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ABSTRACT
Wave forces can form a serious threat to offshore platforms

and ships. The damage produced by these forces of nature jeop-
ardizes their operability as well as the well-being of their crews.
Similar remarks apply to coastal defense systems. To develop the
knowledge needed to safely design these constructions, in close
cooperation with MARIN and the offshore industry the numeri-
cal simulation method ComFLOW is being developed. So far, its
development was focussed on predicting wave loads (green wa-
ter, slamming) on fixed structures, and for those applications the
method is already being used successfully by the offshore indus-
try. Often, the investigated object (ship, floating platform) is dy-
namically moving under the influence of these wave forces, and
its hydrodynamic loading depends upon the position of the ob-
ject with respect to the oncoming waves. Predicting the position
(and deformation) of the body is an integral part of the (scientific
and engineering) problem. The paper will give an overview of
the algorithmic developments necessary to describe the above-
mentioned physical phenomena. In particular attention will be
paid to fluid-solid body and fluid-structure interaction and non-
reflecting outflow boundary conditions. Several illustrations in-
cluding validation, will demonstrate the prediction capabilities
of the simulation method.

∗Address all correspondence to this author.

1 INTRODUCTION
Waves and currents can induce large forces and stresses on

sea-going ships and offshore constructions (production and of-
floading platforms, mooring systems, wind turbine farms) that
have to operate under extreme weather conditions [1]. E.g. in
heavy storms, wave and ship motions can become so large that
solid amounts of seawater, called ‘green water’, flow over the
deck, thus threatening the safety and operability of the ship. The
amount of shipped water obviously depends on the phase be-
tween ship and wave motion, and hence on the preceeding wave
group and its interaction with the ship dynamics. The same holds
for slamming impacts against a ship’s bow. As a special case,
free fall lifeboats (Fig. 1) face these challenges when a ship or
platform needs to be evacuated.

In the past, these violent flow phenomena were mainly stud-
ied experimentally, and there is a growing need for a numerical
simulation tool capable of predicting in detail the hydrodynamic
loads due to slamming and green water; see e.g. [2–4]. Tools
based on e.g. linear potential flow theory or shallow-water the-
ory are hardly capable of predicting such events to an acceptable
level of accuracy [5]. As the physical phenomena accompanying
extreme events are both highly non-linear and highly dispersive
due to the occurring wave steepness, they require new vevels of
modeling to predict the water flow and its hydrodynamic loads.
Thus, in recent years, tools based on the Navier–Stokes equations
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FIGURE 1. SIMULATED SNAPSHOTS OF A FREE-FALL LIFE
BOAT.

have become availablefor large-scale complex free-surface flow
problems, thanks to novel numerical algorithms and the increase
in computer power [6–8]. For an overview of basic Navier–
Stokes methods for free-surface flow we refer to [9]. Some recent
applications, including the interaction with solid/elastic bodies,
can be found in [10–16].

The ComMotion project also uses a hydrodynamic flow
model based on the Navier–Stokes equations for simulating the
steep waves near and around (interactively) moving and deform-
ing structures. In this paper, we will present the main physical
and (innovative) numerical ingredients of the project:

– Interactively moving bodies.
– Hydroelasticity.
– Absorbing boundary conditions incorporating current.
– Experimental validation.

For reliable load predictions in these examples, it is neces-
sary to determine the position and dynamics of the objects as
part of the flow simulation. The project makes this major step
by extending the simulation method to interactively moving and
deforming objects in extreme waves. The underlying numerical
coupling approach will receive much attention in this paper. It is
based on the quasi-simultaneous method developed four decades
ago in the airplane industry [17], and recently re-discovered in
the (offshore) FSI community [18, 19]. Also, attention is paid
to numerical absorbing outflow boundary conditions in the pres-
ence of current. The new developments will be illustrated with a
number of maritime applications.

2 MODELLING
2.1 Flow model

Incompressible, turbulent fluid flow can be modelled by
means of the Navier–Stokes equations.

