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a b s t r a c t

In this document, we deal with the local asymptotic stabilization problem of a class of slow–fast systems
(or singularly perturbed Ordinary Differential Equations). The systems studied here have the following
properties: (1) they have one fast and an arbitrary number of slow variables, and (2) they have a
non-hyperbolic singularity at the origin of arbitrary degeneracy. Our goal is to stabilize such a point.
The presence of the aforementioned singularity complicates the analysis and the controller design. In
particular, the classical theory of singular perturbations cannot be used. We propose a novel design
based on geometric desingularization, which allows the stabilization of a non-hyperbolic point of singularly
perturbed control systems. Our results are exemplified on a didactic example and on an electric circuit.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Slow–fast systems are characterized by having more than one
timescale. There are many phenomena in nature that behave in
two or more timescales such as population dynamics, cell division,
electrical circuits, power networks, chemical reactions, neuronal
activity (Kosiuk & Szmolyan, 2011; Kuehn, 2015; Shilnikov, 2012).
A particular property of slow–fast systems (under certain hyper-
bolicity conditions) is that they have a structure suitable for model
order reduction. Simply put, certain slow–fast systems can be de-
composed into two simpler subsystems, the slow and the fast. The
analysis of those two subsystems allows a complete understanding
of the more complex and higher dimensional one. A mathematical
theory supporting the previous fact is Geometric Singular Pertur-
bation Theory (GSPT) (Fenichel, 1979), see also Kokotovic, O’Reilly,
and Khalil (1986) in the context of control systems. The above,
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however, relies on the strong assumption of global timescale sepa-
ration, and when it does not hold, the classical technique of model
order reduction cannot be used.

Many interesting phenomena are characterized by not having
such a global timescale separation. Mathematically speaking, this
phenomenon is characterized by singularities of the critical mani-
fold, see Section 2; and in a qualitative sense, one usually observes
jumps in the phase portrait of the slow–fast system. Such an effect
is also called loss of normal hyperbolicity. Prototypical examples
of two-timescale systems without global timescale separation are
the van der Pol oscillator (van der Pol & van der Mark, 1928),
neuronal models (Shilnikov, 2012), and electrical circuits with
impasse points (Chua & Deng, 1989a, 1989b; Reissig, 1996). Since
loss of normal hyperbolicity is present in many models, there is
an increased need of their accurate understanding. The distinction
between the global and the non-global timescale separation is
much more than qualitative. From an analysis point of view, the
available techniques are quite different; while the hyperbolic case
iswell established, the non-hyperbolic scenario still presentsmany
challenges.

In the context of control systems, slow–fast systemswith global
timescale separation are nowadayswell understood and have been
used in many applications, e.g. Kokotovic et al. (1986), Saksena,
O’Reilly, and Kokotovic (1984) and Spong (1987). The main and
powerful idea in the classical context is to design controllers for the
reduced subsystems, which later guarantee stability of the overall
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slow–fast system. On the other hand, slow–fast systems with non-
hyperbolic points are far from being well understood, and to the
best knowledge of the authors, there are still many open prob-
lems (see Fridman, 2001a,b; Khalil, 1989 for some particular re-
sults). From a dynamical systems perspective, the technique called
geometric desingularization (Dumortier & Roussarie, 1996; Krupa
& Szmolyan, 2001a) has been used to understand the complex
behavior of slow–fast systems around non-hyperbolic points. In
this regard, the authors have made preliminary progress in bring-
ing such technique to the control systems community (Jardón-
Kojakhmetov & Scherpen, 2016; Jardón-Kojakhmetov, Scherpen, &
del Puerto-Flores, 2017) in the planar case.

The main contribution of this document is the development
of a control method based on geometric desingularization. This
provides a solution to the problem of the stabilization of singularly
perturbed control problems at a non-hyperbolic point. Remark-
ably, we further consider control systems which are only actuated
on the slow variables. Although the technique presented here is
completely different from the classical one (Kokotovic et al., 1986),
the idea remains the same: to obtain simpler subsystemswhere the
control design becomes more accessible.

The reminder of this document is organized as follows: in
Section 2weprovide preliminary information to place our research
into context. In Section 3 our main contribution is formally stated.
Next, in Section 4 we briefly describe the geometric desingulariza-
tion method and then we apply it to control systems in Section 5.
Afterwards, in Section 6, we develop a controller based on the
method previously introduced. Interestingly, we show that it is
possible to inject a hyperbolic behavior to a slow–fast control
system near a non-hyperbolic point even though the fast variable
is not actuated. Later, in Section 7 we exemplify our results with a
couple of numerical simulations. We finish in Section 8 with some
concluding remarks and a digression on open problems.

2. Preliminaries

Abbreviations: SFS stands for Slow–fast System, SFCS for Slow–
fast Control System, and NH for Normally Hyperbolic.

Notation: R, Z and N denote the fields of real, integer, and natural
numbers respectively. Given a field F, Fn denotes the n-cross-
product F×· · ·×F. The dimension of the slow and fast variables is
ns and nf respectively, andN = ns+nf . Given x = (x1, . . . , xn) ∈ Rn

and α = (α1, . . . , αn) ∈ Zn, we denote xα
= (xα1

1 , . . . , xαn
n ).

