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The Effect of Individual Movements and
Interventions on the Spread of Influenza

in Long-Term Care Facilities

Mehdi Najafi, PhD, Marek Laskowski, PhD, Pieter T. de Boer, MSc, Evelyn Williams, MD,
Ayman Chit, PhD, Seyed M. Moghadas, PhD

Background. Nosocomial influenza poses a serious risk
among residents of long-term care facilities (LTCFs).
Objective. We sought to evaluate the effect of resident
and staff movements and contact patterns on the out-
comes of various intervention strategies for influenza
control in an LTCF. Methods. We collected contact fre-
quency data in Canada’s largest veterans’ LTCF by enroling
residents and staff into a study that tracked their move-
ments through wireless tags and signal receivers. We ana-
lyzed and fitted the data to an agent-based simulation
model of influenza infection, and performed Monte-Carlo
simulations to evaluate the benefit of antiviral prophylaxis
and patient isolation added to standard (baseline) infection
control practice (i.e., vaccination of residents and staff, plus
antiviral treatment of residents with symptomatic infection).
Results. We calibrated the model to attack rates of 20%,
40%, and 60% for the baseline scenario. For data-driven
movements, we found that the largest reduction in attack

rates (12.5% to 27%; ANOVA P \ 0.001) was achieved
when the baseline strategy was combined with antiviral pro-
phylaxis for all residents for the duration of the outbreak.
Isolation of residents with symptomatic infection resulted in
little or no effect on the attack rates (2.3% to 4.2%; ANOVA
P . 0.2) among residents. In contrast, parameterizing the
model with random movements yielded different results,
suggesting that the highest benefit was achieved through
patient isolation (69.6% to 79.6%; ANOVA P \ 0.001)
while the additional benefit of prophylaxis was negligible in
reducing the cumulative number of infections. Conclusions.
Our study revealed a highly structured contact and move-
ment patterns within the LTCF. Accounting for this
structure—instead of assuming randomness—in decision
analytic methods can result in substantially different pre-
dictions. Key words: nosocomial influenza; agent-based
modelling; interventions; contact patterns; simulations.
(Med Decis Making 2017;37:871–881)

Nosocomial influenza outbreaks continue to
inflict substantial morbidity and mortality,

with significant associated healthcare costs.1 Resi-
dents of long-term care facilities (LTCFs) are partic-
ularly vulnerable to influenza due to underlying
health conditions,2,3 and possible congregation dur-
ing daily activities, creating high exposure to infec-
tion. Furthermore, some residents may be cogni-
tively impaired and unable to follow basic hygiene
precautions. Outbreaks of influenza in LTCFs occur
even in the presence of high vaccination rates of
both residents and staff, with attack rates (i.e., the
proportion of population at risk infected throughout
the outbreak) that vary from 5% to 60% and case

fatality rates as high as 55%.3,4 Although vaccina-
tion has shown to reduce the risk of severe out-
comes,5,6 infection can still occur because of the
lower vaccine efficacy among geriatric populations
as compared with other age-groups.1,7,8,9

In addition to annual vaccination campaigns, a
number of strategies are implemented to prevent infec-
tion and its spread among residents of LTCFs. These
include non-pharmacological infection control mea-
sures (e.g., isolation, restriction of visitation during the
outbreak, hand hygiene and masks) and antiviral drugs
for treatment and prophylaxis.10–12 Despite the imple-
mentation of these strategies to varying degrees, fre-
quent outbreaks are declared in LTCFs and early con-
tainment remains challenging, as the source of
infection is often unknown. Furthermore, a sizeable
portion of individuals may experience asymptomatic
infection without presenting clinical symptoms while
being capable of transmitting the infection.

