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Abstract10

We develop a generalization of existing Curry-Howard interpretations of (binary) session types11

by relying on an extension of linear logic with features from hybrid logic, in particular modal worlds12

that indicate domains. These worlds govern domain migration, subject to a parametric accessibility13

relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed14

process framework for domain-aware, message-passing concurrency. Its logical foundations ensure15

that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures16

that processes only communicate with accessible domains and so respect the accessibility relation.17

Remarkably, our domain-aware framework can specify scenarios in which domain information18

is available only at runtime; flexible accessibility relations can be cleanly defined and statically19

enforced. As a specific application, we introduce domain-aware multiparty session types, in which20

global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a21

precise analysis of these multiparty protocols by reduction to our binary domain-aware framework:22

complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring23

also the principled transfer of key correctness properties from the binary to the multiparty setting.24
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1 Introduction34

The goal of this paper is to show how existing Curry-Howard interpretations of session35

types [10, 11] can be generalized to a domain-aware setting by relying on an extension of36

linear logic with features from hybrid logic [40, 5]. These extended logical foundations of37

message-passing concurrency allow us to analyze complex domain-aware concurrent systems38

(including those governed by multiparty protocols) in a precise and principled manner.39

Software systems typically rely on communication between heterogeneous services; at their40

heart, these systems rely on message-passing protocols that combine mobility, concurrency,41

and distribution. As distributed services are often virtualized, protocols should span diverse42

software and hardware domains. These domains can have multiple interpretations, such as43

the location where services reside, or the principals on whose behalf they act. Concurrent44
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35:2 Domain-Aware Session Types

behavior is then increasingly domain-aware: a partner’s potential for interaction is influenced45

not only by the domains it is involved in at various protocol phases (its context), but also46

by connectedness relations among domains. Moreover, domain architectures are rarely fully47

specified: to aid modularity and platform independence, system participants (e.g., developers,48

platform vendors, service clients) often have only partial views of actual domain structures.49

Despite their importance in communication correctness and trustworthiness at large, the50

formal status of domains within typed models of message-passing systems remains unexplored.51

This paper contributes to typed approaches to the analysis of domain-aware commu-52

nications, with a focus on session-based concurrency. This approach specifies the intended53

message-passing protocols as session types [30, 31, 24]. Different type theories for binary54

and multiparty (n-ary) protocols have been developed. In both cases, typed specifications55

can be conveniently coupled with π-calculus processes [36], in which so-called session chan-56

nels connect exactly two subsystems. Communication correctness usually results from two57

properties: session fidelity (type preservation) and deadlock freedom (progress). The former58

says that well-typed processes always evolve to well-typed processes (a safety property); the59

latter says that well-typed processes will never get into a stuck state (a liveness property).60

A key motivation for this paper is the sharp contrast between (a) the growing relevance61

of domain-awareness in message-passing, concurrent systems and (b) the expressiveness of62

existing session type frameworks, binary and multiparty, which cannot adequately specify63

(let alone enforce) domain-related requirements. Indeed, existing session types frameworks,64

including those based on Curry-Howard interpretations [10, 47, 14], capture communication65

behavior at a level of abstraction in which even basic domain-aware assertions (e.g., “Shipper66

resides in domain AmazonUS”) cannot be expressed. As an unfortunate consequence, the67

effectiveness of the analysis techniques derived from these frameworks is rather limited.68

To better illustrate our point, consider a common distributed design pattern: a middleware69

agent (mw) which answers requests from clients (cl), sometimes offloading the requests to a70

server (serv) to better manage local resource availability. In the framework of multiparty71

session types [32] this protocol can be represented as the global type:72

cl�mw:{request〈req〉. mw�cl:{ reply〈ans〉. mw�serv:{done.end} , wait.mw�serv:{req〈data〉.
serv�mw:{reply〈ans〉.mw�cl:{reply〈ans〉.end}}}}}

The client first sends a request to the middleware, which answers back with either a reply73

message containing the answer or a wait message, signaling that the server will be contacted to74

produce the final reply. While this multiparty protocol captures the intended communication75

behavior, it does not capture that protocols for the middleware and the server often involve76

some form of privilege escalation or specific authentication—ensuring, e.g., that the server77

interaction is adequately isolated from the client, or that the escalation must precede the78

server interactions. These requirements simply cannot be represented in existing frameworks.79

Our work addresses this crucial limitation by generalizing Curry-Howard interpretations80

of session types by appealing to hybrid logic features. We develop a logically motivated81

typed process framework in which worlds from modal logics precisely and uniformly define82

the notion of domain in session-based concurrency. At the level of binary sessions, domains83

manifest themselves through point-to-point domain migration and communication. In84

multiparty sessions, domain migration is specified choreographically through the new construct85

p moves q̃ toω forG1 ; G2, where participant p leads a migration of participants q̃ to domain86