The symbol Sn denotes the n-sphere. The parameter ε is always
assumed 0 < ε ≪ 1. LetN be an n-dimensional manifold, a vector
fieldX : N → TN iswritten asX =

∑n
i=1Xi

∂
∂xi

, where (x1, . . . , xn)
is a coordinate system in N .

A slow–fast system (SFS) is a singularly perturbed ordinary
differential equation of the form

ẋ = f (x, z, ε)

εż = g(x, z, ε),
(1)

where x ∈ Rns (slow variable), z ∈ Rnf (fast variable), f and g are
sufficiently smooth functions, and the independent variable is the
slow time t . One can also define a new time parameter τ =

t
ε
called

the fast time, and then (1) is rewritten as

x′
= εf (x, z, ε)

z ′
= g(x, z, ε),

(2)

where the prime ′ denotes derivative with respect to τ . Note that
(1) and (2) are equivalent as long as ε > 0. For convenience of
notation sometimes we refer to (2) as Xε , and write (2) as the
ε-family of vector fields Xε = εf (x, z, ε) ∂

∂x + g(x, z, ε) ∂
∂z .

A first step towards understanding the dynamics of (1) or (2) is
to consider the limit equations when ε → 0. When we set ε = 0
in (1)–(2) we obtain the so-called Differential Algebraic Equation
(DAE) and Layer Equation respectively, and are given by

DAE:
{
ẋ = f (x, z, 0)
0 = g(x, z, 0) Layer:

{
x′

= 0
z ′

= g(x, z, 0)

These two reduced systems are not equivalent anymore, how-
ever, the critical manifold relates them as follows.

Definition 1. The critical manifold of a SFS is defined as

S =
{
(x, z) ∈ Rns × Rnf | g(x, z, 0) = 0

}
.

Note then that S serves as the phase-space of the DAE and as
the set of equilibrium points of the Layer equation. An important
property of critical manifolds may have is normal hyperbolicity.

Definition 2. A point s ∈ S is called hyperbolic if it is a hyperbolic
equilibrium point of the reduced vector field z ′

= g(x, z, 0) of the
Layer equation. The manifold S is called normally hyperbolic (NH)
if every point s ∈ S is hyperbolic.

The importance of NH critical manifolds is explained by Ge-
ometric Singular Perturbation Theory (GSPT) (Fenichel, 1979;
Kuehn, 2015), which we summarize in the following theorem.

Theorem 3 (Fenichel (Fenichel, 1979; Kuehn, 2015)). Let S0 ⊆ S
be a compact and NH invariant manifold of a SFS. Then, for ε > 0
sufficiently small, the following hold

• There exists a locally invariant manifold Sε which is diffeomor-
phic to S0 and lies within distance of order O(ε) from S0.

• The flow of the SFS Xε along Sε converges to the flow of the DAE
along S0 as ε → 0.

• Sε has the same stability properties as S0.

In simple terms Fenichel’s theory guarantees that the flow of
a slow–fast system (1) can be fully described from that of the
reduced systems, namely the DAE and the Layer equation.

In contrast, herewe consider a class of SFSs forwhich the critical
manifold is not normally hyperbolic around the origin. The loss of
normal hyperbolicity can be related to jumps or rapid transitions
in, e.g., biological systems, climate models, chemical reactions,
nonlinear electric circuits, or neuron models (Desroches et al.,
2012; Kosiuk& Szmolyan, 2011; Krupa& Szmolyan, 2001b; van der
Pol & van der Mark, 1928; Rotstein, 2013). Before presenting our
contribution, let us recall the idea of composite control.

2.1. Composite control of slow–fast control systems

Let us define a slow–fast control system (SFCS) as

ẋ = f (x, z, ε, u)

εż = g(x, z, ε, u),
(3)

where x ∈ Rns , z ∈ Rnf , and u ∈ Rm is a control input. Let
us now briefly recall a classical method to design controllers for
SFCS with a NH critical manifold, for the rigorous exposition refer
to Kokotovic et al. (1986). Assume that the critical manifold of
(3) is NH in a compact set (x, z, u) ∈ Ux × Uz × Uu ⊂ Rns ×

Rnf × Rm. The goal is to design a control u that stabilizes the
origin (x, z) = (0, 0) ∈ Rns × Rnf for ε > 0 sufficiently small.
The hyperbolicity assumption implies that the critical manifold
S = {g(x, z, u) = 0} can be locally expressed as a graph z = h(x, u)
for (x, u) ∈ Ux × Uu. The idea of composite control is to design u
as a sum of two simpler controllers, namely u = us + uf where
us = us(x) is ‘‘the slow controller’’ and uf = uf (x, z) is ‘‘the fast
controller’’. When designing u, uf must be chosen so that it does
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not destroy the normal hyperbolicity of the system, meaning that
g(x, z, us(x) + uf (x, z)) = 0 must have (locally) a unique root z =

H(x). Thus, it is often required that the effects of the fast controller
uf disappear along S , that is uf |S = 0. In this way z = h(x, us(x)) is
(locally) a unique root of g(x, z, u) = 0 and the reduced flow along
S is given by

ẋ = f (x,H(x), us(x)). (4)

Note that the reduced system is, as expected, independent of
the fast variable z and of the fast controller uf . Thus, the slow
controller us is designed to make {x = 0} an asymptotically stable
equilibrium point of (4). After us has been designed, one studies
the layer problem z ′

= g(x, z, us(x) + uf (x, z)), where x is taken as
a fixed parameter, andwhere the fast controller is designed so that
z = h(x, us(x)) is a set of asymptotically stable equilibrium points.
The previous strategy plus some extra (technical) interconnection
conditions guarantee that the origin (x, z) = (0, 0) ∈ Rns×Rnf is an
asymptotically stable equilibrium point of the closed-loop system
(3) for ε > 0 sufficiently small (Kokotovic et al., 1986 Section 7).
This feature of normal hyperbolicity has been exploited in many
applications, e.g. Del Vecchio and Slotine (2013), Gajic and Lelic
(2001), Marszalek and Trzaska (2005), Pan and Yu (2015), Sanfelice
and Teel (2011) and Teel, Moreau, and Nesic (2003).