� The Author(s) 2017
Reprints and permission:
http://www.sagepub.com/journalsPermissions.nav
DOI: 10.1177/0272989X17708564

ORIGINAL ARTICLE

MEDICAL DECISION MAKING/NOVEMBER 2017 871

http://doi.org/10.1177/0272989X17708564
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0272989X17708564&domain=pdf&date_stamp=2017-05-24


Although a number of factors contribute to the
complexity of nosocomial outbreaks, the interac-
tions among residents, visitors, and staff can signifi-
cantly influence the outcome of prevention and
control measures in LTCFs.1,3 In this study, we
developed a discrete-time agent-based simulation
model to evaluate the effect of various intervention
strategies where transmission dynamics is parame-
terized based on interactions among individuals. To
the best of our knowledge, this study presents the
first modeling framework that uses movement data
to determine the network of interactions within an
LTCF. We collected such data in Canada’s largest
veteran’s LTCF, using wearable tags that exchange
ultra-low-power radio signals between individuals
in a prescribed proximity. Using such data, we con-
structed a transition probability matrix to simulate
the movement and interactions between individuals
throughout the LTCF modeled in this study, and
evaluated the effect of several intervention strate-
gies that are commonly practiced to contain influ-
enza outbreaks in these settings.

Agent-based modeling has increasingly been
applied to study disease dynamics and gauge the
impact of prevention and control measures in popu-
lation and healthcare settings, where the interac-
tions between individuals are often modeled based
on observations, plausible assumptions, or ran-
domly.11,13–16 We compare our results using data-
driven movements with those obtained from random
movements. This comparison allows us to study the
importance of individual movements in a closed

setting like an LTCF, and describe the dynamics and
emergent properties of an outbreak that may be char-
acterized by localized attributes, such as joint spatial,
temporal, and behavioural interactions.

METHODS

Study Population

We collected movement data in the Veterans
Centre located at Sunnybrook Health Sciences Cen-
tre, Toronto, the largest veterans LTCF in Canada.
Our study took place in 2 sections of this facility
with a total of 50 rooms, and 19 service locations
and public arenas inside the center. Residents live in
several units that are specialized according to their
needs, including semi-private rooms and private
rooms. The total number of staff working in the areas
related to the study was 64 in all shifts, of which
63% participated in the study. The total number of
residents in these areas during the data collection
period was 52, of which 37% participated.

Ethical Approval

Ethics approval was received, and informed
consent was obtained from participants (and when
required from substitute decision makers for resi-
dents) before commencement of data collection. Ethi-
cal approval was obtained from York University
office of research ethics, and Sunnybrook Health
Sciences Centre research ethics board. Participation
by staff members and residents was voluntary. Infor-
mation on the data collection process was provided
to all participants, including substitute decision
makers for residents. No personal information was
collected and participants were anonymous in the
contact signals received during data collection using
socio-metric wearable devices.

Data Infrastructure and Collection Process

The study comprised 2 periods of data collection
in December 2015 and February 2016, each for a
duration of 14 d. These periods fall within the typi-
cal influenza season in Canada, which generally
peaks between December and March.17 The data
were collected using wireless tags and receivers
(Figure S1, Appendix) that were worn by all partici-
pants during daily activities (excluding resting time
or bathing). Each tag was associated with a unique
identifier digital code, which was used to determine
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the between-participant contacts of resident to resi-
dent, staff to staff, and resident to staff. Contact
events were measured in frequency, location, and
time duration within a spatial resolution up to 1.5
m for proximity between tags,18,19 and a temporal
resolution of 15 sec for contacts. Exchange of radio
packets between devices was only possible when
participants were facing each other, as the human
body acts as a shield at the radio frequency used.
Similar to previous work,20 our system detected and
recorded close-range contacts during which a com-
municable disease could be transmitted; e.g., by
coughing, sneezing, or physical contact.

Tags broadcast their unique identification number,
as well as the identification number of the other tags
in proximity to radio frequency identification (RFID)
readers mounted in the environment (i.e., throughout
the LTCF). The RFID reader forwarded any informa-
tion received from the tags to a data server for further
analysis. In addition to tags worn by participants, so-
called ‘marker tags’ were placed in known locations
throughout the environment to assist with locating
participants in the LTCF.

The sensing system was tuned so that the
recorded data included the start and end times of
contacts between participants and their locations,
with a temporal resolution of milliseconds. We
used this information to determine the number of
contacts for each participant, the duration of con-
tacts, the cumulative time spent in contact among 2
or more participants, and the frequency and loca-
tion of encounters during the data collection period.
The corresponding distributions are broad: short
durations were the most probable, but very long
durations were also observed with a non-negligible
probability. For diseases in which the transmission
probability between 2 participants depends on their
time in contact, different contacts might yield very
different transmission probabilities. Many contacts
are very short and correspond to a small transmis-
sion probability, but some are considerably longer
than others, and could therefore play a crucial role
in disease dynamics.

