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Abstract

A framing bias shows risk aversion in problems framed as “gains” and risk seeking in problems

framed as “losses,” even when these are objectively equivalent and probabilities and outcomes

values are explicitly provided. We test this framing bias in situations where decision makers rely

on their own experience, sampling the problem’s options (safe and risky) and seeing the outcomes

before making a choice. In Experiment 1, we replicate the framing bias in description-based deci-

sions and find risk indifference in gains and losses in experience-based decisions. Predictions of

an Instance-Based Learning model suggest that objective probabilities as well as the number of

samples taken are factors that contribute to the lack of framing effect. We test these two factors

in Experiment 2 and find no framing effect when a few samples are taken but when large samples

are taken, the framing effect appears regardless of the objective probability values. Implications of

behavioral results and cognitive modeling are discussed.

Keywords: Framing effect; Gains and losses; IBLT; Decisions from experience; Decision bias

1. Introduction

We often make decisions relying on explicit information about the probabilities of out-

comes. For example, a patient is given probabilities regarding the outcomes of two treat-

ments for lung cancer (e.g., radiation or surgery). In principle, such information should

help the patient to maximize the chances of survival. However, after many decades of

research in decision sciences, we know that humans suffer from a large set of “cognitive

biases” affecting the way that they evaluate probabilities and outcomes from explicit

Correspondence should be sent to Cleotilde Gonzalez, Carnegie Mellon University, Department of Social

and Decision Sciences, 5000 Forbes Avenue, Porter Hall 208, Pittsburgh, PA 15213. E-mail: coty@cmu.edu



descriptions. These biases often lead to inaccurate judgments and suboptimal choices

(Kahneman, Slovic, & Tversky, 1982; Tversky & Kahneman, 1981).

A well-known bias that demonstrates human “irrationality” is the framing effect. A

prototypical example of this bias has been shown using the Asian Disease Problem

(ADP) from Tversky and Kahneman (1981, 1983, 1986), where participants are presented

with a descriptive scenario about an epidemic disease and are then asked to choose

between options that are objectively equivalent (i.e., they have identical expected values)

but are framed as gains or as losses.

ADP Scenario:

Imagine that the United States is preparing for the outbreak of an unusual Asian dis-

ease, which is expected to kill 600 people. Two alternative programs to combat the dis-

ease have been proposed. Assume that the exact scientific estimates of the programs are

as follows:

Positive frame (Gains):

If Program A is adopted, 200 people will be saved

If Program B is adopted, there is 1/3 probability that 600 people will be saved, and

2/3 probability that no people will be saved.

Negative frame (Losses):

If Program C is adopted, 400 people will die

If Program D is adopted, there is 1/3 probability that nobody will die, and 2/3 prob-

ability that 600 people will die.

A decision maker is said to be “risk averse” if she prefers a safe over a risky pros-

pect of equal or higher expected value, and she is said to be “risk seeking” if she pre-

fers a risky over a safe one of equal or higher expected value (Fox & Poldrack, 2009).

In the ADP, a majority of respondents under gains prefer program A, the safe option;

and a majority of respondents under losses prefer program D, the risky option—despite

these programs being equivalent in terms of their expected value: Of the 600 people,

200 are expected to be saved and 400 are expected to die. In Tversky and Kahneman

(1981), for example, 72% of the respondents selected the safe option when the problem

was framed as gains, but 78% selected the risky option when the problem was framed

as losses.

The framing effect in risky choice has generally been explained by Prospect Theory’s

value and probability functions (Tversky & Kahneman, 1981). The value function sug-

gests that for gains and losses, the subjective difference between two small outcomes is

greater than the subjective difference between two large values (a phenomenon called

diminishing sensitivity), and that the displeasure associated with a loss is generally greater

than the pleasure associated with a gain of the same magnitude (a phenomenon called

loss aversion). The subjective probability function suggests an overweighting of small

probabilities and an underweighting of high probabilities. These two functions combined

give rise to loss avoidance, the tendency to avoid losses of high probability and pick
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actions that might result in a gain even with low probability (Cachon & Camerer,

1996; Erev, Ert, & Yechiam, 2008; Yechiam & Hochman, 2013). In the introductory

example above, more patients would prefer a riskier treatment (e.g., radiation) when the

information is framed as mortality rates, but a more definite treatment (e.g., surgery)

when information is framed in terms of chances of survival; even when the objective

survival probabilities for each treatment were the same. Although a patient may only

have access to explicit descriptions of possible outcomes and their probabilities, doctors

often rely on their own experiences with the different treatments (Groopman, 2007).

For example, an experienced oncologist has seen the end results of many patients

choosing one or the other treatment. Based on those experiences, would doctors be just

as susceptible to biases like the framing effect? Would decision makers be susceptible

to the framing bias when relying on their own experience to make a choice, rather than

on a description?

1.1. Gains versus losses in decisions from experience

While most demonstrations of the framing bias have used descriptive scenarios as in

the ADP, a growing body of research suggests that contrastingly different risk preferences

are observed when decisions are made from experience. While in descriptive decisions,

people often act as if low-probability outcomes were more probable than they really are

(i.e., they are overweighted), people in experiential decisions act as if low probability out-

comes were less probable than they really are (i.e., they are underweighted), resulting in

a phenomenon coined as the description-experience gap (Barron & Erev, 2003; Camilleri

& Newell, 2009; Hertwig, Barron, Weber, & Erev, 2004; Hertwig & Erev, 2009). More

generally, recent research suggests that well-known biases originally demonstrated with

descriptive scenarios may not exist or might be weaker when people make decisions from

experience (Dutt, Arlo-Costa, Helzner, & Gonzalez, 2013; Gonzalez, 2013; Harman &

Gonzalez, 2015).

In descriptive decisions, a four-fold pattern of risky choice emerges from the probabil-

ity (high, low) and the domain (gains, losses) of a decision problem. Prospect Theory

explains this pattern by proposing risk aversion when the probability of winning is high

or when the probability of losing is low, and risk seeking when the probability of win-

ning is low or when the probability of losing is high (Tversky & Fox, 1995; Tversky &

Kahneman, 1992). In contrast, a reversed four-fold pattern has been observed in decisions

from experience (Hertwig, 2012, 2015; Hertwig et al., 2004). For example, in Hertwig

(2012), a majority of respondents were risk seeking when the probability of winning was

high or when the probability of losing was low; and they were risk averse when the prob-

ability of winning was low or when the probability of losing was high (Table 1). This

reversed pattern has generally been explained by the assumption that people behave as if

they underweight small probabilities and overweight both moderate and high probabilities

(Hertwig, 2012; Hertwig & Erev, 2009).

