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We revisit the problem of the bulk-boundary unitarity clash in 2þ 1–dimensional gravity theories,
which has been an obstacle in providing a viable dual two-dimensional conformal field theory for bulk
gravity in anti–de Sitter (AdS) spacetime. Chiral gravity, which is a particular limit of cosmological
topologically massive gravity (TMG), suffers from perturbative log-modes with negative energies inducing
a nonunitary logarithmic boundary field theory. We show here that any fðRÞ extension of TMG does not
improve the situation. We also study the perturbative modes in the metric formulation of minimal massive
gravity—originally constructed in a first-order formulation—and find that the massive mode has again
negative energy except in the chiral limit. We comment on this issue and also discuss a possible solution to
the problem of negative-energy modes. In any of these theories, the infinitesimal dangerous deformations
might not be integrable to full solutions; this suggests a linearization instability of AdS spacetime in the
direction of the perturbative log-modes.

DOI: 10.1103/PhysRevD.96.024010

I. INTRODUCTION

Three-dimensional gravity is a useful theoretical labo-
ratory to test some ideas about quantum gravity. One of the
most promising ideas is the AdS/CFT duality (or more
broadly holography) which, in this context, would amount
to finding a gravity theory in the three-dimensional bulk
spacetime with a unitary, nontrivial boundary conformal
field theory. But even in this simpler setting of “flatland,”
there are certain obstacles in realizing a toy model of
quantum gravity. For example, cosmological Einstein’s
theory in 3D suffers from local triviality (that is, it has
no propagating degrees of freedom) even though it has a
healthy boundary CFT with two copies of the Virasoro
algebra that have positive central charges. Since the
ultimate purpose of studying these theories is to possibly
learn something about the four-dimensional quantum
gravity, which (at least in the low energy limit) have local
degrees of freedom, the local triviality of the theory makes
it rather irrelevant for this purpose.
On the other hand, 3D cosmological Einstein’s gravity

has a globally nontrivial structure such as the existence of
the Banados-Teitelboim-Zanelli (BTZ) black hole [1].
Therefore, its quantum version might still teach us a lot
about the global aspects of quantum gravity. It is highly
interesting that both the existence of a 3D black hole and the
existence of a boundary CFT require a negative cosmologi-
cal constant (that is, the AdS space). For these reasons, a lot
of work has been devoted to extensions of cosmological
Einstein’s theory in the bulk in such a way that the extended
theory has local degrees of freedom while it has the same
boundary structure as Einstein’s gravity with Λ < 0.
However, this has not been an easy task. Let us summarize

what is known along these lines as there have been some
recent exciting developments often followed by the reali-
zation of a potential deficiency in the proposed extensions.
Among the extensions of the 3D Einstein’s theory,

topologically massive gravity (TMG) [2] seems to be the
most natural one with a dynamical graviton. As this theory
will play a major role in the current work, let us summarize
its established properties. Assuming the 3D Newton’s
constant to be positive, G > 0, and adopting the mostly
positive signature for the metric, the theory has a third-
derivative, parity noninvariant action given as

I ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
σðR − 2ΛÞ þ 1

2μ
ημναΓβ

μσ

×

�
∂νΓσ

αβ þ
2

3
Γσ

νλΓλ
αβ

��
; ð1Þ

where σ is dimensionless and μ has the dimension of mass,
and the following properties hold.
(1) TMG has a single massive spin-2 excitation (with

þ2 helicity for μ > 0) in the bulk with a mass
squared given as

m2
g ¼ μ2σ2 þ Λ: ð2Þ

In the Λ → 0 limit, the single massive degree of
freedom (DOF) remains intact, with a mass
mg ¼ jμσj and a positive kinetic energy as long as
σ < 0, which is opposite to Einstein’s theory.
Namely, if one introduces a Tμν to the right-hand
side of the field equations, the coupling between
gravity and matter fields would be opposite to the
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four-dimensional case. This is all well known since
the original work [2]. We should also note that in
the σ → 0 limit, there is no propagating mode; thus.
the pure Chern-Simons theory and pure gravity
do not have local DOF when considered on their
own. Moreover, the pure Chern-Simons theory
cannot accommodate a cosmological constant Λ,
as the field equation would be inconsistent since the
Cotton tensor vanishes for AdS3 or any other
conformally flat metric.

(2) Brown-Henneaux boundary conditions for the
asymptotically AdS3 spacetime lead to two copies
of Virasoro algebra with the left and right central
charges given as

cL;R ¼ 3l
2G

�
σ ∓ 1

μl

�
; Λ≡ −

1

l2
; ð3Þ

where L, R refer to left and right. In the μ → ∞
limit, these reduce to the ones given in [3] for pure
cosmological Einstein’s theory with the choice
σ ¼ 1. It was shown in [4] that the positivity of
the energy of bulk excitations with Brown-
Henneaux boundary conditions requires the theory
to be in the so-called chiral limit, where σ2μ2 ¼ 1

l2.
However, a closer investigation performed in [5]
showed that the theory in the chiral limit allows the
so-called log-modes as solutions which have finite
but negative energy, albeit with weaker boundary
conditions.

