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a b s t r a c t

This paper introduces the pickup and delivery problem with time windows and handling operations. In
this problem, the loading compartment of a vehicle is modeled as a linear LIFO stack. When an item is
picked up, it is positioned on top of the stack. When it is on top of the stack, it can be delivered without
additional handling. Otherwise, items on top must be unloaded before the delivery and reloaded after-
wards, which requires time. We define two rehandling policies. For both policies, rehandling is only
allowed at delivery locations and there is no specific reloading order for the rehandled items. Under the
first policy, only compulsory rehandling is allowed. Under the second policy, in addition to compulsory
rehandling, preventive rehandling is allowed. For each policy, we propose a branch-price-and-cut al-
gorithm with an ad hoc dominance criterion for the labeling algorithm used to generate routes. Com-
putational results are reported on benchmark instances for the pickup and delivery problem with time
windows.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In pickup and delivery problems, a fleet of vehicles based at a
depot is used to complete a set of requests. A request consists of
transporting an item (which can consist of multiple units) from a
specific location, where the item is loaded, to a specific location,
where it is unloaded. A time window is given for each pickup or
delivery location, specifying the time interval during which service
must start. We consider a fleet of homogeneous vehicles of limited
capacity, where the compartment is rear-loaded and operated in a
last-in-first-out (LIFO) fashion. The compartment is modeled as a
linear LIFO stack. This implies that when an item is picked up, it is
positioned on top of the stack. Therefore, an item is accessible for
delivery if it is on top of the stack. Otherwise, the items on top
must be unloaded before the delivery of the item and reloaded
afterwards, which requires supplementary time. We define a re-
handling operation as the unloading and reloading operations of
an item at a pickup or delivery location. A handling operation can
refer to a rehandling operation, loading an item at its pickup
eenstra),

orte@cirrelt.ca (G. Laporte).
location, or unloading an item at its delivery location. We indicate
this problem in the remainder as the pickup and delivery problem
with time windows and handling operations (PDPTWH). Let 0, +i
and −i denote the depot, and the pickup and delivery locations
corresponding to request i, respectively. Fig. 1 illustrates two
routes, where route (a) does not require rehandling, whereas in
route (b) item 2 needs to be rehandled before delivering item 1.

We introduce and analyze two different rehandling policies.
Because an item needs to be delivered at a delivery location, the
customer will allow items to be rehandled if its item is not on top
of the stack. On the other hand, at a pickup location, because other
vehicles from different suppliers may wait to load or unload, the
customer might not allow items to be rehandled. Therefore, re-
handling operations are only allowed at delivery locations for both
policies. We assume that it is not possible to stop at a random
location in the route to do the rehandling, which implies that
eventual rehandling operations begin at the same time as the
service. Therefore, rehandling operations must start within the
time window of the delivery location where rehandling occurs. For
both policies, there is no specific reloading order for the rehandled
items. We define two items i and j to be at the same level if the
most recent handling operation for both items occurred at the
same location. Item i is said to be on top of item j if the most recent
handling operation for item i occurred after the most recent
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Fig. 1. Route (a) does not require rehandling and route (b) requires one rehandling
operation before delivering item 1.
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handling operation for item j. Under the first rehandling policy,
called policy 1, only compulsory rehandling is allowed, i.e., all and
only the items on top of the delivered item must be rehandled.
Note that policy 1 forbids the rehandling of items that are on the
same level as, or below, the delivered item. The second rehandling
policy, called policy 2, is a generalization of policy 1. Under policy
2, compulsory rehandling must be done and preventive rehandling
is allowed, i.e., all items can be rehandled at once. Fig. 2 depicts a
route and its corresponding vehicle configuration under policy 1,
while Fig. 3 depicts the same route and an example of a corre-
sponding vehicle configuration under policy 2. In Fig. 2, two items
are rehandled upon delivering item 1, namely items 2 and 3. Item
4 is rehandled upon delivering item 2 and again upon delivering
item 3. In Fig. 3, two items are rehandled upon delivering item 1,
namely items 2 and 3 and two items are rehandled upon deli-
vering item 2, namely items 3 and 4. Since items 2 and 3 are on the
same level when delivering item 2, rehandling item 3 is done
preventively. Since preventive rehandling operations are not
allowed under policy 1, the vehicle configuration in Fig. 3 is in-
feasible under policy 1. Because each rehandling operation
requires additional time, it may happen that the time windows are
respected under policy 2, but not under policy 1. A vehicle route is
feasible if (i) the capacity of the vehicle is always respected, (ii) the
time windows are respected, (iii) the pickup location of a request
is visited before its corresponding delivery location, and (iv) the
rehandling policy is respected. We denote by PDPTWH-1 and
PDPTWH-2 the PDPTWH under policies 1 and 2, respectively. The
goal of the PDPTWH is to compute feasible routes that first
minimize the number of vehicles and then the total travel costs.

The PDPTWH arises in the transportation of heavy, dangerous
or large items in a less-than-truckload setting. To our knowledge,
the PDPTWH has not previously been studied, but several variants
of this problem have been investigated, such as the pickup and
delivery problem (see Berbeglia et al. [2], Parragh et al. [14,15], and
Savelsbergh and Sol [18], for surveys), the pickup and delivery
problem with time windows (PDPTW), the pickup and delivery
problem with time windows and LIFO loading (PDPTWL), which
prohibits rehandling operations, the traveling salesman problem
with pickups and deliveries and handling costs (TSPPD-H), where
two types of items are considered, those transported from the
depot to customers and those transported from customers to the
depot, and the pickup and delivery traveling salesman problem
with handling costs (PDTSPH), where only compulsory rehandling
is allowed and the reloading sequence is given.

Ropke et al. [17] proposed a branch-price-and-cut algorithm for
the PDPTW that solves instances with up to 96 requests to
Fig. 2. Example of a route with its corresponding vehicle configuration unde
optimality within two hours, on a computer equipped with an
AMD Opteron 250 processor (2.4 GHz). State-of-the-art algorithms
for the PDPTWL were developed by Cherkesly et al. [5,6]. Cher-
kesly et al. [5] proposed branch-price-and-cut algorithms that can
solve instances with up to 75 requests to optimality within one
hour, on a computer equipped with an Intel Core i7-3770 pro-
cessor (3.4 GHz), while Cherkesly et al. [6] developed a popula-
tion-based metaheuristic that solves instances with up to 300
requests within three hours, on a computer equipped with an Intel
(R) Xeon(R) X5675 processor (3.07 GHz). For the instances with
known optimal values, the average optimality gap obtained with
their algorithm ranges between 0.17% and 0.34%. Battarra et al. [1]
proposed two exact algorithms to solve the TSPPD-H under dif-
ferent handling policies: the first one is a branch-and-cut ap-
proach, while the second one combines Benders decomposition
and branch-and-cut. The tests were run on a computer equipped
with an AMD Athlon 64 × 2 Dual processor (2.20 GHz), and in-
stances with up to 25 customers were solved within two hours.
Erdogǎn et al. [10] developed heuristics for the TSPPD-H that can
solve instances with up to 200 customers. The experiments were
performed on a computer equipped with an Intel Core 2 Quad
processor (2.83 GHz). The combination of tabu search and exact
dynamic programming performs best, resulting in an average
percentage deviation of 0.07% from the best known solutions. The
largest instances were solved in approximately one hour on
average. Veenstra et al. [19] proposed a heuristic for the PDTSPH,
but the authors did not report optimality gaps for the larger
instances.

This work is rooted in two different streams of research,
namely, pickup and delivery routing with LIFO loading, and pickup
and delivery routing with handling operations. Ropke and Cordeau
[16] developed a branch-price-and-cut algorithm for the PDPTW,
in which several families of valid inequalities are introduced.
Cherkesly et al. [5] developed three branch-price-and-cut algo-
rithms for the PDPTWL. They proposed an ad hoc dominance
criterion and a labeling algorithm for the elementary shortest path
problem with pickups and deliveries, time windows, capacity, and
LIFO constraints. Cherkesly et al. [4] introduced the pickup and
delivery problem with multiple stacks (PDPTWMS) and im-
plemented two branch-price-and-cut algorithms. They adapted
the hybrid branch-price-and-cut algorithm of Cherkesly et al. [5]
for the PDPTWL to the PDPTWMS. Battarra et al. [1] proposed
three handling policies for the TSPPD-H. Under the first policy, all
items delivered at the depot are positioned on top of the items
delivered at the customers, whereas under the second policy all
items delivered at customers are positioned on top of the items
delivered at the depot. The third policy is a hybrid between the
first two. We extend these ideas to develop rehandling policies for
our problem where items are transported from specific pickup
locations to specific delivery locations. We propose branch-price-
and-cut algorithms based on those of Ropke and Cordeau [16] and
Cherkesly et al. [4,5].

The goal of this paper is to model the PDPTWH and to develop
r policy 1. There is no separation line between items at the same level.