Data Analysis and Transition Probabilities

For analysis and eventual inclusion into the
model, time-stamped data were separated into 2
categories. We compiled data sets that captured
contacts between participants and marker tags, and
data sets that captured contacts among 2 or more

participants. Data were aggregated along the tem-
poral dimension into 15-sec slots to determine the
location of each participant during each 15-sec slot.
For each hour of the day, we counted the number of
visits (for a slot in which a participant is at a particu-
lar location) each participant makes to any location
from each starting location. This yields a matrix of
Markov chain state transition probabilities, as shown
in Figure 1, for each class of participants, which was
used to parameterize the movement module of the
model (see Appendix). The Markov chain model pro-
vides a simple way to capture sequential depen-
dence of places visited by participants.

Agent-based Modeling Structure

A previously validated agent-based modeling
framework was used as the basis for disease natural
history and disease transmission between partici-
pants in the LTCF.21 Earlier models using this
framework in the larger community presumed the
activities of participants based on assumptions
about behavioural patterns in an environment that
includes homes, workplaces, schools, and other
social contexts.21–23 We adapted this framework to
represent resident rooms, common areas, and staff
areas within the LTCF.

The agent-based approach used here is a discrete-
time simulation model in which agents are situated
and capable of movement throughout a discrete
environment.24,25 A key component of our study is
the model calibration for disease transmissibility
(given a specific attack rate) using the data collected
for the movement of participants in the LTCF. We
characterized the movements of participants as a
function of time, and counted the number of transi-
tions made by participants between locations in
the study area. This movement module was used to
determine the current location of participants in
the model, and the next location to which each
individual agent will probabilistically move during
daily activities. We also classified individual
movements based on their functions in the LTCF
as residents or staff. The transition probabilities
derived from the collected data were then used
to calibrate the model for the transmission
probability.

For simulating disease dynamics, we built the
model with compartments representing individual
agents and their epidemiological health statuses,
movements, and interactions between the

INFLUENZA IN LONG-TERM CARE FACILITIES

ORIGINAL ARTICLE 873

http://journals.sagepub.com/doi/suppl/10.1177/0272989X17708564


compartments. The underlying structure of the
model describes the dynamics of the clinical course
of influenza infection, and includes state compart-
ments of individuals as susceptible (S), exposed and
infected but not yet infectious (E), pre-symptomatic
and infectious without symptoms (P), asymptomatic
and infectious without symptoms (A), infectious
with symptoms (I), and recovered (R).

Disease transmission occurs as a result of contact
between susceptible and infectious agents. We
assumed a standard Markov chain process for dis-
ease progression in the model compartments. At
any time during the simulation, agents are in one of
these compartments according to their epidemiolo-
gical status. In our model, each time-step in the
simulation is associated with an independent Ber-
noulli trial for disease transmission:24,25

Ptransmission51� 1� b 1� q1ð Þ 1� q2ð Þ 1� q3ð Þ 1� q4ð Þð Þt

where b is the transmission probability per person
per time unit; q1 is the reduction in transmissibility
in pre-symptomatic or asymptomatic individuals;
q2 is the reduction in transmissibility due to anti-
viral treatment; q3 is the reduction in susceptibility
to infection as a result of vaccine-induced immunity
(which depends on the vaccine efficacy); q4 is the
reduction in susceptibility to infection due to anti-
viral prophylaxis, and t is the amount of time spent
at the same location with potentially infectious

contacts. The reduction in disease transmissibility
represented by qi, i51,2,3,4, is applied only when
the relevant interventions in simulation scenarios
are implemented, and based on the characteristics
of the susceptible and infectious agents that come
into contact with each other within t amount of
time. The time period t is governed by collected
movement data imputed into a Markov model,
sampled in increments of 15 sec as the time step
used in the model.