ω in order to perform protocol G1, who then migrate back to perform protocol G2.87

Consider the global type Offload , mw� serv:{req〈data〉.serv� mw:{reply〈ans〉.end}}88

in our previous example. Our framework allows us to refactor the global type above as:89

cl�mw:{request〈req〉. mw�cl:{ reply〈ans〉.mw�serv:{done.end} , wait.mw�serv:{init.
mw moves serv towpriv for Offload ; mw�cl:{reply〈ans〉.end}}}}
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By considering a first-class multiparty domain migration primitive at the type and process90

levels, we can specify that the offload portion of the protocol takes place after the middleware91

and the server migrate to a private domain wpriv, as well as ensuring that only accessible92

domains can be interacted with. For instance, the type for the server that is mechanically93

projected from the protocol above ensures that the server first migrates to the private domain,94

communicates with the middleware, and then migrates back to its initial domain.95

Perhaps surprisingly, our domain-aware multiparty sessions are studied within a context96

of logical binary domain-aware sessions, arising from a propositions-as-types interpretation97

of hybrid linear logic [22, 18], with strong static correctness guarantees derived from the98

logical nature of the system. Multiparty domain-awareness arises through an interpretation99

of multiparty protocols as medium processes [7] that orchestrate the multiparty interaction100

while enforcing the necessary domain-level constraints and migration steps.101

Contributions The key contributions of this work are:102

1. A process model with explicit domain-based migration (§ 2). We present a session103

π-calculus with domains that can be communicated via novel domain movement prefixes.104

2. A session type discipline for domain-aware interacting processes (§ 3). Building upon105

an extension of linear logic with features from hybrid logic [22, 18] we generalize the106

Curry-Howard interpretation of session types [10, 11] by interpreting (modal) worlds107

as domains where session behavior resides. In our system, types can specify domain108

migration and communication; domain mobility is governed by a parametric accessibility109

relation. Judgments stipulate the services used and realized by processes and the domains110

where sessions should be present. Our type discipline statically enforces session fidelity,111

global progress and, notably, that communication can only happen between accessible112

domains.113

3. As a specific application, we introduce a framework of domain-aware multiparty ses-114

sions (§ 4) that uniformly extends the standard multiparty session framework of [32]115

with domain-aware migration and communication primitives. Our development leverages116

our logically motivated domain-aware binary sessions (§ 3) to give a precise semantics117

to multiparty sessions through a (typed) medium process that acts as an orchestrator of118

domain-aware multiparty interactions, lifting the strong correctness properties of typed119

processes to the multiparty setting. We show that mediums soundly and completely120

encode the local behaviors of participants in a domain-aware multiparty session.121

We conclude with a discussion of related work (§ 5) and concluding remarks (§ 6).122

2 Process Model123

We introduce a synchronous π-calculus [42] with labeled choice and explicit domain migration124

and communication. We write ω, ω′, ω′′ to stand for a concrete domain (w,w′, . . .) or a125

domain variable (α, α′, . . .). Domains are handled at a high-level of abstraction, with their126

identities being attached to session channels. Just as the π-calculus allows for communication127

over names and name mobility, our model also allows for domain communication and mobility.128

These features are justified with the typing discipline of § 3.129

I Definition 2.1. Given infinite, disjoint sets Λ of names (x, y, z, u, v), L of labels l1, l2, . . . ,130

W of domain tags (w,w′, w′′) and V of domain variables (α, β, γ), respectively, the set of131

processes (P,Q,R) is defined by132

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| [x↔y] | x .

{
li : Pi

}
i∈I

| x /li;P
| x〈y@ω〉.P | x(y@ω).P | x〈ω〉.P | x(α).P

133
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35:4 Domain-Aware Session Types

Domain-aware prefixes are present only in the last line. As we make precise in the typed134

setting of § 3, these constructs realize mobility and domain communication, in the usual sense135

of the π-calculus: migration to a domain is always associated to mobility with a fresh name.136

The operators 0 (inaction), P | Q (parallel composition) and (νy)P (name restriction)137

are standard. We then have x〈y〉.P (send y on x and proceed as P ), x(y).P (receive z on x138

and proceed as P with parameter y replaced by z), and !x(y).P which denotes replicated139

(persistent) input. The forwarding construct [x↔ y] equates x and y; it is a primitive140

representation of a copycat process. The last two constructs in the second line define a141

labeled choice mechanism: x .
{

li : Pi
}
i∈I is a process that awaits some label lj (with j ∈ I)142

and proceeds as Pj . Dually, the process x /li;P emits a label li and proceeds as P .143