Mu = 0,
∂u
∂ t

+C(u)u+Gp−V u = f. (1)

Here M is the divergence operator, which describes conservation
of mass. Conservation of momentum is based on the convection
operator C(u)v ≡ ∇(u⊗ v), the pressure gradient operator G =
∇, the viscous diffusion operator V (u) ≡ ∇ ·ν∇u and a forcing
term f. The kinematic viscosity is denoted by ν . Turbulence
is modelled by means of large-eddy simulation (LES) using a
low-dissipation QR-model as formulated by Verstappen [20] and
refined by Rozema [21–23]. For its use in maritime applications,
see [24, 25].

The evolution of the free water surface is described by an
adapted and improved version of the Volume-of-Fluid method
(VOF) introduced in [6] and [26]. Specifically, use will be made
of the ComFLOW simulation method, developed at the Univer-
sity of Groningen in cooperation with the Technical University
of Delft and MARIN. It is described in full detail in a series of
PhD theses [27–34].

The computational grid is chosen rectangular; the simplic-
ity of the grid gives an easy geometric framework in which the
position and slope of the water surface can be accurately de-
scribed. The free-surface location is indicated by a Volume-
of-Fluid [6] function, which is reconstructed by Youngs’ PLIC
method [32,35] and advanced by a local height function [27,32].

Bodies can move and deform through the fixed Cartesian
grid, with their position described in a cut-cell fashion by edge
and volume apertures, as is done for non-moving objects [36]
(see also [37, 38]). Local grid refinement [39] can be applied
near the body and in other interesting flow regions.

The Navier–Stokes equations (1) are discretized on a stag-
gered grid [40]. The second-order finite-volume discretization of
the continuity equation at the ‘new’ time level ·n+1 is given by

M0un+1 =−MΓun+1
Γ

, (2)

where M0 acts on the interior of the domain and MΓ acts on the
boundaries of the domain. Skew-symmetric convection C(uh)
and symmetric diffusion V are discretized explicitly in time. In
this exposition, for simplicity reasons the first-order forward Eu-
ler time integration will be used. In the actual calculations, a
second-order Adams–Bashforth method is being applied.

The discrete momentum equation can be formulated as

un+1 = ũ−δ t Ω
−1Gpn+1, (3)

where ũ is an abbreviation given by

ũ = un +δ t Ω
−1[−C(un)un +Vun + f]. (4)

Here, the diagonal matrix Ω contains the geometric size of the
control volumes. This discretization does not produce artifi-
cial diffusion and convectively preserves the energy of the flow
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[22, 41]. Also, the discrete gradient operator and the divergence
operator are each other’s negative transpose, i.e. G=−MT

0 , mim-
icking the analytic symmetry ∇ = −(∇·)T . In this way, also the
work done by the pressure vanishes discretely.

Imposing discrete mass conservation (2) at the new time
level, substitution of (3) results in a discrete Poisson equation
for the pressure:

δ t M0Ω
−1Gpn+1 = M0ũ+MΓun+1

Γ
. (5)

Here Γ is the boundary of the fluid domain where boundary con-
ditions involving the velocity are prescribed; it includes the fluid-
solid interface ΓFS.

In the coupling analysis to be presented below, it is conve-
nient to abbreviate the above Navier–Stokes solution process into
a formal, abstract notation as

Madd̈ΓFS =−fΓFS . (6)

Here, dΓFS is the displacement of the fluid-solid interface ΓFS,
whereas fΓFS represents the forces (stresses) along the interface
excerted by the object towards the fluid (hence the minus-sign).
In this short-hand notation, Mad can be regonized as the so-called
added-mass operator, which governs the relation between the
motion of an immersed object and the reactive forces excerted
by the fluid.

2.2 Structural model
For simplicity in this study, the structure is selected to be

a one dimensional Euler–Bernoulli beam. Assuming a constant
cross section A = TW for the beam (thickness T and width W ),
its equation of motion is

ρsA
∂ 2d
∂ t2 +EI

∂ 4d
∂ s4 = f , (7)

with appropriate initial and boundary conditions. Here, s de-
notes a coordinate along the beam, d the beam deformation, ρs
the beam density, E Young’s modulus, I the second moment of
inertia and f the load per unit length of the beam. In principle,
the structural model can be replaced by other models (e.g. with
structural damping), as it is approached as a ‘black-box’ model
wih no invasive action required. The coupling behaviour will
remain similar to the issues discussed in this paper.

