
 

 

 University of Groningen

Tractability and the computational mind
Szymanik, Jakub; Verbrugge, Rineke

Published in:
The Routledge Handbook of the Computational Mind

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Szymanik, J., & Verbrugge, R. (2018). Tractability and the computational mind. In M. Sprevak, & M.
Colombo (Eds.), The Routledge Handbook of the Computational Mind (1st Editon ed., pp. 339-353).
Routledge.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/cd2b9807-9459-4bdd-b1b8-e34cdbc42d46


Tractability and the computational mind

Jakub Szymanik Rineke Verbrugge

January 27, 2018

1 Introduction

Computational complexity theory, or in other words, the theory of tractabil-

ity and intractability, is defined in terms of limit behavior. A typical question

of computational complexity theory is of the form: As the size of the input in-

creases, how do the running time and memory requirements of the algorithm

change? Therefore, computational complexity theory, among other things,

investigates the scalability of computational problems and algorithms, i.e.,

it measures the rate of increase in computational resources required as a

problem grows (see, e.g., Arora and Barak, 2009). The implicit assumption

here is that the size of the problem is unbounded. For example, models can

be of any finite size, formulas can contain any number of distinct variables,

and so on.1

Example 1: Satisfiability The problem is to decide whether a given

propositional formula is not a contradiction. Let ϕ be a propositional formula

with p1, . . . , pn distinct variables. Let us use the well-known algorithm based

on truth-tables to decide whether ϕ has a satisfying valuation. How big is

the truth-table for ϕ? The formula has n distinct variables occurring in it

and therefore the truth-table has 2n rows. If n = 10, there are 1,024 rows;

for n = 20, there are already 1,048,576 rows, and so on. In the worst case,

to decide whether ϕ is satisfiable, we have to check all rows. Hence, in
1Size of an input formula is often defined as its length in terms of number of symbols

and size of a model is often defined as the number of elements of its universe. However,

different contexts may require different definitions of the sizes involved.
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such a case, the time needed to find a solution is exponential with respect

to the number of different propositional letters of the formula. A seminal

result of computational complexity theory states that this is not a property

of the truth-table method but of the inherent complexity of the satisfiability

problem (Cook, 1971).

It is often claimed that, because complexity theory deals only with rel-

ative computational difficulty of problems (the question how the running

time and memory requirements of problems increase relative to increasing

input size), it does not have much to offer for cognitive and philosophical

considerations. Simply put, the inputs we are dealing with in our everyday

life are not of arbitrary size. In typical situations they are even relatively

small, for example, a student in a typical logic exam may be asked to check

whether a certain formula of length 18 is satisfiable. In fact, critics claim,

computational complexity theory does not say how difficult it is to solve a

given problem for a fixed size of the input. We disagree.

Even though in typical cognitive situations we are dealing with reason-

ably small inputs, we have no bounds on their size. Potentially, the inputs

can grow without limit. Therefore, complexity theory’s idealized assump-

tion of unbounded input size is, like many idealized assumptions in the sci-

ences, such as point-masses in Newtonian physics, both necessary in that it

simplifies analysis of a complex world and convenient, because it results in

characterizations of phenomena that balance simplicity of descriptions with

empirical adequacy. As such, this idealization is justified on practical analyt-

ical grounds, whether it is true or not. Moreover, considering any input size,

we avoid making arbitrary assumptions on what counts as a natural instance

of the cognitive task. For instance, such a general approach works very well

for syntax, where the assumption that sentences in a natural language can

be of any length has led to to the development of generative grammar and

mathematical linguistics (Chomsky, 1957).

Even though in each case of cognition we are dealing with inputs of a

specific size, which in practice is limited, imposing a priori bounds on the

input size would conflict with the generative nature of human cognition, that

is, the idea that human minds can in principle yield cognitive outcomes such

as percepts, beliefs, judgments, decisions, plans, and actions for an infinite
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number of situations. Moreover, in experimental practice, subjects usually

do not realize the size of the model’s universe in which they are supposed

to solve some given problem, therefore, it often seems that they develop

strategies (algorithms) for all possible sizes of universes. Still, we realize that

many skeptics might not be satisfied with the above arguments. Therefore, in

this chapter, after a brief introduction to computational complexity theory,

we offer an overview of some interesting empirical evidence corroborating

computational and logical predictions inspired by tractability considerations.