However, the four-fold pattern refers to a reflection effect, where the sign of outcomes

is reversed, resulting in different expected values (Fagley, 1993), in contrast to the fram-
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ing effect, where problems in the gain and loss domains keep the same expected values

(e.g., in the ADP problem, 200 people are expected to die, independent of the frame).

For example, in the Low probability problems shown in Table 1, outcomes are mirrored

from gains to losses by reversing the sign of outcomes from gains (+32) to losses (�32),

thereby also changing the problems’ expected values (3.2 in gains and �3.2 in losses).

Within the literature of decisions from experience, a large number of studies have tested

the reflection effect (Barron & Erev, 2003; Ert & Yechiam, 2010; Hertwig et al., 2004; Lud-

vig, Madan, & Spetch, 2013; Ludvig & Spetch, 2011). Findings consistently replicate the

contradicting risky choices in the gain and loss conditions (the description–experience gap),
supporting the reversed four-fold pattern (Hertwig, 2012). Furthermore, differences also

appear at the level of search (during a sampling process that precedes the consequential

choice between the options): Participants search longer when facing possible losses relative

to gains in a large number of problems similar to those shown in Table 1 (Lejarraga, Her-

twig, & Gonzalez, 2012; Mehlhorn, Ben-Asher, Dutt, & Gonzalez, 2014). In these studies,

loss aversion (i.e., people are thought to weigh losses more heavily than gains of the same

magnitude) is a typical explanation for the framing effect in descriptive choices, but

explanations for the reflection effect in decisions from experience are unclear. Loss aver-

sion, albeit controversial, does not appear to be a plausible explanation for the contrasting

choices in experiential decisions (Erev et al., 2008; Ert & Erev, 2013; Hochman & Yech-

iam, 2011). For example, participants in Erev et al. (2008) were similarly indifferent when

selecting between the status quo (payoff of 0) and an equal chance to win 1,000 and lose

1,000. More strongly, recent evidence suggests that it is possible to manipulate experiences

to obtain loss aversion, loss neutrality, or even a reversal of loss aversion through manipulat-

ing the range of possible gains and losses that people experience during experiments (Wa-

lasek & Stewart, 2015).

In summary, demonstrations of the framing effect in problems that maintain the same

expected values across domains have not been conducted; and cognitive explanations of

observed behavior in problems framed as gains and losses in decisions from experience

are unclear.

Table 1

A typical set of problems that demonstrate a four-fold pattern in decisions from experience (from Hertwig,

2012); R (risky option), S (safe option), and EV (expected value)

Probability

Gain Loss

R: (outcome1, prob1, outcome2, prob2) R: (outcome1, prob1, outcome2, prob2)

S: Outcome, prob = 1 S: Outcome, prob = 1

Low R: 32, .1; 0, .9 (EV = 3.2) R: �32, .1; 0, .9 (EV = �3.2)

S: 3, 1.0 S: �3, 1.0

Risk aversion: 20% Risk seeking: 72%

High R: 4, .8; 0, .2 (EV = 3.2) R: �4, .8; 0, .2 (EV = �3.2)

S: 3, 1.0 S: �3, 1.0

Risk seeking: 88% Risk aversion: 44%
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1.2. Goals and overview of the current research

To clarify whether people are susceptible to the framing bias in decisions from experi-

ence, we first present an experiment comparing traditional description-based choice and

experiential-based choice in the sampling paradigm using the ADP (Experiment 1). Then,

to provide cognitive explanations of behavioral results in decisions from experience, we

run simulations of participants’ expected behavior in the ADP from experience using a

computational cognitive model that has successfully predicted choice from memory in a

large variety of decision-making domains (IBL [instance-based learning], derived from

Instance-Based Learning Theory; Gonzalez, Lerch, & Lebiere, 2003). Analyses of values

and memory retrieval probabilities in the IBL model compared to observed behavior sug-

gest that the lack of framing bias emerges from under-experiencing the high-value out-

come associated with a low probability in the risky option, making the safe option more

attractive in both gains and losses.

This effect may be explained by the fact that high outcomes occur less often in the

environment (low objective probability, given that the probability of the high-value out-

come in the ADP is 1/3), or by the well-known phenomenon of under-exploration, by
which there is a human tendency to limit their information search, even when they are

given the opportunity to search extensively (Gonzalez & Dutt, 2011, 2012; Hau, Pleskac,

Kiefer, & Hertwig, 2008; Hills & Hertwig, 2010; Mehlhorn et al., 2014, 2015). We further

investigate these two explanations using the IBL model (“out of the box”) to make predic-

tions in conditions where we vary the probabilities systematically and the number of sam-

ples taken before a choice is made. Based on these predictions, we select problems to use

in Experiment 2, to verify the low objective probability and under-exploration phenomena

that expand our understanding of the framing effect in decisions from experience.

2. Experiment 1

In the laboratory, experiential choices are often investigated in interactive paradigms,

where participants learn about the possible outcomes from feedback, by selecting options

represented with blank buttons on the screen and receiving the outcome resulting from a

random draw of the probability associated with that button (Barron & Erev, 2003; Her-

twig et al., 2004). The paradigm shown in Fig. 1 is an experiential equivalent (e.g., sam-

pling paradigm) of the descriptive form of the ADP that we use in this research.

Participants are presented with the ADP scenario and are told to sample the outcomes of

the two programs for as long as they want and in whatever order they want, by pressing

the respective buttons (labeled A and B). Participants do not know which is a risky and a

safe option (the two options were randomized per participant). When a button is selected,

an outcome (summary statistic according to the ADP) is drawn from the respective distri-

bution and is displayed. Once participants feel sufficiently informed about the options’

outcomes, they can proceed to the final choice phase in which they make a consequential

choice between the two programs.
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In the loss frame exemplified in Fig. 1, a click in the risky option B displays the low-

value outcome (a high loss of 600 people die) with a 2/3 probability or the high-value

outcome (low loss of 0 people die) otherwise (1/3 probability); while a click in the safe

option displays the medium-value outcome (400 people die) with a probability of 1.

These values make the expected value of the two options equivalent. Participants are free

to sample, without any consequences until they choose to proceed to the decision phase

where one final consequential choice is made based on personal experiences from

Imagine that the US is preparing for the outbreak of an unusual Asian disease, which is 

expected to kill 600 people. Two alternative programs to combat the disease have been 

proposed. You may first explore the possible scientific estimates of the outcomes of the two 

programs by clicking on the two buttons on the screen for as long as you want.  Then, when 

you are ready to make a choice between the two programs, click on the “Go to Decision” 

button.

Fig. 1. An illustration of the sampling paradigm in the Asian Disease Problem (ADP) with the loss frame.

