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ABSTRACT
The analytical nonparaxial propagation formula of an anomalous hollow beam (AHB) with orbital 
angular momentum (OAM) in free space is derived based on the generalized Raleigh–Sommerfeld 
diffraction integral. The nonparaxial properties of AHB with OAM such as intensity, phase and OAM 
density distributions are studied in detail, using the pertinent nonparaxial propagation formula. The 
comparison between the paraxial and nonparaxial results is also carried out. The results show that 
the nonparaxial properties of an AHB with OAM are determined by the initial beam parameters, such 
as beam waist size and topological charge and propagation distance.

1.  Introduction

A beam with spiral-type phase distribution is called a 
vortex beam. At the centre of a vortex beam the inten-
sity distribution is zero. It has been shown in recent years 
that there are phase singularities in a vortex beam, and 
each photon of the vortex beam carries an orbital angular 
momentum (OAM). Due to many applications, such as 
particle capture and manipulation, optical information 
coding and transmission, atomic optics, optical tweezers, 
quantum information processing, as well as the autofocus-
ing properties and the vectorial structure (1–8), the vortex 
beams have attracted more and more attention. Moreover, 
there are many experimental methods to produce vortex 
beams (9–11).

On the other hand, with the development of laser tech-
nology, it has become possible to generate all kinds of 
beams with zero intensity at the centre, thus creating a new 
so-called dark hollow beams (DHBs) family. Theoretical 
and experimental studies show that the DHBs have many 
applications in the fields of atomic optics, free-space 
optical communications, binary optics, optical trapping 
of particles and medical sciences (12–15). Various tech-
niques have been used to generate DHBs, such as the com-
puter-generated hologram, the transverse mode selection 

method, the geometrical optical method, spatial filtering, 
etc. (16–20).

Until now, many theoretical models have been pro-
posed to describe DHBs, such as the Bessel–Gaussian 
beams, LG modes, hollow Gaussian beams, dark hollow 
beams, higher order Mathieu beams and so on (21–
25). In 2005, Wu et al. demonstrated experimentally 
for the first time an anomalous hollow beam (AHB) 
of elliptical symmetry with an elliptical solid core. In 
2007 and 2008, Cai proposed two convenient theoret-
ical models to describe AHB (9, 10). The main differ-
ence between conventional DHB and AHB is that the 
central intensity of the conventional DHB is zero, while 
the central part of an AHB has an elliptical or circular 
solid core.

In Cai’s theoretical models, the electric field of an AHB 
is expressed as a superposition of finite sums of astigmatic 
Gaussian modes and astigmatic doughnut modes. Since 
then, within the paraxial approximation, the propagation 
properties of coherent and partially coherent AHB under 
various cases have been widely studied (26–31). In 2014, 
Zhao introduced a new theoretical model to describe the 
AHB with OAM, and studied the effect of the topological 
charge (TC) on the propagation properties of the AHB 
with OAM numerically (32). From their results, one can 
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In the Cartesian coordinate system, consider an AHB 
with OAM linearly polarized in the x direction. The elec-
tric field can be rewritten as
 

where w0x and w0y are the beam waist width of an astig-
matic Gaussian mode in x and y directions, respectively. 
M is TC and also denotes the number of 2π phase cycles 
around the optical vortex centred on the optical axial.

Based on the Rayleigh–Sommerfeld integral formula, 
the nonparaxial AHB propagating towards the free space 
z > 0 can be described as (33)
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find that the propagation properties of the AHB with 
OAM are completely different with the AHB. The AHB 
with OAM can keep dark hollow distribution in the far 
field. Therefore, the AHB with OAM can applied in the 
free-space optical communication.

As we know, the paraxial approximation is no longer 
valid when the far-field divergent angle becomes large 
or when the beam spot size and wavelength are com-
parable. To the best of our knowledge, no results have 
been published up until now on nonparaxial propaga-
tion of an AHB with OAM. However, the nonparax-
ial propagation conditions are always encountered in 
highly focused optical system such as objective with 
high numerical aperture and holography microscopy. 
Therefore, it’s interesting to study the nonparaxial propa-
gation of the AHB with OAM. In this paper, based on the 
Rayleigh–Sommerfeld integrals formula, an analytical 
expression of the nonparaxial AHB with OAM in free 
space is derived. The normalized intensity, phase, and 
the OAM density distribution of the nonparaxial AHB 
with OAM propagating in free space are numerically 
studied in detail.