Wewill now elaborate on this issue since it plays a central
role in this work. The linearized fluctuations hμν ≡ gμν − ḡμν
around theAdS backgroundmetric (R̄μν ¼ 2Λḡμν) satisfy the
following linearized field equations:

σGL
μν þ

1

μ
CL
μν ¼ 0; ð4Þ

where the linearized cosmological Einstein tensor, Cotton
tensor, and the scalar curvature are

GL
μν ¼ RL

μν −
1

2
ḡμνRL − 2Λhμν;

CL
μν ¼

1

2
ημ

αβ∇̄αGL
νβ þ ðμ ↔ νÞ;

RL ¼ −□̄hþ ∇̄μ∇̄νhμν − 2Λh: ð5Þ

The trace of the linearized field Eq. (4) demand that RL ¼ 0
and one can choose the transverse-traceless gauge
(∇̄μhμν ¼ 0 and h ¼ 0) which is compatible with the trace
equation. This choice leads to a rather remarkable simpli-
fication of the field equation: it splits into three factors as [4]

ðDLDRDmghÞμν ¼ 0; ð6Þ

with the three first-order operators defined as

ðDL=RÞμν ≡ δνμ � lημαν∇̄α;

ðDmgÞμν ≡ δνμ þ
1

μσ
ημ

αν∇̄α:

These operators are mutually commuting save at two
degeneration points σ2μ2 ¼ 1

l2 (which we shall discuss
separately below, as they turn out to be the only relevant
points in the theory). Away from the degeneration points, the
cubic derivative field equations split into three individual
first-derivative equations

ðDLhLÞμν ¼ 0; ðDRhRÞμν ¼ 0; ðDmghmgÞμν ¼ 0; ð7Þ

with the most general solution to (4) given as a sum of all
possible solutions to these equations hμν ¼ hLμν þ hRμν þ h

mg
μν

consistent with the boundary conditions, which arise from
physical requirements such as the finiteness of the energy and
the well-posed nature of the variational problem. Hence, one
must compute the energies of the excitations and, for this
purpose, one needs the Oðh2Þ action yielding (6) upon
variation. This can be easily found to be

I ¼ σ

64πGΛ

Z
d3x

ffiffiffiffiffiffi
−ḡ

p
hμνðDLDRDmghÞμν: ð8Þ

Using the Ostrogradsky method, one finds the energies of
these excitations for the left-right modes as

EL=R ¼ −
cL=R
48πl

Z
d2x

ffiffiffiffiffiffi
−ḡ

p ∇̄0hμνL=R∂th
L=R
μν ; ð9Þ

while for the massive mode, the energy reads

Emg
¼ m2

g

64πμG

Z
d2x

ffiffiffiffiffiffi
−ḡ

p
ηα

0μhανmg
∂th

mg
μν : ð10Þ

One must compute these integrals for all the normalizable
and viable (in the sense discussed above) solutions of the
theory. This is a nontrivial task but itwas elegantly done in [4]
where the solutions were obtained from the fact that they
furnish a representation of the AdS3 algebra that is
SLð2; RÞ × SLð2; RÞ. Primary states are found as usual
and their descendants are computed.
To summarize,we knowall the solutions of the theory and,

for these solutions, the integrands above are negative.
Therefore, to make the energies positive one must have
positive or vanishing central charges and set the mass of the
bulk excitation to zero, i.e., mg ¼ 0. The latter gives the
constraint σ2μ2 ¼ 1

l2. Choosing μ > 0 without loss of gen-
erality, this leads to cL ¼ 0 and cR ¼ 3

μG. For the massive
mode to be nontachyonic, it has to satisfy the Breitenlohner-
Frieedman (BF) bound [6] m2

g ≥ − 1
l2, which it does.
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An additional constraint arises from the energy of the BTZ
black hole. Being locally an Einstein manifold, the BTZ
solution of any kind (rotating or nonrotating) solves theTMG
equation without a change in the metric. Considering the
nonrotating case for which the Chern-Simons term does not
contribute to the energy [7], one obtains EBTZ ¼ Mσ up to a
positive multiplicative constant which we take it to be 1.
Therefore, it seems that choosing σ > 0 ostensiblymakes the
theory bulk and boundary unitary with only a right-moving
CFTwith one copy ofVirasoro algebra on the boundary. This
is the chiral gravity proposed in [4].
However, to satisfy all the bulk and boundary unitarity

constraints together, we have to consider exactly the (up to
now deterred) degenerate limit for which the massive-mode
operator Dmg becomes the same as the left-moving mode
operator DL or the right-moving mode operator DR, render-
ing the theory irreducibly higher derivative. This means that
we have not done what we promised to do, i.e., take all the
viable solutions of the linearized theory. Namely, now we
have additional solutionswhich are not covered byour earlier
“generic” solution. Considering μσ ¼ 1

l, these solutions do
not satisfy ðDLhÞμν ¼ 0, but satisfy the quadratic equation
ðDLDLhÞμν ¼ 0. When these solutions are explicitly con-
structed, one observes that they are of the so-called log-mode
form [5] and do not obey the Brown-Henneaux boundary
conditions. Notwithstanding, these solutions still satisfy the
requirement that spacetime is asymptotically AdS3 with a
weaker decaying behavior and a linearly growing time
profile. Moreover, they have a well-posed variational for-
mulation as shown in [5] and a finite boundary stress tensor.
These solutions have finite, yet negative energy and hence
they cannot be eliminated without further constraints. They
are the ghosts of the chiral gravity, which seem to ruin the
possibility of defining a quantum version of the bulk theory.
We now explain how the chiral theory might escape these