3. Statement of problem and of the main result

It is evident that the composite control strategy described in
Section 2.1 is not applicable around non-hyperbolic points.

In this article, we consider SFCSs with one fast variable (nf = 1)
and an arbitrary number of slow variables (ns). To start, we con-
sider that the criticalmanifold has a particular geometric structure.

Definition 4 (Non-hyperbolic Point). Consider the SFS (3) with
u = 0 and let p = (x0, z0) ∈ S. If there exists an integer k ≥ 2
such that g(x0, z0, 0) =

∂g
∂z (x0, z0, 0) = · · · =

∂k−1g
∂zk−1 (x0, z0, 0) = 0

and ∂kg
∂zk

(x0, z0, 0) ̸= 0 then p is called a non-hyperbolic point.

We now make four defining assumptions on (3).

A1. The SFCS (3) has a non-hyperbolic point at the origin.
A2. The SFCS (3) is affine in the control.
A3. The SFCS (3) is slowly actuated. That is, there is no controller

action on the fast variable z, and u ∈ Rns such that the slow
variables are controllable. The fully actuated case is non-trivial
but simpler; for example, we can first force the origin to be a
hyperbolic equilibrium point of the closed loop reduced system
z ′

= g(x, z, ε, u) and then use the composite control idea
described in Section 2.1.

A4. f (x, z, ε, 0) = f0(x, z) + εf1(x, z, ε) with f1(0, 0, ε) = 0.
This ensures that ε does not introduce any constant drift on the
open-loop system near the origin.

Proposition 5. Under the above assumptions the slow–fast control
system (3) can be written as

ẋ = f (x, z, ε) + B(x, z, ε)u(x, z, ε)

εż = −

(
zk +

k−1∑
i=1

xiz i−1

)
+ H(x, z, ε),

(5)

where B is invertible near the origin and H(x, z, ε) denotes higher
order terms. 1

1 The choice of the negative sign in front of the fast equation is just for conve-
nience, and a similar analysis as the one performed here follows otherwise.

Proof. The form of the equation for ẋ follows directly from the
assumptions. Now we focus on the form of g(x, z, 0) in (3). From
singularity theory, in particular Malgrange’s preparation theo-
rem (Golubinsky & Guillemin, 1973), it is well-known that under
A1., the function g(x, z, 0) is locally equivalent to

g(x, z, 0) = ±

(
zk +

k∑
i=1

ai(x)z i−1

)
+ O(zk+1),

where the functions ai(x) are smooth and ai(0) = 0. First, a linear
change of coordinates z ↦→ α(x)z + β(x) for some well defined
and computable functions α and β allows us to get rid of the term
zk−1. Next, we can expand each ai(x) and assume that ∂ai

∂xi
(0) ̸= 0,

which is a generic property. After all, although in singularity theory
(x1, . . . , xk) play the role of smooth parameters, here we identify
themwith slow variables. Finally we group the higher order terms
and write them as in (5). The choice of the negative sign in (5) is
non-essential and minor modifications of the method presented
here follow otherwise. □

Notation: To simplify our exposition let us denote from now on
Gk(x, z) = zk +

∑k−1
i=1 xiz

i−1.
We now present our main result.

Theorem 6. Consider the SFCS (5). Let us denote the ith component
of the vector Bu as (Bu)i. Suppose the controller u is designed such as

(Bu)1 = −A1 + ε
−1

2k−1 (1 + c0c1)z + ε
−k

2k−1

k−1∑
i=2

cixiz i−1

+ ε−1
(

∂Gk

∂z
− ε

k−1
2k−1 (c0 + c1)

)
Gk

(Bu)i = −Ai − ciε
−k

2k−1 xi,

(Bu)j = −Aj − cjε
−k

2k−1 xj,

(6)

where all constants c0, c1, ci, cj are positive with ci ≪ c1 for i =

0, 2, . . . , k − 1, j = k, . . . , ns. Then the origin (x, z) = (0, 0) ∈

Rns ×R is rendered locally asymptotically stable for ε > 0 sufficiently
small.

The proof of Theorem 6 is given in Section 6.2 and is obtained
by following the forthcoming sections.

Remark 7. In Theorem 6 we only require the knowledge of A =

f (0, 0, 0), and can be extended to an adaptive versionwhere Amay
be assumed unknown, see Jardón-Kojakhmetov et al. (2017).