Fig. 3. Example of a route with a corresponding vehicle configuration under policy 2.
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for each rehandling policy a specific branch-price-and-cut algo-
rithm, with an ad hoc dominance criterion for the labeling algo-
rithm used to generate routes. The structure of the paper is the
following. Section 2 proposes a set partitioning formulation for the
PDPTWH. Section 3 introduces branch-price-and-cut algorithms
for the PDPTWH-1 and the PDPTWH-2. Computational results are
reported in Section 4, followed by conclusions in Section 5.
2. Problem statement and mathematical formulation

Let n be the number of requests. The PDPTWH is defined on the
graph = ( )G N A, , where N is the set of nodes and A is the set of
arcs. Let = { … + }N n n0, 1, , 2 , 2 1 , where 0 and +n2 1 correspond
to the origin and destination depot, respectively, = { … }P n1, ,
corresponds to the set of pickup nodes, and = { + … }D n n1, , 2
corresponds to the set of delivery nodes. Request i is associated
with a pickup node ∈i P and a delivery node + ∈n i D, denoted as
+i and −i . For ease of notation, we also denote the set of requests by
P. A service time si is defined for each node ∈i N , where >s 0i ,
∀ ∈ ∪i P D, and si¼0, ∀ ∈ { + }i n0, 2 1 . A time window [ ]w w,i i is
associated with each node ∈i N , where wi and wi represent the
earliest and the latest time at which the service and rehandling
operations can begin, respectively. The time windows at the depot
are assumed to be unconstraining. A homogeneous fleet of ve-
hicles with capacity Q is given. Each node is associated with a load
to be picked up or delivered, that is, >q 0i , ∀ ∈i P , = − −q qi i n,
∀ ∈i D, and qi¼0, ∀ ∈ ⧹{ ∪ }i N P D . The time to rehandle one unit
of an item is a constant value δ, thus the total time to rehandle the
item ∈i P is δqi. With each arc ( ) ∈i j A, are associated a travel time
tij and a travel cost cij. Note that the cost c0i on each arc ( )i0, , ∈i P ,
may include a vehicle fixed cost sufficiently large to ensure the
minimization of the number of vehicles used.

A route is feasible if the pickup and delivery constraints are
satisfied, i.e., if for every pickup node ∈i P visited, the corre-
sponding delivery node +n i is visited afterwards, the capacity is
respected, and the time windows are respected. Given a route

= { … }ρr i i i, , ,0 1 with =i 00 and = +ρi n2 1 that satisfies the pickup
and delivery constraints, the load lik at each visited node ik,

ρ∈ { … }k 0, 1, , , can be computed recursively as follows:

= ( )l 0 1i0
ρ= + ∀ = … ( )−l l q k, 1, , . 2i i ik k k1

Route r respects the vehicle capacity if ≤l Qik for all ρ= …k 1, , .
Furthermore, if Oik represents the subset of requests whose items
are rehandled at node ik, ρ∈ { … }k 0, 1, 2, , then the start of ser-
vice time tik at each visited node ik, ρ∈ { … }k 0, 1, , , can be com-
puted recursively as follows:

= ( )t 0 3i0
⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

∑ δ= + + +
( )∈

− −

−

−t w t s q tmax , .
4

i i i i
i O

i i i,k k k k

ik

k k1 1

1

1

Route r respects the time windows if ≤t wi ik k for all ρ= …k 1, , .
The PDPTWH consists of finding feasible routes such that each

request is completed and the total cost is minimized. We propose a
set partitioning formulation for the PDPTWH, in which the re-
handling operations can occur both at the pickup and delivery
locations, as long as the rehandling operations start at the same
time as the service, thus within the time windows. Let Ω denote
the set of all feasible routes. We define cr as the cost of route Ω∈r .
Let air be a binary constant equal to one if and only if route Ω∈r
completes request ∈i P . Let yr be a binary decision variable equal
to 1 if and only if route Ω∈r is used in the solution. The PDPTWH
can be modeled as

∑
( )Ω∈

c yminimize
5r

r r
∑ = ∀ ∈
( )Ω∈

a y i Psubject to 1, ,
6r

ir r
Ω∈ { } ∀ ∈ ( )y r0, 1 , . 7r

The objective function (5) minimizes the total cost and the set
partitioning constraints (6) ensure that each request is completed
exactly once.
3. Branch-price-and-cut algorithms

Because model (5)–(7) usually contains a large number of
variables we use a branch-price-and-cut algorithm to solve it. A
branch-price-and-cut algorithm is a branch-and-cut algorithm
that uses column generation to solve the linear relaxations. For the
PDPTWH, column generation is used to solve the linear relaxation
of model (5)–(7), which is called the master problem. A restricted
master problem (RMP), containing only a subset of variables
(columns) is solved, yielding a primal and a dual solution. The
pricing problem is then solved to identify negative reduced-cost
columns with respect to the dual solution. For the PDPTWH, the
pricing problem corresponds to an elementary shortest path pro-
blem with pickups and deliveries, time windows, one capacity
constraint, and rehandling operations. Whenever columns with
negative reduced costs are found, they are added to the RMP and a
new iteration begins. Otherwise, the process stops with an optimal
solution to the master problem. If needed, cutting planes are ad-
ded to strengthen the linear relaxations and branching is per-
formed to derive integer solutions.

We develop branch-price-and-cut algorithms for the PDPTWH-1
and the PDPTWH-2, where the pricing problems are solved by
means of labeling algorithms. We present valid inequalities and the
branching strategy for both the PDPTWH-1 and the PDPTWH-2.
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3.1. Labeling algorithm for the PDPTWH-1

We propose a labeling algorithm to solve the elementary
shortest path problem with pickups and deliveries, a capacity
constraint, and time windows under rehandling policy 1. A label E
is a resource vector representing a partial path starting at the
origin depot and ending at a given node η ( )E . Starting from an
initial label E0 associated with the origin depot and representing
an empty path, labels are extended forwardly throughout graph G
using resource extension functions to create new labels (paths).
The number of generated labels is reduced by eliminating domi-
nated ones with a valid dominance criterion.

A given label E contains the following components:

� η ( )E , the node of the label;
� t(E), the start of the service time and rehandling operations at

node η ( )E ;
� l(E), the load of the vehicle after visiting node η ( )E ;
� c(E), the cumulated reduced cost up to node η ( )E ;
� ( ) ∀ ∈E i j P, ,ij , a binary matrix indicating the relative posi-

tions between any pair of items i and j in the vehicle before
visiting node η ( )E ;

� U(E), the set of unreachable requests after visiting node η ( )E .

As defined in Section 1, items are at the same level if the most
recent handling operation for both items occurred at the same
location. Then, ( )Eij is given by:

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) =
=

( )

E

i j

i j

i j i

1 if items and are at the same level,

1 if item is on top of item ,

1 if and item is in the vehicle,

0 otherwise. 8

ij

For a given label E such that η ( ) ∈E D the set of items on top of
its corresponding delivery item η ( ) −E n is defined as

( ) = { ∈ | ( ) = ( ) = } ( )η η η( ) ( )− ( )−E i P E E1 and 0 . 9E i E n E n i, ,

Otherwise, if η ( ) ∉E D, ( )η ( ) EE is not defined.
For a given label E, let R(E) be its corresponding partial path,

i.e., η( ) = { = … = ( )}ρ ρ−R E i i i i E0, , , ,0 1 1 . Then, the unreachable re-
quests U(E) are defined as the requests for which either the pickup
nodes have already been visited on the path, or the extension to
the pickup node would violate the time windows, that is
⎪
⎪⎧⎨
⎩

η

δ η
( ) =

{ ∈ | ∈ ( )} ∪ { ∈ | ( ) + + > } ( ) ∈
{ ∈ | ∈ ( )} ∪ { ∈ | ( ) + + ∑ + > } ( ) ∈

η η

η η

( ) ( )

( ) ∈ ( ) ( )η ( )

U E
i P i R E i P t E s t w E P

i P i R E i P t E s q t w E D

if ,

if .
E E i i

E k E k E i i

,

,E
The extension along arc η( ( ) ) ∈E j A, for a given label E is al-
lowed if one of the following four conditions is respected:

∈ ∉ ( ) ( )j P j U Eand , 10

∈ ( ) = ( )− −j D Eand 1, 11j n j n,

η∈ ( ) = − ( )j D E j nand , 12

η η= + ( ) ∈ ( ) = ∀ ∈ ⧹{ ( ) − } ( )j n E D E i P E n2 1, , and 0, . 13ii

Condition (10) ensures that if j is a pickup node, it must be
reachable. Conditions (11) and (12) state that if node j is a delivery
node, then its corresponding item is onboard. Condition (13) en-
sures that, if node j is the destination depot, the vehicle is empty.

The reduced cost for arc ( ) ∈i j A, is as follows:
⎪

⎪⎧⎨
⎩

α
=

− ∀ ∈
∀ ∈ ⧹ ( )

c
c i P

c i N P

, ,

, , 14
ij

ij i

ij

where αi, ∈i P , are the dual variables corresponding to constraints
(6).

The extension of label E along arc η( ( ) )E j, will create a new
label ′E . The components of this new label are updated as follows:

η ( ′) = ( )E j, 15

⎧
⎨
⎪⎪

⎩
⎪⎪

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

∑
( )

η

δ η
( ′) =

{ ( ) + + } ( ) ∈

( ) + + + ( ) ∈

η η

η η

( ) ( )

( )
∈ ( )

( )

η ( ) 16

t E

w t E s t E P

w t E s q t E D

max , if ,

max , if ,

j E E j

j E
i E

i E j

,

,

E

( ′) = ( ) + ( )l E l E q , 17j

( ′) = ( ) + ( )η( )c E c E c , 18E j,
⎧
⎨
⎪⎪

⎩
⎪⎪

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

∑
( )

δ
( ′) =

( ) ∪ { } ∪ { ∈ | ( ′) + + > } ∈

( ) ∪ ∈ | ( ′) + + + > ∈
′∈ ( ) 19

U E

U E j i P t E s t w j P

U E i P t E s q t w j D

if ,

if ,

j ji i

j
k E

k ji i

j

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪ ( )

η η
η η
η
η η
η η

( ′) =

( ) ∈ = ( ) ( ) =
( ) ∈ = = ( )
( ) ∈ ∈ ( )
( ) ∈ = ( ) −
( ) ∈ = ( ) −

( )

∀ ∈ ∀ ∈η ( )

20

E

E P k E E

E P k i E

E D k i E

E D i E n

E D k E n

E

k P i P

1 if , , and 1,
1 if and ,
1 if and , ,

0 if and ,
0 if and ,

otherwise.

,ki

ii

E

ki

Eqs. (20) update the relative positions of the items upon leaving
node η ( )E . If η ( )E is a pickup node, item η ( )E is onboard and po-
sitioned on top of all other onboard items. If η ( )E is a delivery
node, the set of items that are on top of item η ( ) −E n are re-
handled, implying that all those items are at the same level, and
item η ( ) −E n is unloaded from the vehicle. All other positions
remain unchanged.