potentially problematic perturbative log-modes. It is true
that these modes survive and ruin the theory in this naive
perturbative setting, but one has to be careful when
applying perturbative techniques in a nonlinear theory such
as the one studied here. For the perturbation theory to make
sense in such a setup, the perturbative solution should be
integrable to a full solution. Namely, in the theory, there
must exist a solution metric gμνðsÞ, with s being a
deformation parameter, for which we have gμνð0Þ ¼ ḡμν
where the latter is the AdS metric. An infinitesimal
deformation of this background is given as

hμν ≡ d
ds

gμνðsÞjs¼0: ð11Þ
If the infinitesimal deformation hμν (obtained as a solution
to the linearized field equations) does not satisfy this
property, even if it solves the linearized equation, it cannot
be integrable to a full solution; i.e., there does not exist an
exact solution gμνðsÞ whose linearized version yields hμν
about the point ḡμν. This implies that the background metric

has a linearization instability [8] and hence perturbation
theory about that background is inconsistent at this order. It
is known that in such a case higher-order terms in the
perturbative expansion bring in constraints on the linear-
order solution. More properly, at the second order the
“Taub charges” (an integral whose integrand is quadratic in
the first-order solution) must vanish. The linearization
instability appears in various contexts in gravity. For
example, for compact Cauchy hypersurfaces, one has
linearization instability in pure general relativity [9]. As
another example, the spacetime effectively has compact
Cauchy hypersurfaces for theories with pure higher-
curvature terms which require stronger decaying conditions
[10]. As a solution to the problem of log-modes in chiral
TMG, it was proposed in [11,12] that the log-modes could
also be eliminated as there is a linearization instability in
chiral TMG. In other words, there are constraints on the
linearized solutions coming at the second order.
There have been other proposals for a viable theory in 3D.

New massive gravity (NMG) [13] is one such example:
instead of the Chern-Simons term, one augments the cos-
mological Einstein theory with the judiciously chosen
quadratic combination K ¼ R2

μν − 3
8
R2 and the resulting

theory has a massive spin-2 excitation with both of the
helicities present. However, this theory is either bulk or
boundary unitary but not both. In fact, it was shown in [14]
that no extension of Einstein’s gravity in 3D that has the same
particle content as NMG can be free of the bulk-boundary
unitarity conflict. For example, cubic, quartic, and higher-
order extensions of NMG that are consistent with the bulk
AdS/CFT constraints, such as the existence of a c-function,
turned out to be nonunitary on the boundary [15,16]. Infinite
order extension of NMG in the form of a Born-Infeld gravity
also fails to be unitary on the boundary [17,18], even though
it has all the nice bulk properties and the highly desired
property of having a unique vacuum a property that neither
minimal massive gravity (MMG) nor its finite-order exten-
sions have. For further work on these theories see [19,20].
After all these vigorous attempts, one might wonder if a

3D gravity exists that is amenable to holography or AdS/
CFT arguments. MMG was proposed as such a theory in
[21], where it is obtained from an action in the first-order
formulation with auxiliary 1-form fields. However, it is still
possible to write down its field equations with the metric
being the only dynamical field, where the TMG’s field
equations are modified with a part of the field equations
coming from the purely quadratic K-gravity [22] whose
Lagrangian is noted above. Namely, considering the
quadratic curvature invariant K, its variation leads to the
tensor Kμν ¼ Jμν þHμν, with Jμν and Hμν given as [23]

Jμν ≡ 1

2
ημρσηναβSραSσβ;

Hμν ≡ 1

2
ημαβ∇αCν

β þ
1

2
ηναβ∇αC

μ
β: ð12Þ
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If the field equations of TMG are extended with Jμν, the
particle content remains intact. On the other hand, if the
field equations of TMG are extended with Hμν, the particle
spectrum doubles: the theory has a massive spin-2 excita-
tion with two helicities that have different masses and an
ostensibly improved boundary behavior [23]. The latter two
theories do not come from covariant actions where the
metric field is the only dynamical variable. The consistency
of the field equations as classical equations are satisfied
with the help of on-shell Bianchi identities. Both theories
were claimed to have an improved boundary behavior.
However, we will investigate the metric perturbations for
the case of MMG and show that one must go to the chiral
limit of the theory for the positivity of the energy of the
massive mode. Unfortunately, exactly at that point, the log-
modes arise as perturbative solutions, which seem to ruin
the unitarity again.
We will also show that there are other log-modes which

are exact solutions of all the theories (TMG, NMG, and
MMG) considered here. These log-modes appear exactly at
the chiral point, but they are of the wave type, coming with
an arbitrary function. Additionally, they are constructed in
the Poincaré patch, as opposed to the global coordinates,
where the perturbative log-mode becomes manifest. Since
the solutions include an arbitrary function and a modified
boundary behavior, they do not pose any threat to the
theory.
At this moment, it is clear that one of the potential

candidates of a viable unitary theory is the chiral gravity
provided that the linearization instability removes the ghost
modes. Still, the question that needs to be addressed is: can
one deform or extend TMG in such a way the chiral limit is
avoided and the log-modes with negative energy disappear?
Even if the answer is no, the linearization instability might
occur in any of these theories since they differ at the
nonlinear level. To answer this question, we extend TMG
with fðRÞ-type terms. We will see that, in these theories,
one still must go to the chiral gravity limit and hence the
perturbative log-modes are still dangerous. As mentioned
earlier, we will also show that, contrary to earlier claims,
MMG does not seem to provide any improvement as long
as the energy of bulk excitations are concerned, and the
theory should be considered only in the chiral limit.