2.  Theory

The electric field of the general AHB with OAM in the 
source plane z = 0 takes the form (32):

Figure 1. The normalized intensity of an AHB with OAM of circular symmetry in the free space with different beam waists: z = zr, M = 3, 
where the solid and dotted curves denote the nonparaxial and paraxial results, respectively.
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Figure 2. The normalized intensity of an AHB with OAM of circular symmetry in the free space with different propagation distances: 
w0x = w0y = λ, M = 3, where the solid and dotted curves denote the nonparaxial and paraxial results, respectively.

Figure 3. The normalized intensity of an AHB with OAM of circular symmetry in the free space with different TC: w0x = w0y= λ, z = zr, where 
the solid and dotted curves denote the nonparaxial and paraxial results, respectively.
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In the nonparaxial approximation of the near field, we 
have the following approximation:

 

where r =
(

x2 + y2 + z2
)1∕2.

In the case of far field sources, Equation (7) can be 
further simplified into the following form:

 

Substituting Equations (2) and (7) into Equations (3)–
(5), using the following expansion and mathematical inte-
gral formula:
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where
 

r = xi + yj + zk and r0 = x0i + y0j with i, j and k being 
units of vectors of x-, y- and z-axes in the Cartesian coor-
dinate system, respectively, and k = 2�∕� is the wave 
number with λ being the incident wavelength.
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Figure 4. The normalized intensity and the phase distributions of the nonparaxial AHB with OAM of circular symmetry in the free space 
for different propagation distances: w0x = w0y= λ, M = 3.
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A tedious, but straightforward integration, leads to the 
following expression for an AHB with OAM in the non-
paraxial approximation:
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Figure 5. The normalized intensity and the phase distributions of the nonparaxial AHB with OAM of circular symmetry in the free space 
for different TC: w0x = w0y= λ, z = 20zr.
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of n10, n11, n12, n13, n20and n22 are same as Equations (16) 
and (17).

The propagation expression of the AHB with OAM in 
the paraxial regime can be treated as a special case by 
using the paraxial expansion
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Then substituting Equations (2) and (8) into Equation 

(3–5), we obtain the following far-field expression for the 
nonparaxial AHB with OAM:
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Figure 6. The normalized intensity and the phase distributions of the nonparaxial AHB with OAM of elliptical symmetry in the free space 
for different propagation distances: w0x = 0.5 λ w0y= λ, M = 3.
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3.  Numerical calculations and analyses

Based on the propagation formulae Equations (11–13), 
obtained in Section 2, we can study the nonparaxial prop-
agation properties of an AHB with OAM in free space. 
The optical wavelength is set to be � = 532 nm. The light 
intensity is given by I = |

|

Ex
|

|

2
+
|

|

|

Ey

|

|

|

2

+ |

|

Ex
|

|

2.
Figures 1–3 show the normalized intensity of an AHB 

with OAM in the free space with different beam waist 
w, propagation distance z and topological charge M. The 
solid curves denote the nonparaxial results obtained 
by using Equations (11–13) and (18–20), and the dot-
ted curves denote the paraxial results obtained by using 
Equations (11–13) and (22). Here, zr = kw2

0x∕2 is the con-
focal parameter of the Gaussian part. The corresponding 
paraxial results are also calculated for the convenience of 
comparison. From Figure 1, we can see that, with increas-
ing width of the beam waist, the difference between the 

 

Replacing r of the exponential part in Equations (11–13) 
and other terms with z, we obtain the propagation expres-
sion of AHB with OAM passing through the paraxial 
free-space.

Each photon of the vortex beam carries an OAM of 
Mℏ, where ℏ is the reduced Planck constant. The orbital 
angular momentum density distribution of an AHB with 
OAM is given by