Label ′E is kept if the time windows and the capacity constraint
are respected, that is if

( ′) ≤ ( )t E w , 21j
( ′) ≤ ( )l E Q . 22

A label E1 dominates label E2 if

η η( ) = ( ) ( )E E , 231 2
( ) ≤ ( ) ( )t E t E , 241 2
( ) ≤ ( ) ( )l E l E , 251 2
( ) ≤ ( ) ( )c E c E , 261 2
( ) ⊆ ( ) ( )U E U E , 271 2
( ) = ( ) ∀ ∈ ( )E E i j P, , . 28ij ij1 2

Note that conditions (28) imply that the same items must be on-
board the vehicle in the paths associated with labels E1 and E2.
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Proposition 1. Conditions (23)–(28) constitute a valid dominance
criterion for the elementary shortest path problem with pickups and
deliveries, a capacity constraint, and time windows under rehandling
policy 1.

Proof. We show that every feasible completion of E2 is also fea-
sible for E1 and yields a reduced cost that is no worse than when it
completes the path associated with E2. Let R(E) as previously de-
fined denote the partial path corresponding to label E. Let r be a
path extending ( )R E2 to node +n2 1 such that ( ( ) )R E r,2 is feasible
with respect to the elementarity constraints, pickup and delivery
constraints, capacity constraint, and time windows under re-
handling policy 1. If no such path exists, label E2 can be removed.
Because ( ( ) )R E r,2 is feasible with respect to the elementarity
constraints, pickup and delivery constraints, and capacity con-
straint, then so is ( ( ) )R E r,1 . The time windows are not violated
under rehandling policy 1, because the set of onboard items for
label E2 is equivalent to the set of onboard items for label E1 and
their relative positions are the same, that is

( ) = ( ) ∀ ∈S E S E i j P, ,ij ij1 2 . Because ( ( ) )R E r,2 is feasible with respect
to the time windows under rehandling policy 1, then so is
( ( ) )R E r,1 . Because ( ) ≤ ( )c E c E1 2 , the cost of ( ( ) )R E r,1 is at most equal
to that of ( ( ) )R E r,2 . Hence, label E1 dominates label E2. □

We cannot easily relax condition (28). In Figs. 4 and 5, we give
two examples that illustrate the underlying difficulties. We show
that comparing items that are not at the same level might lead to
wrongly dominated labels. Both examples compare two labels E1
and E2, where a feasible extension of label E2 may not be feasible
for label E1. The same items are onboard the vehicle corresponding
to labels E1 and E2, but two items that are at the same level in the
vehicle of one label are at different levels in the vehicle of the
other label. In the first example, two items, i.e., items 1 and 2, are
at the same level in the vehicle of label E2, but on different levels in
the vehicle of label E1. For label E1, item 2 is rehandled upon de-
livering item 1, whereas for label E2, item 2 can be delivered
without rehandling. Therefore, the time window at node −2 could
be respected for label E2 but not for label E1. In the second ex-
ample, two items, i.e., items 1 and 2, are at the same level in the
vehicle of label E1, but on different levels in the vehicle of label E2.
For label E1, item 3 is rehandled upon delivering item 1, whereas
item 2 cannot be rehandled since policy 1 only allows for com-
pulsory rehandling. Therefore, item 3 is rehandled again upon
delivering item 2. For label E2, items 2 and 3 are rehandled upon
delivering item 1, and there is no rehandling upon delivering item
2. Therefore, the time window at node −3 could be respected for
label E2 but not for label E1.
Fig. 4. Possible extension of labels E1and E2, where items 1 and 2 are at the same level fo
E2 but not for label E1. (a) Partial route and vehicle configurations corresponding to labe
route and vehicle configurations corresponding to label E2, where η( ) = −E 12 , ( ) =S E S11 2
3.2. Labeling algorithm for the PDPTWH-2

We propose a labeling algorithm for the elementary shortest
path problem with pickups and deliveries, a capacity constraint,
and time windows under rehandling policy 2. In a given label E,
the components η ( )E , t(E), l(E), c(E), Sij(E), and U(E) defined as in
Section 3.1 are stored. The extension along arc η( ( ) ) ∈E j A, for a
given label E is allowed if one of the conditions (10)–(13) is
respected.

For label E, for each onboard item ∈i P at node η ( )E , we define
( ) = { ∈ | ( ) = ( ) = }E j P S E S E1 and 0i ij ji as the set of items below i,
( ) = { ∈ ⧹{ }| ( ) = ( ) = }E j P i S E S E 1i ij ji as the set of items at the same

level as i, and ( ) = { ∈ | ( ) = ( ) = }E j P S E S E0 and 1i ij ji as the set of
items on top of i. Thus, under policy 2, for a given label E such that
η ( ) ∈E D, all items that need compulsory rehandling are in ( )η ( )− EE n .
Preventive rehandling is allowed for the items at the same level, i.e.,
in ( )η ( )− EE n , and the items below η ( ) −E n, i.e., in ( )η ( )− EE n , as long
as all items that are on top are handled. Let ( )E represent the set of
all feasible combinations of rehandled items. For η ( ) ∈E P , we have

( ) = ∅E . For η ( ) ∈E D, ( )E is the collection of all feasible com-
binations of rehandled items, where a feasible combination of re-
handled items is a set ⊆ ( ) ∪ ( ) ∪ ( )η η η( )− ( )− ( )−S E E EE n E n E n such
that, if ∈ ∈ ( )i S j E, i , and η≠ ( ) −j E n, then ∈j S, and if

∈ ( )η ( )−k EE n , then ∈k S , i.e., if an item is in a feasible set of re-
handled items, then all items on top (except for the delivered item)
are also in this set, and so are all items on top of the delivered item.

Fig. 6 illustrates a vehicle configuration for a given label E cor-
responding to the partial path ( ) = { … }−R E k0, , , 3 . In this example,
we have ( ) = { }η ( )− E 1E n , ( ) = { }η ( )− E 2, 4E n , ( ) = { }η ( )− E 5, 6, 7E n .
The set of all feasible combinations of rehandled items is given by

( ) = {{ }E 1 , { }1, 2 , { }1, 4 , { }1, 2, 4 , { }1, 2, 4, 5 , { }1, 2, 4, 6 ,
{ }1, 2, 4, 5, 6 , { }}1, 2, 4, 5, 6, 7 .

The extension of label E along arc η( ( ) )E j, creates multiple la-
bels Eh, ∀ ∈ { … | ( )|}h E1, , , that is one for each feasible combi-
nation of rehandled items. Let ( )Eh be the set of rehandled items
corresponding to label extension ∈ { … | ( )|}h E1, , . The compo-
nents of label Eh are set as follows:

η ( ) = ( )E j, 29h
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Fig. 5. Possible extension of labels E1 and E2, where items 1 and 2 are at the same level for label E1, but at different levels for label E2. The extension might be feasible for label E2 but
not for label E1. (a) Partial route and vehicle configurations corresponding to label E1, where η( ) = −E 11 , ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) =S E S E S E S E S E S E S E 111 1 22 1 33 1 12 1 21 1 32 1 31 1 , and all other

( ) =S E 0ij 1 . (b) Partial route and vehicle configurations corresponding to label E2, where η( ) = −E 12 , ( ) = ( ) = ( ) = ( ) = ( ) = ( ) =S E S E S E S E S E S E 111 2 22 2 33 2 21 2 31 2 32 2 , and all other ( ) =S E 0ij 2 .

Fig. 6. A vehicle configuration corresponding to label E associated with node
η ( ) = −E 3 .
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Eq. (34) updates the relative positions of the items upon leav-
ing η ( )E . If η ( )E is a pickup node, item η ( )E is positioned on top of
all other onboard items. If η ( )E is a delivery node, all items in the
set ( )Eh are rehandled, implying that all those items are at the
same level and on top of the other onboard items. Moreover, item
η ( ) −E n is unloaded from the vehicle. All other positions remain
unchanged. Label Eh is kept if the time windows and the capacity
constraint are respected, that is if inequalities (21) and (22) are
respected. A label E1 dominates a label E2 if it respects (23)–(27)
and

( )( ) ≤ ( ) ∀ ∈ ( ) + ( ) ≤ = 35E E i j P E E i j, such that 1 or ,ij ij ij ji1 2 1 1

( ) + ( ) = ∀ ∈ ( ) + ( ) = ( )E E i j P E E2 , such that 2. 36ij ji ij ji1 1 2 2

Conditions (35) and (36) imply that E1 and E2 have the same set of
onboard items, i.e., ( ) = ( ) ∀ ∈S E S E i P,ii ii1 2 . Moreover, they imply
that all items that are on top of each other in the vehicle corre-
sponding to label E1 must also be on top of each other in the ve-
hicle corresponding to label E2, and all items that are at the same
level in E1 can be or not at the same level in the vehicle corre-
sponding to label E2.

Proposition 2. Conditions (23)–(27), (35) and (36) constitute a
valid dominance criterion for the elementary shortest path problem
with pickups and deliveries, a capacity constraint, and time windows
under rehandling policy 2.