II. TOPOLOGICALLY EXTENDED f ðRÞ GRAVITY

We shall study a generic fðRÞ extension of TMG but, as
it will serve as the basis for the generic theory, first let us
work with the quadratic extension defined by the action

I ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
σðR − 2Λ0Þ þ αR2

þ 1

2μ
ημναΓβ

μσ

�
∂νΓσ

αβ þ
2

3
Γσ

νλΓλ
αβ

��
; ð13Þ

whose source-free field equations read

σ

�
Rμν −

1

2
gμνRþ Λ0gμν

�
þ 2αR

�
Rμν −

1

4
gμνR

�

þ 2αðgμν□ −∇μ∇νÞRþ 1

μ
Cμν ¼ 0: ð14Þ

The theory has two maximally symmetric vacua with the
effective cosmological constants given as

Λ� ¼ σ

12α

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24αΛ0

σ

r �
; ð15Þ

as long as 1 − 24αΛ0

σ ≥ 0; when the bound is saturated, the
two vacua merge. In the limit α → 0, the vacuum with Λþ
disappears and one recovers TMG. Linearization of the
field equations about one of these vacua yields

~σGL
μν þ 2αðḡμν□̄ − ∇̄μ∇̄ν þ 2ΛḡμνÞRL þ 1

μ
CL
μν ¼ 0; ð16Þ

where ~σ ¼ σ þ 12Λα. To work out the particle content of
the theory, let us take the trace of the linearized field
equations; this yields a massive scalar equation

ð□̄ −m2
sÞRL ¼ 0; m2

s ¼
~σ

8α
− 3Λ: ð17Þ

This mode decouples as the theory reduces to the TMG.
Another point to note is that, unlike the TMG case, one
cannot choose a gauge which makes the gauge-invariant
dynamical quantity RL vanish. The transverse-traceless
gauge that we employed above for TMG,which significantly
simplified the computations, is not consistent in this theory.
To decouple the massive spin-0 graviton and the massive
spin-2 graviton, let us employ the methods used in [24]. The
Oðh2Þ action yielding the linearized field Eq. (16) is

IOðh2Þ ¼−
1

32πG

Z
d3x

ffiffiffiffiffiffi
−ḡ

p �
~σhμνGL

μν−2αR2
Lþ

1

μ
hμνCL

μν

�
;

ð18Þ

which can be recast with the help of an auxiliary field φ as

Iðh;φÞ ¼ −
1

32πG

Z
d3x

ffiffiffiffiffiffi
−ḡ

p �
~σhμνGL

μν − 4αφRL

þ 2αφ2 þ 1

μ
hμνCL

μν

�
: ð19Þ

To decouple the φ field from the spin-2 field, let us make the
redefinition hμν ≡ fμν − 4α

~σ ḡμνφ, which leaves the Cotton
part intact and reduces the action to
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IOðh2Þ ¼−
1

32πG

Z
d3x

ffiffiffiffiffiffi
−ḡ

p �
~σfμνGL

μνðfÞ

−
16α2

~σ
φ

�
□̄þ3Λ−

~σ

8α

�
φþ1

μ
fμνCL

μνðfÞ
�
; ð20Þ

fromwhich themass of the scalarmodegiven in (17) follows.
It is important to note that the scalar field comes with the
correct nonghost kinetic energy for ~σ > 0. In this case, one
can bring the Lagrangian of the scalar field to the canonical
formby simply rescalingφ as ~φ ¼ 4αffiffi

~σ
p φ. Once the scalar field

is decoupled, the rest of the action is just theTMGactionwith
a modified Newton’s constant (σ → ~σ); thus, the mass of the
single spin-2 mode is

m2
g ¼ μ2ðσ þ 12ΛαÞ2 þ Λ: ð21Þ

From theOðh2Þ action (20), it is possible to deduce that the
theory has a ghost in the flat space limit (Λ → 0). In [25,26],
wherehμν is decomposed into its irreducible parts in a gauge-
invariant way, it was shown that the massive spin-2 mode
is a ghost if ~σ > 0. On the other hand, if ~σ < 0, the massive
spin-0 is a ghost. Therefore, there is noway to avoid the ghost
mode in flat backgrounds. As we will show, the problem is
cured in the AdS backgrounds.
Before that, we first carry out this computation in another

way, which yields good insight into how the full theory
reduces to the scalar matter-coupled TMG. For this
purpose, let us consider the generic perturbation as

hμν ¼ hTTμν þ ∇̄ðμVνÞ þ ∇̄μ∇̄νϕþ ḡμνψ ; ð22Þ

with ∇̄μhTTμν ¼ 0, hTT ≡ ḡμνhTTμν ¼ 0, and ∇̄μVμ ¼ 0. This
decomposition leads to

GL
μν ¼ −

1

2
ð□̄ − 2ΛÞhTTμν þ 1

2
ðḡμν□̄ − ∇̄μ∇̄ν þ 2ΛḡμνÞψ

RL ¼ −2ð□̄þ 3ΛÞψ : ð23Þ

At this stage, one must note that there is a constraint on ψ as
ð□̄þ 3ΛÞψ ≠ 0; otherwise, the dynamical field is killed.
The linearized Cotton tensor is susceptible only to the
transverse-traceless part and hence CL

μνðhαβÞ ¼ CL
μνðhTTαβ Þ.