If transmission occurs following exposure, a sus-
ceptible agent becomes infected and enters the latent
stage. After the latent period has elapsed, the epide-
miological status changes to pre-symptomatic or
asymptomatic.21 Agents with asymptomatic infection
remain infectious and can transmit the disease for the
entire infectious period without presenting clinical
symptoms. Those with pre-symptomatic infection
will develop clinical symptoms while infectious.
Infectious periods for pre-symptomatic, asympto-
matic, and symptomatic infections are sampled from
their associated distributions.21

Parameterization

The transmission rate, b, was iteratively modified
through a series of trials21 to calibrate the model to
cumulative attack rates of 20%, 40%, and 60%
among residents in the baseline scenario.1,3 Each

A B

Figure 1 Transition probabilities for movements of residents (A) and staff (B) from the current location to the next location within 15

sec. Locations within the LTCF include resident rooms, service area, public area, and activity rooms (see Appendix).

NAJAFI AND OTHERS

874 � MEDICAL DECISION MAKING/NOVEMBER 2017

http://journals.sagepub.com/doi/suppl/10.1177/0272989X17708564


trial used at least 1,000 randomly initialized simula-
tion runs to generate an average attack rate.

We assumed that infected participants during
pre-symptomatic and asymptomatic stages are (on
average) 50% less infectious than during their
symptomatic phase.22 The effect of antiviral treat-
ment was included in the reduction of disease
transmissibility following the initiation of treat-
ment. We assumed that treatment reduces the infec-
tiousness by 60% for those who did not receive pro-
phylaxis.22,26 Prophylaxis was assumed to reduce
susceptibility to infection by 30% and transmissi-
bility (if infected) by 60%.22 Those who developed
symptomatic infection while receiving prophylaxis
continued with treatment, with an additional 60%
reduction in infectiousness.22,27 The overall reduc-
tion in infectiousness for these participants follow-
ing the start of treatment was 84% (given by
1� 0:430:4ð Þ50:84). We assumed a probability of
0.65 that individuals receiving prophylaxis will
have significantly milder symptomatic infection (if
they developed illness).22,26,27 Vaccine effectiveness
was included as reduced susceptibility to infection,
and reduced infectiousness reflected in lower prob-
ability of developing symptomatic infection (if
infected). For residents, vaccine effectiveness was
uniformly sampled from the estimated range of 14%
to 30%, with the mean of 22%.7,8 For staff, vaccine
effectiveness was sampled for each individual in the
range of 60% to 90%, with the mean of 80%.28 For a
vaccinated individual, the probability of developing
symptomatic infection (if infection occurs) was
reduced by the sampled vaccine effectiveness.

The duration of the latent period for each
infected individual was drawn from a uniform dis-
tribution with a minimum of 1 d and a maximum of
2 d.29 The pre-symptomatic period for each infected
individual was drawn from a log-normal distribu-
tion with the scale parameter m5�0:775 d, and

shape parameter s2 5 0:16 d, giving an average of
0.5 d.21,22,26 The infectious period was sampled from
a log-normal distribution (Figure S6, Appendix),
with the scale parameter m 5 1 d, and the shape para-
meter s2 5 0:4356 d, which has a mean of 3.38 d.21,22

Simulation Scenarios

Simulations were implemented on Compute
Canada’s mp-2 cluster, which features 39,168 CPUs
available to users, and an overall performance of
240 TFLOP/s, with a total memory of 57.6 TB. We
considered the baseline scenario to include pre-out-
break vaccination of residents and staff, and treat-
ment of symptomatically infectious residents. For
comparison purposes, we considered 4 additional
scenarios that included measures in the baseline
scenario and were consistent with outbreak control
policies in the LTCF considered here. These poli-
cies included prophylaxis of all residents after the
identification of 3 symptomatic cases. Residents
with symptoms of influenza were typically isolated
in their rooms without interactions with other resi-
dents; however, no formal quarantine procedures
were practiced. Staff presenting symptomatic infec-
tion were removed from simulations and replaced
with a healthy individual for the sampled duration
of the infectious period. Staff replacement was
included in all scenarios, reflecting the policy to
send home the staff who are clinically infectious.
The scenarios for a combination of intervention
strategies are chosen based on outbreak responses
in the LTCF studied here, and are summarized in
Table 1. Each scenario was run for over 1,000 inde-
pendent realizations using a different random seed
each time, and a different random resident in the
model was chosen as the initial case. The total pop-
ulation in the model is n 5 68. This required 72,000
core hours of compute time. For presentation of the