Proof. We show that every feasible completion of E2 is also fea-
sible for E1 and yields a reduced cost that is no worse than when it
completes the path associated with E2. Let R(E) as previously de-
fined denote the partial path corresponding to label E. Let r be a
path extending ( )R E2 to node +n2 1 such that ( ( ) )R E r,2 is feasible
with respect to the elementarity constraints, pickup and delivery
constraints, capacity constraint, and time windows under re-
handling policy 2. If no such path exists, label E2 can be removed.
Because ( ( ) )R E r,2 is feasible with respect to the elementarity
constraints, pickup and delivery constraints, and capacity con-
straint, then so is ( ( ) )R E r,1 . Conditions (35) and (36) imply that
labels E1 and E2 have the same set of onboard items. In addition,
condition (36) ensures that all items that are at the same level for
label E2 are also at the same level for label E1. Items that are not at
the same level for E2 either have the same relative positions for
label E1 or are at the same level for label E1. In the latter case, the
items can be ordered similarly to the items in label E2, since all
items can be rehandled at the delivery nodes. Hence, at each de-
livery node, the number of rehandling operations for label E1
cannot be more than for label E2, thus ( ( ) )R E r,1 is feasible with
respect to the time windows under policy 2. Because ( ( ) )R E r,2 is
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feasible, then so is ( ( ) )R E r,1 . Because ( ) ≤ ( )c E c E1 2 , the cost of
( ( ) )R E r,1 is at most equal to that of ( ( ) )R E r,2 . Hence, label E1
dominates label E2. □

3.3. Valid inequalities

We now present the valid inequalities used in the branch-
price-and-cut algorithm for both the PDPTWH-1 and the
PDPTWH-2. These are valid inequalities based on the number of
vehicles, the subset-row inequalities, and the two-path cut
inequalities.

As in Cherkesly et al. [5], we propose valid inequalities based on
the number of vehicles to generate a solution with an integer
number of vehicles. If the linear relaxation solution ( ˜ … ˜ )Ω| |y y, ,1 at a
node of the search tree involves a fractional number of vehicles,
we round up this number by adding the inequality

⎡
⎢
⎢
⎢

⎤
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⎥∑ ∑≥ ˜

( )Ω Ω∈ ∈

y y .
37r

r
r

r

This inequality is valid assuming that the vehicle fixed cost is
sufficiently large to minimize first the number of vehicles used.

Jepsen et al. [11] introduced the subset-row inequalities for the
vehicle routing problem with time windows (VRPTW). For the
PDPTWH, these inequalities are given by

⎢
⎣
⎢⎢

⎥
⎦
⎥⎥

⎢
⎣
⎢⎢

⎥
⎦
⎥⎥∑ ∑

χ χ
χ= | | ∀ ⊆ ≤ ≤ | |

( )Ω∈ ∈

a y
S

S P S
1

, , 2 ,
38r i S

ir r

where ⊆S P is a subset of pickup nodes. As in Cherkesly et al. [5],
Desaulniers et al. [9], and Jepsen et al. [11], we consider the in-
equalities imposed by subsets of three customers. These inequal-
ities can be rewritten as

∑ ≤ ∀ ⊆ | | =
( )Ω∈

y S P S1, such that 3,
39r

r
S

where Ω Ω⊆S is the subset of paths that complete at least two
requests in S. These inequalities are separated by means of an
enumerative procedure.

The two-path inequalities were introduced by Kohl et al. [12]
for the VRPTW and adapted for several other vehicle routing
problems including the PDPTW and the PDPTWL (Ropke and
Cordeau [16]; Cherkesly et al. [5]). Let ⊆ ∪S P D be a subset of
nodes that needs to be served by more than one vehicle because of
the time windows. Then, the inequality

∑ ∑ ≥
( )Ω∈ ( )∈ | ∈ ∉

b y 2,
40r i j A i S j S

ij
r

r
, ,

is valid, where brij is the number of times arc ( ) ∈i j A, is used in
path Ω∈r . A set ⊆ ∪S P D needs to be served by more than one
vehicle if there is no feasible path visiting all nodes in S. Since
identifying such a set S is NP-complete, a greedy heuristic is used
to separate these valid inequalities (Ropke and Cordeau [16]).

The order in which the cuts are generated is as follows: (1) the
valid inequalities based on the number of vehicles, i.e., inequalities
(37), (2) the two-path cut inequalities, i.e., inequalities (40), and
(3) the subset-row inequalities, i.e., inequalities (39). Those in-
equalities are added to the master problem and the associated
duals modify the arc reduced costs. In order to account for the
duals of inequalities (38), the labeling algorithm must be modified
(see Desaulniers et al. [8]).

3.3.1. Acceleration strategies for the labeling algorithms
In order to speed up the labeling algorithms, a heuristic is used

for the dominance under policies 1 and 2: we start with a reduced
network and slowly increase the size of the network to its full size,
thus ensuring that the solution is optimal. Moreover, for policy
1 we use a heuristic dominance criterion which corresponds to
Eqs. (23)–(27), (35) and (36). When no more columns of negative
reduced costs are found, the exact dominance criterion which
corresponds to Eqs. (23)–(28) is applied to ensure that the algo-
rithm ends up with an optimal solution.

3.4. Branching

Branching is imposed to obtain an integer feasible solution. In
branch-and-price, the branching strategies must be consistent
with the column generation approach, especially with the labeling
algorithm. For the PDPTWH-1 and the PDPTWH-2, two different
branching strategies can be applied; branching on arcs and
branching on the outflow of a subset of nodes. The branch-and-
bound search tree is explored through a best-first strategy.

Branching on arcs was proposed by Christofides et al. [7] for the
CVRP. The arc ( ) ∈i j A, , ≠i 0, ≠ +j n2 1, with the largest difference
of ∑ ˜

Ω∈ b yr ij
r

r to the nearest integer is selected. Two branches are
then created:
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For both branches, the underlying network is adapted, and
therefore no complexity is added. For the first branch, the selected
arc is removed from the network, and for the second branch, all
arcs ( ) ∈i k A, such that ≠k j and all arcs ( ) ∈k j A, such that ≠k i
are removed.

Naddef and Rinaldi [13] proposed branching on the outflow of a
subset of nodes for the CVRP. This has later been adapted by Ropke
and Cordeau [16] for the PDPTW, and used by Cherkesly et al. [5]
for the PDPTWL. The subset of nodes S with the largest difference
of ∑ ∑ ˜

Ω∈ ( )∈ | ∈ ∉ b yr i j A i S j S ij
r

r, , to the nearest integer is selected. For this
set of nodes, two branches are created:
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Inequalities (43) and (44) are added to the master problem and
their dual variables influence the arc reduced costs.

Preliminary experiments showed that branching on the out-
flow of a subset of nodes outperformed branching on arcs or a
combination of both strategies. Therefore, we only used branching
on the outflow of a subset of nodes in the algorithms for the
PDPTWH-1 and the PDPTWH-2. In the branch-and-cut loop,
priority is given to the cuts.
4. Computational results

The branch-price-and-cut algorithms were implemented using
the GENCOL library and CPLEX 12.4.0.0 to solve the restricted
master problems. All experiments were performed on a Linux
computer equipped with an Intel(R) Core(TM) i7-3770 processor
(3.4 GHz). We have tested our algorithms on a modified version of
the instances of Ropke and Cordeau [16]. We will discuss the im-
pact of the rehandling policies and the effect of the parameter
value for the rehandling time on the results. Moreover, we com-
pare our results with those obtained by Cherkesly et al. [5] for the
PDPTWL.



Table 1
Instance characteristics.

Group Q W Δ d

AA 22 60 45 9.9
BB 30 60 45 13.2
CC 18 120 15 10.0
DD 25 120 15 11.8
AA0 26 60 45 9.9
BB0 35 60 45 13.2
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4.1. Instances

To test the algorithms, we used the modified instances of Ropke
and Cordeau [16] as described by Cherkesly et al. [5]. The instance
set is composed of four groups AA, BB, CC, and DD, each containing
10 instances, where the number of requests ranges from 30 to 75.
Moreover, we created the two additional instance groups AA0 and
BB′, by increasing the vehicle capacity in the AA and BB instances.
The characteristics of the instances are summarized in Table 1.
This table reports for each group of instances the vehicle capacity
Q, the width of the time windows W, the delay of the delivery
nodes Δ, and the average demand per customer d. The parameter
Δ is used to adjust the time windows of the delivery nodes with
respect to the original time windows of Ropke and Cordeau [16] as
follows Δ= +w wi i and Δ= +w wi i , ∀ ∈i D. This adjustment is
performed to increase the number of requests that can be onboard
the same vehicle simultaneously. A fixed vehicle cost equal to
10,000 is added to each arc ( ) ∈i i P0, , , to ensure the minimization
of the vehicles as a primary objective. We consider several values
for the rehandling parameter δ, namely δ ∈ { }0, 0.5, 1, 5, 10, 50 .

4.2. Summary of the results

The branch-price-and-cut algorithms for the PDPTWH-1 and
the PDPTWH-2 were run with a time limit of three hours for each
instance. Tables 2 and 3 provide a summary of the results. For each
group of instances and each value of δ, these tables report #, the
number of instances solved to optimality within the specified time
limit, Sec., the average computation time in seconds, and Gap, the
average optimality gap in percentage. The optimality gap is com-
puted as ( − )⁎z z z/ , where ⁎z is the optimal value and z is the lower
bound obtained at the root node before adding cuts. The average
computation time and the average optimality gap are computed by
only including the instances that could be solved to optimality
within the time limit. Detailed computational results are reported
in the Appendix.

Comparing the results for the PDPTWH-1 with those for the
PDPTWH-2, we observe that some instances were solved to op-
timality within the prescribed time limit by the algorithm for the
PDPTWH-1, but not for the PDPTWH-2, i.e., instances AA70 with
δ = 1, CC55 with δ = 5, DD30 with δ = 0, BB′55 with δ = 1, and BB′
60 with δ = 1. On the other hand, the three instances CC55 with
δ = 1, AA060 with δ = 0.5, and BB′70 with δ = 5 were solved to
optimality by the algorithm for the PDPTWH-2, but not for the
PDPTWH-1. Comparing the results for the different instance
groups, we see that increasing the width of the time windows
makes the problem harder to solve. For the AA and BB groups, the
total number of instances for all rehandling time δ solved within
the time limit is 56 and 52 for the PDPTWH-1, respectively, and 55
and 52 for the PDPTWH-2, respectively. For the CC and DD groups
fewer instances are solved, i.e., 20 and 4 for the PDPTWH-1, re-
spectively, and 20 and 3 for the PDPTWH-2, respectively. In-
creasing the width of the time windows results in harder to solve
elementary shortest path problems, which probably explains the
large amount of time needed for the instances in the CC and DD
groups. Having a closer look at the effect of the capacity increase,
we observe that fewer instances were solved to optimality within
the prescribed time limit for the AA’ group compared with the AA
group, namely 41 compared to 56 for the PDPTWH-1, and 42
compared to 55 for the PDPTWH-2. A similar result can be found
when comparing the BB’ group with the BB group, namely 42
compared to 52 instances that were solved to optimality with the
prescribed time limit for the PDPTWH-1, and 41 compared to 52
for the PDPTWH-2. Again, by increasing the vehicle capacity, the
elementary shortest path problems are harder to solve.