4. The geometric desingularization method

Here we present a brief description of the Geometric Desingu-
larization method. For more details see Kuehn (2015). First of all,
note that (2) is an ε-parameter family of N-dimensional2 vector
fields. For their analysis it is more convenient to lift such family
up and consider instead a single (N + 1)-dimensional vector field
defined as

X :

{x′
= εf (x, z, ε)

z ′
= g(x, z, ε)

ε′
= 0

(7)

The geometric desingularization method, also known as blow up, is
a geometric tool introduced in Dumortier and Roussarie (1996) for
the analysis of SFSs around non-hyperbolic points, see also Jardón-
Kojakhmetov, Broer, and Roussarie (2016), Kosiuk and Szmolyan

2 Recall that N = ns + nf .
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(2011), Krupa and Szmolyan (2001a), Krupa and Wechselberger
(2010), Kuehn (2015) and Szmolyan andWechselberger (2001). In
an intuitive way, the blow up method transforms non-hyperbolic
points of SFSs to (partially) hyperbolic ones.

Definition 8. Consider a generalized polar coordinate transforma-
tion

Φ : SN
× I → RN+1

Φ(x̄, z̄, ε̄, r̄) ↦→ (r̄α x̄, r̄β z̄, r̄γ ε̄) = (x, z, ε), (8)

where
∑ns

i=1x̄
2
i +

∑nf
j=1z̄

2
j + ε̄2

= 1 and r̄ ∈ I where I is a (possibly
infinite) interval containing 0 ∈ R. A (quasi-homogeneous)3 blow
up is defined by (x̄, z̄, ε̄, r̄) = Φ−1(x, z, ε). The inverse of the blow
up is called blow down.4

Inmany applications, and in particular in this paper, it is enough
to consider r̄ ∈ [0, r0), 0 < r0 < ∞, which implies ε̄ > 0. Thus, let
B = SN

× [0, r0), and Z = SN
× {0}. We now define the blow up of

the vector field X .

Definition 9. Consider X as in (7) and Φ as in (8). The blow up
of X is a vector field X̄ : B → TB induced by Φ in the sense
X̄ = DΦ−1

◦ X ◦ Φ , where DΦ denotes the differential of Φ .

It may happen that the vector field X̄ degenerates along Z . In
such a case we define the desingularized vector field X̃ as

X̃ =
1
r̄m

X̄ ,

for some well suited m ∈ N so that X̃ is not degenerate, and
is well defined along Z . Note that the vector fields X̄ and X̃ are
equivalent on SN

× {r̄ > 0}. Moreover, if the weights (α, β, γ ) are
well chosen, the singularities of X̃ |r̄=0 are partially hyperbolic or
even hyperbolic, making the analysis of X̃ simpler than that of
X . Due to the equivalence between X and X̃ , one obtains all the
local information of X around 0 ∈ RN+1 from the analysis of X̃
around Z .

While doing computations, it is more convenient to study the
vector field X̃ in charts. A chart is a parametrization of a hemi-
sphere of B and is obtained by setting one of the coordinates
(x̄, z̄, ε̄) ∈ SN to ±1 in the definition of Φ . In this article, we only
use the chart κε = {ε̄ = 1} as it is in such chart where the singular
behavior of the system is overcome, see Proposition 10. However,
we remark that the analysis in the other chartsmay prove useful to
design better controllers, or even necessary for the problemof path
following and trajectory tracking of SFCSs with non-hyperbolic
points, see for example.

5. Geometric desingularization of a slow–fast control system

In this section we perform the geometric desingularization of
(5).Without loss of generalitywe canwrite f (x, z, ε) = A+L(x, z)+
F (x, z, ε), where A = f (0, 0, 0), L(x, z) is a linear map, i.e., L(x, z) =

L1x + L2z with L1 ∈ R(ns)×(ns), L2 ∈ Rns , and F (x, z, ε) stands for
all the higher order terms and satisfies, due to Assumption A4,
F (0, 0, ε) = 0. Thus, (5) is rewritten as

X :

{x′
= ε (A + L(x, z) + Bu(x, z, ε) + F)

z ′
= −Gk(x, z) + H(x, z, ε),

ε′
= 0,

(9)

3 A homogeneous blow up (or simply blow up) refers to all the exponents α, β ,
γ set to 1.
4 Note that the blow up maps the origin 0 ∈ RN+1 to the sphere SN

× {0} while
the blow down does the opposite, hence the names.

where for shortness of notation we omit the dependence of B and
F on (x, z, ε). The blow up map is defined by

x = r̄α x̄, z = r̄γ z̄, ε = r̄ρ ε̄,

where x̄ = (x̄1, . . . , x̄ns ), z̄ ∈ R, ε̄ ≥ 0,
∑ns

i=1x̄
2
i + z̄2 + ε̄2

= 1,
α ∈ Zns , (γ , ρ) ∈ Z2 and r̄ ∈ [0, r0). In principle, we could
set all the exponents (α, γ , ρ) to 1, but this would require more
than one coordinate transformation to completely desingularize
(9) (Broer, Dumortier, van Strien, & Takens, 1991; Kuehn, 2015).
Noting that Gk(x, z) is quasi-homogeneous (Arnold, Goryunov,
Lyashko, Iacob, & Vasil’ev, 1998; Jardón-Kojakhmetov, 2015) of
type (k, k − 1, . . . , 1) , we choose a quasi-homogeneous blow up
map defined by

xi = r̄k−i+1x̄i, xj = r̄kx̄j, z = r̄ z̄, ε = r̄2k−1ε̄,

for i = 1, . . . , k − 1 and j = k, . . . , ns. We remark that the
change of coordinates for (xi, z) (i = 1, . . . , k − 1) follows from
the quasihomogeneity type of Gk. On the other hand, the change
of coordinates of xj (j = k, . . . , ns) could be arbitrary, after all
the coordinates (xk, . . . , xns ) have no influence in the nature of the
non-hyperbolic origin. It just turns out that the proposed one is
convenient.