2 Theory of Tractability

Philosophers are still discussing the precise meaning of the term ‘computa-

tion’ (see e.g. Moschovakis, 2001); see also the chapter by Murray Shanahan

on “Artificial Intelligence” in this volume. Intuitively, ‘computation is a me-

chanical procedure that calculates something’. Formally speaking, the most

widespread approach to capture computations is to define them in terms of

Turing machines or an equivalent model. The widely believed Church-Turing

Thesis states that everything that ever might be mechanically calculated can

be computed by a Turing machine (see, e.g., Cooper, 2003, for an introduction

to computability theory). It has been quickly observed not only that there

exist uncomputable problems but even that for some computable problems,

effective algorithms appear not to exist, in the sense that some computable

problems need too much of computational resources, like time or memory,

to get an answer. As explained in the introduction, computational complex-

ity theory investigates the amount of resources required and the inherent

difficulty of computational problems. Practically speaking, it categorizes

computational problems via complexity classes (see, e.g., Arora and Barak,

2009, for an introduction to complexity theory).

This chapter focuses on the distinction between tractable and intractable

problems. The standard way to characterize this distinction is by reference

to the number of steps a minimal Turing machine needs to use to solve a

problem with respect to the problem size. Informally, problems that can be

computed in polynomial time are called tractable; the class of problems of

this type is called PTIME. The class of intractable problems, including those
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problems that require exponential time to be solved on a deterministic Turing

machine, are referred to as NP-hard problems.2 Intuitively, a problem is NP-

hard if there is no ‘clever’ algorithm for solving it, so NP-hard problems lead

to combinatorial explosion.3.

More formally, PTIME (or P) is the class of problems computable by

deterministic Turing machines in polynomial time. NP-hard problems are

problems that are at least as difficult as any of the problems belonging to

the class of problems that can be computed by nondeterministic Turing ma-

chines in polynomial time (NPTIME problems). NP-complete problems are

NP-hard problems belonging to NPTIME, hence they are the most diffi-

cult problems among the NPTIME problems. It is known that P=NP if

any NPTIME-complete problem is PTIME computable. However, whether

P=NP is a famous open question. Almost all computer scientists believe

that the answer is negative (Gasarch, 2012). Many natural problems are

computable in PTIME, for instance, calculating the greatest common divi-

sor of two numbers or looking something up in a dictionary. We already

encountered the NP-hard problem of satisfiability in Example 1.

Using the two fundamental complexity classes PTIME and NPTIME

Edmonds (1965) and Cobham (1965) proposed that the class of tractable

problems is identical to the PTIME class. The thesis is accepted by most

computer scientists (see, e.g., Garey and Johnson, 1990). The version of the

Cobham-Edmonds Thesis for cognitive science is known as the P-Cognition

Thesis (Frixione, 2001): human cognitive capacities are constrained by poly-

nomial time computability.

However, Ristad (1993) and Szymanik (2010) have shown that natural

language contains constructions of which the semantics is essentially NP-

complete and Levesque (1988) has recognized the computational complexity

of general logical reasoning problems like satisfiability to be NP-complete.

In other cognitive domains, Tsotsos (1990) has shown that visual search
2In the context of this chapter we assume, like many computer scientists, that the

open question whether P=NP has a negative answer; see the next paragraph for a precise

explanation.
3An example of combinatorial explosion happens when you try all valuations, that is,

all combinations of truth values of the relevant propositional atoms, to find out whether

a given formula is satisfiable (see Example 1).
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is NP-complete. Therefore, the P-Cognition Thesis seems to be clearly too

broad, excluding some non-polynomial problems with which the human mind

can still deal. This does not need to mean that we should disregard these

theories. Possibly the complexity of these theories may be just a result of

over-specification, including certain instances of the problem that should

be excluded from the realm of human cognitive capacity. To account for

this problem, van Rooij (2008) proposed an alternative to the P-Cognition

Thesis, the so-called the Fixed-parameter Tractability Thesis. The idea here

is to not only consider the size of the input but also other input parameters;

then, intractability of some problems may come from a parameter which is

in practice usually very small no matter the size of the whole input. Such

problems should still be tractable for the human mind (see, e.g., Downey and

Fellows, 1998, for an introduction to parameterized complexity theory).4 In

other words, if inputs have a certain structure, the problem becomes easy to

solve.

Example 2 In the Traveling Salesman Problem, the input is a set of cities,

distances between them, a point of departure, and a maximum route length.

The computational problem is to decide whether there exists a route that

starts and ends in the point of departure, visits all cities exactly once, and

does not exceed the maximum route length. This problem is also known to

be NP-complete, thus intractable (Karp, 1972). However, when the cities

are aligned exactly on a circle, then the problem is obviously trivial to solve.