Table 1 Intervention Strategies Used in Simulation Scenarios

Scenario Index Residents and Staff Residents Staff

Baseline Vaccination (100% coverage) +
treatment of symptomatic residents

Vaccination (100% coverage)

S1 Baseline Symptomatic staff sent home and replaced
S2 Baseline Isolation of symptomatic residents Symptomatic staff sent home and replaced
S3 Baseline Isolation of symptomatic residents +

prophylaxis of all residentsa
Symptomatic staff sent home and replaced

S4 Baseline Prophylaxis of all residentsa Symptomatic staff sent home and replaced

aCorresponding to the outbreak control policy in the LTCF, prophylaxis of all residents started after 3 symptomatic cases were identified and the
outbreak in the LTCF was declared.
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results, we aggregated the simulation outputs on a
daily basis. To evaluate the effectiveness of inter-
ventions, we compared the model results of data-
driven movements with those obtained using ran-
dom movements. In the random movement scenar-
ios, visiting any locations within the model was
equally likely for staff while working on shift. For
residents, the same rule applied from 7 AM to 11:59
PM; however, they remained in their rooms
between midnight and 6:59 AM.

RESULTS

To compare the effect of interventions, we simu-
lated the model and aggregated the results to obtain
the daily incidence of infection, from which we
estimated the cumulative number of infections over
the course of an outbreak (Table 2). Using the transi-
tion probabilities for individual movements derived
from data, we estimated the post-intervention attack
rates for both residents and the total study popula-
tion (i.e., residents and staff) in all strategy scenar-
ios. Figure 2 illustrates the cumulative number of
infections among residents over a 7-wk period for
both data-driven and random movements in the
population setting. Not surprisingly, the highest
attack rates occurred in the baseline scenario
of interventions (Figure 2, black curves). When
movements are compelled by data (Figure 2A–C),
replacement of staff with symptomatic infection
(scenario S1; red curves) alone or combined with
isolation of residents with symptomatic infection
(scenario S2; cyan curves) has little or no effect
on the reduction in attack rates among residents
(Table 3). The largest reduction in attack rates was
achieved for scenarios S3 (magenta curves) and S4

(blue curves) for which all residents were offered
antiviral prophylaxis for the duration of the out-
break (Table 3). These observations hold true for the
range of attack rates simulated here. The percentage
reduction in the cumulative number of infections
amongst residents for each scenario compared with
the baseline strategy is presented in Table 3.

When movement of individuals was random (Fig-
ure 2D–F), we observed significant differences in
the outcomes of simulated scenarios. In contrast to
the outcomes for data-driven movements, the lowest
attack rates were obtained for scenarios S2 (cyan
curves) and S3 (magenta curves), in which the isola-
tion of residents with symptomatic infection was
implemented. Given that the outcome of scenario
S4 (blue curves) had higher attack rates than that in
scenarios S2 and S3, a strategy with isolation out-
performs the strategy with prophylaxis for all resi-
dents (Table 3). Similar to the case of data-driven
movements, the replacement of staff with sympto-
matic infection (scenario S1; red curves) has the
lowest impact in reducing attack rates among resi-
dents. We obtained similar results for the cumula-
tive number of infections among residents and staff
(Figure S7; Appendix). These findings underscore
the importance of movement and contact patterns
in the outcomes of intervention strategies in close
settings, such as an LTCF.

To account for variability in individual move-
ments, we performed a sensitivity analysis using a
sampling-based approach to generate new transition
matrices. In this approach, we considered the data-
driven transition frequency matrices for movements
of participants between different locations as the
mean of Poisson distributions, and generated 100
samples, resulting in new transition matrices. For

Table 2 Average and 95% Confidence Intervals for Cumulative Infections among Residents for Different
Attack Rates based on the Movement Profiles

Data-driven Movement Average Cumulative Infections among Residents (95% CI)