Then (16) becomes

−
~σ

2
ð□̄−2ΛÞhTTμν −

1

2μ
ημ

αβ∇̄αð□̄−2ΛÞhTTβν ¼TTT
μν ; ð24Þ

where the scalar mode appears as a source term with the
traceless energy-momentum tensor

TTT
μν ¼ 4α

�
ḡμν
3

□̄ − ∇̄μ∇̄ν

�
ð□̄ −m2

sÞψ : ð25Þ

In (24) the Cotton part does not look explicitly symmetric,
but it is nevertheless symmetric as can be easily checked.

Since TTT
μν vanishes on shell, the massive spin-2 graviton

equation reduces exactly to the TMG form with a modified
mass given before (21).
We can now summarize the effects of adding the αR2

term to the TMG action: the effective cosmological con-
stant changes, a massive spin-0 degree of freedom is
introduced, and the mass of the single massive spin-2
particle is modified nontrivially from that of TMG. All of
these modifications also affect the boundary theory.
However, the analysis of the massive spin-2 mode reduces
to the pure TMG case with the identification (σ → ~σ), as it
should be apparent from the Oðh2Þ action (20). With this
information at hand, let us now restudy the bulk and
boundary unitary. First of all, we have the massive spin-2
particle that should obey the BF condition

m2
g ¼ μ2ðσ þ 12ΛαÞ2 þ Λ ≥ Λ; ð26Þ

which is automatically satisfied. Furthermore, expressions
for the excitations’ energies [(9) and (10)] remain intact, but
in the explicit solutions of the field equations, compared to
the TMG case that has the σμ combination, we now have
the modified value ~σμ. Hence, the conditions on the energy
of the excitations can be simply recast as

cL;R ¼ 3l
2G

�
σ −

12α

l2
∓ 1

μl

�
≥ 0;

μ2l2

�
σ −

12α

l2

�
2

≤ 1; ð27Þ

the latter coming from the energy of the massive spin-2
mode. Just like in TMG, these three conditions are
compatible only in the chiral gravity limit for which one has

μl
�
σ −

12α

l2

�
¼ 1; ð28Þ

which yields the vanishing of the bulk massive spin-2 and
left-moving modes since cL ¼ 0. We also have a spin-0
mode, which must be a nonghost and nontachyonic; we
thus require

m2
s ¼

σ

8α
−
3Λ
2

≥ 0: ð29Þ

Since the BTZ black hole is locally AdS3, it also solves
our theory defined by (14). The positivity of its energy
should also be imposed as a consistency condition

EBTZ ¼ Mðσ þ 12ΛαÞ > 0; ð30Þ

where we again dropped an irrelevant (positive) multipli-
cative constant.
Finally, these conditions must be compatible with the

existence of an AdS vacuum with the value given as (15).
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One can show that there are regions in the fσ; μ;Λ0; αg
parameter space that satisfy all the constraints. A detailed
analysis of the total parameter space is not necessary for our
purposes. Let us consider a specific example: choosing the
þ branch in (15) and setting σ ¼ 1, one finds

Λ0 ¼ −2μ2; Λ ¼ −4μ2;

α ¼ −
1

48μ2
; m2

s ¼ 0; ð31Þ

in addition to m2
g ¼ 0, which is already the case in the

chiral limit.
Just like TMG and MMG, the R2 extension of TMG or

any other fðRÞ extension (to be discussed below) have two
different kinds of log-modes at the chiral point. The exact
wavelike log-mode looks too complicated in the global
AdS3 coordinates; hence, we will depict it in the Poincaré
patch in the next section. The more dangerous perturbative
log-mode can be written in the global coordinates; its
problematic properties were studied in [5].
Now, consider the generic fðRÞ gravity coupled to the

Chern-Simons theory with the action

I ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
fðRÞ þ 1

2μ
ημναΓβ

μσ

×
�
∂νΓσ

αβ þ
2

3
Γσ

νλΓλ
αβ

��
: ð32Þ

The vacuum and the mass content of this theory can be
obtained from the so-called equivalent quadratic action [27]
defined by the Lagrangian density

fquad–equal ¼ σðR − 2Λ0Þ þ αR2; ð33Þ
where we did not include the Chern-Simons part, which can
be added later. The parameters σ, Λ0, and α can be found in
terms of the function fðRÞ and its derivatives as

σ ¼ fRðR̄Þ − 6ΛfRRðR̄Þ;