For shortness of notation let α = (k, k − 1, . . . , 2, k, . . . , k) so
that x = r̄α x̄.

Proposition 10. The desingularized vector field X̃ ε̄ , which corre-
sponds to the blow up of (9) in the chart κε̄ , is

X̃ ε̄
:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r̄ ′

= 0

x̄′

i = r̄ i−1(Ai + (B̄ū)i + O(r̄))

x̄′

j = Aj + (B̄ū)j + O(r̄)

z̄ ′
= −Gk(x̄, z̄) + O(r̄),

(10)

for i = 1, . . . , k − 1, j = k, . . . , ns, and where B̄ = B̄(r̄, x̄, z̄) =

B(r̄α x̄, r̄ z̄, r̄2k−1), similarly for ū, and where the subscript denotes the
component of the corresponding vector.

Proof. From ε = r̄2k−1, it follows that r̄ ′
= 0. Next, note that when

applying the change of coordinates we have

L(r̄α x̄, r̄ z̄) = r̄L(r̄α−1x̄, z̄) ∈ O(r̄),

where r̄α−1x̄ = (r̄k−1x̄1, . . . , r̄ x̄k−1). Also,

Bu = B(r̄α x̄, r̄ z̄, r̄2k−1)  
B̄(r̄,x̄,z̄)

u(r̄α x̄, r̄ z̄, r̄2k−1)  
ū(r̄,x̄,z̄)

and

F = F (r̄α x̄, r̄ z̄, r̄2k−1) ∈ O(r̄2).

Recall that F is at least quadratic, that is why the above order. Then,
taking into account the above expressions, we get

x′

i = r̄k−i+1x̄′

i = r̄2k−1(Ai + (B̄ū)i + O(r̄))

x̄′

i = r̄k+i−2(Ai + (B̄ū)i + O(r̄)),

x′

j = r̄kx̄′

j = r̄2k−1(Aj + (B̄ū)j + O(r̄))

x̄′

j = r̄k−1(Aj + (B̄ū)j + O(r̄)),

(11)

for i = 1, . . . , k−1, j = k, . . . , ns, andwhere the subscript denotes
the element of the corresponding vector. On the other hand

z ′
= r̄ z̄ ′

= −Gk(r̄α x̄, r̄ z̄) + H(r̄α x̄, r̄ z̄, r̄2k−1)

= −r̄kGk(x̄, z̄) + O(r̄k+1)

z̄ ′
= r̄k−1(−Gk(x̄, z̄) + O(r̄)).

(12)
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Here we remark that Gk(r̄α x̄, r̄ z̄) = r̄kGk(x̄, z̄) due to quasihomo-
geneity and H ∈ O(r̄k+1) because it contains the higher order
terms. Finally, we divide the right hand sides of (11) and (12) by
r̄k−1 to obtain
r̄ ′

= 0

x̄′

i = r̄ i−1(Ai + (B̄ū)i + O(r̄))

x̄′

j = (Aj + (B̄ū)j + O(r̄))

z̄ ′
= −Gk(x̄, z̄) + O(r̄),

as stated. □

The stability properties of the blown up vector field X̃ ε̄ of (10)
are carried over similar properties into the original SFS. The main
argument is that ‘‘stability should be invariant under changes of
coordinates’’, as is analyzed in the next section.

6. Controller design via geometric desingularization

In this sectionwe show how to use geometric desingularization
to stabilize a non-hyperbolic point of a SFCS. The method is to
design a controller in the blown up space and then to blow such
controller down.We do this in the central chart κε̄ as argued above.

Remark 11. Note that in (10) r̄ is a regular perturbation parameter.
Thus, the idea is to solve first the stabilization problem for r̄ = 0
and then use regular perturbation arguments (Murdock, 1999) to
guarantee the stability of the origin of (10) for r̄ ≥ 0 sufficiently
small.

Themain argument to relate the stability of the blown up vector
field X̃ ε̄ and X is the following.

Proposition 12. Consider a SFCS given by (9) and its blow up version
given by (10). If for each r̄ ∈ (0, r̄0] there exists a controller ū that
renders the point (x̄, z̄) = (0, 0) stable (resp. locally a.s.,5 resp.
globally a.s.) for X̃ ε̄ , then for each ε ∈ (0, r̄1/(2k−1)

] there exists a
controller u that renders the point (x, z) = (0, 0) stable (resp. locally
a.s., resp. globally a.s.) for X .