Actually, it is even enough that relatively many cities are aligned on a circle

to make the problem easy. This property can be parameterized, intuitively,

by counting the number of cities inside the circle and the number of cities

on the circle. The Traveling Salesman Problem is fixed-parameter tractable

(Deıneko et al., 2006), meaning that all the intractability of the problem can

be contained within the parameter, that is, the more cities are not located
4Thus, an NP-hard problem may require time polynomial in the size of the input but

exponential in a fixed parameter. For example, the satisfiability problem of Example 1 can

be parameterized by the number of different atomic variables. A formula of size n with k

atomic variables can be evaluated by checking all relevant valuations, which takes time of

the order n × 2k. So for formulas that contain only three atomic variables, it appears to

be tractable for people to check the satisfiability of quite long formulas.
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on the circle, the more intractable the problem becomes.

2.1 Complexity distinctions and logical descriptions

Many complexity distinctions can also be captured in descriptive terms via

logic. The idea here is simple: We use logical languages to describe a com-

putational problem in some minimal way. The simpler the description, the

easier the problem. In other words, descriptive complexity deals with the

relationship between logical definability and computational complexity. We

replace the classic computational complexity question with the descriptive

complexity question, i.e., the question: How difficult is it to describe the prob-

lem using some logic (see, e.g. Immerman, 1998)? In terms of our two basic

computational classes PTIME and NPTIME, it is important to note that

every problem that can be described by first-order formula is computable

in polynomial time. Moreover, the seminal result of descriptive complex-

ity theory states that: a problem is definable in the existential fragment of

second-order logic if and only if it belongs to NP (Fagin, 1974).

Summing up, the idea behind capturing complexity of cognitive problems

boils down to having a formal, in some sense minimal, computational or

logical description of the cognitive problem. The hope is that this description

captures inherent, intrinsic, combinatorial properties of the problem that

are independent from particular descriptions. Such structural properties

should correlate with human behavior; we will give some examples in the

following sections. Next, we study complexity of such descriptions or models

that should then also capture inherent cognitive complexity and lead to

some (experimental) predictions or explanatory insights about the cognitive

capacity in question.

In the next few sections we give a personal selection of the outlined

approach to study different aspects of cognition, namely Boolean categoriza-

tion, semantic processing, and social reasoning. We will show several cases

in which the P-Cognition Thesis fails but the Fixed-parameter Tractability

Thesis comes to the rescue, while in one case of social reasoning, appar-

ent levels of cognitive difficulty do not line up with levels of computational

(standard or parameterized) complexity (see also van Rooij, 2008; Aaronson,
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2013; Isaac et al., 2014, for more examples and discussion of complexity and

the computational mind).

3 Boolean Categorization

From infancy onwards, we learn to categorize objects, for example, into

animate and inanimate, and we continue to learn new categories well into

adulthood, for example, distinguishing between ale and lager beers. In par-

ticular, many of our new concepts are built from the old ones using Boolean

relations, such as ‘and’, ‘or’, and ‘not’. For instance, we know that ‘cousin’

is a child of an uncle or aunt; ‘beer’ is an alcoholic beverage usually made

from malted cereal grain and flavored with hops, and brewed by slow fer-

mentation; in basketball, ‘travel’ is illegally moving the pivot foot or taking

three or more steps without dribbling; ‘depression’ is a mood disorder char-

acterized by persistent sadness and anxiety, or a feeling of hopelessness and

pessimism, or . . . . Therefore, an important question in psychology is how

people acquire concepts. In order to approach that big question one may try

to consider the cognitive complexity of the process of acquisition, and ask:

Why are some concepts harder to acquire than others?

Since the beginning of the experimental studies on categorization, it has

been clear that some new concepts are easier to learn than others. For

instance, intuitively, concepts depending on and are easier to learn than

those depending on or (Bruner et al., 1956).5 Shepard et al. (1961) have run

a number of various experiments to study the acquisition of six different sorts

of concepts based on three binary variables. Each concept was defined in a

way to contain exactly four instances and four non-instances. In this way,

the researchers created six novel concepts or categories. The experimental

results showed a very robust complexity trend, which we describe below.

Trying to explain Shepard and colleagues’ finding, Feldman (2000) proposed

to define their six concepts using Boolean propositional logic:

Concept I contains objects satisfying the following description: (not-a b c)

or (not-a b not-c) or (not-a not-b c) or (not-a not-b not-c).
5One reason corresponds to the fact that p ∧ q is true in just one of the four lines in a

truth table while p ∨ q is true in three of them.
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Concept II consists of the following instances: (a b c) or (a b not-c) or

(not-a not-b c) or (not-a not-b not-c).

Concept III consists of the following instances: (a not-b c) or (not-a b

not-c) or (not-a not-b c) or (not-a not-b not-c).

Concept IV consists of the following instances: (a not-b not-c) or (not-a b

not-c) or (not-a not-b c) or (not-a not-b not-c).

