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1 Introduction
The knower paradox revolves around the following statement:

We know that statement (P) is false. (P)

The paradoxical reasoning goes as follows: Suppose (P) is true. Since it states that
‘we know statement (P) is false’, it is true that we know statement (P) is false. Since
knowledge implies truth (a usual epistemological assumption), it follows that state-
ment (P) is false, thus leading to a contradiction. Hence statement (P) is false and
since we were the ones who just proved it, we know it to be false. However, this is
exactly what statement (P) states, therefore it is true. So we have arrived at a paradox.

The knower paradox was first formulated by Kaplan and Montague [6]. They used
elementary syntax, by which they understood “a first-order theory containing (. . .) all
standard names (of expressions), means for expressing syntactical relations between,
and operations on, expressions, and appropriate axioms involving these notions” [6,
Footnote 10, p. 89]. Note that by elementary syntax they meant both a formal language
and some sort of proof system. Kaplan and Montague used ‘ϕ ` ψ’ to express that ψ
is derivable from ϕ within the theory and ‘` ϕ’ means that ϕ is provable within this
theory. In addition, they used names for expressions, where ϕ denotes the name of
expression ϕ. The following two formulae are added to the elementary syntax:

K(ϕ) A knows the expression ϕ

I(ϕ, ψ) ϕ ` ψ

According to Kaplan and Montague [6, p. 87], we can now formalize (P), as follows:
` D↔ K(¬D).

From this expression, some version of the knower paradox is derived, if the following
three assumptions are made:
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2 Provability logic meets the knower paradox

E1 := K(¬D)→ ¬D (E1)

E2 := K(E1) (E2)

E3 := [I(E1,¬D) ∧ K(E1)]→ K(¬D) (E3)

We derive the knower paradox as follows:

(1) ` D↔ K(¬D) by definition of D

(2) ` D→ K(¬D) by (1), PC

(3) E1 ` K(¬D)→ ¬D by definition of E1
(4) E1 ` D→ ¬D by (2), (3), HS
(5) E1 ` ¬D by (4), PC

(6) E1 ` I(E1,¬D) (5), by definition of I

(7) E1, E2 ` K(E1) by definition of E2

(8) E1, E2 ` I(E1,¬D) ∧ K(E1) by (6), (7), PC

(9) E1, E2, E3 ` [I(E1,¬D) ∧ K(E1)]→ K(¬D) by definition of E3

(10) E1, E2, E3 ` K(¬D) by (8), (9), MP

(11) E1, E2, E3 ` K(¬D)→ D by (1), PC
(12) E1, E2, E3 ` D by (10), (11), MP
(13) E1, E2, E3 ` ¬D→ D by (12), PC
(14) E1, E2, E3 ` D↔ ¬D by (4), (13), PC

Over the years, many solutions have been proposed. We take Paul Égré’s paper [4]
as our point of departure. He argues that the knower paradox is solvable when modal
provability logic is applied and uses three different interpretations of provability logic
to solve the paradox, of which we focus on the one inspired by Solovay [9]. Prov-
ability logic provides a natural system in which both modalities and self-reference are
treated rigorously, hence it may shed some light on where the paradoxical reasoning
underlying the paradox goes awry. Our main contribution is an assessment of how the
interpretation by Solovay fares in the light of Susan Haack’s criteria for solutions to
paradoxes [5], which include both technical and philosophical desiderata. In this way
we hope to advance the debate regarding the knower paradox.

2 Provability Logic and Formal Systems of Arithmetic
We give a short reminder of Peano arithmetic and the provability logics GL and GLS.

2.1 Robinson Arithmetic and Peano Arithmetic
Here follow the axioms of Robinson arithmetic Q [8]: ∀x(0 , S x);∀x∀y(S x = S y →
x = y);∀x(x , 0 → ∃y(x = S y));∀x(x + 0 = x);∀x∀y(x + S y = S (x + y));∀x(x · 0 =

0);∀x∀y(x · S y = (x · y) + x). A statement ϕ is a theorem of Q if it is (an instance of)
an axiom or if it can be derived from the axioms by the available rules of inference,
modus ponens and generalization. Peano arithmetic (PA) [7] extends Q by the
Induction Schema:{ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S x))} → ∀xϕ(x).
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Theorem 2.1 (Diagonal Lemma, [2, p. 54] 3 ) Suppose that P(y) is a formula of the
language of PA in which no variable other than y is free. Then there exists a sentence
S of the language of PA such that PA ` S ↔ P(S ).