In our simulations, the structural response is modeled with a
finite element method. Omitting the technical details, the result-
ing discrete set of equations can be written in the form

Mebd̈ΓFS +KebdΓFS = fΓFS , (8)

where Meb is the discrete mass operator and Keb the discrete stiff-
ness operator. The temporal integration of the structure equations
is performed by means of the generalized-α method [42].

2.3 Fluid-solid coupling conditions
The coupling relations along the fluid-solid interface ΓFS

consist of two relations. The kinematic condition states that the
(local) motion of the interface on both sides matches:

kinematic: u =
∂d
∂ t

n on ΓFS (9)

The dynamic condition expresses (local) equilibrium of stresses
along the fluid-solid interface:

dynamic: σ f ·n = σ s ·n on ΓFS (10)

Note that this equilibrium in principle contains both normal and
tangential stresses. In the simulations below, only the (normal)
pressure forces are included here as the viscosity is low.

3 NUMERICAL COUPLING
A traditional hierarchical numerical coupling method may

not be sufficient, as its stability depends on the ratio between
body mass versus added mass (the amount of liquid that ‘moves
with’ the body). Note that this ratio can vary widely, depending
on geometry and motion of the body. Therefore, a more power-
ful unsteady quasi-simultaneous coupling method has been de-
veloped.

Traditional weak (hierarchical) coupling methods, with in-
formation exchange once per time step, are only numerically sta-
ble within a restricted range of mass (or stiffness) ratios. If the
application covers a larger range, one has to resort to strong (si-
multaneous) coupling; compare fluid-structure interaction [43].
Usually, some form of subcycling within each time step is ap-
plied, where information is exchanged at the ‘hearts’ of the nu-
merical algorithms (like in a monolithic code). However, when
‘black-box’ commercial codes are being used this is unlikely to
be feasible, as access to the internal core of their algorithms is
usually not possible. The approach that we have developed here
allows for a ’black-box’ structural solver, and only requires ac-
cess to the internal iterative loops of the fluid flow solver (Com-
FLOW). The extension of the method to the coupling of two
‘black-box’ solvers is feasible, e.g. [19], but will not be pursued
in this paper.

Fortunately, it is not necessary to perform a fully simultane-
ous coupling. A good approximation of one of the two submod-
els is sufficient to be fully intertwined with the other submodel.
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The difference between the approximation and the original sub-
model can be dealt with in the traditional, weak fashion. Such
a coupling is called quasi-simultaneous, and was introduced in
a steady, aerodynamic context in the late 1970s [17, 44, 45]. In
time-integration terms: the bulk of the interaction is treated im-
plicitly, the remaining part explicitly. Numerical stability of this
approach requires that, roughly spoken, the implicit part contains
at least ‘half of the physics’, which is a very weak requirement.
The essential step is that the equations approximating the other
submodel, such as an elastic wall model, are considered bound-
ary conditions for the fluid flow equations. In particular, they
will show up as a boundary condition in the pressure Poisson
equation.

Recently, in the literature similar methods have been pre-
sented for the FSI problems that we are treating here. We men-
tion the quasi-monolithic method as developed independently in
the group of Visonneau at the Ecole Centrale in Nantes, e.g.
[13,15,18]. Besides the remarkably similar name of the method,
it also makes use of a simple model for one of the domains which
is solved simultaneously with the equations in the other domains.
The difference is that an approximation for the fluid added mass
is solved together with the structural equations, whereas we solve
an approximation for the structure together with the fluid-flow
equations. As the fluid added mass is less easily approximated
than the structural mass, the quasi-monolithic method often re-
quires Aitken under-relaxation for stability [12, 15].

3.1 Elastic body coupling
The quasi-simultaneous procedure can be explained for the

general case of an elastic body - the solid body case fits in. The
deformation of the elastic body is governed by Eq. (8). The equa-
tion governing the fluid flow has been schematized in (6). Thus,
in principle we have two equations with two unknowns along the
fluid-solid interface ΓFS. Because these equations contain both
d̈ and d (we refrain from using the subscripts ·ΓFS from now on),
first a discrete time integration is carried out. Thereafter, the dis-
crete version of the hierarchically coupled problem at the new
time level can be denoted as

Elastic body
(

Meb

δ t2 +Keb

)
dk+1 = fk + . . . , (11)

Fluid fk+1 =−Mad

δ t2 dk+1. (12)

Here, Meb denotes the discrete elastic body mass operator, while
Keb is the discrete elastic body stiffness operator; compare (8).
The contributon from the previous time steps is omitted in view
of clarity; it is just an inhomogeneous term in the right-hand side,
which is not relevant for the convergence of the subiterations per
time step.