The scenario is described, and the participant explores the possible outcomes of both options until she feels

ready for the final decision. In the decision phase, she is asked to select one of the options for real.
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sampling. The preferences in the final consequential choice are often compared to those

made from description to identify differences in the two choice modes (Hertwig et al.,

2004).

2.1. Participants and design

In total, 227 paid volunteers (58% male) with a mean age of 27.0 years (SD = 10.8)

were recruited through Amazon Mechanical Turk and completed one ADP problem for a

fixed payment of $0.25. Participants were randomly assigned to one of four conditions:

Description-Gain (51), Description-Loss (51), Experience-Gain (60), and Experience-Loss

(65); and gave informed consent before starting. In the experience condition, participants

were presented with the problem scenario in the sampling paradigm (Fig. 1). In the

description condition, participants were given a choice between two options described in

the ADP presented in the introduction. In the experience condition, eight additional sub-

jects were tested, but they were excluded from all analyses because they did not follow

instructions to sample at least once from each option.

2.2. Choice behavior

Table 2 shows the overall proportions of risky choices (Prisky) for each of the four

groups. Note that in experiential decisions, only the choice at the decision phase is ana-

lyzed in Table 2. In agreement with the literature on descriptive choice, we observe a sig-

nificant framing bias in decisions from description: We find a lower Prisky in the gain

frame than in the loss frame. Additional comparisons against chance levels show that Pri-

sky was significantly lower than .5 in gains, but it did not differ from .5 in losses. In con-

trast, we observe no significant framing bias in experience-based choice: Prisky does not

differ between gains and losses.

Our results replicate the framing effect in the ADP in descriptive decisions but show

no framing effect in experiential decisions. When making decisions from experience,

humans were indifferent between the risky and safe options in both gains and losses; but

the difference in the choice proportions between descriptive and experiential decisions

did not lead to a significant description-experience gap.

2.3. Sampling behavior

As expected, participants under-explored; they took a small number of samples before

making a choice (Table 3). Although there was large variability in the number of

samples, there is no significant difference between the sample size of gains and losses (t
(113.21) = .304, p = .761).

To analyze the actual sampling experiences, we calculated the experienced expected

value (EEV) of each risky and safe option for each participant. The EEV is the accumula-

tion of the product of each outcome’s experienced probability and each outcome’s value,

over all the samples taken by the participant (t), as follows:
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EEVt ¼
Xt
i¼1

experienced probabilityi � outcomei

EEV is an approximation of the value of each option used as the basis for choice in

past research (in the IBL model, the option with the highest Blended value, similar to the

EEV, is selected, see Gonzalez & Dutt, 2012; Mehlhorn et al., 2014; see also Hertwig &

Pleskac, 2008 for a similar calculation). The experienced probability for each outcome is

calculated by the frequency of occurrences divided by the number of samples.

Fig. 2a shows the average EEV of the safe and risky options in gains and losses, and

Fig. 2b shows the average preferences (difference between the EEVs of the risky and safe

options, EEV risky—EEV safe) in each frame. The average EEV of the risky option is

lower than the safe option in gains (136 and 200), and it is only slightly higher in losses

(�393 and �400), but their variability is quite large as seen by the standard deviations.

Similarly, the average difference between their EEVs (Fig. 2b) suggests a tendency to

Experienced Expected Values after all Samples

E
E

V
−
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−
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0
−
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(a) (b)

Fig. 2. (a) Average (�1 SD) experienced expected values (EEVs) for the safe and risky options in gain and

loss problems after all samples. (b) Average (�1 SD) preference for the safe (risk aversion) or risky option

(risk seeking), as indicated by the difference between EEVs in gain and loss problems.

Table 3

Number of samples (median [range], mean) from the risky, the safe, and both options in each frame in the

experience condition for Experiment 1

Safe Option Risky Option Total

Gains 2 [1–18], 3.5 2 [1–18], 3.5 4 [2–36], 7.0
Losses 2 [1–25], 3.6 2 [1–30], 3.8 4 [2–46], 7.4
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prefer the safe option in gains, and indifference between the safe and risky values in

losses; again the standard deviations of these differences are very large.

To further investigate how these preferences emerged, we analyzed the experienced

probabilities. Fig. 3 shows the resulting probabilities of each of the outcomes in the risky

option in the gain (Fig. 3a) and loss (Fig. 3b) frames as experienced by individuals.

Although there is large individual variability (small crosses), the average experienced

probabilities (large crosses) are very close to the objective probabilities in the loss

domain (.35 instead of .33; and .65 instead of .66), while small probabilities are slightly

under-experienced (.23 instead of .33) and large probabilities are slightly over-experi-

enced (.77 instead of .66) in gains. These results suggest that participants experienced the

values of safe and risky options to be about the same in the loss frame, which resulted

from a close to accurate experienced probability of the outcomes; while in the gain

frame, participants experienced the safe option to be slightly more valuable than the risky

option, probably due to an under-experience of the high-value outcome (600) and an

over-experience of the low-value outcome (0) in the risky option.

2.4. From sampling to choice

To test the relationships between participants’ experiences during sampling and their

choices, we correlated each participant’s (risky-safe) EEV differences during sampling

with his or her final choice: The choice was coded as 1 (risky choice) or 0 (safe choice).

We found strong positive correlations for gains: r(58) = .70, p < .001 and for losses:

r(63) = .59, p < .001. At the aggregate level, preferences during sampling (Fig. 2b)

(a) (b)

Fig. 3. Experienced probabilities after all samples for the high and low outcomes in (a) gains (600, 0) and (b)

losses (0, �600) in Experiment 1. In both plots, small crosses indicate the experienced probabilities for each

individual participant. Large crosses indicate the mean experienced probabilities across participants. The num-

bers next to large crosses show the exact values of the mean probabilities, along with their standard deviation.
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reflect the subsequent choice in experiential decisions very closely (Table 1): Indifference

or slight risk aversion in gains and losses, with neither preferences being statistically dif-

ferent from chance. However, there was no significant correlation between participants’

sample sizes and their final choice for gains: r(58) = �.07, p = .614, or for losses:

r(63) = .02, p = .884, perhaps due to the fact that most participants take small samples in

both gains and losses.

