be omitted from the Hamiltonian without loss of generality.
By the previous observations and aggregating the states, the dynamics of the second-
order multi-machine system Equation (5.12) can be written in port-Hamiltonian form as

_δ
_p

� �
¼ ωs

0 I
�I �D

� �
�H þ 0

I

� �
Pm|{z}
u

y ¼ 0 I½ 
�H ¼ Δω
ωs
; H ¼P

i2V
�Hmi þ

P
ði;kÞ2E

Hik:
(7:11)
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7.4. Shifted passivity

In this section we establish the shifted passivity properties of the reduced-order multi-
machine models.

Definition 7.5 (Shifted passivity) Let ð�x; �u;�yÞ be such that f ð�x; �uÞ ¼ 0;�y ¼ hð�x; �uÞ.
Then _x ¼ f ðx; uÞ; y ¼ hðx; uÞ where x 2 D � R

n is shifted passive with respect to the
shifted input-output pair ðu� �u; y� �yÞ if there exists a differentiable storage function
V : D ! R�0 satisfying the differential dissipation inequality

d
dt

VðxðtÞÞ ¼ ð�VðxðtÞÞÞTf ðxðtÞ; uðtÞÞ � ðuðtÞ � �uÞTðyðtÞ � �yÞ

for all solutions xð:Þ corresponding to input functions uð:Þ.

Proposition 7.6 (Shifted passivity of reduced-order models) The 6,5,4,3, and 2nd-order
multi-machine models are shifted passive using the local storage function
�HðxÞ :¼ HðxÞ � ðx� �xÞT�Hð�xÞ � Hð�xÞ, provided that a steady state ð�x; �u;�yÞ exists
with �2Hð�xÞ � 0 where H is defined as in Section 6.

Proof. We first observe that the multi-machine systems Equations (7.3), (7.9) and (7.11)
(but also the 5th- and 4th-order models, see Remark 7.4) can be written in the port-
Hamiltonian form

_x ¼ ðJ � RÞ�HðxÞ þ gu
y ¼ gT�HðxÞ (7:12)

with constant matrices J ¼ �JT ;R ¼ RT � 0, see also Proposition 7.3. Let ð�x; �u;�yÞ
correspond to a steady state of Equation (7.12), i.e.

0 ¼ ðJ � RÞ�Hð�xÞ þ g�u

�y ¼ gT�Hð�xÞ
and suppose that �2Hð�xÞ � 0. Define the shifted Hamiltonian (see e.g. [1]) as �HðxÞ :¼
HðxÞ � ðx� �xÞT�Hð�xÞ � Hð�xÞ as in the proposition. Then the system Equation (7.12)
can be rewritten as

_x ¼ ðJ � RÞ��HðxÞ þ gðu� �uÞ

y� �y ¼ gT��HðxÞ:
The shifted passivity follows by taking the time-derivative of the shifted Hamiltonian �H
which yields

_�H ¼ �ð��HðxÞÞTR��HðxÞ þ ðu� �uÞTðy� �yÞ � ðu� �uÞTðy � �yÞ:
Since in addition �Hð�xÞ ¼ 0;�Hð�xÞ ¼ 0 and �2 �Hð�xÞ ¼ �2Hð�xÞ � 0, it follows that �H

is a suitable local storage function.
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Remark 7.7 (Hessian condition) To use Proposition 7.6 one must verify that the
Hessian of the Hamiltonian evaluated at the (desired) equilibrium is positive semi-
definite. For the second- and third-order multi-machine models a sufficient condition is
established for guaranteeing that the Hessian is positive definite, see [19,33]. It can be
verified that these conditions hold for a typical operation point of the power network,
i.e. for which the voltage (angle) differences are small. However, further effort is
required to establish a similar condition for the higher-order multi-machine models,
which preferably can be checked in a distributed fashion.

The shifted passivity property mentioned in Proposition 7.6 that the previously
derived multi-machine models (7.3), (7.9), (7.11) (and the 5th-, and 4th-order models)
admit proves to be very useful when interconnection with (passive and optimal)
controllers, see in particular our previous work [5,22] for an analysis of the third-
and sixth-order models respectively.