Proof. Although our concern is for local stability, we shall prove
the statement for global asymptotic stability, as it is the most
interesting one. Naturally, the proof for the other cases follows a
similar line of thought. Let r̄ = r̄0 > 0 be fixed. Then the blow up
change of coordinates be defined by

φ(x̄, z̄) = (r̄α
0 x̄, r̄0z̄) = (x, z). (13)

Note that φ is a diffeomorphism with positive definite Jacobian.
Next, let ū = ū(x̄, z̄) be chosen such that it renders (x̄, z̄) = (0, 0)
globally asymptotically stable for the dynamics of X̃ ε̄ , and define
u as the blow down of ū, that is u(x, z) = φ ◦ ū(x̄, z̄). So, we have
that the closed-loop systems X̃ ε̄ and X are related by X̃ ε̄(x̄, z̄) =
1
r̄m Dφ−1

◦ X ◦ φ(x̄, z̄).
On the other hand, the hypothesis that (x̄, z̄) = (0, 0) is G.A.S.

for X̃ ε̄ implies that there exists a r̄-family of Lyapunov functions
V̄r̄ (x̄, z̄) satisfying

• V̄r̄ > 0 for all (x̄, z̄) ∈ Rns+1
\ {0},

• V̄ ′

r̄ < 0 for all (x̄, z̄) ∈ Rns+1
\ {0},

• V̄r̄ is radially unbounded.

Define the ε-family of Lyapunov candidate functions Vε = V̄r̄ ◦

φ−1, where ε = r̄2k−1. From the properties ofφ in (13), namely that
φ is a diffeomorphism with positive definite Jacobian, it follows

5 Asymptotically stable.

that Vε > 0 and V ′
ε < 0 for all (x, z) ∈ Rns+1

\ {0}. Therefore,
Vε is an ε-family of Lyapunov functions. Finally, let ∥(x̄, z̄)∥ → ∞,
which clearly implies that ∥(x, z)∥ = ∥φ(x̄, z̄)∥ → ∞. From the
definition of Vε we have Vε(x, z) = V̄r̄ ◦ φ−1(x, z) = V̄r̄ (r̄α x̄, r̄ z̄),
r̄ > 0, which in fact shows that Vε is also radially unbounded. □

Proposition 12means thatwe can design controllers to stabilize
a SFCS by designing them in the blown up space. The way the con-
troller ū is actually designed depends on the specific context of the
problem. Below we present a particularly interesting case where
even though the origin is non-hyperbolic and the fast variable is not
actuated, we are able to inject a hyperbolic behavior by actuating
only the slow variables.

6.1. Hyperbolicity injection

In this section we design a controller that induces a hyperbolic
behavior in (10) around the origin.We do this via the backstepping
algorithm (Sastry, 1999).

Proposition 13. Consider (10). If ū is designed such that

(B̄ū)1(r̄, x̄, z̄) = −A1 +

(
∂Gk

∂ z̄
− c0 − c1

)
Gk

+ (1 + c0c1)z̄ +

k−1∑
i=2

cix̄iz̄ i−1

(B̄ū)i(r̄, x̄, z̄) = −Ai − r̄1−icix̄i

(B̄ū)j(r̄, x̄, z̄) = −Aj − cjx̄j

(14)

for i = 2, . . . , k − 1, j = k, . . . , ns and where all the c•’s are positive
constants, then the origin of (10) is rendered locally asymptotically
stable for r̄ ≥ 0 sufficiently small.

Proof. Along this proof, unless otherwise stated, i = 1, . . . , k − 1
and j = k, . . . , ns.

First, let (B̄ū)i = −Ai + r̄1−iv̄i(x̄, z̄) and (B̄ū)j = −Aj + v̄j(x̄, z̄).
Substituting this expression into (10), and restricting to {r̄ = 0}we
get

x̄′

i = v̄i(x̄, z̄)

x̄′

j = v̄j(x̄, z̄)

z̄ ′
= −Gk(x̄, z̄).

(15)

Note that we can choose v̄i and v̄j such that the dynamics of (x̄i, z̄)
are uncoupled from those of x̄j in (15). We do this by setting
vj(x̄, z̄) = −cjx̄j with cj > 0. So, the rest of the proof concerns
the stabilization of (x̄i, z̄).

Next, we consider the fast equation z̄ ′
= −Gk(x̄, z̄), and treat x̄1

as a virtual controller. So let x̄1 = α(x̄, z̄) = −(z̄k +
∑k−1

i=2 x̄iz̄
i−1) +

c0z̄. Then, the closed-loop fast equation reads as z̄ ′
= −c0z̄, for

which the origin is clearly exponentially stable. Moreover, making
the relation with the original (slow–fast) coordinates, we see that
z̄ = 0 (equivalent to z = 0) is a ‘‘normally hyperbolic set’’ of
the aforementioned (virtual) closed-loop system. This is the reason
why we call this design ‘‘hyperbolicity injection’’.

Next, let ζ = x̄1−α, and Y = (Y1, . . . , Yk−1) = (ζ , x̄2, . . . , x̄k−1).
Then (15) is rewritten as

Y ′

1 = v̄1 +

k−1∑
i=2

z̄ i−1v̄i −

(
∂Gk

∂ z̄
− c0

)
(Y1 + c0z̄)  

W (x̄,z̄)

Y ′

i = v̄i

z̄ ′
= −(Y1 + c0z̄),

(16)
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where i = 2, . . . , k−1, and althoughwe are changing coordinates,
we recycle the notation to avoid introducing new functions (later
we come back to the original coordinates). Now we design v̄i(x̄, z̄)
for i = 1, . . . , k − 1 to render the origin of (16) asymptotically
stable. For this, let us use a Lyapunov candidate function of the form

V =
1
2
z̄2 +

1
2
Y TY .

Then

V ′
= z̄z̄ ′

+

k−1∑
i=1

YiY ′

i

= −c0z̄2 + Y1

(
−z̄ − W +

k−1∑
i=2

z̄ i−1v̄i + v̄1

)

+

k−1∑
i=2

Yiv̄i.