By increasing the value of δ, we see that the total number of
instances solved to optimality within the time limit first decreases
and then increases. With a value of δ = 50 most instances were
solved, namely 66.7% of all instances. This pattern holds for both
the PDPTWH-1 and the PDPTWH-2. There are four exceptions:
instance groups CC and BB’ for the PDPTWH-1 and instance groups
CC and DD for the PDPTWH-2. For the PDPTWH-1 and δ ∈ { }0, 5 ,
and for the PDPTWH-2 and δ ∈ { }0, 1 four instances were solved
to optimality in the CC group and three instances were solved to
optimality for the other values of δ. For the PDPTWH-1 and group
BB′, and for the PDPTWH-2 and group DD we only observe an
increase and no decrease in the number of instances solved to
optimality within the time limit.

4.3. Impact of the rehandling policy

Table 4 provides a comparison between the travel costs for the
optimal solutions under policies 1 and 2. We only report the in-
stances for which the value of the optimal solution differs between
the two rehandling policies, namely BB35, BB45, BB50, BB55,
AA040, AA045, AA050, AA055, BB′55, and BB′60. For all these in-
stances, the algorithms for the PDPTWH-1 and the PDPTWH-2
provide optimal solutions with the same costs for δ ∈ { }0, 10, 50 .
Therefore, we only report the results for δ ∈ { }0.5, 1, 5 . For each of
these values of δ the table reports TC1 and TC2, which are the
travel costs corresponding to the optimal solutions obtained for
the PDPTWH-1 and PDPTWH-2, respectively, and Diff (%), the
difference in percentage between the travel costs corresponding to
the optimal solutions of policies 1 and 2 computed as
( − )TC TC TC1 2 / 2.

For the 10 instances in Table 4 and for various values of δ, the
value of the optimal solution differs under the two policies. For
these instances, the number of vehicles used in the optimal solu-
tion is the same under both rehandling policies and the difference
in costs is due to the difference in travel costs. These instances are
all contained in the BB, AA0, or BB′ group, which are the groups
with the largest vehicle capacity. This suggests that the extra
flexibility in rehandling operations can be more effectively used
when the vehicle capacity is larger. Because more items can be
onboard a vehicle if its capacity increases, this results in more
options for preventive rehandling operations. The decrease in
travel costs gained by allowing more flexibility in the rehandling
operations is up to 3.2% for the instances under study.

4.4. Impact of the rehandling time

We now analyze the impact of the rehandling time by com-
paring the values of the optimal solutions for the PDPTWH for
different values of δ. Since the values of the optimal solutions for
the instances under study are quite comparable for rehandling
policies 1 and 2, we compare the results under the least restrictive
policy, which is rehandling policy 2. Similar results can be ob-
tained for rehandling policy 1. Note that, for the instances under
study, the optimal solutions for the PDPTWH-2 with δ = 50 cor-
respond to the optimal solutions for the PDPTWL.

Table 5 presents the increase in travel costs and number of



Table 2
Summary results for the PDPTWH-1.

Group δ = 0 δ = 0.5 δ = 1 δ = 5 δ = 10 δ = 50

# Sec. Gap # Sec. Gap # Sec. Gap # Sec. Gap # Sec. Gap # Sec. Gap

AA 10 1292.9 3.6 8 168.4 2.6 9 1346.0 4.0 9 480.5 3.7 10 309.8 4.2 10 239.5 4.2
BB 8 380.1 3.1 8 1486.8 7.7 6 464.0 6.1 10 755.8 5.5 10 225.2 5.5 10 357.5 5.5
CC 4 2700.2 26.4 3 78.6 27.0 3 106.1 26.8 4 2173.3 23.2 3 67.9 26.6 3 52.9 26.6
DD 1 3346.3 15.0 0 0 1 6331.4 42.0 1 8699.9 42.1 1 7030.5 42.1
AA0 8 258.0 3.9 6 1003.6 5.2 5 916.8 6.2 7 1617.2 3.9 7 238.9 1.9 8 848.5 1.7
BB0 6 505.7 5.1 6 846.1 11.4 6 2921.2 14.1 7 1043.3 9.2 8 1344.6 8.9 9 866.1 8.3
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vehicles used when increasing the rehandling time δ. The first
column reports the name of the instances defined as its group and
the number of requests. For δ = 0, we report Veh., the number of
vehicles used in the optimal solution and TC, the total travel costs
in this solution. For all other values of δ, we report ΔVeh., the in-
crease in the number of vehicles computed as −δVeh Veh0, where

δVeh and Veh0 are the number of vehicles in the optimal solution
with δ ∈ { }0.5, 1, 5, 10, 50 and δ = 0, respectively, and ΔTC (%), the
impact in percentage on the total travel costs computed as
( − )δTC TC /TC0 0, where δTC and TC0 are the travel costs in the
optimal solution with δ ∈ { }0.5, 1, 5, 10, 50 and δ = 0, respectively.
We only report instances for which the PDPTWH-2 with δ = 0 has
been solved within the prescribed time limit.

The primary objective is to minimize the number of vehicles
used in the solution. By increasing the value of δ, the optimal
solution for the problem with δ = 0 may not be feasible anymore
with respect to the time windows. Therefore, it occurs for some
instances that for a value of δ > 0, all feasible solutions use more
vehicles than the optimal solution with δ = 0. If so, the number of
vehicles could increase, but the travel costs could decrease. This is
actually the case for the following instances: AA65, BB40, BB55, BB
′40, and BB′45. For nine instances, i.e., AA55, AA60, AA65, BB40,
BB55, AA050, BB′40, BB′45, and BB′55, the number of vehicles used
in the optimal solution increases, compared with the optimal so-
lution with δ = 0. For the five instances AA65, BB40, BB55, BB′40,
and BB′45, this increase is already observed for δ = 0.5, for the
other four instances the increase in vehicles used in the optimal
solution is observed for the first time for δ = 5. For the instances
under study, the travel costs can increase up to 24.8%. For all in-
stances in the groups AA0 and BB′, the increase in rehandling time
has a large impact on the value of the optimal solutions. Com-
paring the value of the optimal solutions for δ = 0 and δ = 50, we
observe that for each of these instances either the number of ve-
hicles used in the optimal solution increases, or the travel costs
increase with at least 10.7%.

4.5. Comparison with the PDPTWL

The optimal solutions for the PDPTWH-1 and the PDPTWH-2
with δ = 50, correspond to the optimal solutions for the PDPTWL.
In order to gain some insights into the computational complexity
Table 3
Summary results for the PDPTWH-2.

Group δ = 0 δ = 0.5 δ = 1

# Sec. Gap # Sec. Gap # Sec. Gap

AA 10 1015.1 3.6 8 298.4 2.6 8 646.3 2.3
BB 8 594.6 3.1 8 1705.8 7.8 6 1117.2 6.1
CC 4 2680.5 26.4 3 290.6 27.0 4 1533.1 23.7
DD 0 0 0
AA0 8 1089.8 3.9 7 657.4 4.4 5 594.3 6.2
BB0 6 325.0 5.1 6 869.5 11.7 4 235.5 11.6
added by allowing rehandling operations, we can compare the
computation time needed to solve the instances for the three
different problems. For the PDPTWL, we use the results obtained
by the best branch-price-and-cut algorithm as reported by Cher-
kesly [3]. The results in Cherkesly [3] are an improvement of the
results in Cherkesly et al.[5], obtained by an improved labeling
algorithm. Note that the results in Cherkesly [3] are obtained by
using the same computer as the one used for the experiments in
this paper.

For each instance group AA, BB, CC, and DD, Table 6 reports for
the PDPTWL #, the number of instances solved to optimality
within the prescribed time limit, and Sec., the average computa-
tion time in seconds, and for the PDPTWH-1 and the PDPTWH-2 it
reports #, the number of instances solved to optimality within the
prescribed time limit, and ΔSec.(%), the increase in percentage of
the average computation time, computed as ( − )Sec Sec /Seci L L,
where Seci and SecL are the average computation times in seconds
for the PDPTWH-i, ∈ { }i 1, 2 , and the PDPTWL, respectively. Fur-
thermore, we report the row Total, which combines all instances
solved for groups AA, BB, CC, and DD, and where the time is an
average of all instances solved within the prescribed time limit.
Except for instances CC50, CC55, DD30, DD40, DD45, and DD50,
which are only solved to optimality within the time limit by the
algorithm for the PDPTWL, the same instances in groups AA, BB,
CC, and DD, could be solved to optimality by the algorithms for the
three different problems. In order to make a fair comparison be-
tween the computation times for the different problems, we did
not include instances CC50, CC55, DD30, DD40, DD45, and DD50
when calculating the average computation time for the PDPTWL.
The AA0 and BB′ groups are excluded from the table, because they
were not solved by Cherkesly [3] for the PDPTWL.