σΛ0 ¼ −
fðR̄Þ
2

þ 3ΛfRðR̄Þ − 9Λ2fRRðR̄Þ; ð34Þ

where fRðR̄Þ ¼ ∂f
∂R jR̄, etc. Finally, the vacuum equation

σðΛ − Λ0Þ − 6αΛ2 ¼ 0 should also be satisfied. This
analysis shows that the quadratic theory we studied above
is a template for all fðRÞ theories: as far as their particle
content and vacua are considered, these theories boil down
to the quadratic theory that we discussed above. So, given
the explicit form of the Lagrangian, one can work out the
constraints coming from the bulk and boundary unitarity.
Using the equivalence of fðRÞ gravity and the scalar-

tensor theory [28], fðRÞ-extended TMG can be mapped to
a scalar-matter coupled TMG with a modified Newton’s
constant. The action (13) can be written up to certain field
redefinitions and boundary terms as

I ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
βR −

1

2
∂αω∂αω − VðωÞ

þ 1

2μ
ημναΓβ

μσ

�
∂νΓσ

αβ þ
2

3
Γσ

νλΓλ
αβ

�
; ð35Þ

where the potential VðωÞ is given by

VðωÞ ¼ e
− 3ω

2
ffiffi
β

p
�
2σΛ0 þ

1

4α
ðβe

ω

2
ffiffi
β

p
− σÞ2

�
; ð36Þ

and β is a positive constant modifying the Newton’s
constant.
Having established the equivalence of our model with

TMG coupled to the scalar matter, let us briefly revisit the
Birkhoff theorem for TMG, which was formulated in
[29,30]. It states that the most general solution of TMG
with the topology Σ2 × S is static and locally Einstein
trivial; i.e., the Cotton tensor vanishes for the solution. As
discussed in [30], the conclusion does not change for the
scalar matter coupled theory since Tu

ϕ ¼ 0 and Tv
ϕ ¼ 0,

where u and v are light-cone coordinates on Σ2, and Tμ
ν is

the stress-energy tensor of the matter coupled theory. From
the equivalence, the theorem is also valid for the fðRÞ-
modified TMG, which this time follows from the fact that
Au

ϕ ¼ 0 andAv
ϕ ¼ 0, whereAμ

ν is the contribution of the
fðRÞ term to field equations. Therefore, to get contributions
from the Chern-Simons term, one needs to consider the
case with a twist; namely, the Killing vector should not be
hypersurface orthogonal [29].

III. MINIMAL MASSIVE GRAVITY
AT THE CHIRAL LIMIT

In [31,32], the chiral limit of MMG was studied but it
was not realized that the theory is well defined only in the
chiral limit once all the unitarity constraints are taken into
account. In this section, we will briefly discuss the analysis
for MMG in the metric formulation and prove this result.
The source-free field equations of MMG are given as [21]

σGμν þ Λ0gμν þ
1

μ
Cμν þ

γ

μ2
Jμν ¼ 0; ð37Þ

where the Jμν tensor given in (12) explicitly reads

Jμν ¼ Gρ
μGρν −

1

2
gμνGρσGρσ þ 1

4
GμνRþ 1

16
gμνR2; ð38Þ

which is not covariant divergence-free but the field equations
are nevertheless consistent on shell.
We now take an approach different than [21] and study

the properties of the theory starting from its metric field
Eq. (37). Linearizing the field equations around one of its
two vacua yields
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�
σ −

γΛ
2μ2

�
GL
μν þ

1

μ
CL
μν ¼ 0; ð39Þ

which is nothing but the linearized TMG with a modified
Newton’s constant. Hence, just like TMG, the theory has a
simple massive bulk parity-noninvariant spin-2 graviton
with a mass squared

m2
g ¼ μ2

�
σ −

γΛ
2μ2

�
2

þ Λ: ð40Þ

For the computation of the central charges, we use the
method of [33], where the central charges are obtained as
conserved charges corresponding to the asymptotic Killing
vectors where the linearized equations and the assumption
of Brown-Henneaux boundary conditions are enough for
the computation. It suggests that the left and right central
charges of the boundary CFT are

cL ¼ 3l
2G3

�
σ þ γ

2μ2l2
−

1

μl

�
;

cR ¼ 3l
2G3

�
σ þ γ

2μ2l2
þ 1

μl

�
: ð41Þ

The above discussion shows that the ensuing discussion
will not be different from that of TMG, but, for the sake of
completeness, let us give a little more detail on the energies
of the excitations following [4]. For this purpose one needs
to find the Oðh2Þ action yielding the linearized field
Eq. (37), which up to a boundary term reads as

I ¼ 1

64πG

Z
d3x

ffiffiffiffiffiffi
−ḡ

p �
−
�
σ þ γ

2μ2l2

�
∇̄ρhμν∇̄ρhμν

þ
2ðσ þ γ

2μ2l2Þ
l2

hμνhμν−
1

μ
∇̄ρhμνημρλ

�
□̄þ 2

l2

�
hλν

�
:

ð42Þ

The conjugate momenta for the field hμν are

Πð1Þμν ¼ −
ffiffiffiffiffiffi
−ḡ

p
64πG

�
∇̄0

�
2

�
σ þ γ

2μ2l2

�
hμν þ 1

μ
ημρλ∇̄ρhλν

�

−
1

μ
ηρ

0μ

�
□̄þ 2

l2

�
hρν

�
; ð43Þ

which, upon use of the field equations, yield three indi-
vidual conjugate momenta for the corresponding degrees of
freedom as