Matrices Meb and Keb can be simultaneously diagonalized as
QT MebQ = I and QT KebQ = Λ. Here, Q contains the normalized
elastic body eigenvectors with eigenvalues Λ. In this way, the
elastic body dynamics (11) can be rewritten as

Elastic body Q−T
(

I

δ t2 +Λ

)
Q−1dk+1 = fk. (13)

The displacement dk+1 can be eliminated from the system
of equations (12) and (13), after which the iterative process can
be written as

fk+1 =−MadQ(I+δ t2Λ)−1QT fk. (14)

For small enough δ t, the amplification factor simplifies to
MadQQT , where QQT has the dimension of 1/kg. For a solid
body with 6 DOF, the latter can be replaced by the inverse solid-
body mass M−1

sb .
In the Appendix it is shown that the lower modes are most

delicate, as they correspond with the largest fluid added mass.
Therefore we take care that these modes are treated more simul-
taneous. Thus we construct an approximation of the full elastic
equations, called interaction law, built from the lowest elastic
modes of the structure. In other words, we define an approxima-
tion Q̃ by only retaining the first few eigenvectors. These cor-
respond with the largest eigenvalues in Λ, i.e. the lowest natural
frequencies, which will be collected in Λ̃.

Proceeding in this way, the proposed interaction law reads

dk+1− Q̃

(
1

δ t2 + Λ̃

)−1

Q̃T fk+1 ={
Q

(
1

δ t2 +Λ

)−1

QT − Q̃

(
1

δ t2 + Λ̃

)−1

Q̃T

}
fk.

Letting δ t → 0, i.e. studying zero-stability, and combining with
the fluid-flow model (12), the quasi-simultaneous iterative pro-
cess can be formulated as

fk+1 =−(M−1
ad + Q̃Q̃T )−1(QQT − Q̃Q̃T )fk, (15)

which can be compared with (14) for δ t = 0. Clearly, if all of
the modes are incorporated into the interaction law, the spectral
radius will become zero and the method simultaneously solves
the fluid with the ‘exact’ body.

3.2 Implementation
The interaction law is a relation between the pressure and

the local velocity of the body surface. This relation can be sub-
stituted in the right-hand side of the discrete mass equation (2).
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Thus it becomes a boundary condition for the discrete Poisson
equation. It can be shown that the latter retains it favourable nu-
merical properties (symmetric, negative definite), such that its
iterative solution can proceed as before.

3.3 Elastic body: tank with membrane bottom
In order to assess the performance of the quasi-simultaneous

approach for different mass ratios, a test case has been designed
in which this ratio can be varied. Also, the physical contents of
the interaction law has been varied.

FIGURE 2. SCHEMATIC OF THE FIRST TEST CASE; THE DO-
MAIN WITH FREE-SURFACE FLOW ON TOP AND FLEXIBLE
BEAM AT THE BOTTOM

At the bottom of a rectangular container (1.0×0.1×0.5m3)
filled with 50 kg of water, a flexible beam is placed as illustrated
in Fig. 2. The mass of the beam is varied between 1 kg and 50 kg;
its module of elasticity is 1 MPa. The interaction law is made out
of truncated structural modes; the number of modes dictates its
accuracy.

Cases with mass ratio 1 and 50 are presented, where the
number of included modes is increased in order of relevance.
Figure 3 shows the convergence history during the first time step.
The effect of the number of modes in the interaction law can be
inferred. For a small added mass ratio one mode suffices, but for
the more difficult mass ratio 50 it is profitable to include more
modes in the interaction law. This behaviour is perfectly in line
with the stability analysis in the Appendix.

3.4 Solid body: CALM buoy
The second case is a validation against model tests of a

CALM buoy (Fig. 4) in a shallow water basin at MARIN [46].
These tests include the freely decaying motion of the buoy after
being released from a given position into calm water. This al-
lows us to compare the simulated and measured natural periods
as well as the amount of hydrodynamic damping. The buoy in
its default configuration has been modelled as a cylinder with a
diameter of 12m and a height of 6.5m.