2.5. Summary

In descriptive decisions, we replicate the well-known framing bias, but we find risk

indifference (i.e., no framing bias) in decisions from experience. Participants sampled

very little (median of 4 samples), and there was no difference in the number of samples

taken in gains and losses. Based on these samples, we find that participants’ experienced

probabilities are generally close to the objective probabilities in the ADP, more so for

losses than for gains, resulting in very similar EEVs for the safe and risky options. We

find that these experiences turned out to be a good predictor for participants’ final choices

at the individual and at the aggregate level. Furthermore, we find no description-experi-

ence gap (Table 2), neither in gains nor in losses. This is interesting, as the reflection

effect finds that risk preferences in description and experience are reversed and it is often

assumed that this due to a reversal of the experienced probabilities: While small probabil-

ities are overweighted in decisions from description, they are underweighted in decisions

from experience (Hertwig et al., 2004). As our results demonstrate, this was not the case

for the ADP. From experience, participants built a close-to-accurate representation of the

probabilities and were thereby able to escape the framing bias; thus, their choices were

not reversed when compared to descriptive choices.

Many questions emerged from this experiment: What cognitive mechanisms explain

indifference between the safe and risky options in gains and losses from experience?

How does the number of samples taken influence the experienced probabilities? How do

objective probabilities influence the framing effect? How general is the risk indifference

in framing from experience? We turn next to cognitive modeling and further experimen-

tation to answer these questions.

3. Explaining sampling and choice in framing tasks using cognitive models

Many models may be able to capture the sampling and choice behavior found in

Experiment 1 (see Gonzalez & Dutt, 2011 for a summary of these models). In fact, a

common approach in the cognitive sciences is to follow behavioral phenomena with the

development of a cognitive model that is able to reproduce that behavior (Cassimatis,

Bello, & Langley, 2010). This has also been a tradition in decision sciences, where task-

specific models (not necessarily cognitive) are often put into competition to fit and predict

human choices in one particular task (Erev, Ert, & Roth, 2010; Erev, Ert, Roth et al.,

2010). A problem with this approach is that new tasks lead to the design of new models,
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resulting in a multitude of highly task-specific models that fail to reproduce behavior in

other closely related tasks (Cassimatis et al., 2010; Gonzalez & Dutt, 2011; Lejarraga,

Dutt, & Gonzalez, 2012; Newell, 1973).

In the current research, we chose an existent instance-based learning (IBL) model that

has shown to be a generalist rather than a specialist (Gonzalez, 2013; Hertwig, 2015).

This model, originating from IBLT (Gonzalez et al., 2003), provides accurate predictions

of choice behavior in a large diversity of sequential and dynamic decision-making tasks,

particularly across decisions from experience paradigms (e.g., Gonzalez & Dutt, 2011;

Lejarraga, Dutt, et al., 2012). In large-scale model comparisons, the IBL model has

been shown to account for sampling and human choice processes better than the best

task-specific models (Gonzalez & Dutt, 2011). Furthermore, the IBL model has also been

shown to provide similar predictions to a reinforcement-learning model (from Yechiam &

Busemeyer, 2005) that was used in similar repeated choice tasks (Lejarraga & Gonzalez,

2011). Although both reinforcement-learning and IBL models can predict choices accu-

rately, the IBL model is preferred here because of its foundations in cognitive and deci-

sion sciences and its memory mechanisms taken from a well-known cognitive

architecture (ACT-R, Anderson & Lebiere, 1998, 2003); and because it formulates value

in a way that connects to traditional models of choice (i.e., expected value), allowing us

to perform analyses of main elements of choice (probability and values).1

The IBL model assumes that observed outcomes are stored in memory. The availability

(i.e., the activation) of these instances in memory decays over time, and it is a function

of the recency and frequency with which an instance was observed. Consequently, more

frequent and more recent observed outcomes influence choices more heavily than more

distant and rare ones. Most important, the IBL model, like many decision theories, pro-

poses that the valuation of an option (called blending, in IBLT) depends on each out-

come’s likelihood (i.e., probability of retrieval of an instance from memory in IBLT) and

value. This formulation is similar to the basic concept of expected value, which is essen-

tial for comparing to experienced probabilities and EEVs in the ADP and to be able to

understand how over- or underweighting of probabilities may emerge from experience.

The Appendix provides the mathematical formalization of the IBL model, as it has also

been reported in several past publications (Gonzalez, 2013; Gonzalez & Dutt, 2011;

Lejarraga, Dutt, et al., 2012).

Using this IBL model “out of the box” (i.e., without fitting parameters and using the

default parameters values from ACT-R; for decay: d = .5, and noise r = .25), we ran

1,000 simulations to make predictions in the ADP problem in the absence of human data.

To investigate the effects of the sample size in the framing effect, we ran two groups of

fixed sampling sizes (5, small; and 100, large) in the ADP problems in gains and losses.

The data from the IBL model are analyzed in ways similar to human data. We calculated

the average blended values (Eq. 1 in Appendix) and the retrieval probabilities for the

risky outcomes (Eq. 2 in Appendix) after sampling.

Figs. 4a and c show the resulting average blended values (Eq. 1 in Appendix) for the

safe and the risky options in gains and losses after 5 and 100 samples. Figs. 4b and d

illustrate the predicted choice (the difference between the corresponding blended values).

1174 C. Gonzalez, K. Mehlhorn / Cognitive Science 40 (2016)



The model predicts a risk aversion in both gains and losses, but this preference seems

stronger after 100 samples than after 5 (c.f. Fig. 4b and d), though the variability is large.

Therefore, the IBL model predicts no framing effect in the ADP from experience, as it

was found in Experiment 1, regardless of the number of samples.
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Fig. 4. (a and c) Average (�1 SD) blended values for the safe and risky options in gain and loss problems

after a total of n samples (3a: n = 100; 3c: n = 5). (b and d) Average (�1 SD) preference for the safe (risk

aversion) or risky option (risk seeking), as indicated by the difference between blended values in gain and

loss problems after a total of n samples (3b: n = 100; 3d: n = 5).
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To explain these preferences in the model, we investigated the retrieval probabilities

for the outcomes in the gain (Fig. 5a and c) and loss (Fig. 5b and d) frames. The

predictions indicate that, on average, after 100 samples, the lower probability in the risky

option will be strongly underweighted in gains (.16 vs. .33) and losses (.15 vs. .33), and

the higher probability will be strongly overweighted in gains (.83 vs. .66) and losses (.85

(a) (b)

(c) (d)

Fig. 5. (a and b) Instance-based learning (IBL) predictions of the retrieval probability after 100 samples for

the high and low outcomes in gains (600, 0) and losses (0, �600). (c and d) IBL predictions of the retrieval
probability after 5 samples for the high and low outcomes in gains (600, 0) and losses (0, �600). In each

plot, small crosses indicate the predicted probabilities for each of the 1,000 simulated participants. Large

crosses indicate the mean predicted probabilities across those 1,000 simulated participants. The numbers next

to the large crosses show the exact values of the mean probabilities, along with their standard deviation.
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vs. .66). However, after 5 samples, the model predicts low probabilities that are slightly

underweighted in gains (.24 vs. .33) and losses (.21 vs. .33) and higher probabilities that

are close to the objective probabilities in gains (.62 vs. .66) and losses (.64 vs. .66).