AR Baseline S1 S2 S3 S4
20% 4.8 (4.5–5.1) 4.5 (4.2–4.8) 4.6 (4.3–4.9) 3.6 (3.4–3.8) 3.5 (3.3–3.7)
40% 10.3 (9.9–10.8) 9.9 (9.5–10.4) 10 (9.5–10.4) 7.7 (7.3–8.0) 7.7 (7.3–8.0)
60% 15.2 (14.5–15.8) 14.9 (14.4–15.3) 14.8 (14.3–15.3) 13.3 (12.9–13.7) 13.2 (12.8–13.6)

Random Movement
20% 5.2 (4.9–5.5) 4.7 (4.3–5.1) 1.5 (1.4–1.6) 1.5 (1.4–1.6) 3.7 (3.6–3.9)
40% 10 (9.7–10.4) 9.3 (8.9–9.6) 2.4 (2.3–2.6) 2.2 (2.0–2.3) 6.2 (5.9–6.4)
60% 15.1 (14.7–15.5) 14.3 (13.9–14.7) 4 (3.7–4.3) 3.1 (2.9–3.2) 9.2 (8.9–9.5)

The baseline scenario included vaccination (with 100% coverage) of residents and staff, plus treatment of symptomatic residents. Other scenarios
(S1–S4, as described in Table 1) included additional measures to the baseline scenario.
AR, attack rate.
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each sample, we ran a complete set of simulations
for all of the scenarios described in Table 1.
Figure 3 illustrates boxplots for the variation in the
cumulative number of infections averaged over

independent realizations for each scenario. These
simulations show the robustness of our results
delineated above with respect to variations in
movements.

Figure 2 Cumulative infection curves for residents during 7 wk of nosocomial influenza infection outbreak with data-driven move-

ments (A, B, C) and random movements (D, E, F). Color curves correspond to baseline (black) and intervention scenarios: S1 (red), S2

(cyan), S3 (magenta), and S4 (blue), as described in Table 1. AR, attack rate.

Table 3 Percentage Reduction in Cumulative Infections among Residents for Each Scenario Compared
with the Baseline Strategy

Data-driven Movement Percentage Reduction in Cumulative Infections among Residents (ANOVA P value)

AR 20% 40% 60%
Baseline 0 0 0
S1 6.8 (0.109) 3.8 (0.218) 1.9 (0.689)
S2 4.2 (0.333) 3.6 (0.241) 2.3 (0.589)
S3 26.6 (\0.001) 25.7 (\0.001) 13.1 (\0.001)
S4 25.3 (\0.001) 25.8 (\0.001) 12.4 (\0.001)

Random movement
Baseline 0 0 0
S1 9.3 (0.043) 7.7 (0.003) 4.8 (0.012)
S2 69.6 (\0.001) 75.7 (\0.001) 73.4 (\0.001)
S3 70.8 (\0.001) 78.5 (\0.001) 79.6 (\0.001)
S4 27.9 (\0.001) 38.6 (\0.001) 38.8 (\0.001)

One-way ANOVA was done between the mean values of cumulative infections achieved in the baseline and other simulation scenarios. The baseline
scenario included vaccination (with 100% coverage) of residents and staff, plus treatment of symptomatic residents. Other scenarios (S1–S4) included
additional measures to the baseline scenario, as described in Table 1.
AR, attack rate.
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DISCUSSION

In this study, we investigated the effect of move-
ment and contact patterns of participants on the
outcomes of prevention and control strategies
against nosocomial influenza in an LTCF. The sig-
nificance of our study relates to the integration of
movement data into an agent-based modeling

approach to establish a framework for the evalua-
tion of intervention strategies. A novel aspect of this
study is the application of Internet of Things to col-
lect data on individual movements and parameter-
ize an in silico population that more closely resem-
bles the actual setting. The integration of data
processing with simulations enabled us to observe
significant differences in the outcomes of scenarios

Figure 3 Variations in the cumulative number of infections among residents (A, B, C) and total infections (D, E, F) through the simula-

tion of nosocomial influenza infection outbreak scenarios in the LTCF based on the Poisson sampling of transition matrices for individ-
ual movements. AR, attack rate.
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when movements in the LTCF are assumed to be
random and when movements are compelled by
data based on location and interactions. The analy-
sis of such data suggests that the movements and
contact patterns within this setting are indeed
highly structured.