2.2 Provability Logic
The provability logic GL contains the following axioms:

All (instances of) propositional tautologies (A1)
�(ϕ→ ψ)→ (�ϕ→ �ψ) (A2)
�(�ϕ→ ϕ)→ �ϕ (GL)

The rules of inference of GL are modus ponens and necessitation (if ϕ ∈ GL, then
�ϕ ∈ GL). Note that �ϕ→ ��ϕ ∈ GL [10].

2.3 The Relation between Provability Logic and Peano Arithmetic
A realization is a function ∗ assigning to each propositional atom of modal logic a
sentence of the language of arithmetic, inductively defined by: ⊥∗ = ⊥; (ϕ → ψ)∗ =

(ϕ∗ → ψ∗); (�ϕ)∗ = Prov(ϕ∗). Solovay [9] proved that GL is arithmetically complete
with respect to PA. The arithmetical soundness of GL was already clear. Formally:

GL ` ϕ if and only if PA ` ϕ∗ for all realizations ∗ .

The system GLS, defined by Solovay [9, Section 5.1] 4 , contains all theorems of GL
as axioms as well as all instances of the reflection principle �ϕ → ϕ, and modus
ponens is its single rule of inference. As for GL, the system GLS enjoys arithmetical
soundness and completeness, but with respect to the standard model:

GLS ` ϕ if and only if 〈ω; +, ·〉 |= ϕ∗ for all realizations ∗ .

Égré [4, p. 43] defines PA+ as the closure under modus ponens of PA, supplemented
with all instances of the reflection principle Prov(A) → A. PA+ is stronger than
PA because it can now prove the consistency of PA as an instance of reflection:
Prov(⊥)→ ⊥. It is not hard to prove that we also have: 5

GLS ` ϕ if and only if PA+ ` ϕ∗ for all realizations ∗ .

3 Solving the knower paradox using provability logic
We consider Solovay’s GLS, which solves the knower paradox according to Égré [4].
We then discuss whether the solution satisfies Haack’s criteria [5].

Why is the knower paradox prevented in GLS? Remember that K(E1), where E1
was defined as K(¬D)→ ¬D, was needed in the derivation of the knower paradox by
Kaplan and Montague [6] (see page 2, Step (7)). In GLS, we have �¬D → ¬D as
an instance of the reflection principle. Because necessitation is not an inference rule
of GLS, �(�¬D → ¬D) cannot be derived from the reflection principle, therefore,
Kaplan and Montague’s derivation cannot be repeated in GLS. Let us now assess to
which extent Solovay’s GLS satisfies Haack’s criteria for solutions to paradoxes.

4 We follow current conventions as in e.g. [2] in that Solovay’s G is our GL and his G′ is our GLS.
5 The proof is in our journal manuscript under revision, “Solutions to the knower paradox in the light of
Haack’s criteria".



4 Provability logic meets the knower paradox

3.1 The Formal Part of Solovay’s Theory as a Solution
Haack’s first requirement on solutions to paradoxes says that a solution should con-
tain a consistent formal system indicating an unacceptable premise, principle of infer-
ence, or set of theorems [5]. Solovay’s formal system GLS indicates the rejection of
K(K(ϕ)→ ϕ), which is achieved by disallowing the necessitation rule to be applied to
the reflection principle K(ϕ) → ϕ. Is GLS consistent? Solovay [9] proved that GLS
is arithmetically sound with respect to the standard model. Since truth in a model
implies consistency, GLS is consistent. So Haack’s first requirement is satisfied.