3.1. Explanations and insights emerging from the IBL model

Consider the ADP in the gain domain. Samples from the safe option produce a single

instance in memory, which is reinforced with each sample from this option because the

only possible outcome is 200. Samples from the risky option produce two unique

instances in memory, one with a 600 outcome and one with a 0 outcome, which are rein-

forced when the respective outcomes are observed. Each of these instances has an activa-

tion value reflecting the frequency of the experienced outcome, the recency with which

the outcome was experienced, and noise (Eq. 3 in Appendix). This activation value is

used to calculate the probability of retrieval for each instance (Eq. 2 in Appendix), which

is then used to calculate the blended value of each option (Eq. 1 in Appendix). The

blended value for the safe option will be near 200 and grow ever closer to 200 with lar-

ger samples (see blended values for the safe gain in Fig. 4a and c). However, the blended

value of the risky option depends on the frequency and recency of experiences for the

600 and the 0 outcomes. With each sample, the option with the highest blended value up

to that specific sample is chosen. If the risky option was selected and “600” was experi-

enced in an initial sample, the blended value of the risky option is likely to be higher

than the blended value of the safe option, leading to a risky choice. Given that the higher

outcome of the risky option (600) is generally under-experienced relative to its normative

value, it ends up being underweighted (see Fig. 5a and c). The lower outcome of the

risky option (0) generally becomes overweighted after 100 samples (see Fig. 5a) and

slightly underweighted after 5 samples (see Fig. 5c). Consequently, the blended value of

the safe option (200) is often higher than the blended value of the risky option (see

Fig. 4). This difference is stronger after 100 samples (Fig. 4a) than after 5 samples

(Fig. 4c). Therefore, a preference is developed for the safe option (stronger preference

after 100 samples, Fig. 4b; than after 5 samples, Fig. 4d).

A very similar process applies to the loss domain. Samples from the safe option pro-

duce a single instance in memory as the only possible outcome is �400. Samples from

the risky option produce two unique instances in memory, one with a 0 outcome and one

with a �600 outcome. Because the higher outcome of the risky option (0) tends to be

under-experienced relative to its normative value, it ends up being underweighted with

the lower outcome of the risky option (�600) becoming overweighted (after 100 samples,

Fig. 5b; and slightly underweighted after 5 samples, Fig. 5d). Consequently, the resulting

blended value of the safe option (�400) is often higher than the blended value of the

risky option (see Fig. 4a and c), meaning that a preference is likely developed for the

safe option.

In summary, the IBL model predicts a difference in how the probabilities are experi-

enced according to the number of samples taken, but it also predicts no difference in

choice between gains and losses, regardless of the sample size. The model’s predictions
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after five samples are closer to the observed behavior in Experiment 1 than the predic-

tions after 100 samples. This seems reasonable, given the small sample sizes observed in

participants (Table 3). According to the IBL model, large samples would result in under-

weighting of low probabilities and overweighting of high probabilities, while small sam-

ples would result in slight underweighting of low and high probabilities. Since the low

probability is associated with the higher outcome in the ADP, the blending value predicts

a slight risk aversion in gains and losses. These predictions are in agreement with results

from Experiment 1, which shows no framing effect from experience.

There are, however, some slight differences in the observed experienced probabilities

between gains and losses in Experiment 1 (Fig. 3), which the model does not capture

(see Gonzalez, 2013, for some of the limitations of this IBL model), although ultimately

the model’s predictions agree with the lack of framing effect observed. Instead of

attempting to fit the IBL model’s parameters to human data (a very common approach

expected to lead to lower discrepancies between the IBL model’s predicted and observed

behavior), we decided to produce a larger set of predictions from the IBL model to help

determine the generality of the lack of framing effect observed in Experiment 1. For

example, the IBL model makes interesting predictions regarding the number of samples,

and the relationships between the samples taken and the probabilities associated to the

outcomes in the risky options. More exploration is expected to lead to more underweigh-

ting of high outcomes and overweighting of low outcomes. Furthermore, the predicted

experience depends directly on the objective probabilities associated to those outcomes. If

the probability of the high outcome decreases, this might result in more underweighting

of these outcomes (cf. Ludvig & Spetch, 2011; Ludvig et al., 2013). New predictions

from the IBL model are presented next.

3.2. Predictions of framing from experience: Effects of number of samples and
probability values

We ran the IBL model in seven different variations of the ADP, where we systemati-

cally varied the probabilities of the risky option and the corresponding value of the safe

outcome, while keeping the expected values equal across both. Table 4 presents the list

of seven problems, with Problem 6 being the standard ADP used in Experiment 1. Note

that these problems were created so that the probability of the high outcome in both

gains and losses was systematically decreased (while the probability of the low outcome

in the risky option increased accordingly), and the value of the outcome in the safe

option was adjusted to maintain the essential condition of equal expected values of the

framing task.

The IBL model with default ACT-R parameters: d = .5, r = .25, ran 1,000 simulated

participants for each of the seven problems in groups that varied in the number of sam-

ples, 5 or 100 samples, and the frame, gains or losses.

Fig. 6 shows the resulting predicted average preferences in gains and losses after 100

samples and after five samples. These preferences are again calculated as the difference

between the blended values of the risky and safe options. The model consistently predicts
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risk-averse preferences (on average) for all values of probabilities in both gains and

losses after 100 samples (Fig. 7a and b). Also, the results suggest that as the probabilities

of the risky outcomes become less extreme (e.g., going from Problem 1 to Problem 7,

see Table 4), the predicted average risk aversion becomes stronger but also more vari-

able. These preferences, however, are close to indifference after five samples and they

are highly variable, regardless of the probability values and the frame (Fig. 6c and d).

According to our discussion above and within the scope of this paper, we decided to

test two predicted phenomena in a second experiment: the effects of the number of sam-

ples taken before choice and the effect of the objective probability associated with the

high outcome in the risky option.

4. Experiment 2: Framing effects with small and large sample size and with high
and low probabilities

In Experiment 2, we used Problem 3 to contrast to Problem 6 (i.e., the standard ADP)

framed as gains or losses, in decisions from experience conditions in which participants

were asked to sample exactly 5 or 100 times before making a choice. Problem 6 uses the

probabilities of the ADP for the high outcome (1/3), whereas Problem 3 uses extreme

probabilities where the high outcome occurs more rarely (1/6).