In comparing strategy outcomes, we observed
that a measure that reduces the susceptibility to
infection (i.e., prophylaxis) has the largest impact
on reducing attack rates among residents when
movements are data-driven. This corroborates previ-
ous findings of a systematic review on control prac-
tices and the effectiveness of interventions in
LTCFs,30 suggesting that antiviral prophylaxis
remains the most effective pharmaceutical measure
for influenza control in the context of reduced vac-
cine efficacy. In contrast, for random movements,
we observed that isolation of clinically infectious
patients leads to the largest reduction in attack
rates. In the context of random movements, partici-
pants tended to have contacts with a greater variety
of distinct individuals with a possibly shorter dura-
tion. Since the effectiveness of prophylaxis in infec-
tion prevention is imperfect, the interruption of
virus spread from infectious individuals becomes
paramount in reducing the attack rate. However,
when movements are highly structured, individuals
are more likely to encounter the same infectious
contact repeatedly, and therefore measures to pro-
tect at-risk individuals are of critical importance.
These findings suggest that, in well-confined set-
tings, such as LTCFs, where interactions are clus-
tered, preventive measures, such as vaccines with
improved efficacy, are attractive strategies for insti-
tutional management of nosocomial influenza, as
they are analogous with the use of prophylaxis.

There have been a number of modeling studies to
evaluate the effect of intervention strategies, either
individually or combined, on the control of nosoco-
mial infections in hospital settings and LTCFs.11,13–16

Although these models rely on movement patterns
derived from observations, plausible assumptions, or
averaging over time and selected groups of individu-
als, none has evaluated the effect of such movements
on infection control strategies. We considered this
objective, and integrated the model with actual move-
ment data collected in an LTCF. However, similar to
previous studies, our model has a number of limita-
tions. For example, our model does not consider all
possible locations that LTCF residents may access
during daily activities. Similarly, based on the pro-
cess of data collection, we did not include possible

interactions that staff may encounter with any indi-
viduals from outside while being off-shift from the
LTCF. Furthermore, given the short period of an out-
break, the model was implemented without visitation
to the LTCF, and therefore infection was introduced
only once at the start of the simulation. We did not
have access to patient data for influenza infection
during the study period or outbreaks at any other
point in time, and therefore no comparison was made
between the model outputs and the incidence of
infection in the LTCF. Within the model, we assumed
an immediate detection of illness for symptomatic
cases, with the start of intervention measures accord-
ing to the simulated scenario. We assumed that isola-
tion of residents is 100% effective against transmis-
sion to other residents, and the only possible
transmission route was through healthcare workers
being infected through contact with isolated patients.
However, cognitively impaired residents may not
adhere to the practice of isolation during their illness,
which may reduce the effectiveness of patient isola-
tion in preventing disease transmission. Furthermore,
we assumed 100% vaccine coverage in residents and
staff (note: data from the LTCF indicated over 90%
vaccine coverage for both staff and residents). Since
our objective was to evaluate the effect of resident
and staff movements on the outcomes of various inter-
vention strategies, a number of the model parameters
(e.g., effectiveness of vaccine and antiviral prophy-
laxis, reduction in disease transmissibility for pre-
symptomatic and asymptomatic infections) were
extracted from the published literature, which are
subject to variations and may depend on the individ-
ual health status. Given these parameters, we investi-
gated the effect of variation in movement patterns on
the model outcomes through a sensitivity analysis.
Our model does not include the effect of other non-
pharmaceutical interventions, such as personal pro-
tective equipment and hand hygiene, and their effec-
tiveness in these settings is not well documented.30

We also did not consider the effect of fomites nosoco-
mial transmission, and assumed uniform mixing of
air in locations where there are multiple individuals.
Despite these limitations, which merit further investi-
gation, our results, combined with the sensitivity
analysis for the individual movements, demonstrate
that the strategy outcomes are highly dependent on
the contact patterns in the particular facility. Tag and
sensor studies can provide a low-cost way to collect
facility-specific contact data, which can be used to
parameterize decision models.