Concept V consists of the following instances: (a b c) or (not-a b not-c)

or (not-a not-b c) or (not-a not-b not-c).

Concept VI consists of the following instances: (a b not-c) or (a not-b c)

or (not-a b c) or (not-a not-b not-c).

Shepard’s complexity trend is: I < II < III, IV, V < VI. This means that

subjects made the least errors (and took the least time) before they learnt

concepts of type I, while they made the most errors (and took the longest

time) before they learnt concepts of type VI.

Feldman’s main insight was to propose that the Boolean complexity of a

concept can capture its cognitive difficulty in terms of errors made and time

needed. Boolean complexity of the concept was defined as the length (ex-

pressed in terms of the number of literals, i.e., positive or negative variables)

of the shortest Boolean formula logically equivalent to the concept.6 For an

easy example, the reader can check that the formula (a and b) or (a and not

b) or (not a and b) can be succinctly and equivalently represented as (a or

b), hence, its Boolean complexity is 2. Computing the shortest descriptions

for the six concepts we get:

I := not a (complexity 1);

II := (a and b) or (not a and not b) (4);

III := (not a and not c) or (not b and c) (4);

IV := (not c or (not a and not b)) and (not a or not b) (5),

V := (not a and not (b and c)) or (a and (b and c)) (6);
6Interestingly, finding the shortest formula is intractable.
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VI := (a and ((not b and c) or (b and not c))) or (not a and ((not b and

not c) or (b and c))) (10).

Therefore, a prediction of cognitive difficulty based on Boolean complexity

is consistent with Shepard’s trend.

Based on this insight, Feldman also conducted experiments to provide a

larger data set. He considered a generalization of the Shepard setting, an

arbitrary Boolean concept defined by P positive examples over D binary

features. For Shepard’s six types, D was 3 and P was 4. Feldman (2000)

experimentally studied 76 new Boolean concepts in a range of D ∈ {3, 4} and
2 ≤ P ≤ 4. Boolean complexity accounts for 50% of variance in the extended

dataset. One can therefore conclude that minimal description length predicts

the cognitive difficulty of learning a concept.

Feldman’s paper does not deal with the border of tractability and in-

tractability directly, however, it uses a logical description and the prototyp-

ical complexity problem of satisfiability to successfully capture and explain

the difficulty of a very crucial cognitive problem. As such, it is a beautiful

and inspiring example of applying logic in cognitive science.

Still, one may object to logical models of categorization on the grounds of

the P-Cognition Thesis by asserting that a theory based on the NP-hard sat-

isfiability problem cannot be computationally plausible. One way out here

would be to invoke the strategy suggested by the Parameterized Complexity

Thesis, that is, instead of rejecting the whole model, one can point out that

it probably overgeneralizes the cognitive capacity. In order to come closer

to the real cognitive capacity, the mental representation language can be re-

stricted to some tractable subset of Boolean logic. Examples are restrictions

to only positive formulas, only Horn clauses,7 or only constraints on pairs of

variables, possibly only in conjunctive normal form (2-CNF). Such a restric-

tion would make the model fixed-parameter tractable (see Samer and Szeider

(2009)), where the parameters would reflect the ‘syntactic complexity’ of the

formula, corresponding to a mental representation.

The question of the underlying representation language for categorization
7A Horn clause is a disjunction of literals in which at most one of the disjuncts is a

(positive) propositional variable.
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may be asked more precisely within the use of machine learning techniques

and Bayesian data analysis. Piantadosi et al. (2016), using Bayesian concept

learning models, ask precisely this question: Which representational system

is the most likely, given human responses? Surprisingly, their analysis sug-

gests that intractable fragments are better representation languages than the

tractable fragment in terms of Horn clauses. However, the verdict is not yet

final, because the authors look at slightly different categorization problems

than Feldman and they do not consider other viable tractable representa-

tions. This is good news, because clearly there are still many interesting

research opportunities in explaining and predicting the complexity of hu-

man categorization (see also the Chapter by M. Colombo, “Learning and

reasoning”, this volume).

4 Semantic Processing

Probably the first serious applications of complexity theory beyond computer

science are to be found in modern linguistics. Noam Chomsky started to view

language from the computational perspective (Chomsky, 1965), proposing a

computability hierarchy of various syntactic fragments of language. Chom-

sky’s famous hierarchy of finite-state, context-free, context-sensitive, and

recursive languages opened linguistics to many interactions with computer

science and cognitive science. Let us remark at this point that Chomsky’s

approach is also asymptotic in nature. Even though the sentences we en-

counter are all of bounded length, he has assumed that they might be arbi-

trarily long. It was this assumption that directly led to the discovery of the

computational model of language generation and the complexity hierarchy.