(a) Convergence history for added mass ratio 1

(b) Convergence history for added mass ratio 50

FIGURE 3. CONVERGENCE HISTORY FOR THE FIRST TIME
STEP FOR AN INCREASING NUMBER OF INCLUDED MODES
(q.s. = quasi-simultaneous; n.q.s. = non-q.s.)

The simulation has been performed at different grids, with
approximately 6, 10 and 18 cells per cylinder diameter. The re-
sults for heave motion are shown in Fig. 5. Using the approach of
Eça et al. [47], the numerical uncertainty has been assessed from
these three grids and also indicated. The resulting uncertainty
was found quite small, whereas it is understandable that for later
times in the simulation the uncertainty increases. The validation
of the simulations was carried by a comparison with the exper-
iments at MARIN and also indicated in Fig. 5. The period as
well as damping of the heave motion are found well-predicted.
Note that the small offset in the heave motion can be decreased
by slightly tuning (decreasing) the buoy’s mass parameter in the
simulations.

4 ABSORBING BOUNDARY CONDITIONS
In the CALM-buoy simulations, the computational domain

has to be restricted to a finite region. Therefore, one has to take
care that no numerical reflections from these artificial domain
boundaries enter the physical region of interest. To minimize
these reflections a new type of absorbing boundary conditions
(ABC) has been developed, which can adapt itselves to the pass-
ing waves [31, 32, 48]. To enlarge its application domain, the ef-
fect of current (in arbitrary direction) has been included. In 2D,
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FIGURE 4. A CALM BUOY AT SEA (TOP) AND ITS GEOMET-
RICAL REPRESENTATION IN THE SIMULATIONS (BOTTOM)

FIGURE 5. HEAVE MOTIONS OF A FREE-FLOATING CALM
BUOY IN SIMULATION AND EXPERIMENT

Peregrine [49] already studied the effect of current on the disper-
sion relation. In 3D the dispersion relation involving current U
reads, using the abbreviations k = |k| and Uk ≡ U ·k/k,

ω± =Uk + ck0 with ck0 =
√

gh

√
tanh(kh)

kh
. (16)

The ABC is basically of Sommerfeld type, which in 3D
reads as [

cos α

(
∂

∂ t
+U ·∇

)
+ ck0

∂

∂n

]
φw = 0, (17)

where α is the angle between the wave k and the normal n. This
new condition lets waves with wave number k pass freely; it is
not unique. Further, φw is the wave component of the potential,
which is reformulated in terms of pressure p and velocity u, using
the unsteady Bernoulli equation, as

∂φw

∂ t
+U ·∇φw =−

(
p
ρ
− p

ρ

∣∣∣∣
atm

)
−g(z−z0) and ∇φw = u−U.

This results in a relation between p and u which is used as a
boundary condition to the pressure Poisson equation, similar to
the interaction law for fluid-structure interaction that we dis-
cussed above. The phase speed ck0 is replaced by a Padé ap-
proximation, with the unknown wave number k found from the
local solution [32, 48].

The performance of this ABC is tested by studying the re-
flections of irregular waves under current at an outflow bound-
ary. The geometry is chosen 2D. A short domain of length 10m
and depth 10m has been chosen, with a current of 1m/sec. Fig-
ure 6 (top) shows the incoming wave spectrum, with a peak pe-
riod of 6sec and significant wave height 2m. The reflections
have been calculated by comparing with a much larger domain,
such that the reflections have not yet reached the domain of in-
terest. The reflected wave spectrum is shown in Fig. 6 (bottom)
When keeping the frequency ω constant, (16) predicts that the
wave number of opposing waves is enlarged (Doppler shift): the
waves become shorter due to the current. This is visible in the
shift of the wave number of the reflected waves. A theoretical
reflection coefficient can be calculated analytically (not shown
here) and is plotted for comparison.

Figure 7 shows a simulation of an oscillating sphere, with
prescribed motion, which generates outgoing waves. A current is
present, running in diagonal direction through the domain. The
current makes the radiating circles no longer concentric. The
domain has been kept rather small, in order to study reflections at
the boundaries. The figure clearly shows no visible irregularities
near the domain boundaries, showing the potential of the new
ABC.