All instances in the AA and BB groups were solved to optimality
within the time limit by all three algorithms. For each of the al-
gorithms, the average computation time was higher for the BB
group compared to the AA group. However, comparing the average
computation time for the PDPTWH-1 and the PDPTWH-2 with the
PDPTWL, we observe that the difference is higher for the AA in-
stances, i.e., 59.6% and 122.3% for the PDPTWH-1 and the
PDPTWH-2, respectively, than for the BB instances, i.e., 24.8% and
57.5% for the PDPTWH-1 and the PDPTWH-2, respectively. The
δ = 5 δ = 10 δ = 50

# Sec. Gap # Sec. Gap # Sec. Gap

9 497.0 3.7 10 341.9 4.2 10 333.7 4.2
10 852.9 5.5 10 248.6 5.5 10 451.2 5.5
3 125.6 26.6 3 69.4 26.6 3 54.1 26.6
1 7012.6 42.0 1 9384.5 42.1 1 7996.8 42.1
7 985.8 3.9 7 268.0 1.9 8 1193.6 1.7
8 1482.2 8.5 8 1832.8 8.9 9 1147.2 8.3



Table 4
Difference in travel costs for the optimal solutions under policies 1 and 2.

Inst. δ = 0.5 δ = 1 δ = 5

TC1 TC2 Diff. (%) TC1 TC2 Diff. (%) TC1 TC2 Diff. (%)

BB35 1258.1 1256.7 0.1 1277.8 1277.8 0.0 1310.8 1310.8 0.0
BB45 1413.2 1407.2 0.4 1441.4 1436.5 0.3 1519.6 1519.6 0.0
BB50 1636.4 1625.6 0.7 1685.9 1671.6 0.9 1777.2 1777.2 0.0
BB55 1692.3 1689.5 0.2 1852.4 1846.6 0.3
AA040 1217.9 1217.9 0.0 1230.8 1229.6 0.1 1343.5 1343.5 0.0
AA045 1387.3 1384.6 0.2 1414.8 1413.6 0.1 1587.1 1587.1 0.0
AA050 1526.8 1524.6 0.1 1647.6 1596.1 3.2 1521.2 1521.2 0.0
AA055 1518.5 1515.8 0.2 1706.6 1706.6 0.0
BB055 1661.5 1661.5 0.0 1570.3 1776.4 1771.5 0.3
BB060 1924.2 2073.8 2068.6 0.3

Table 5
Impact on travel costs and number of vehicles used when increasing the rehandling time δ.

Inst. δ¼0 δ¼0.5 δ¼1 δ¼5 δ¼10 δ¼50

Veh. TC ΔVeh. ΔTC (%) ΔVeh. ΔTC (%) ΔVeh. ΔTC (%) ΔVeh. ΔTC (%) ΔVeh. ΔTC (%)

AA30 3 969.4 0 2.0 0 2.2 0 10.1 0 16.5 0 16.5
AA35 3 1089.0 0 0.1 0 2.3 0 13.0 0 18.8 0 18.8
AA40 4 1241.7 0 1.0 0 2.2 0 6.8 0 8.4 0 8.7
AA45 4 1412.2 0 0.7 0 2.2 0 6.6 0 7.5 0 7.7
AA50 4 1531.6 0 0.3 0 1.8 0 6.7 0 7.3 0 7.3
AA55 4 1667.1 0 1.8 0 5.9 1 2.0 1 4.6 1 4.6
AA60 4 1822.7 0 1.4 0 5.4 1 4.0 1 6.9 1 7.0
AA65 4 2011.6 1 �6.2 1 �5.6 1 0.5 1 3.3 1 3.3
AA70 5 1992.8 0 11.4 0 11.4
AA75 5 2102.8 0 9.8 0 10.8 0 10.8
BB30 3 1017.6 0 0.4 0 1.4 0 5.1 0 5.9 0 5.9
BB35 3 1211.4 0 3.7 0 5.5 0 8.2 0 8.3 0 8.3
BB40 3 1503.2 1 �12.8 1 �12.4 1 �8.9 1 �6.8 1 �6.6
BB45 4 1386.5 0 1.5 0 3.6 0 9.6 0 10.8 0 10.9
BB50 4 1564.9 0 3.9 0 6.8 0 13.6 0 14.5 0 14.5
BB55 4 1801.4 1 �6.2 1 2.5 1 4.9 1 6.1
BB60 6 2034.2 0 1.9 0 3.5 0 10.9 0 13.3 0 13.3
BB65 6 2212.3 0 2.0 0 15.7 0 15.9 0 15.9
CC30 3 1054.0 0 0.0 0 0.0 0 1.6 0 2.9 0 3.3
CC35 3 1184.5 0 0.0 0 1.3 0 3.2 0 4.4 0 4.5
CC40 3 1279.5 0 0.0 0 0.0 0 1.7 0 4.2 0 4.8
CC50 4 1592.5
AA030 3 934.4 0 0.7 0 1.6 0 6.4 0 11.2 0 11.2
AA035 3 1034.3 0 1.0 0 1.6 0 9.5 0 14.2 0 14.2
AA040 3 1204.1 0 1.1 0 2.1 0 11.6 0 12.7 0 12.7
AA045 3 1343.0 0 3.1 0 5.3 0 18.2 0 19.3 0 19.3
AA050 3 1457.5 0 4.6 0 9.5 1 4.4 1 5.3 1 5.3
AA055 4 1482.3 0 2.3 0 15.1 0 16.0 0 16.0
AA060 4 1605.2 0 3.0 0 16.5 0 17.5 0 17.5
AA065 4 1715.5 0 18.0
BB030 3 973.4 0 1.0 0 1.7 0 9.9 0 10.7 0 10.7
BB035 3 1143.4 0 3.9 0 6.8 0 14.1 0 14.4 0 14.4
BB040 3 1294.3 1 �3.3 1 �2.3 1 4.8 1 5.9 1 6.0
BB045 3 1362.3 1 �3.8 1 �2.8 1 6.8 1 8.9 1 8.9
BB050 4 1408.0 0 2.6 0 23.2 0 24.8 0 24.8
BB055 4 1565.8 0 6.1 1 13.1 1 15.8 1 17.5

Table 6
Comparative computational results for the PDPTWL, PDPTWH-1, and the PDPTWH-
2, the latter two with δ = 50.

Group PDPTWL PDPTWH-1 PDPTWH-2

# Sec. # ΔSec. (%) # ΔSec. (%)

AA 10 150.1 10 59.6 10 122.3
BB 10 286.4 10 24.8 10 57.5
CC 5 30.9 3 71.2 3 75.1
DD 5 154.4 1 4453.4 1 5079.3
Total 30 192.2 24 185.3 24 247.1
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algorithm for the PDPTWL could solve five instances to optimality
within the time limit for both the CC and DD group, where only
three instances for the CC group and one instance for the DD group
were solved to optimality by the algorithms for the PDPTWH-1
and the PDPTWH-2. For all groups, the average computation time
is the least for the PDPTWL and the highest for the PDPTWH-2.
Compared with the PDPTWL, the average computation time is
185.3% and 247.1% higher for the PDPTWH-1 and the PDPTWH-2,
respectively. From this, we can conclude that allowing rehandling
operations requires additional computation time for these in-
stances. This can be explained by the more restrictive dominance



Table 7
Computational results for the PDPTWH-1.