In total, 800 paid volunteers (58% male) with a mean age of 31.6 years (SD = 10.0) were

recruited through Amazon Mechanical Turk and completed one problem for a fixed number

of trials for a fixed payment of $0.25. Participants were randomly assigned to one of eight

conditions constructed by the probability of the high outcome (1/3 or 1/6), number of sam-

ples before making a choice (5 or 100), and frame (Gain or Loss). There were 100

Table 4

Overview of the seven problems for which predictions were generated in the gain and the loss frames. These

problems vary the probabilities of the outcomes in the risky option systematically. Two of these problems are

used in Experiment 2 (in bold): Problem 6, the standard ADP used in Experiment 1; and Problem 6, in which

the probability of the high outcome is low (a “rare event”)

Frame Gain Loss

Problem

Number

Risky Option:

High Outcome (pH),

Low Outcome (pL)

Outcome of the

Safe Option

(Probability = 1)

Risky Option:

High Outcome (pH),

Low Outcome (pL)

Outcome of the

Safe Option

(Probability = 1)

1 600 (1/10), 0 (9/10) 60 (1) 0 (1/10), �600 (9/10) �540 (1)

2 600 (1/8), 0 (7/8) 75 (1) 0 (1/8), �600 (7/8) �525 (1)

3 600 (1/6), 0 (5/6) 100 (1) 0 (1/6), �600 (5/6) �500 (1)
4 600 (1/5), 0 (4/5) 120 (1) 0 (1/5), �600 (4/5) �480 (1)

5 600 (1/4), 0 (3/4) 150 (1) 0 (1/4), �600 (3/4) �450 (1)

6 600 (1/3), 0 (2/3) 200 (1) 0 (1/3), �600 (2/3) �400 (1)
7 600 (5/12), 0 (7/12) 250 (1) 0 (5/12), �600 (7/12) �350 (1)
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participants in each condition. The sampling paradigm and procedure was similar to Experi-

ment 1, except for the fixed number of samples. Although participants were not told the

number of samples in advance, they were advised that the number of samples would be

fixed, and a counter indicating the number of samples was displayed in every trial. The para-

digm automatically advanced participants to make a final choice after a fixed number of

samples. They were still able to explore the buttons in the order they desired.
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Fig. 6. Predicted preferences for each of the seven problem types for gains (left) and losses (right). Problems

are sorted by the probability of the high outcome in gains (600) and the low outcome in losses (�600). Prefer-

ences are based on the average (�1 SD) difference between the blended values of the risky and safe options after

100 samples (a and b) and after 5 samples (c and d). P3 indicates the predictions for the standard Asian Disease

Problem (ADP) as tested in Experiment 1 (also shown in Fig. 3). P6 and P3 were both tested in Experiment 2.
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4.1. Choice behavior

Table 5 shows the overall Prisky in the final choice for each of the eight groups. We

find a significant framing effect when the number of samples is large (100), but not when

the number of samples is small (5). Results for Problem 6 and small number of samples

replicate the lack of framing effect of Experiment 1. All of the choice proportions indi-

cate either indifference between the two options or risk aversion, except for one group:
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Fig. 7. Average (�1 SD) preference for the safe (risk aversion) or risky option (risk seeking), as indicated

by the difference between experienced expected values for the two problem types tested in Experiment 2. (a)

Gain problems, 100 samples. (b) Loss problems, 100 samples. (c) Gain problems, 5 samples. (d) Loss prob-

lems, 5 samples.
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Problem 6 (standard ADP) in the loss domain with 100 samples, which showed risk

seeking.

4.2. Sampling behavior

We analyzed the distribution of samples taken from the safe and the risky options in

gains and losses before making a choice. Table 6 shows the results. Again, there was

large heterogeneity in the samples taken from the safe and the risky options, but none of

the comparisons between the gain and loss frames or the safe and risky option were

significant (p > .05).

As in Experiment 1, we calculated the EEV of each option after the sampling phase

for each participant. Fig. 7 shows the average preferences (EEV risky—EEV safe) for

each condition. The observed behavior indicates indifference or slight risk aversion (on

average) after sampling, regardless of the frame or the number of samples. Furthermore,

these results also show stronger average risk aversion in Problem 6 than in 3; and wider

variance in behavior after 5 samples than after 100 samples. These results are in agree-

ment with the predicted preferences from the IBL model (c.f. Problems 3 and 6 in

Fig. 6). However, the IBL model predicts stronger average risk aversion after 100 than

after 5 samples, and this pattern is not observed in human data.

Table 5

Proportion of risky choices (Prisky) in the eight conditions of Experiment 2

Mean (SE) Prisky Comparison Against Chance Level (.5)

Problem 6-Probability (1/3) and samples (100)

Gains .45 (.05) v2 (1, N = 100) = 1.0, p = .317, φ = .10

Losses .62 (.05) v2 (1, N = 100) = 5.76, p = .016, φ = .24

Framing effect �.17, v2 (1, N = 200) = 5.81,

p = .016, φ = .17

Problem 6-Probability (1/3) and samples (5)

Gains .40 (.05) v2 (1, N = 100) = 4.0, p = .046, φ = .20

Losses .36 (.05) v2 (1, N = 100) = 7.84, p = .005, φ = .28

Framing effect +.04, v2 (1, N = 200) = .34,

p = .560, φ = .04

Problem 3-Probability (1/6) and samples (100)

Gains .30 (.05) v2 (1, N = 100) = 16.0, p < .001, φ = .40

Losses .50 (.05) v2 (1, N = 100) = 0, p = 1, φ = 0

Framing effect �.20, v2 (1, N = 200) = 8.33,

p = .004, φ = .20

Problem 3-Probability (1/6) and samples (5)

Gains .24 (.04) v2 (1, N = 100) = 27.04, p < .001, φ = .52

Losses .25 (.04) v2 (1, N = 100) = 25, p < .001, φ = .50

Framing effect �.01, v2 (1, N = 200) = .027,

p = .869, φ = .01

Note. SEs are standard errors for proportions.

The p-values below 0.05 are indicated in bold. The values in Italics for the Framing Effect are the difference

in mean proportions between Gains and Losses.
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To better understand these differences, we analyzed the number of samples taken by

the IBL model from the safe and from the risky option in the various conditions. Table 7

reveals that in agreement with observed sampling patterns, the IBL model shows no dif-

ference between gains and losses. However, in contrast to observed sampling patterns, the

IBL model samples significantly more from the safe than the risky option, particularly

with large samples (100) than small samples (5), explaining the stronger risk aversion

developed in the model after 100 than after 5 samples.