Πð1Þμν
M ¼

ffiffiffiffiffiffi
−ḡ

p
64πG

�
−
�
σþ γ

2μ2l2

�
∇̄0hμν

þ1

μ

�
μ2−

1

l2

�
ηρ

0μhρνM

�
;

Πð1Þμν
L ¼−

ffiffiffiffiffiffi
−ḡ

p
64πG

�
2

�
σþ γ

2μ2l2

�
−

1

μl

�
∇̄0hμνL ;

Πð1Þμν
R ¼−

ffiffiffiffiffiffi
−ḡ

p
64πG

�
2

�
σþ γ

2μ2l2

�
þ 1

μl

�
∇̄0hμνR ; ð44Þ

where we define the right- or left-moving and the massive
modes through the first-order equations as

ðDL=RhL=RÞμν ¼ hL=Rμν � lημαβ∇αh
L=R
βν ;

ðDMhMÞμν ¼ hMμν −
1

μðσ þ γ
2μ2l2Þ

ημ
αβ∇αhMβν: ð45Þ

Since we are dealing with a third-order field theory, we
need to employ the well-known Ostrogradsky procedure
and introduce another canonical coordinate in the phase
space, which is the “time-derivative” of the spin-2 field
defined as Kμν ≡ ∇̄0hμν. The conjugate momenta of these
new coordinates read as

Πð2Þμν ¼ −
ffiffiffiffiffiffi
−ḡ

p
ḡ00

64πGμ
ηρ

λμ∇̄λhρν; ð46Þ

which once again split into three parts as

Πð2Þμν
M ¼ −

ffiffiffiffiffiffi
−ḡ

p
ḡ00

64πG

�
σ þ γ

2μ2l2

�
hμνM;

Πð2Þμν
R ¼

ffiffiffiffiffiffi
−ḡ

p
ḡ00

64πGμl
hμνL ;

Πð2Þμν
L ¼ −

ffiffiffiffiffiffi
−ḡ

p
ḡ00

64πGμl
hμνR : ð47Þ

Finally we have all the ingredients to write down the
Ostrogradsky Hamiltonian

H ≡
Z

d2xð _hμνΠð1Þμν þ _KiμΠð2Þiμ − LÞ; ð48Þ

from which follow the energies of the excitations for the left
and right modes as (note that the Lagrangian vanishes on
shell)

EL=R ¼ −
cL=R
48πl

Z
d2x

ffiffiffiffiffiffi
−ḡ

p ∇̄0hμνL=R∂th
L=R
μν ; ð49Þ

while for the massive mode, the energy reads
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Em2
g
¼ m2

g

64πμG

Z
d2x

ffiffiffiffiffiffi
−ḡ

p
ηρ

0μhρνmg∂th
mg
μν : ð50Þ

The solutions of the linearized equations can be classified
using the representations of the algebra SLð2; RÞ×
SLð2; RÞ. As in the case of TMG, the solutions for the
left- or right-moving modes correspond to the weights (2,0)
and (0,2) (see [4] for the explicit form of the solutions). The
weights for the massive mode are modified as

h ¼ 3

2
þ
�
σ þ γ

2μ2l2

�
μl
2
;

h̄ ¼ −
1

2
þ
�
σ þ γ

2μ2l2

�
μl
2
; ð51Þ

where the terms in parentheses should be positive for the
positivity of the energy of the BTZ black hole, which is
given by

EBTZ ¼
�
σ þ γ

2μ2l2

�
M; ð52Þ

up to a multiplicative constant. Using the explicit form of
the solutions, one can show that the integrals in the energy
expressions (49) and (50) are negative. Here let us depict
the results for the primary fields only. For the left and right
modes one obtains a simple expression

EL=R ¼ cL=R
36l

: ð53Þ

For the massive mode the result of the integral yields

Em2
g
¼ m2

gl
64μG

fðxÞ; ð54Þ

where x is a dimensionless parameter defined as

x≡
�
σ þ γ

2μ2l2

�
μl
2
; ð55Þ

and

fðxÞ ¼ 24xþ5ð2xþ 1Þ
3þ 2x

×

�
−
ð3þ 2xÞ
2ðxþ 1Þ 2F1½2ðxþ 1Þ; 4xþ 5; 2xþ 3;−1�

þ 2F1½2xþ 3; 4xþ 5; 2ðxþ 2Þ;−1�
�

ð56Þ

where the 2F1 functions are the hypergeometric functions.
The crucial point here is that for the physical regions x ∈
½0;∞Þ the function fðxÞ is monotonically decreasing and
takes the values as fðxÞ ∈ ½−1;−2Þ, which yields a

negative energy for the massive mode for generic m2
g.

One obtains a similar result for the descendants. Therefore,
our computation implies that the bulk and boundary
unitarity coexist only in the chiral limit, where m2

g ¼ 0

and cL ¼ 0. The drawback is that the perturbative log-
modes arise at this point again.