This in turn was the source of the famous debate about how much com-

putational resources are needed to describe grammars of natural languages

(see, e.g., Barton et al., 1987). In other words, the computational approach

provided us with methodological constraints on linguistic theories of syntax,

as well as empirical predictions.

Already in the 1980s, researchers started to ask tractability questions

about the grammatical formalism. Using computational complexity one

could study whether a generative formalism is computationally plausible.
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Computational complexity of parsing and recognition has become a major

topic along with the development of computational linguistics (see, e.g., Bar-

ton et al., 1987; Pratt-Hartmann, 2008). To give a very quick summary, the

results show that even for relatively simple grammatical frameworks, some

problems are intractable. For example, regular and context-free languages

have tractable parsing and recognition problems. Already somewhat more

complex formalisms, such as Lambek grammars, Tree-Adjoining Grammars,

Head-Driven Phrase Structure Grammar, and context-sensitive grammars,

all give rise to intractable problems.

Interestingly, there is also a prominent descriptive complexity spin-off

from the grammatical research. Instead of using machine models (such as

finite state machines, push-down automata or Turing machines generating

the language), one can specify grammars in terms of general constraints.

A string (or a tree) is grammatical if and only if it satisfies the constraints.

Naturally, such constraints can be expressed in logic, translating the problem

of grammar complexity into the problem of how much logic is needed to

define the grammar. This leads to some fundamental results: Büchi (1960)

has shown that a language is definable by the so-called monadic fragment of

second-order logic if and only if it is regular. McNaughton and Papert (1971)

have proven that a set of strings is first-order definable if and only if it is

star-free8. For readers who prefer modal logic to fragments of second-order

logic, the following reformulation may seem more attractive: The temporal

logic of strings captures star-free languages and propositional dynamic logic

captures regular languages (see e.g. Moss and Tiede, 2006).

More recently, complexity thinking has been applied to some issues in

natural language semantics. The earliest results come from a book by Ristad

(1993). He provides a complexity analysis of various formal approaches to

the problem of dependencies in discourse, such as finding the proper referents

for “she” and “her” in the sentences “Yesterday Judit visited Susan for a game

of chess. She beat her although she played black”. Ristad’s conclusion is that

this problem is NP-complete and therefore all good formalisms accounting
8Regular star-free languages have Boolean operators like concatenation and union of

two elements, but not the Kleene star (which allows any finite concatenation of elements

of the language).
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for it and correctly resolving anaphora, should be at least as complex, i.e.

NP-complete, but not more complex to avoid over-generalizations. This

very much resembles the argument from the Fixed-parameter Tractability

Thesis, i.e., even though the general version of the problem is intractable,

the hardness may come from a parameter which is usually very small in

linguistic practice. However, as far as we know, to this day nobody has

extended Ristad’s analysis with new tools of parameterized complexity.9

One of the most prominent studies in semantic theory considers quan-

tifier expressions such as ‘most’, ‘some’, or ‘many’. Generalized quantifier

theory has studied the descriptive complexity of quantifier meaning. It is

well known, for instance, that the meaning of a quantifier like ‘most’ is not

definable in first-order logic (even if we restrict ourselves to finite universes)

(see Peters and Westerståhl, 2006, for a systematic overview). van Benthem

(1986) started the work of characterizing quantifiers in terms of Chomsky’s

hierarchy and Szymanik (2010) draws a tractability/intractability border

among natural language quantifier constructions. Interestingly, these dis-

tinctions turned out to predict cognitive difficulty of quantifier processing,

as shown by Szymanik and Zajenkowski (2010) and Schlotterbeck and Bott

(2013), respectively. Furthermore, computational complexity even has an

impact on the distribution of lexical items in natural language, as recently

observed by Szymanik and Thorne (2017) in the statistical analysis of En-

glish corpora. Obviously, there are still many open questions in this field,

including both mathematical (e.g., parameterized analysis) and cognitive

(e.g., modeling) questions (see Szymanik, 2016, for an overview).

Another prominent complexity problem in the semantic literature, pointed

out already by Levesque (1988), is to account in computationally tractable

way for the process of linguistic inference: does one given sentence fol-

low from another given sentence?. This is important both for cognitive

science considerations of how people reason and for natural language pro-

cessing applications, like textual inference in search engines. The problem

seems very hard, because inference in even such a simple formal system as

Boolean propositional logic is already intractable. Hence, according to the
9Szymanik (2016) gives another defense for Ristad’s thesis in terms of inferential mean-

ing and indirect computability.
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P-Cognition thesis, standard logical systems must outstrip human reason-

ing capacities. One approach here, known as the Natural Logic Program,

is to work bottom-up, formalizing in a computationally minimal way vari-

ous fragments of natural language (see, e.g., Icard III and Moss, 2014, for

an overview). Building on this idea, Pratt-Hartmann (2004) has provided a

complexity characterization of reasoning problems in different language frag-

ments. For instance, the satisfiability problem of the syllogistic fragment10

is in PTIME as opposed to the fragment containing relative clauses,11 which

is NP-complete. These results have already motivated empirical work, both

in cognitive modeling (Zhai et al., 2015) and in linguistic analysis (Thorne,

2012).