5 CONCLUSION
Several of the newly-developed ingredients of the Com-

FLOW simulation method have been presented. Firstly, a quasi-
simultaneous numerical coupling method has been presented. It
can handle large added-mass ratios efficiently and can also be ex-
tended to cover the coupling with elastically-deforming objects.
The lower elastic modes are found the most ’tricky’ and can
be ‘tamed’ by including them in the interaction law. Secondly,
ComFLOW’s absorbing boundary condition which adjusts itself
to the oncoming waves has been extended to cover the influence
of current. Several examples of verification and validation have
been included.
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FIGURE 6. IRREGULAR WAVE SPECTRUM (TOP) AND RE-
FLECTIONS (BOTTOM). NOTE THE CHANGE IN WAVE NUM-
BER.
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APPENDIX: NUMERICAL COUPLING STABILITY
Consider a partially-filled open tank with a flexible bottom (thick-

ness T and width W ). The free surface is z = 0, whereas the bottom of
the tank is at z =−H (Fig. 2). The flow is assumed to be potential flow.
The pressure satisfying an atmospheric boundary condition at the free
surface reads:

p = ρ f sinh(kz)eikx eiωt ⇒ ∂ p
∂ z

= ρ f k cosh(kz)eikx eiωt , (18)

where ρ f is the density of the fluid. The relation between potential
Φ and pressure p is given by a linearized unsteady Bernoulli equation
valid throughout the fluid domain: ρ f

∂Φ

∂ t + p = 0. At the bottom, it can
be formulated for the fundamental solutions as

ρ f
∂ 2d
∂ t2 +

∂ p
∂ z

∣∣∣∣
z=−H

= 0 ⇒ p =− tanh(kH)

k
∂ 2d
∂ t2 , (19)

where d ≡
∫

t ∂Φ/∂ z|z=−H dt is the displacement of the bottom. Eq. (19)
basically is the relation between pressure and displacement from the
fluid dynamics. The ‘twin’ relation from the structural dynamics was
already given in Eq. (7) above as an Euler–Bernoulli beam.

The stability analysis in discrete time of Eqs. (19) and (7) assumes
Fourier behaviour eikx in x-direction, and fulfillment of the boundary
conditions in z-direction as above. The second-order time derivative is
approximated, as usual for hyperbolic equations, via a backward for-
mula in time. In the weak coupling method, the step from t(n)→ t(n+1)

can be denoted as

p(n) = ρ f
tanh(kH)

k
d(n)−2d(n−1)+d(n−2)

δ t2 ,

ρsTW
d(n+1)−2d(n)+d(n−1)

δ t2 +EI k4d(n+1) =−W p(n).

Elimination of the pressure, and using the notation from Table 1, leads
to

µs

(
d(n+1)−2d(n)+d(n−1)

)
+δ t2

κk d(n+1) =

−µ f ,k

(
d(n)−2d(n−1)+d(n−2)

)
.

µs ≡ ρsTW mass of solid per unit x-length

µ f ≡ ρ f HW mass of fluid per unit x-length

µ f ,k ≡ µ f
tanh(kH)

kH
modal mass of fluid per unit x-length

κk ≡ EI k4 modal stiffness parameter

TABLE 1. Notation for (modal) mass and stiffness. Observe that 0 <

µ f ,k ≤ µ f , while µ f ,k ∼ 1/k for k→ ∞.

Setting d(n) = λ n, the characteristic equation of the above differ-
ence relation can be formulated as

µs(λ
3−2λ

2 +λ )+δ t2
κk λ

3 =−µ f .k(λ
2−2λ +1). (20)

Some calculus shows that there are two physical roots

λ1,2 = 1± iδ t

√
κk

µs +µ f ,k
+O(δ t2),

and one parasitic root

λ3 =−
µ f .k

µs
+O(κk δ t2).

The two physical roots of (20) correspond with oscillatory motion;
their amplitude is |λ1,2|= 1+O(δ t2), hence they are numerically zero
stable, i.e. ‘harmless’. The parasitic root λ3 is the one which can give
the problems that we are tackling. We can conclude from the behaviour
of the modal added mass µ f ,k ∼ 1/k that higher wave numbers give less
problems.

Copyright c© 2019 by ASME