Inst. δ¼0 δ¼0.5 δ¼1 δ¼5 δ¼10 δ¼50

Sec. z *Z Sec. z *z Sec. z *z Sec. z *Z Sec. z *Z Sec. z *z

AA30 1.8 30,969.4 30,969.4 16.9 30,986.3 30,988.4 2.1 30,990.8 30,990.8 6.9 31,064.0 31,067.4 2.0 31,129.5 31,129.5 1.9 31,129.5 31,129.5
AA35 26.1 31,084.4 31,089.0 5.9 31,090.4 31,090.4 6.5 31,114.2 31,114.2 24.3 31,222.6 31,230.8 16.4 31,285.2 31,294.1 16.7 31,285.2 31,294.1
AA40 96.5 41,235.1 41,241.7 148.7 41,248.1 41,254.6 188.9 41,261.1 41,269.3 25.3 41,324.0 41,325.8 4.0 41,345.7 41,345.7 4.2 41,349.3 41,349.3
AA45 181.4 41,399.5 41,412.2 154.1 41,416.3 41,422.3 1339.0 41,430.0 41,443.6 106.5 41,497.6 41,505.8 8.0 41,517.9 41,517.9 7.2 41,521.4 41,521.4
AA50 1843.1 41,507.3 41,531.6 138.2 41,532.6 41,536.8 1674.5 41,541.0 41,559.2 2579.1 41,621.8 41,634.9 16.1 41,643.7 41,643.7 18.9 41,643.7 41,643.7
AA55 450.1 41,653.5 41,667.1 326.7 41,687.2 41,696.9 383.7 41,756.7 41,765.4 130.5 46,767.5 51,700.9 481.4 46,800.8 51,743.2 24.5 46,803.8 51,743.2
AA60 1824.5 41,805.5 41,822.7 314.2 41,841.9 41847.9 482.4 41,912.3 41,921.1 407.9 46,967.7 51,894.8 999.8 46,998.1 51,947.9 1110.7 46,999.2 51,949.7
AA65 1229.8 42,001.8 42,011.6 242.5 42,876.8 51,887.1 233.9 43,753.7 51,899.7 263.8 47,157.4 52,021.6 429.6 47,172.0 52,077.2 260.0 47,172.0 52,077.4
AA70 686.0 42,672.8 51,992.8 7802.6 44,402.1 52,056.8 661.9 47,896.1 52,219.2 479.6 47,896.1 52,219.2
AA75 6589.4 45,576.3 52,102.8 780.0 51,151.9 52,308.2 478.3 51,605.8 52,330.1 471.0 51,607.2 52,330.1
BB30 2.5 31,017.6 31,017.6 2.2 31,021.4 31021.4 15.5 31,030.8 31,032.3 1.7 31,069.7 31,069.7 4.9 31076.3 31077.5 4.7 31,076.3 31,077.5
BB35 16.5 31,210.8 31,211.4 62.5 31,255.7 31,258.1 6.2 31,277.8 31,277.8 4.3 31,310.8 31,310.8 4.4 31,312.4 31,312.4 3.8 31,312.4 31,312.4
BB40 15.2 31,503.2 31,503.2 109.6 33,425.8 41,311.0 14.6 34,193.6 41,317.3 9.4 35,675.7 41,369.3 106.8 35,693.9 41,400.5 95.2 35,695.5 41,404.0
BB45 115.0 33,217.8 41,386.5 1179.7 34,910.3 41,413.2 853.0 35,891.5 41,441.4 1299.6 37,476.1 41,519.6 257.6 37,642.0 41,535.6 255.4 37,645.1 41,537.5
BB50 284.1 41,562.1 41,564.9 461.9 41,616.0 41,636.4 240.3 41,681.2 41,685.9 92.7 41,773.5 41,777.2 35.7 41,791.1 41,791.1 30.2 41,791.1 41,791.1
BB55 1000.1 41,786.7 41,801.4 4818.5 43,347.2 51,692.3 593.2 46,244.3 51,852.4 836.7 46,388.6 51,889.5 1023.5 46,391.4 51,911.7
BB60 316.3 62,026.0 62,034.2 755.1 62,061.0 62,072.5 1654.2 62,094.0 62,106.1 91.4 62,254.2 62,255.8 34.9 62,300.7 62,304.3 29.0 62,305.5 62,305.5
BB65 1291.2 62,199.2 62,212.3 4505.1 62,240.4 62,257.6 277.4 62,556.0 62,560.3 46.1 62,559.8 62,564.6 44.4 62,564.6 62,564.6
BB70 717.3 65,952.9 72,503.9 474.5 65,996.7 72,535.2 611.3 66,002.4 72,535.2
BB75 4,470.5 68,148.6 72,617.6 450.5 68,188.4 72,643.2 1477.1 68,197.0 72,656.7
CC30 7.8 23,248.6 31,054.0 10.7 23,282.4 31,054.0 9.1 23,283.3 31,054.0 47.9 23,297.5 31,071.3 24.2 23,318.6 31,085.0 25.8 23,318.9 31,088.6
CC35 30.6 24,551.0 31,184.5 21.3 24,731.6 31,184.5 37.2 24,742.2 31,199.8 102.0 24,762.5 31,222.1 82.9 24,777.3 31,236.5 51.1 24,777.3 31,237.5
CC40 587.6 25,412.5 31,279.5 203.9 25,751.0 31,279.5 272.0 25,835.2 31,279.5 217.9 26,006.0 31,300.9 96.5 26,024.2 31,333.5 81.8 26,024.6 31,340.3
CC50 10,174.6 34,104.3 41,592.5
CC55 8325.2 36,886.7 41,747.3
DD30 3346.3 18,259.1 20,993.6
DD35 6331.4 21,904.9 31,113.5 8699.9 21,904.8 31,123.9 7030.5 21,904.8 31,127.8
AA′30 101.5 25,952.1 30,934.4 134.8 25,960.3 30,941.4 214.2 25,978.1 30,949.3 3.5 27,715.5 30,993.8 17.4 31,034.2 31,039.4 24.5 31,034.8 31,039.4
AA′35 128.9 27,735.2 31,034.3 149.3 27,761.7 31,045.0 16.5 27,786.9 31,050.4 64.7 31,128.5 31,133.0 585.2 31,168.9 31,180.8 616.7 31,168.9 31,180.8
AA′40 181.6 31,201.1 31,204.1 96.5 31,216.4 31,217.9 107.2 31,229.1 31,230.8 481.2 31,322.8 31,343.5 473.9 31,347.8 31,356.5 366.6 31,347.8 31,356.5
AA′45 474.3 31,327.7 31,343.0 295.3 31,380.9 31,387.3 685.7 31,399.4 31,414.8 69.2 31,587.1 31,587.1 80.1 31,602.3 31,602.3 71.5 31,602.3 31,602.3
AA′50 295.5 31,457.5 31,457.5 529.6 31,526.8 31,526.8 3560.2 31,584.6 31,647.6 8099.8 36,052.1 41,521.2 223.5 36,594.6 41,534.2 175.4 36,596.3 41,534.2
AA′55 215.0 41,479.3 41,482.3 4816.2 41,505.7 41,518.5 1775.5 41,699.5 41,706.6 57.8 41,720.1 41,720.1 74.4 41,720.1 41,720.1
AA′60 312.8 41,597.7 41,605.2 826.2 41,860.6 41,869.5 234.4 41,882.3 41,885.9 806.1 41,882.3 41,885.9
AA′65 354.1 41,715.5 41,715.5 4653.0 42,003.3 42,024.4
BB′30 4.0 30,973.4 30,973.4 2.7 30,983.3 30,983.3 12.5 30,989.6 30,990.1 2.1 31,069.7 31,069.7 7.1 31,076.3 31,077.5 7.2 31,076.3 31,077.5
BB′35 49.3 31,139.6 31,143.4 308.3 31,177.6 31,188.5 157.8 31,215.1 31,221.6 34.7 31,302.7 31,304.3 40.0 31,307.3 31,307.9 40.9 31,307.3 31,307.9
BB′40 24.3 31,294.3 31,294.3 372.7 31,903.8 41,251.6 123.6 33,062.8 41,264.1 2581.3 34,053.8 41,356.5 700.8 34,068.1 41,370.3 773.0 34,068.8 41,372.0
BB′45 137.5 31,362.3 31,362.3 2182.1 33,086.0 41,310.1 1173.7 34,165.2 41,323.6 256.6 36,540.1 41,455.2 3647.6 36,553.7 41,484.2 1614.3 36,555.0 41,484.2
BB′50 725.2 35,108.0 41,408.0 749.8 37,549.0 41,445.0 598.0 40,320.0 41,734.9 4348.2 40,392.6 41,757.3 2700.4 40,397.6 41,757.3
BB′55 2093.8 36,974.2 41,565.8 1460.7 40,215.0 41,661.5 5430.9 41,820.1 51,570.3 3476.9 44,205.3 51,776.4 679.1 44,336.9 51,813.8 639.0 44,343.4 51,840.5
BB′60 10,628.7 53,511.8 61,924.2 353.4 56,875.3 62,073.8 532.7 56,934.0 62,136.9 300.7 56,934.9 62,138.9
BB′65 801.4 58,176.5 62,328.5 304.8 58,177.6 62,329.0
BB′70 1415.0 60,774.9 62,547.4
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Table 8
Computational results for the PDPTWH-2.