5 Social Reasoning

In this section we review some interesting puzzles and games in which it

is useful for people to reason about one another’s knowledge, beliefs and

intentions and we check the relevance of the P-Cognition Thesis and the

Fixed-parameter Tractability Thesis for these tasks. The scope of possibili-

ties turns out to be very varied.

5.1 Epistemic puzzles

The Muddy Children puzzle is a classical example of reasoning about other

people’s knowledge. Three children come home after playing outside. Their

father says: “At least one of you has mud on your forehead.” Then he asks

the children: (I) “If you know for sure that you have mud on your forehead,

please step forward". The children have common knowledge that their father

never lies and that they are all sincere and perfect logical reasoners.12 Each
10The syllogistic fragment of first-order logic only contains sentences corresponding to

“All A’s are B”, “Some A’s are B”, “Some A’s are not B” and “No A’s are B”, where A and

B are unary predicates.
11In addition to the syllogistic fragment, this fragment also contains sentences such as

“Every A who is not C is B”.
12Common knowledge means informally that all the children know, all the children know

that they all know, and so on, ad infinitum (for more explanation and a formal definition

see, for example, van Ditmarsch et al. (2009)).
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child can see the mud on the foreheads of the other two, but cannot see

his or her own forehead. After the father asks (I) once, all three children

remain standing in place. When their father asks the question a second time,

however, all muddy children—in this case the two children b and c—respond

by stepping forward, meaning that they know that they have mud on their

foreheads. How could they have figured this out?

In epistemic logic, this puzzle is usually modeled using eight possible

worlds, corresponding to the 23 different possible combinations of muddiness

and cleanness of the three children a, b, c. For example, world (0,1,1) would

correspond to child a being clean and children b and c being muddy. Two

worlds are joined by an accessibility an edge for agent i ∈ {a, b, c}, if i cannot
distinguish between the two worlds on the basis of his or her information. At

successive states of the puzzle story, the agents’ knowledge grows and more

and more of these accessibility relations can be deleted, until the resulting

possible worlds model only contains one world, namely the current real sit-

uation (0,1,1) with three accessibility relations to itself only, for each agent

a, b, c (see for example van Ditmarsch et al. (2007); Fagin et al. (1995)).

For the above version of the muddy children puzzle with only three chil-

dren, the solution based on possible worlds models as seen from the global

perspective of the outside puzzle solver is elegant. However, it is hardly scal-

able, because a version of the puzzle with n children requires possible worlds

models with 2n worlds. Of course this is problematic in the context of the

P-Cognition Thesis. It is intuitively implausible that actual human beings

generate such exponential-sized models of all possible scenarios when they

solve the muddy children puzzle for n children, because it is computation-

ally intractable, requiring exponential time with respect to the number of

agents. What is required here is a new local perspective, a study of reasoning

about other agents’ knowledge from the perspective of the agents involved.

Such more local representations and epistemic logics are more cognitively

plausible. Gierasimczuk and Szymanik (2011b,a), based on results from the

theory of general quantifiers, propose to use local representations for several

variants of the muddy children puzzle for n agents. Surprisingly, the total

size of the initial model that they need is only 2n + 1. As a result, the

proposed representation is exponentially more succinct than the standard
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dynamic epistemic logic approach (see, for example, van Ditmarsch et al.

(2007)) and their solution is tractable, bringing the puzzle into the realm of

the P-Cognition Thesis. Dégremont et al. (2014) develop a general approach

to local semantics for dynamic epistemic logics.

5.2 Theory of mind in story tasks

Theory of mind is the ability to reason about other people’s mental states,

such as their beliefs, knowledge, and intentions. Many studies appear to show

that only when they are around four years of age do children learn that other

people may have beliefs different than their own (but see the discussion on

infants’ precursors of theory of mind in M. McLeod and J. Mitchell’s chapter

“Computational approaches to social cognition”, this volume).

Understanding that this ability can be applied recursively, such as in

the second-order attribution “She doesn’t know that I know that she wrote

the anonymous Valentine card”, starts even later, between five and seven

years of age (Arslan et al., 2017a). Adults usually understand stories in

which third-order theory of mind plays a role, but have difficulty answering

questions at higher levels (Kinderman et al., 1998; Stiller and Dunbar, 2007).