With the above expression, let us choose

v̄1 = W + z̄ +

k−1∑
i=2

ciYiz̄ i−1
− c1Y1

v̄i = −ciYi,

for i = 2, . . . , k − 1, guaranteeing that V is a Lyapunov function
with V (x̄, z̄) > 0 and V ′(x̄, z̄) < 0, and we can choose constants
ci > 0 to tune the convergence rate of (Y , z̄) → (0, 0). Note that
(Y , z̄) → 0 implies (besides (x̄2, . . . , x̄k−1, z̄) → 0 ∈ Rk−1) that
x̄1 → α. However, it is clear that (x̄2, . . . , x̄k−1, z̄) → 0 implies
α → 0. Moreover, the closed-loop system turns out to be linear.
Thus overall we accomplish exponential stability of the origin
of (16).

Remark 14. The constant c1 dictates the rate at which Y1 = ζ =

x̄1 − α → 0. Thus in order to ensure that this control algorithm
works, we must choose c1 sufficiently larger than all the other ci
constants, that is ci ≪ c1 for all i = 0, 2, . . . , k − 1.

Finally, returning to (x̄, z̄) coordinates and joining our previous
analysis we get

(B̄ū)1(r̄, x̄, z̄) = −A1 +

(
∂Gk

∂ z̄
− c0 − c1

)
Gk

+ (1 + c0c1)z̄ +

k−1∑
i=2

cix̄iz̄ i−1

(B̄ū)i(r̄, x̄, z̄) = −Ai − r̄1−icix̄i

(B̄ū)j(r̄, x̄, z̄) = −Aj − cjx̄j
for i = 2, . . . , k − 1 and j = k, . . . , ns as stated. The asymptotic
stability result for r̄ > 0 sufficiently small follows from regular
perturbation theory (Murdock, 1999) and the fact that the origin
of the closed-loop system is a hyperbolic equilibrium point. □

6.2. Proof of Theorem 6

The proof follows from Proposition 13, the corresponding blow
down of the controller ū, that is u(x, z, ε) = Φ ◦ ū ◦ Φ−1(x, z, ε),
and Proposition 12. That is, to obtain (6) we apply the coordinate
transformation

r̄ = ε
1

2k−1 , x̄i = ε
−k+i−1
2k−1 xi, x̄j = ε

−k
2k−1 xj, z̄ = ε

−1
2k−1 z,

for i = 1, . . . , k − 1 and j = k, . . . , ns to (14). □

Fig. 1. Simulation of the closed loop system (17) under the controller of Theorem 6.
For this simulation we have used gains c0 = c2 = c3 = 1, c1 = 300 and ε = 0.05;
and six random initial conditions within (−2, 2) for each state.

7. Numerical simulations

7.1. Didactic example

To showcase the controller we designed in a highly degenerate
scenario, let us consider the slow–fast control problem

ẋ = 1 + u(x, z, ε)

εz = −(z4 + x3z2 + x2z + x1),
(17)

where x = (x1, x2, x3) ∈ R3, u ∈ R3, z ∈ R, and 1 = [1 1 1]T . Note
that (17) is of the form of (5) with k = 4, ns = 3 and B the identity
matrix. It is readily seen that the origin is unstable for the open-
loop dynamics. So, using Theorem 6 we shall design a controller
that locally stabilizes the origin. According to (6), the appropriate
controller is

u1 = −1 + ε−1/7(1 + c0c1)z + ε−4/7(c2x2z + c3x3z2)

ε−1
(

∂G4

∂z
− ε3/7(c0 + c1)

)
G4

u2 = −1 − c2ε−4/7x2

u3 = −1 − c3ε−4/7x3.

(18)

Fig. 1, shows the closed-loop response using (18). We note that
the large spike near t = 0 is due to the ‘‘hyperbolicity injection’’.
Recall that the first step in the design of the controller ū (in the
blow up space) is to assume x̄1 = −(z̄4 + x̄3z̄2 + x̄2z̄) + c0z̄. In
order to achieve this the gain c1 is chosen much larger than the
other constants to let x̄1 → −(z̄4 + x̄3z̄2 + x̄2z̄)+ c0z̄ fast. Thus, the
spike is precisely this mapping. Afterwards the trajectories reach
the equilibrium point in an exponential fashion since the resulting
vector field is linear, see Proposition 13 and its proof for full details.

7.2. Stabilization at a fold point of a nonlinear electric circuit

Let us consider the electric circuit Σ1 as shown in Fig. 2.(a),
where the Capacitor C and Inductor L are usual elements, but the



H. Jardón-Kojakhmetov et al. / Automatica 99 (2019) 13–21 19

Fig. 2. (a) Electric circuit Σ1 with a nonlinear resistive load. (b) The regularization
of circuit (a), denoted by Σ2 . (c) The controlled circuit Σ3 .

Fig. 3. The characteristic curve of the nonlinear Resistor R.

Resistor R is assumed to be nonlinear, that is IR = f (VR) where f
is some nonlinear function and IR and VR denote the current and
voltage of R respectively, see Example 5 of Smale (1972).

For the purpose of this example we shall assume that f (VR) =
1
3V

3
R −VR, and then the characteristic curve of the nonlinear Resistor

R is as depicted in Fig. 3. We remark that the chosen type of
nonlinear behavior is qualitatively the same as the one in Smale
(1972), and also appears in several other nonlinear elements, such
as tunnel diodes (Reissig, 1996).