INFLUENZA IN LONG-TERM CARE FACILITIES

ORIGINAL ARTICLE 879



ACKNOWLEDGMENT

The authors would like to acknowledge Compute Canada
(a not-for-profit organization) for providing computational
resources, and the Veterans Centre, Sunnybrook Health
Sciences Centre, for assistance with deployment of the
data collection technology. The authors also would like to
thank the reviewers for their insightful comments that
have improved the paper.

REFERENCES

1. Matheı̈ C, Niclaes L, Suetens C, Jans B, Buntinx F. Infections

in residents of nursing homes. Infect Dis Clin North Am. 2007;21:

761–72.

2. Arden NH. Control of influenza in the long-term-care facility: a

review of established approaches and newer options. Infect Con-

trol Hosp Epidemiol. 2000;21:59–64.

3. Simor AE. Influenza outbreaks in long-term-care facilities:

how can we do better? Infect Control Hosp Epidemiol. 2002;23:

564–7.

4. Thompson WW, Shay DK, Weintraub E, et al. Mortality associ-

ated with influenza and respiratory syncytial virus in the United

States. JAMA. 2003;289:179–86.

5. Powers DC. Effect of age on serum immunoglobulin G subclass

antibody responses to inactivated influenza virus vaccine. J Med

Virol. 1994;43:57–61.

6. Arden NH, Patriarca PA, Fasano MB, et al. The roles of vacci-

nation and amantadine prophylaxis in controlling an outbreak of

influenza A (H3N2) in a nursing home. Arch Intern Med. 1988;

148:865–8.

7. Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C,

Demicheli V. Efficacy and effectiveness of influenza vaccines in

elderly people: a systematic review. Lancet. 2005;366:1165–74.

8. Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E,

Thorning S, Thomas RE. Vaccines for preventing influenza in the

elderly. Cochrane Database Syst Rev. 2010:CD004876.

9. Nichol KL, Nordin JD, Nelson DB, Mullooly JP, Hak E. Effec-

tiveness of influenza vaccine in the community-dwelling elderly.

N Engl J Med. 2007;357:1373–81.

10. Centers for Disease Control and Prevention. Interim guidance

for influenza outbreak management in long-term care facilities.

Atlanta: CDC; 2011.

11. Van den Dool C, Hak E, Bonten MJ, Wallinga J. A model-

based assessment of oseltamivir prophylaxis strategies to prevent

influenza in nursing homes. Emerg Infect Dis. 2009;15:1547–55.

12. Ye M, Jacobs A, Khan MN, et al. Evaluation of the use of osel-

tamivir prophylaxis in the control of influenza outbreaks in long-

term care facilities in Alberta, Canada: a retrospective provincial

database analysis. BMJ Open. 2016;6:e011686.

13. Barnes S, Golden B, Wasil E. MRSA transmission reduction

using agent-based modeling and simulation. INFORMS J Comput.

2010;22:635–46.

14. Jaramillo C, Taboada M, Epelde F, Rexachs D, Luque E. Agent

based model and simulation of MRSA transmission in Emergency

Departments. Procedia Comput Sci. 2015;51:443–52.

15. Blanco N, Eisenberg MC, Stillwell T, Foxman B. What trans-

mission precautions best control influenza spread in a hospital?

Am J Epidemiol. 2016: kwv293.

16. Rubin MA, Jones M, Leecaster M, et al. A simulation-based

assessment of strategies to control clostridium difficile transmis-

sion and infection. PLoS ONE. 2013;8:e80671.

17. NACI, Canadian Immunization Guide Chapter on Influenza

and Statement on Seasonal Influenza Vaccine for 2016-2017.

Ontario: Public Health Agency of Canada. Available from: URL:

http://www.phac-aspc.gc.ca/naci-ccni/flu-2016-grippe-eng.php.

[Accessed on 30 January, 2017].

18. Schünemann HJ, Hill SR, Kakad M, et al. WHO Rapid Advice

Guidelines for pharmacological management of sporadic human

infection with avian influenza A (H5N1) virus. The Lancet Infect

Dis. 2007;7:21–31.

19. World Health Organization. Limiting the spread of pandemic,

zoonotic, and seasonal epidemic influenza; 2010. Available at:

URL: http://www.who.int/influenza/resources/research/research_

agenda_influenza_stream_2_limiting_spread.pdf, [Accessed 7 Sep-

tember, 2016].
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