Theory of mind is often tested by asking experimental participants questions

about stories starting from an initial situation, in which both the facts and

the characters’ first-order and second-order knowledge change a few times.

The observer then needs to answer questions about a belief or knowledge

statement of interest, such as “Does Ayla know that Murat knows that she

moved the chocolate bar to the toy box?”

Recently, for the first time, this problem of dynamic knowledge update

has been formalized on the basis of dynamic epistemic logic. Iris van de Pol

et al. (2015) show that the problem, restricted to S5 models (in which the

accessibility relations are reflexive, transitive and symmetric) with a salient

“real world”, is PSPACE complete.13 This is a surprisingly high level of

complexity, considering that P⊆ NP ⊆ PSPACE and that most complexity

theorists expect P and PSPACE to be different.14 Even worse, it is not easy
13It turns out that this is the same complexity class that was independently found for

a similar problem, namely model checking in epistemic planning (Bolander et al., 2015).
14The question P=?PSPACE remains a famous open problem, just like P=?NP.
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to prove parameterized tractability results for the belief update problem.

Only if both the maximum number of events per update and the number

of updates remain small, so that the final updated model remains small

as well, does the dynamic belief update problem become fixed-parameter

tractable (van de Pol et al., 2015). Indeed it appears that in standard exper-

imental false belief tasks, the number of actions and the number of events

per action do stay small (Bolander, 2014), but that may not be the case for

real-world belief update problems.

Perhaps most surprisingly, the order of theory of mind, corresponding

to the modal depth of the formula that needs to be checked, does not play

much of a role in the intractability of the dynamic belief update problem that

participants in a false belief task need to solve: even for formulas of modal

depth one, the problem remains intractable when the number of events per

update or the number of updates grows large (van de Pol et al., 2015). This

contrasts with the literature showing that, all children learn first-order false

belief tasks much earlier than second-order ones, even if the number of events

per update and the number of updates remain the same(Arslan et al., 2017b;

Miller, 2009).

To move from first-order to second-order tasks, children have to keep

separate the real situation (the chocolate in the toy box) both from Mu-

rat’s belief about the chocolate and from Ayla’s false belief about Murat’s

belief. Thus, they have to keep intermediate solutions in mind when asked

a second-order question. It requires sophisticated complex memory skills to

pass such a serial processing bottleneck. The serial processing bottleneck hy-

pothesis (Verbrugge, 2009) is based on the finding that working memory acts

as a bottleneck: people can only hold one chunk of information in working

memory at a time Borst et al. (2010). This suggests that children need com-

plex working memory strategies in order to process embedded beliefs in such

a way that chunks of information can pass through the working memory bot-

tleneck within that time threshold. It has indeed been shown that complex

memory tasks (and not simple memory tasks) predict children’s accuracy in

second-order false belief tasks (Arslan et al., 2017a).
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Pl. 1 Pl. 2 Pl. 1 D: (1,4)

A: (3,2) B: (4,3) C: (2,1)

Figure 1: Game tree for a centipede-like game in which Player 1 chooses

first; if she goes right, then Player 2 chooses, and if Player 2 also goes right,

finally Player 1 chooses again. The pairs at leaves A, B, C, and D represent

the payoffs of Player 1 and Player 2, respectively, if the game ends up there.

5.3 Strategic reasoning in dynamic games

Another surprise turns up when turning from how people apply theory of

mind in false belief tasks to how they apply it in dynamic turn-taking games.

It has been shown that children learn to apply second-order theory of mind

in competitive dynamic games based on centipede-like game trees such as the

one in Figure 1 only a few years after they have mastered second-order false

belief tasks (Flobbe et al., 2008; Raijmakers et al., 2012) and even adults do

not seem to be very good at such games (Hedden and Zhang, 2002). However,

participants whose reasoning processes have been ‘scaffolded’ by an intuitive

presentation of the game or by step-wise training, which progresses from sim-

ple decisions without any opponent, through games that require first-order

reasoning (“the opponent plans to go right at the next trapdoor”), to games

that require second-order reasoning (“the opponent thinks that I plan to go

left at the last trapdoor”) learn to play the game almost perfectly (Goodie

et al., 2012; Meijering et al., 2011; Verbrugge et al., 2018).

Meijering et al. (2014) have constructed computational cognitive models

to explain why people do not spontaneously start applying second-order

theory of mind in competitive dynamic games. The model is based on the

idea that theory of mind reasoning is effortful and that people first try out

simpler strategies, only moving up a level of theory of mind when they lose

too often, until they converge on a reasoning strategy that is “as simple as
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possible, as complex as necessary”15. Their model turns out to fit the data of

both the adults and the children of the earlier experiments (Meijering et al.,

2011; Verbrugge et al., 2018; Flobbe et al., 2008).