The characteristic curve depicted in Fig. 3 has two fold points
p1,2 located at (VR, IR) = (±1, ∓ 2

3 ). At these points the differential
equation describing the behavior of the circuit becomes singular.
To overcome this it is proposed to regularize Σ1 by adding a para-
sitic capacitance in parallel to R as depicted in Fig. 2.(b) (electric cir-
cuit Σ2), see Example 6 of Smale (1972) for more details, and Ihrig
(1975). The capacitance Cε is assumed to be small, e.g. Cε = ε.
Thus, as ε → 0, the behavior of circuit Σ2 approaches that of Σ1.
Let (x1, x2, z) = (IL, VC , Vε), where Vε denotes the voltage at the
capacitor Cε . The equations describing the behavior of the circuit
Σ2 read as

Lẋ1 = −z − x2

Cẋ2 = x1

εż = −
1
3
z3 + z + x1.

(19)

We immediately note that the corresponding critical manifold
is actually given by the characteristic equation of the nonlinear
resistor, namely

S =

{
(x1, x2, z) ∈ R3

| x1 =
1
3
z3 − z

}
.

Fig. 4. Trajectories of the open-loop system (19). The surface is the critical manifold
S while dashed lines represent lines of folds, and the dots stand for the equilibrium
points. Note the existence of a limit cycle, which can be conjectured from the
stability of q2 and q3 . However such analysis falls off the scope of this document
and shall not be discussed further.

Moreover, it is straightforward to see that the region of S between
p1 and p2 is repelling while the rest of S is attracting. Further-
more, one can easily show that (19) has three equilibrium points
{q1, q2, q3} =

{
(0, 0, 0), (0, −

√
3,

√
3), (0,

√
3, −

√
3)
}
, where q1

is unstable,while q2 and q3 are stable.With this informationwe can
qualitatively describe the dynamics of (19) as follows: for initial
conditions away from S, the trajectories of (19) quickly approach
a stable region of S, and then evolve along it. Here two things may
happen, trajectoriesmay converge to an equilibrium point q2 or q3,
or they can approach a fold point. When a trajectory reaches a fold
point, then the trajectory jumps towards a stable region of S and
then follows the same behavior as described before. A sample of
trajectories of (19) is provided in Fig. 4.

Our goal, however, is to set as operating point a fold point. In
order to do this we introduce controllers as depicted in Fig. 2.(c)
leading to circuit Σ3. Let us choose, for example, the operating
point P = (x1, x2, z) = (− 2

3 , 0, 1). Then let us define new
coordinates (X1, X2, Z) = (−x1 −

2
3 , x2, z − 1), with which the

behavior of circuit Σ3 is described by

LẊ1 = 1 −
2
3
R1 − R1X1 + X2 + Z − R1u1

CẊ2 = −
2
3

− X1 +
X2

R2
−

u2

R2

εŻ = −(Z2
+ X1) −

1
3
Z3.

According to Theorem 6 the controller that stabilizes P is given by

u1 = −
L
R1

(
−

1
L

+
2
3L

R1 −
c1

ε2/3 X1 +
c0c1 + 1

ε1/3 Z + β

)
u2 = −CR2

(
2
3C

−
c1

ε2/3 X2

)
,

where β = ε−2/3
(
−c1Z2

+ (2ε−1/3Z − c0)(Z2
+ X1)

)
.

To witness the effects of the controller, let us choose param-
eters: C = 1 F, L = 1 H, R1 = R2 = 1 �, ε = 0.05, and
controller gains c0 = 1 and c1 = 10. Next we choose initial
conditions near the limit cycle, to allow the system oscillate. For
simulation purposes we let the system evolve 10 s in open-loop.
Then, at t = 10 s we activate the controller. The results are shown
in Fig. 5, where we see that when the controller takes action, the
trajectories quickly converge to the operating point P .

8. Conclusions

In this paper we have introduced the geometric desingular-
ization technique to control systems. The main contribution is a
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Fig. 5. Left: Simulation results of the controlled circuit Σ3 depicted in Fig. 4.(c)
and with the controller of Theorem 6. Right: Zoom-in for the interval t ∈

[9.975, 10.075]. The quick jump is produced by the fact that the controller forces
x → −z2 + ε1/3c0z (see the details in the proof of Proposition 13 where we argue
that x̄ → α(z̄) fast enough).

controller design method to stabilize non-hyperbolic points of a
class of slow–fast systemswith one fast direction. Themain feature
of our controller is that it is able to cope with singularities of
arbitrary degeneracy. Another essential characteristic of our con-
tribution is that the controller only actuates on the slow variables,
making it more suitable for certain applications. As a case study,
wehaveprovided a controller based on the backstepping algorithm
that renders the origin of slow–fast control systems locally asymp-
totically stable.

Further research directions in view of the potential applications
include: the assumption that the slow system is under-actuated,
output feedback control, trajectory and path-following along sets
withnon-hyperbolic points such as canards andmixed-modeoscil-
lations. Besides, the relation between the choice of blowup and the
performance of the controllers deserves further investigation. An-
other challenging framework is to consider model-order reduction
techniques, stabilization, consensus, etc. for networks of SFSs with
non-hyperbolic points (Jardón-Kojakhmetov & Scherpen, 2017).
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