Inst. δ¼0 δ¼0.5 δ¼1 δ¼5 δ¼10 δ¼50

Sec. z *Z Sec. z *z Sec. z *z Sec. z *Z Sec. z *Z Sec. z *z

AA30 1.9 30,969.4 30,969.4 17.3 30,986.3 30,988.4 2.0 30,990.8 30,990.8 7.3 31,064.0 31,067.4 2.1 31,129.5 31,129.5 1.9 31,129.5 31,129.5
AA35 25.1 31,084.4 31,089.0 6.5 31,090.4 31,090.4 6.1 31,114.2 31,114.2 58.3 31,222.6 31,230.8 17.4 31,285.2 31,294.1 17.7 31,285.2 31,294.1
AA40 79.8 41,235.1 41,241.7 153.5 41,248.1 41,254.6 205.2 41,261.1 41,269.3 27.3 41,324.0 41,325.8 4.2 41,345.7 41,345.7 4.4 41,349.3 41,349.3
AA45 195.0 41,399.5 41,412.2 140.7 41,416.3 41,422.3 1166.3 41,430.0 41,443.6 106.8 41,497.6 41,505.8 8.5 41,517.9 41,517.9 7.7 41,521.4 41,521.4
AA50 929.7 41,507.3 41,531.6 220.1 41,532.6 41,536.8 2743.9 41,541.0 41,559.2 1149.6 41,621.8 41,634.9 17.3 41,643.7 41,643.7 20.6 41,643.7 41,643.7
AA55 418.4 41,653.5 41,667.1 421.8 41,687.2 41,696.9 330.4 41,756.7 41,765.4 157.9 46,767.5 51,700.9 494.5 46,800.8 51,743.2 26.5 46,803.8 51,743.2
AA60 1886.0 41,805.5 41,822.7 1221.0 41,841.9 41,847.9 460.7 41,912.3 41,921.1 1116.5 46,967.7 51,894.8 1062.9 46,998.1 51,947.9 1312.0 46,999.2 51,949.7
AA65 564.7 42,001.8 42,011.6 206.6 42,876.8 51,887.1 255.4 43,753.7 51,899.7 249.8 47,157.4 52,021.6 423.5 47,172.0 52,077.2 346.8 47,172.0 52,077.4
AA70 491.3 42,672.8 51,992.8 842.9 47,896.1 52,219.2 833.0 47,896.1 52,219.2
AA75 5559.1 45,576.3 52,102.8 1599.1 51,151.9 52,308.2 545.6 51,605.8 52,330.1 766.4 51,607.2 52,330.1
BB30 2.2 31,017.6 31,017.6 1.9 31,021.4 31,021.4 16.2 31,030.8 31,032.3 1.5 31,069.7 31,069.7 5.2 31,076.3 31,077.5 4.9 31,076.3 31,077.5
BB35 16.7 31,210.8 31,211.4 36.3 31,255.1 31,256.7 7.4 31,277.8 31,277.8 5.1 31,310.8 31,310.8 4.8 31,312.4 31,312.4 4.1 31,312.4 31,312.4
BB40 15.3 31,503.2 31,503.2 141.7 33,296.2 41,311.0 16.7 34,193.0 41,317.3 45.5 35,675.7 41,369.3 113.6 35,693.9 41,400.5 98.5 35,695.5 41,404.0
BB45 115.0 33,217.8 41,386.5 292.2 34,891.6 41,407.2 1786.6 35,821.0 41,436.5 3074.8 37,476.1 41,519.6 266.7 37,642.0 41,535.6 262.3 37,645.1 41,537.5
BB50 303.4 41,562.1 41,564.9 288.8 41,613.1 41,625.6 98.0 41,671.6 41,671.6 111.8 41,773.5 41,777.2 42.7 41,791.1 41,791.1 36.1 41,791.1 41,791.1
BB55 1000.7 41,786.7 41,801.4 7898.2 43,223.6 51,689.5 366.4 46,238.7 51,846.6 892.0 46,388.6 51,889.5 1205.0 46,391.4 51,911.7
BB60 262.9 62,026.0 62,034.2 324.2 62,060.4 62,072.5 4778.4 62,094.0 62,106.1 350.7 62,254.2 62,255.8 40.4 62,300.7 62,304.3 46.7 62,305.5 62,305.5
BB65 3040.4 62,199.2 62,212.3 4,663.3 62,239.6 62,257.6 275.0 62,556.0 62,560.3 60.7 62,559.8 62,564.6 78.1 62,564.6 62,564.6
BB70 970.9 65,952.9 72,503.9 529.9 65,996.7 72,535.2 831.4 66,002.4 72,535.2
BB75 3326.9 68,148.6 72,617.6 529.9 68,188.4 72,643.2 1944.7 68,197.0 72,656.7
CC30 8.0 23,248.6 31,054.0 10.9 23,282.4 31,054.0 9.3 23,283.3 31,054.0 49.1 23,297.5 31,071.3 24.8 23,318.6 31,085.0 26.4 23,318.9 31,088.6
CC35 31.1 24,551.0 31,184.5 21.7 24,731.6 31,184.5 37.9 24,742.2 31,199.8 104.2 24,762.5 31,222.1 84.6 24,777.3 31,236.5 52.2 24,777.3 31,237.5
CC40 590.8 25,412.5 31,279.5 839.1 25,751.0 31,279.5 276.1 25,835.2 31,279.5 223.6 26,006.0 31,300.9 98.8 26,024.2 31,333.5 83.6 26,024.6 31,340.3
CC50 10,091.9 34,104.3 41,592.5
CC55 5808.9 36,480.3 41,708.4
DD30
DD35 7012.6 21,904.9 31,113.5 9384.5 21,904.8 31,123.9 7996.8 21,904.8 31,127.8
AA′30 112.3 25,952.1 30,934.4 176.4 25,960.3 30,941.4 288.1 25,977.5 30,949.3 4.1 27,715.5 30,993.8 29.4 31,034.2 31,039.4 27.9 31,034.8 31,039.4
AA′35 176.8 27,735.2 31,034.3 153.4 27,761.7 31,045.0 19.0 27,785.7 31,050.4 76.8 31,128.5 31,133.0 559.9 31,168.9 31,180.8 548.6 31,168.9 31,180.8
AA′40 93.1 31,201.1 31,204.1 108.3 31,216.4 31,217.9 107.5 31,228.4 31,229.6 1062.9 31,322.8 31,343.5 575.6 31,347.8 31,356.5 439.6 31,347.8 31,356.5
AA′45 7116.9 31,327.7 31,343.0 280.5 31,380.9 31,384.6 952.9 31,397.0 31,413.6 88.7 31,587.1 31,587.1 97.5 31,602.3 31,602.3 86.5 31,602.3 31,602.3
AA′50 323.4 31,457.5 31,457.5 492.5 31,524.6 31,524.6 1604.1 31,583.5 31,596.1 2922.7 36,052.1 41,521.2 265.7 36,594.6 41,534.2 208.6 36,596.3 41,534.2
AA′55 177.2 41,479.3 41,482.3 943.5 41,505.7 41,515.8 1706.3 41,699.5 41,706.6 68.8 41,720.1 41,720.1 90.9 41,720.1 41,720.1
AA′60 334.4 41,597.7 41,605.2 2447.1 41,637.5 41,653.7 1039.0 41,860.6 41,869.5 278.9 41,882.3 41,885.9 1002.8 41,882.3 41,885.9
AA′65 384.2 41,715.5 41,715.5 7143.7 42,003.3 42,024.4
BB′30 3.6 30,973.4 30,973.4 2.7 30,983.3 30,983.3 13.8 30,989.6 30,990.1 2.0 31,069.7 31,069.7 7.8 31,076.3 31,077.5 7.9 31,076.3 31,077.5
BB′35 47.9 31,139.6 31,143.4 233.6 31,175.8 31,188.1 372.5 31,213.8 31,221.6 40.9 31,302.7 31,304.3 42.1 31,307.3 31,307.9 44.1 31,307.3 31,307.9
BB′40 24.7 31,294.3 31,294.3 304.9 31,843.3 41,251.6 130.6 33,052.8 41,264.1 2195.3 34,053.8 41,356.5 1307.4 34,068.1 41,370.3 873.3 34,068.8 41,372.0
BB′45 107.7 31,362.3 31,362.3 1517.4 32,978.9 41,310.1 425.0 34,029.8 41,323.6 347.2 36,540.1 41,455.2 3986.7 36,553.7 41,484.2 1820.5 36,555.0 41,484.2
BB′50 607.1 35,108.0 41,408.0 906.7 37,348.7 41,445.0 671.8 40,320.0 41,734.9 6632.7 40,392.6 41,757.3 3857.6 40,397.6 41,757.3
BB′55 1159.1 36,974.2 41,565.8 2251.8 39,979.3 41,661.5 2358.8 44,205.3 51,771.5 1070.9 44,336.9 51,813.8 902.3 44,343.4 51,840.5
BB′60 458.7 56,873.4 62,068.6 620.6 56,934.0 62,136.9 369.3 56,934.9 62,138.9
BB′65 994.1 58,176.5 62,328.5 338.5 58,177.6 62,329.0
BB′70 5783.2 60,437.6 62,478.9 2110.9 60,774.9 62,547.4
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criterion for the PDPTWH-1 compared with the PDPTWL, which
implies that the PDPTWH-1 is harder to solve. When comparing
the PDPTWH-2 with the PDPTWL, we see that there are more label
extensions in the algorithm for the PDPTWH-2, which makes the
PDPTWH-2 harder to solve. Comparing the average computation
time for the optimal solutions of the PDPTWH-1 and the
PDPTWH-2, we observe for all instance groups that the average
time to solve the instances to optimality is larger for the PDPTWH-
2 compared with the PDPTWH-1. This implies that allowing the
more general rehandling policy 2 requires additional time. The
major differences in the algorithms for the PDPTWH-1 and the
PDPTWH-2 are the dominance criteria and the label extension
functions. The dominance criterion for the PDPTWH-1 is the most
restrictive. This implies that relatively more labels are eliminated
by the dominance criterion for the PDPTWH-2 compared with the
PDPTWH-1. However, whereas in the algorithm for the PDPTWH-1
only one new label is created when extending a label along an arc,
multiple labels are created when extending a label along
an arc in the algorithm for the PDPTWH-2. This results in a large
number of labels that are created for the PDPTWH-2. The
shorter average computation time for the PDPTWH-1 in compar-
ison with the PDPTWH-2 for δ = 50 suggests that for these in-
stances the relatively larger number of labels eliminated in the
PDPTWH-2 does not counterbalance the large number of extra
labels created.
5. Conclusions

We have introduced the pickup and delivery problemwith time
windows and handling operations, which arises in the transpor-
tation of heavy, dangerous or large items in a less-than-truckload
setting. For this problem, we have defined and analyzed two dif-
ferent rehandling policies. The first rehandling policy only allows
compulsory rehandling. The second policy is a generalization of
the first one, where compulsory rehandling must be done and
preventive rehandling is allowed. For both policies, we have de-
veloped a specific branch-price-and-cut algorithm, where the
pricing problems correspond to elementary shortest path pro-
blems with pickups and deliveries, time windows, a capacity
constraint, and rehandling operations. To solve the pricing pro-
blems, we have developed labeling algorithms that consider the
relative positions of items in a vehicle and thereby break sym-
metry between orders of items. Non-straightforward dominance
criteria were proposed for both policies. The labeling algorithm for
policy 2 extends each label by multiple labels to account for each
feasible combination of rehandled items. Both branch-price-and-
cut algorithms are able to solve instances with up to 75 requests to
optimality. For the instances under study, the travel costs can be
reduced by up to 3.2% by allowing rehandling policy 2 instead of
the more restrictive rehandling policy 1. However, more instances
were solved by the algorithm under policy 1 and the average
computation time for the algorithm under policy 2 is larger than
for the algorithm under policy 1, which can be explained by the
generation of a large number of labels in the labeling algorithm for
policy 2. In conclusion, even though policy 2 allows more flex-
ibility in the rehandling operations, it does not always results in a
larger cost reduction compared with policy 1 for the instances
studied in this paper, and the problem becomes harder to solve.
For the instances under study, the PDPTWH under policy 1 already
provides interesting insights. Compared with the PDPTWL it is
more flexible since it allows rehandling operations. For other in-
stances with larger vehicle capacities and different time windows,
investigating additional handling policies could be interesting. The
algorithms developed in this paper could be adapted to other
versions of the PDPTW, such as the PDPTWMS where rehandling
operations could be allowed, or to a version of the PDPTWH that
would minimize the total route duration as a secondary objective.
Another area of future research is the development of heuristics
for the PDPTWH.
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Appendix

Tables 7 and 8 report detailed computational results for the
PDPTWH-1 and the PDPTWH-2, respectively. Each table
contains Inst, the name of the instance defined as its group and the
number of requests, and for each value of δ, Sec., the total com-
putation time in seconds, z , the value of the lower bound
obtained at the root node before adding cuts, and zn, the value of
the optimal solution. For all instances that were not solved
within the prescribed time limit, we do not report a lower bound
value.
References
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