Table 7

Number of samples (median [range], mean) from the risky and the safe options in both gains and losses taken

by the instance-based learning (IBL) model simulations. Values are based on 1,000 simulated participants in

each condition

Safe Option Risky Option

Problem 6-Probability (1/3) and samples (100)

Gains 82 [29–96], 78.8 18 [4–71], 21.2
Losses 83 [24–96], 79.2 17 [4–76], 20.8

Problem 6-Probability (1/3) and samples (5)

Gains 3 [1–4], 2.6 2 [1–4], 2.4
Losses 3 [0–4], 2.6 2 [1–5], 2.4

Problem 3-Probability (1/6) and samples (100)

Gains 91 [53–96], 88.1 9 [4–47], 11.9
Losses 91 [51–96], 87.9 9 [4–49], 12.1

Problem 6-Probability (1/6) and samples (5)

Gains 3 [1–4], 2.7 2 [1–4], 2.3
Losses 3 [1–4], 2.7 2 [1–4], 2.3

Table 6

Number of samples (median [range], mean) from the risky and the safe options in both gains and losses for

Experiment 2

Safe Option Risky Option

Problem 6-Probability (1/3) and samples (100)

Gains 49 [2–99], 49.8 51 [1–98], 50.2
Losses 48 [17–99], 50.5 52 [1–83], 49.5

Problem 6-Probability (1/3) and samples (5)

Gains 3 [1–4], 2.6 2 [1–4], 2.4
Losses 2 [0–4], 2.45 3 [1–5], 2.55

Problem 3-Probability (1/6) and samples (100)

Gains 50 [10–99], 56.5 50 [1–90], 43.5
Losses 50 [13–96], 51.1 50 [4–87], 48.9

Problem 6-Probability (1/6) and samples (5)

Gains 3 [1–4], 2.7 2 [1–4], 2.3
Losses 3 [0–4], 2.6 2 [1–5], 2.4
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4.3. From sampling to choice

Average preferences show indifference and risk aversion in all conditions which gener-

ally agree with the subsequent choice, except for choice behavior in Problem 6 with 100

samples, which indicate significant risk seeking in losses. Interestingly, all the correla-

tions of the individual participant’s EEV differences after sampling with their final choice

are strong and positive in each of the eight conditions (see Table 8), and higher in the

conditions with lower sample sizes (5 samples) than large sample sizes (100 samples).

This result suggest a differential effect of risk preferences after sampling with respect to

the average choice behavior at the average and individual levels, an issue that has been

discussed in past research (Hills & Hertwig, 2010; Gonzalez & Dutt, 2012).

5. Discussion

Most decision biases have traditionally been shown through the use of descriptive gam-

bles where outcomes and probabilities are stated explicitly. Results from the current

experiments replicate the framing bias in decisions from description, but the bias disap-

pears in decisions from experience and when participants are free to sample information

for as long as they desire before making a choice. The analyses from an IBL cognitive

model explain this effect by how participants may under-experience the higher outcome

in the risky option, and predict that the presence or absence of the framing effect will

depend on the number of samples taken and the objective probabilities associated to the

outcomes.

Table 8

Correlation between participants’ experienced expected value (EEV) differences (safe-risky) and their final

choice in each of the eight conditions

Condition Correlation

Problem 6-Probability (1/3) and samples (100)

Gains r(98) = .34, p = .001
Losses r(98) = .44, p < .001

Problem 6-Probability (1/3) and samples (5)

Gains r(98) = .61, p < .001
Losses r(97) = .68, p < .001

Problem 3-Probability (1/6) and samples (100)

Gains r(98) = .27, p = .007
Losses r(98) = .42, p < .001

Problem 3-Probability (1/6) and samples (5)

Gains r(98) = .61, p < .001
Losses r(97) = .61, p < .001

Note. We had one participant each in two conditions that never sampled from the safe option, which

explains the df of 97. For these participants, no EEV difference could be calculated.

The p-values below 0.05 are indicated in bold.
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Results from Experiment 1 expand demonstrations of biases originally found with

descriptive scenarios that become weaker or disappear when choices are made from expe-

rience (Dutt et al., 2013; Gonzalez, 2013; Harman & Gonzalez, 2015). We also find that,

the description-experience gap (e.g., Gonzalez & Dutt, 2011; Hertwig, 2012; Hertwig &

Erev, 2009), disappears, and instead, we find consistent risk behavior for gains and losses,

in contrast with the reversed four-fold pattern (Hertwig, 2012). Our results clarify some

boundaries of the four-fold pattern and the description-experience gap: in problems that

have equivalent expected values people become risk-indifferent or averse from experi-

ence, in contrast to situations such as the reflection effect (Table 1), where the signs of

the outcomes are reversed, changing the problem’s expected values (Barron & Erev,

2003; Ert & Yechiam, 2010; Hertwig et al., 2004; Ludvig & Spetch, 2011; Ludvig et al.,

2013). As suggested by the IBL model, this may be a consequence of the development of

preferences for the option with the highest accumulated value (blended value) through

experience. The lack of the framing effect from experience may be due to under-experi-

ence of the higher outcome of a risky option, similarly for gains and losses, making the

safe option equally or slightly more valuable than the risky option.

Furthermore, predictions from the IBL model suggest two possible factors that may

influence the under-experience of the high outcome in the risky option: One is the objec-

tive probability of this outcome and a second one is the limited information search. When

the rare outcome is high valued and the more common outcome is low valued (as it is

the case in the ADP for gain and losses), people would develop an intuition that the risky

option is less valuable than the safe option, resulting in indifference or risk aversion. In

addition, given that people generally do not search extensively, the probability of retriev-

ing an outcome from memory may be influenced by what outcomes are experienced dur-

ing that small sample.

Results from Experiment 2 suggest that the amount of exploration is a key factor in

finding a framing effect. When participants were forced to make five samples before

making a choice, we reproduced the results from Experiment 1: Participants develop a

tendency to prefer the safe over the risky option in gains and losses, regardless of the

objective probabilities and the framing of the problems. In contrast, when participants

were forced to make 100 samples before making a choice, the framing effect emerges:

People are more risk seeking in losses and risk averse in gains. This result is puzzling;

with large samples, one would expect more informed and accurate choices than with

small samples, given that there are more chances of identifying the accurate probabili-

ties in the two options. Hertwig and Pleskac (2008) explain this effect as an amplifica-

tion of the experienced expected values of the two options, which renders small

samples easier. This effect is observed in our results as the difference of the EEVs gen-

erated after 5 or 100 samples (Fig. 7), where after small samples, the preference for the

safe option if more clear (on average) than after large samples. However, although the

sampling behavior shows that participants do indeed develop a more accurate represen-

tation of the environment with large samples, their choices after 100 samples do not

show indifference between the two options (safe and risky). Rather, we observe signifi-

cant risk seeking in losses (Problem 6) and significant risk aversion in gains (Problem 3),
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suggesting a disconnection between the sampling and the choice processes. This result

is supported by the lower correlation values (albeit significant) between the EEV differ-

ences after 100 samples and the final choice compared to the correlations after 5 sam-

ples. Thus, with less samples, people rely more in the limited experience to make a

final choice; with more samples people rely less on their experience to make a choice.