All the centipede-like turn-taking games used in the experiments are most

efficiently solved using backward induction, an inductive algorithm defined

on a game tree (Osborne and Rubinstein, 1994). The backward induction al-

gorithm tells us which sequence of actions will be chosen by agents that want

to maximize their own payoffs, assuming common knowledge of rationality.

Szymanik (2013) showed that backward induction is PTIME-complete with

respect to the size of the game tree. So contrary to expectation, solving

dynamic games is tractable and does comply with the P-Cognition Thesis,

whereas solving false belief tasks does not.

Even though backward induction is the most efficient strategy, an eye-

tracking study suggests that it is not necessarily the strategy that partici-

pants really use in centipede-like games; they seem instead to favor a form

of “forward reasoning plus backtracking” and they look a lot at the decision

points, not only at the payoffs at the leaves (Meijering et al., 2012). This rea-

soning strategy corresponds to the adagium “first try something simple that

has worked in other contexts in the past” and is akin to causal reasoning, as

in: “If I choose right, then what will my opponent do at the next decision

point? Oh, he will choose left, but that’s bad for me, so I better go left now

to prevent it.” Szymanik et al. (2013); Bergwerff et al. (2014) have made

computational models of the two reasoning strategies and have fit them to

the participants’ reaction time data, corroborating that the participants do

use forward reasoning plus backtracking more than backward induction.

But which reasoning strategies do people actually use in specific games?

Ghosh et al. (2014); Ghosh and Verbrugge (2018) formulated a logical strat-

egy language that can be turned into computational cognitive models and

they used these models to rule out certain reasoning strategies based on the

predictions on choices and reaction times from the simulations of the mod-

els’ “virtual strategizers” in several variations of dynamic games, including

ones with non-rational opponents (such as Ghosh et al. (2017)). It would
15The authors here use ‘complex’ informally in the sense of cognitively difficult.
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be interesting to apply these methods also to dynamic negotiation games, in

which people also do not apply second-order theory of mind spontaneously,

even though it leads to win-win solutions, but can be trained by a second-

order theory of mind software opponent to do so (de Weerd et al., 2017),

as well as to cooperative games such as the Tacit Communication Game,

where theory of mind is very useful to coordinate on signals but it is not

clear whether people really apply it, although at least first-order theory of

mind appears to be likely (van Rooij et al., 2011; Blokpoel et al., 2012; de

Weerd et al., 2015).

6 Conclusions

This book takes the computational perspective on cognition. In this chapter,

we focus on the perspective of tractability: Is a specific cognitive task doable

in general within a reasonable time and using reasonable memory space? A

formal analysis of an information processing task that takes tractability se-

riously generates empirical predictions, which can be tested by experiments.

Using computational cognitive models, for example, in a cognitive architec-

ture such as SOAR or ACT-R, leads to very precise predictions, for example,

about reaction times and sequences of places on the screen where participants

will look at certain moments during an experiment. The outcomes of these

experiments may later feed back into revisions of the formal theory and the

computational cognitive model.

It turns out that the P-Cognition Thesis, stating that human cogni-

tive capacities are constrained by polynomial time computability, provides a

fruitful lens for assessing cognitive tasks. Some well-known cognitive tasks,

however, appear to be NP-complete. In that case, sometimes a more relaxed

thesis, the Fixed-parameter Tractability Thesis, comes to the rescue. Some

NP-complete tasks turn out to be fixed-parameter tractable: The intractabil-

ity comes from the problem’s deterministic time complexity being exponen-

tial in some parameters that are usually very small in practice, no matter

the size of the input as a whole. Such problems should still be tractable for

the human mind, in contexts where the ‘guilty’ parameters can indeed be

shown to be small. In other words, if the inputs have a helpful structure,
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the problem becomes tractable after all.

We have illustrated the cycle from complexity-theoretic analyses, through

computational models and empirical results back to theory, by way of a num-

ber of specific examples in Boolean categorization, semantic processing in

natural language, and social reasoning in story tasks, puzzles and games.

Many well-known tasks indeed turn out to be solvable in PTIME or can be

shown to be fixed-parameter tractable by choosing an appropriate represen-

tation. Sometimes intuitions about which tasks are easy and which tasks

are hard do not perfectly match with the complexity-theoretic analysis. For

those cognitive tasks, the perceived complexity for the human mind may

come from the required complicated working memory strategies, in which

intermediate solutions need to be stored and correctly applied. In any case,

when studying the computational mind, knowledge about tractability and

fixed-parameter tractability proves to be an essential element of the cognitive

scientist’s toolbox.
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