3.2 The Philosophical Part of Solovay’s Theory as a Solution
Haack’s second requirement on solutions to paradoxes says that they should provide a
philosophical explanation of why the suspect premise or principle of inference seems
acceptable but is unacceptable. So in the case of GLS, there needs to be an argument
for rejecting K(K(ϕ)→ ϕ) and/or for disallowing the necessitation rule to apply to
the reflection principle K(ϕ) → ϕ. This argumentation should be independent of the
existence of the knower paradox. Solovay [9] did not consider GLS within the context
of the knower paradox. His article is about provability, not about knowledge, so it does
not contain arguments for rejecting K(K(ϕ)→ ϕ) itself.

For provability, there are independent reasons to reject Prov(Prov(ϕ)→ ϕ). The
formalized version of Löb’s theorem states that PA ` Prov(Prov(ϕ)→ ϕ)→ Prov(ϕ).
So if Prov(Prov(ϕ)→ ϕ) were accepted as an axiom scheme, then Prov(ϕ) would
hold for every statement ϕ, even for false statements.

Égré [4, p. 42] argues that GL can be seen as a “system formalizing the knowledge
of an ideal mathematician recursively generating all the theorems of PA and reflecting
on the scope of his knowledge”. However, the only reason mentioned in [4] for ac-
cepting GLS is not independent of the existence of the paradox: the necessitation rule
is not allowed to be applied to the reflection principle ( K(ϕ) → ϕ) just to prevent the
paradox. Therefore, for the solution to satisfy Haack’s second requirement, we will
need reasons to let a knowledge predicate satisfy the axioms of GLS independently of
the knower paradox.

Let us therefore attempt to give an independent reason. Since GLS is arithmeti-
cally sound with respect to the standard model 〈ω; +, ·〉, for every formula ϕ in the
language of GL, GLS ` �ϕ implies ω |= ProvPA(ϕ∗), therefore there exists a proof of
ϕ∗ in PA, therefore PA ` ϕ∗ for every realization ∗. So for � interpreted as knowledge,
GLS is epistemically conservative over PA, meaning that GLS will not prove any
‘new’ formulas of the form ‘It is known that ϕ’, i.e. �ϕ, for which Peano Arithmetic
does not prove ϕ∗ yet (cf. [3]). This is an argument to accept the theory GLS as a
solution to the knower paradox.

3.3 The Scope of Solovay’s Theory as a Solution
Haack’s third requirement states that a solution to a paradox should not be too broad or
too narrow. Solovay’s system GLS is consistent, so it does not prove just everything.
On the other hand, it does prove other desired theorems than just those needed to
formalize the knower paradox. For example, Gödel sentence G in the language of PA
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satisfies PA ` G ↔ ¬Prov(G). Is there a sentence G satisfying GLS` G ↔ ¬�G? Yes
there is, namely ¬�⊥. The formula ¬�⊥ ↔ ¬�¬�⊥ is provable in GL, and thus in
GLS (see [10, Section 2.2]). Therefore, GLS is neither too broad nor too narrow.

3.4 Discussion: Interpreting Knowledge as Provability
Why does it seem at first sight intuitively plausible to interpret knowledge (facts about
Peano arithmetic known by some mathematicians) as provability in PA? According to
many non-Platonists, proofs are constructed by mathematicians: there exists a proof
of a certain statement only if there has been a mathematician who proved it. Thus, a
statement can only be provable if it is already known: A statement that will be proved
only next year is not provable yet.

However, Platonists can argue against interpreting knowledge as provability that
knowledge depends on mathematicians and on time, while provability does not. There
are statements known by mathematicians but not provable in PA, such as the Gödel
sentence for PA. Conversely, a theorem provable in PA but for a long time not known
is the formalized version of Löb’s theorem.

Justification logic provides an interesting formal take on the correspondence be-
tween knowledge and provability. It includes explicit knowledge t : ϕ, meaning that
‘ϕ is justified by t’. A logic combining implicit and explicit knowledge is S4LP [1],
which contains the axiom scheme (t : ϕ) → �ϕ. Since a proof is a form of justifica-
tion, this justification logic is a way to connect knowledge and provability.

3.5 Conclusion
Summarizing the discussion about the quality of Solovay’s system GLS as a solution
to the knower paradox, Haack’s first requirement is clearly satisfied and the solution
(after our addition to [4]) satisfies the second criterion. The third criterion is provi-
sionally met, because the solution is not too narrow and provisionally not too broad.
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