 

where ω is the circular frequency, and ɛ0 is the electric 
permittivity of vacuum. E is the abbreviation of Ex(r).
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Figure 7. The normalized intensity and the phase distributions of the nonparaxial AHB with OAM of elliptical symmetry in the free space 
for different TC: w0x = 0.5 = λ, w0y= λ, z = 20zr.
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of the normalized intensity and phase distributions of the 
nonparaxial AHB with OAM of circular symmetry and 
elliptical symmetry in free space for different values of 
the propagation distance z, the M, and the initial beam 
waists. The first and second rows in Figures 4–7 are the 
intensity and phase distributions of x-component, and the 
third and fourth row are intensity and phase distributions 
of z-component. From the first row of Figures 4 and 5, we 
can find that the evolution, of the intensity distribution of 
the x-component of the nonparaxial AHB with OAM for 
different M and z is very stable. The beam profile keeps 
the dark hollow distribution for different values of z and 
M. The second row of Figures 4 and 5 shows the cor-
responding phase distribution. The curves of equiphase 
become heliciform and counterclockwise for positive val-
ues of M, and the numbers of petals is equal to the absolute 
value of M. From the third row of Figures 4 and 5, we 
can see that the intensity distribution of the z-component 
of a nonparaxial AHB with AOM is different from the 
intensity distribution of the x-component (see first row 
Figures 4 and 5): this distribution is zero in the source 

normalized light intensities arising from nonparaxial to 
paraxial propagation decreases gradually (Figure 1(a) and 
(b)). When the initial beam waist w0x = w0y is much larger 
than λ, the difference between the nonparaxial and parax-
ial results can be neglected (Figure 1(d)). This means that 
the paraxial approximation is valid also in the nonparax-
ial case. From Figure 2, one can find that the difference 
between the nonparaxial and paraxial is obviously large 
in the near field (Figure 2(a)) if w0x = w0y = λ, while it 
disappears in the far field (Figure 2(d)). From Figure 3, 
we can find that the influence of topological charge M 
on the propagation properties of the AHB with OAM is 
significant, and the difference between the nonparaxial 
and paraxial results becomes evident as the topological 
charge decreases.

To learn more about the influences of the initial beam 
parameters and propagation distance on the evolution 
properties of the nonparaxial AHB with OAM in free 
space, we carried out the calculations for different values 
of the pertinent parameters (propagation distance, initial 
beam parameters). Figures 4–7 show the contour graphs 

Figure 8. The OAM density distribution of the nonparaxial AHB with OAM of elliptical symmetry in the free space for different propagation 
distances: w0x = 0.5 λ, w0y= λ, M = 3.
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circular symmetry (see Figure 4). With the increase of 
the propagation distance, the intensity distribution in the 
x-direction expands faster than that in the y-direction (see 
Figure 6(a)–(d)). The behaviour in case of an AHB with 
elliptic symmetry and OAM is similar to an AHB with 
OAM with circular symmetry: Though the z-component 
is zero in the source plane (see Figure 6(i)), its intensity 
becomes non-zero with increasing propagation distance. 
The spot profile also experiences a rotation and finally 
takes on a transverse symmetric distribution. From the 
second and the fourth row in Figure 6, one can see that the 
phase distributions of the x-component of a non-paraxial 
AHB with elliptical symmetry and with OAM are radial 
lines in the source plane. In the central region, there 
is another elliptic region containing equiphase curves 
which are also radial lines. With the increase of the prop-
agation distance, the phase distributions of the x-com-
ponent and z-component are also heliciforms, but the 
helix is not smooth, there is a certain distortion. In the 
central region, the distortion increases with increasing 

plane, but is no longer equal to zero upon propagation. 
This is due to a change of the polarization state of the radi-
ation. Numerical results (not given in here) show that the 
intensity of the z-component in the nonparaxial regime 
is much smaller than that of the x-component. As the 
propagation distance z increases, the beam profile of the 
z-component changes gradually from one distorted lobe 
to two lobes, distributed in x-direction. The phase distri-
bution of the z-component of the nonparaxial AHB with 
AOM is also different from that of the x-component (see 
second row Figures 4 and 5). A lateral dislocation appears, 
and the direction of transverse dislocation changes with 
the propagation distance.

Figures 6 and 7 show the contour graphs of the normal-
ized intensity and phase distributions of the nonparaxial 
AHB with OAM with elliptical symmetry. In Figure 6, 
w0x = 0.5λ, w0y = λ, M = 3, the other parameters are same 
as Figures 4 and 5. From Figure 6, one can find that the 
intensity distribution of the nonparaxial AHB with OAM 
with elliptical symmetry is different from those with 

Figure 9.  The OAM density distribution of the nonparaxial AHB with OAM of elliptical symmetry in the free space for different TC: 
w0x = 0.5 λ, w0y= λ, z = 10zr.
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of an AHB with OAM in free space; it also will be useful 
in the application of the AHB with OAM for optical com-
munication, optical trapping and nonlinear optics, using 
the wide variety of beam profiles and phases connected 
with these beams.
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