8. Conclusions and future research

In this article, a unifying energy-based approach to the modelling of multi-machine
power networks is provided. Starting from the first-principle model of the synchronous
generator, reduced order models are obtained and the underlying assumptions are
explained. After determining the energy functions of the reduced-order models, a port-
Hamiltonian representation of the multi-machine systems is established. In particular, it
is shown that advanced multi-machine models that are much more advanced can be
analyzed using the port-Hamiltonian framework. Moreover, the resulting port-
Hamiltonian system is proven to be shifted passive with respect to its steady states.
The latter property has turned out to be crucial in many contexts, in particular for the
stability analysis of the (optimal) equilibria of the closed-loop system [5,18,19].

8.1. Future research

The results established in this article can be extended in many possible ways. We
elaborate on the main research directions in the following.

8.1.1. Control
One natural extension of the work established in the present article is to consider
(distributed) control of multi-machine networks. For frequency control, this can for
example be done following the lines of [18,22,34]. Since in the present article we
established a systematic way for obtaining the energy functions and proved (shifted)
passivity of the system, we conjecture that the same kind of controllers established in
these references can be applied to (purely inductive) multi-machine models where each
synchronous machine is described by a 2,3,4,5 or 6th-order model. In particular, the
6th-order multi-machine case was already been in our previous work [22].
Alternatively, one can continue along the lines of [4,5,11,35] and consider controllers
based on the primal-dual gradient method. In addition, further effort is required to
investigate the possibilities of (optimal) voltage control using passive controllers. One
possibility is to extend the work of [19,20] to high-dimensional multi-machine models.
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8.1.2. Nonzero transfer conductances
Another extension to this work is to include transmission line resistances in the
network. However, in [10,36] and references therein it is observed that in the case of
nonzero transfer conductances, a Lyapunov based stability analysis can be cumber-
some and involves adding nontrivial cross terms in the Lyapunov function. Even
then, the stability analysis relies on a ‘sufficiently small transfer conductances’
assumption [10,36]. On the other hand, one approach that could be adopted in
future research is to assume the resistive transmission lines are uniform such that the
R=X ratios are identical for all transmission lines. This simplifies the analysis and
possibly the present work could be extended to this case (and keeping the port-
Hamiltonian structure intact), for example by following the lines of [19] and
references therein.

8.1.3. More accurate power network models
In the present article, we considered the case that each node in the network represents
a synchronous machine. A natural extension is to generalize the established results to
the case where some of the nodes represent inverters or (frequency-dependent) loads
instead. In addition, while advanced models of the synchronous generator are consid-
ered in this article, there are many possible extensions to these models. For example,
models for the turbine and speed governor as considered in e.g. [30,35,37] could also be
taken into account. Finally, the model can be expanded such that the excitation system
and the automatic voltage regulator (AVR) are included as well [7].

Notes

1. Text for Footnote 1This is in contrast to [8,26] where the convention �V ¼ Vd þ jVq is
used.

2. Text for Footnote 1See in particular [7], Chapter 11] for a$146#detailed derivation of the
model (1).

3. Text for Footnote 1For example, in Europe the synchronous frequency is 50Hz and in the
United States it is 60.

4. Text for Footnote 1Note that the angle θi represents the voltage angle of generator i with
respect to the synchronous rotating reference frame.

5. Text for Footnote 1Note that for the third-order model αi ¼ 0 implying that in this case θi
is equal to the rotor angle δi with respect to the synchronous rotating reference frame.

6. Text for Footnote 1For notational convenience the subscript i is omitted in this section.
7. Text for Footnote 1Provided that the transient saliency is neglected, i.$132#e. X0

di ¼ X0
qi for

all i 2 V.
8. Text for Footnote 1Where the subtransient voltages are replaced by the transient voltages.
9. Text for Footnote 1Which are sometimes incorrectly called energy functions as well.
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