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In this commentary, Leo Beukeboom considers the findings of
Hodson et al. in this issue of GENETICS, and their discovery of
an unusual sex determination mechanism in a book louse, a
little-studied group of insects.

OST biologists are familiar with male heterogamety, the

mechanism of sex determination in most mammals,
including humans. Males produce two types of gametes that
carry either an X or a Y chromosome, whereas females pro-
duce only X-carrying eggs. The Y chromosome determines
maleness. Female heterogamety is less widespread, but well
known to scientists that work with birds and butterflies. In
these taxa, the female carries two different sex chromosomes
(Z and W) and the male is the homogametic sex (ZZ). Both sex
determination systems occur frequently in insect species, but
other types exist as well. All hymenopterans (ants, bees, wasps,
and sawflies) lack sex chromosomes, as do thrips, and a number
of smaller clades across insects. Many have haplodiploid sex
determination in which haploid males develop from unfertil-
ized eggs and diploid females develop from fertilized eggs.
Additional mechanisms are known, but appear to be less
common, of which one of the most peculiar is paternal genome
elimination (PGE). In this issue of GENETICS, Hodson et al.
(2017) report a case of PGE as the mode of sex determination
in Liposcelis sp., a species of book lice (Psocodea).

Insects are well suited for studying diversity in mechanisms
of sex determination. They are one of the largest organismal
groups on Earth, comprising almost one million described
species, and occupying all terrestrial environments. At the
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chromosomal level, the most abundant mechanisms are male
heterogamety, female heterogamety, and haplodiploidy,
whereas at the level of genes and gene regulation the diver-
sity appears overwhelming (Beukeboom and Perrin 2014;
Blackmon et al. 2017). Surprisingly, for some of the 29 distin-
guished insect orders, next to nothing is known about their
mode of sex determination. Dipterans have been well stud-
ied, including the model species Drosophila melanogaster,
as have species that are relevant to human diseases, such
as mosquitoes (Krzywinska et al. 2016) and houseflies
(Diibendorfer et al. 2002). Economically important insects
such as the honeybee (Apis mellifera) (Beye 2004) and the
silkworm (Bombyx mori) (Suzuki 2010) have also been in-
vestigated. The variation in sex determination regulation in
these few studied species implies that much of the diversity in
insect sex determination has not yet been described, which
calls for more studies in other groups.

Hodson et al. (2017) investigated the reproduction of
a species of woodlouse (Psocodea), representing an insect
order for which no information on sex determination was
previously available. They convincingly document the devel-
opment of males from fertilized diploid eggs that eliminate
half of their genome (Figure 1). All embryos begin as dip-
loids, but soon after cell division those that will develop into
males lose one of their chromosome sets, effectively becom-
ing haploid. Those that become female remain diploid. This
mechanism has previously been called parahaploidy (Nelson-
Rees et al. 1980) or pseudoarrhenotoky (Sabelis and Nagelkerke
1988), but the term PGE is now being used (Herrick and
Seger 1999). The term emphasizes that it is always the pa-
ternal genome that is lost in the male progeny. The result is
effectively a haplodiploid mode of inheritance: mothers
transmit a recombined copy of their genome to offspring,
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Figure 1 Paternal Genome Elimination. Females and males develop from
fertilized diploid eggs. Males are functionally haploid because the paternally-
inherited genome is eliminated early during development. Females trans-
mit a recombined genome to their offspring, but males transmit only
the maternal copy. M = maternal, P = paternal. Book louse drawing by
Jeannette Steenmeijer, lllustratiedesk.

but fathers transmit only their maternal genome copy, which
is passed on by their daughters but not by their sons in the
next generation.

How can one detect PGE? Traditionally, this required
cytogenetic examination of early fertilized eggs. In other
instances, visible markers may be used to demonstrate that
itis always the maternal genome that is retained. Hodson et al.
(2017) used both methods, but also applied modern genomic
techniques. Fluorescent microscopy with markers for hetero-
chromatin revealed condensed chromatin bodies in somatic
cells of male but not female embryos. Crosses of two lines
with polymorphic markers demonstrated that heterozygous
females may transmit either allelic copy to progeny, but males
transmit only the allele of maternal origin. These observa-
tions are consistent with transcriptional silencing of the pa-
ternal genome through extensive heterochromatization. The
authors also used the novel genomic technique of differential
read coverage for identification of sex chromosomes (Vicoso
and Bachtrog 2015). The read coverage of female and male
genomes did not differ, suggesting the absence of differenti-
ated sex chromosomes.

PGE has evolved multiple times independently, but it is not
a common mode of sex determination (Lohse and Ross 2015).
It has been recorded from several invertebrate orders, includ-
ing phytoseiid mites (Acari), spring tails (Symphypleona and
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Collembola), bark beetles (Cryphalini and Coleoptera), fun-
gal gnats and gall midges (Sciaridae and Cecidomyiidae, both
Diptera), scale insects (Neococcoidea and Hemiptera), and
parasitic lice (Phthiraptera), the last being a sister group to
Psocodea. Interestingly, these groups differ in the details of
the PGE mechanism in terms of the degree and timing of
paternal genome loss. In some scale insects and mites, the
entire paternal genome is lost during early embryonic devel-
opment. In bark beetles, some other scale insects, and Lip-
oscelis sp., it is retained in an inactive form in the adult male,
but excluded from the dividing spermatogonia, resulting in
sperm that carry only the genome of maternal origin (Nur
1980). In contrast, in sciarid and cecidomyiid flies only one or
two paternally-inherited X chromosomes are excluded dur-
ing embryogenesis, rather than the entire paternal genome
(Goday and Esteban 2001).

Why did certain groups evolve PGE and others not? Bull
(1983) suggested that diploid species with a high proportion
of genes that are X-linked and haploid in males, i.e., species
with heteromorphic sex chromosomes and few autosomes,
might transition to haplodiploidy more easily. There is some
evidence for this hypothesis from mites (Blackmon et al.
2015). Several authors have tried to identify ecological con-
ditions that are specific to PGE species. Such species often
have limited dispersal ability and high inbreeding, which may
select for a haplodiploid mode of reproduction (Normark
2003; Gardner and Ross 2014). Another selective benefit
may be that PGE allows maternal control over progeny sex
ratio in response to environmental conditions (Ross et al.
2011). Hodson et al. (2017) found that females of Liposcelis
produce on average one son for every two daughters, and
that this ratio becomes more female biased with age. They
also found an effect of density at which females are reared,
consistent with the evolution of sex determination where
maternal effect is a strong driving force.

PGE requires distinguishing between the genomes of ma-
ternal and paternal origin, a process known as genome im-
printing. Studies of PGE may thus be instructive about
developmental processes, such as parent-of-origin recogni-
tion, epigenetic regulation of genome stability, heterochro-
matization, and chromosome behavior during mitosis and
meiosis. There is still very little known about the molecular
genetic regulation of PGE. Application of modern genomic
techniques may be the way forward, such as whole-genome
sequencing for detecting the presence and possible loss of sex
chromosomes, and transcriptomics for demonstrating ge-
nome inactivation during development. Given the variation
in mechanisms of paternal genome loss among taxa, it is to be
expected that a diversity of gene regulatory mechanisms un-
derlie this extraordinary mode of sex determination.
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