IV. EXACT LOG-MODES

As mentioned before, at the chiral point, there appear
also exact log-modes. In order to study them, let us
consider the following ansatz:

ds2 ¼ l2

z2
ðdudvþ dz2Þ þ Fðu; zÞdu2: ð57Þ

Taking the trace of the field Eq. (37) gives a relation
between the two parameters as

4l2Λ0 þ
γ

l2μ2
þ 4σ ¼ 0; ð58Þ

but the traceless part yields a third-order differential
equation [34]

p∂3
zFðu; zÞ − ∂z

�∂zFðu; zÞ
z

�
¼ 0; ð59Þ

where we have defined

p≡ 2lμ
γ þ 2l2μ2σ

¼ cR − cL
cR þ cL

: ð60Þ

As long as p ≠ �1, the generic solution is

Fðu; zÞ ¼ z1þ
1
p

1þ 1
p

c1 þ c2z2 þ c3: ð61Þ

On the other hand, for p ¼ �1, the structure of the
equation changes completely and one has the following
solutions:

Fðu; zÞ ¼ fðuÞ log z; for p ¼ 1ðcL ¼ 0Þ; ð62Þ

and

Fðu; zÞ ¼ fðuÞz2 log z;
for p ¼ −1ðcR ¼ 0Þ; ð63Þ

where fðuÞ is a generic undetermined profile function of
the null coordinate u. One can transform this solution to the
global AdS coordinates using the transformations given in
[35], but the resulting metric is highly complicated. Note
also that these are the wave solutions of the MMG.
Inserting these exact log-modes into the field equations
of both TMG and NMG reveals that they are the solutions
of these theories too, which had not been noticed in the
literature before.
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V. CONCLUSIONS

To summarize the current situation regarding the bulk-
boundary unitarity clash of 3D gravity theories, we note that
the only known theory free of this clash is the cosmological
Einstein’s theory, which is locally trivial. On the other hand,
when one has local nontrivial bulk dynamics, as in the case
of extended TMG, NMG, MMG, Born-Infeld gravity, etc.
then a clash of bulk and boundary unitarity arises.We should
note that our conclusion regarding MMG is only about its
metric formulation, where we integrated the linearized
metric Eq. (39) to arrive at the linearized action (42), and
it could be possible thatMMG still survives in the first-order
formulation.1 Our results also have implications for possible
MMG-like theories in higher dimensions.As noted in [36], it
might be possible to construct theories in higher dimensions
whose field equations are consistent on shell. However, it is
not clear to us whether a nongeometric action as in the case
ofMMG is guaranteed to exist or not. Therefore, theremight
be an ambiguity in probing the physical properties of such
theories because our results contradict with the result
obtained by making use of the nongeometric action of the
theory.
Since bartering triviality with nonunitarity is not a good

deal, one might worry if the current situation is an impasse
and there simply does not exist a dynamical theory of
gravity which is unitary both in the bulk and on the
boundary, even in the simpler setting of 3D. The situation
is actually not that bleak: there is still the possibility that the
chiral gravity versions of the above-mentioned dynamical
theories have linearization instability in AdS and the
problematic perturbative log-modes of [5] are not inte-
grable to full solutions; namely, these modes could be
artifacts of the first-order perturbation theory. Let us
expound on this a little more.
In the case of pure GR, the linearization instability is

known to occur for solutions with compact Cauchy
surfaces [8,9] and spaces with Killing vectors. A similar
phenomenon was also observed in four dimensions in the
pure quadratic gravity with the action

I ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p ðαCμνσρCμνσρ þ βR2Þ: ð64Þ

When αβ ≥ 0, even though this theory admits linearized
solutions with negative energy, all exact solutions
possess zero energy (see [37] for the case of scale invariant
gravity). Hence, there is a linearization instability about

the flat space. In this theory, higher derivative terms
require faster decaying conditions for the metric and this
leads to an effective compactification of the Cauchy
surface.
There have been vigorous attempts [11,12] to show the

existence of the linearization instability in the chiral
TMG. However, there are still some open questions
regarding the choices of boundary conditions: namely,
one imposes the Brown-Henneaux–type boundary con-
ditions to obtain the linearization instability, but of course
ideally one expects that out of all possible boundary
conditions that yield the asymptotically AdS space,
Brown-Henneaux conditions (not the weaker logarithmic
ones) are forced to eliminate the log-modes. Moreover, if
there is a linearization instability of AdS in chiral gravity,
this not only casts a question on the perturbative log-
modes but it also shows that all the perturbative treatment
at the first order is in doubt. In this work, motivated by
the earlier results obtained in the case of 4D pure
quadratic gravity, we studied various higher derivative
extensions of TMG, i.e., the fðRÞ-type modifications and
MMG, which was previously proposed as a possible
solution to the bulk-boundary unitarity conflict. We
showed that, at the linearized level, these modifications
only change the effective Newton’s constant and one ends
up with the same problems that occur in TMG. All these
theories should be considered in the chiral limit and they
allow the log-mode solutions with negative energy at the
linearized level. However, at the nonlinear level, these
theories are expected to behave differently, as far as the
issue of the linearization instability is concerned, since
they produce different higher-order terms which will
constrain the linear perturbative result differently.
Therefore, our results invite a systematic study of these
theories. A detailed account of linearization instability
will be given elsewhere [38].
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