Clearly the IBL model although it predicts the final choice accurately, it fails to

account for the amount of exploration done for each of the two options with large sam-

ples. The IBL model predicts more sampling of the safe than the risky option but humans

balance the exploration between the risky and safe option equally (on average). This may

be an indication of human decay avoidance, where humans may aim to maintain their

memories of outcomes from the risky and safe options as equally accessible, particularly

with large samples, in an attempt to make more accurate choices, while the IBL model is

willing to forget the outcomes of the risky option by focusing on choosing the safe option

more frequently. It is also possible that this effect results only in the sampling paradigm,

in which the sampling process in not consequential, but in situations of repeated conse-

quential choice (e.g., Barron & Erev, 2003), it may be expected that participants would

behave more similarly to what the IBL model predicts.

Given that the IBL model was not fit to human data, it is possible that it is not

accounting for the individual differences in memory decay (d parameter) accurately. In

general, as discussed in past research (Gonzalez & Dutt, 2011), the IBL model cannot

account for the amount of sampling and it would benefit from the development of an

accumulation mechanism that would indicate a stopping rule in sampling. Such a mecha-

nism would explain the decision of when to stop sampling in the sampling paradigm. The

integration of sequential-sampling models (Busemeyer, 1985; Busemeyer & Townsend,

1993; Ratcliff, 1978; Ratcliff & Smith, 2004) with learning and choice models like IBL

or Reinforcement Learning (e.g., Sutton & Barto, 1998) may improve our ability to

account for human sampling and choice processes in an integrated theory. This and other

ideas are relevant for future research. Research should investigate the boundaries and

connections between the description–experience gap and the probability of different out-

come values. The non-significant description-experience gap found in Experiment 1 sug-

gests that the gap may be influenced by contextual or domain effects (such as in the

ADP). Up to this point the gap has mostly been investigated in problems involving only

monetary outcomes, and out of context. Also, just as the sampling paradigm in decisions

from experience opens a window to the processes occurring while preferences are being

formed through experience, there is a need to investigate the processes occurring during

an analogous stage within decisions from description. For example, it is possible that

even when participants do not physically “sample” the different options, they may “play

out” the scenarios in their minds and imagine the possible outcomes. An fMRI study

lends support to this possibility (Gonzalez, Dana, Koshino, & Just, 2005): Differences in

brain activity levels in response to certain and risky choices were found in the parietal

lobes, often associated with imagery processes. This relationship with imagery is also

supported by behavioral findings, suggesting that people are more likely to imagine bad

outcomes and how those outcomes could have been improved (Kahneman & Miller,
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1986). Such finer process-level analyses would help us improve our understanding of the

similarities and differences in the risk tendencies between experiential and descriptive

decisions in the gain and loss domains.
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Note

1. In contrast to the IBL model, the RL model assumes that outcomes and their likeli-

hood alter simultaneously each option’s expectancy (or attractiveness), and they are

therefore not conceived as separate concepts. Also, the RL model does not assume

storage of outcomes in memory, but only the storage of each single expectancy

developed for each option. Finally, the RL model gives a distinctive treatment to

obtained versus other outcomes (e.g., foregone outcomes), which would not explain

a “sampling” process in which outcomes from sampling are not consequential

(Lejarraga & Gonzalez, 2011).
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Appendix

Instance-based learning model

The instance-based learning (IBL) model (Gonzalez & Dutt, 2011; Gonzalez et al.,

2003; Lejarraga, Dutt, et al., 2012) evaluates an option according to its Blended Value,

and the model chooses the option with the highest Blended Value Vj,t.

The Blended Value V of option j is

Vj ¼
Xn

i¼1
pixi ð1Þ

where xi is the value of the observed outcome i, and pi is the probability of retrieving that

outcome from memory. At trial t, the probability of retrieval of observed outcome i is a

function of the activation of that outcome relative to the activation of all other observed

outcomes k in option j

Pi;t ¼ e
Ai;t
sPk

i e
Ak;t
s

ð2Þ

where s is random noise defined as s ¼ r
ffiffiffi
2

p
; and r is a free parameter. In the current

study, we used ACT-R’s default noise value of .25. At trial t, the activation (Anderson &

Lebiere, 1998) of an outcome i is:

Ai;t ¼ ln
X

tp2f1;...;t�1g t � tp
� ��dþr ln

1� ci;t
ci;t

 !
ð3Þ

where d is a decay free parameter. In the current study, we used ACT-R’s default decay

value of .5. ci,t is a random draw from a uniform distribution bounded between 0 and 1

for each outcome and trial, and tp is each of the previous trial indexes in which the out-

come i was encountered.
Because memory is unlikely to be empty when starting a task, the model assumes that

some initial expectation exists in memory before any choice is made (Lejarraga, Dutt,

et al., 2012). Two instances with pre-populated initial expectations were set to $600 for
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each of the options in the gain domain, and to $0 for each of the options in the loss

domain. These are initially the only active instances and initial expectations for each

option. As a result, the probability of retrieval of each initial expectation is 1, given that

it is the only outcome active in memory for each option. Thus, the model chooses ran-

domly in the first trial.

Explanations for the representations used in the ADP

According to the IBL model, when a choice is made and the resulting outcome is

experienced, the choice-outcome association (i.e., an instance) is stored in memory. Each

instance has a value of activation and when a previously experienced instance is experi-

enced again, that activation is strengthened. Activation is a concept from the ACT-R cog-

nitive architecture, and it reflects how readily available an instance in memory is and

how easy and quickly that instance can be retrieved (Anderson & Lebiere, 1998). The

activation in the IBL model of binary choice accounts for frequency, recency, and noise

of the experiential process (Eq. 3). Each option (e.g., S: 200, p = 1 or R: 600, p = .33, 0

p = .67 in gains) can have several instances that are created when they are experienced

(e.g., S, 200; R, 600; R, 0). Each instance has a probability of being retrieved from mem-

ory (Eq. 2), which is a function of its relative activation level. On each trial (t), the

model calculates a blended value (Eq. 1) for each option (risky and safe) and selects the

option with the highest blended value. The blended value is equivalent in form and func-

tion to the traditional notion of “expected value,” with the only difference being the value

of each outcome is multiplied by its probability of memory retrieval rather than by its

objective probability. The resulting activation levels are used in the subsequent trial

(t + 1), which again influences the probability of memory retrieval, the blended value,

and subsequently the choice.
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