The first two operators in the third line define explicit domain migration: given a domain144

ω, x〈y@ω〉.P denotes a process that is prepared to migrate the communication actions in P145

on endpoint x, to session y on ω. Complementarily, process x(y@ω).P signals an endpoint x146

to move to ω, providing P with the appropriate session endpoint that is then bound to y. In147

a typed setting, domain movement will be always associated with a fresh session channel.148

Alternatively, this form of coordinated migration can be read as an explicit form of agreement149

(or authentication) in trusted domains. Finally, the last two operators in the third line define150

output and input of domains, x〈ω〉.P and x(α).P , respectively. These constructs allow for151

domain information to be obtained and propagated across processes dynamically.152

Following [41], we abbreviate (νy)x〈y〉 and (νy)x〈y@ω〉 as x〈y〉 and x〈y@ω〉, respectively.153

In (νy)P , x(y).P , and x(y@ω).P the distinguished occurrence of name y is binding with154

scope P . Similarly for α in x(α).P . We identify processes up to consistent renaming of bound155

names and variables, writing ≡α for this congruence. P{x/y} denotes the capture-avoiding156

substitution of x for y in P . While structural congruence ≡ expresses standard identities on157

the basic structure of processes (cf. [9]), reduction expresses their behavior.158

Reduction (P → Q) is the binary relation defined by the rules below and closed under159

structural congruence; it specifies the computations that a process performs on its own.160

x〈y〉.Q | x(z).P → Q | P{y/z} x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
x〈y@ω〉.P | x(z@ω′).Q→ P | Q{y/z} x〈ω〉.P | x(α).Q→ P | Q{ω/α}
(νx)([x↔y] | P )→ P{y/x} Q→ Q′ ⇒ P | Q→ P | Q′
P → Q⇒ (νy)P → (νy)Q x /lj ;P | x .

{
li : Qi

}
i∈I → P | Qj (j ∈ I)

161

For the sake of generality, reduction allows dual endpoints with the same name to interact,162

independently of the domains of their subjects. The type system introduced next will ensure,163

among other things, local reductions, disallowing synchronisations among distinct domains.164

3 Domain-aware Session Types via Hybrid Logic165

This section develops a new domain-aware formulation of binary session types. Our system166

is based on a Curry-Howard interpretation of a linear variant of so-called hybrid logic, and167

can be seen as an extension of the interpretation of [10, 11] to hybrid (linear) logic. Hybrid168

logic is often used as an umbrella term for a class of logics that extend the expressiveness of169

propositional logic by considering modal worlds as syntactic objects that occur in propositions.170

As in [10, 11], propositions are interpreted as session types of communication channels,171

proofs as typing derivations, and proof reduction as process communication. As main172

novelties, here we interpret: logical worlds as domains; the hybrid connective @ω A as the173

type of a session that migrates to an accessible domain ω; and type-level quantification over174

worlds ∀α.A and ∃α.A as domain communication. We also consider a type-level operator175
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↓α.A (read “here”) which binds the current domain of the session to α in A. The syntax of176

domain-aware session types is given in Def. 3.1, where w,w1, . . . stand for domains drawn177

from W, and where α, β and ω, ω′ are used as in the syntax of processes.178

I Definition 3.1 (Domain-aware Session Types). The syntax of types (A,B,C) is defined by179

A ::= 1 | A( B | A⊗B | &{li : Ai}i∈I | ⊕{li : Ai}i∈I | !A
| @ω A | ∀α.A | ∃α.A | ↓α.A180

Types are the propositions of intuitionistic linear logic where the additives A&B and A⊕B181

are generalized to a labelled n-ary variant. Propositions take the standard interpretation as182

session types, extended with hybrid logic operators [5], with worlds interpreted as domains183

that are explicitly subject to an accessibility relation (in the style of [43]) that is tracked184

by environment Ω. Intuitively, Ω is made up of direct accessibility hypotheses of the form185

ω1 ≺ ω2, meaning that domain ω2 is accessible from ω1.186

Types are assigned to channel names; a type assignment x:A[ω] enforces the use of name187

x according to session A, in the domain ω. A type environment is a collection of type188

assignments. Besides the accessibility environment Ω just mentioned, our typing judgments189

consider two kinds of type environments: a linear part ∆ and an unrestricted part Γ. They190

are subject to different structural properties: weakening and contraction principles hold for191

Γ but not for ∆. Empty environments are written as ‘ · ’. We then consider two judgments:192

(i) Ω ` ω1 ≺ ω2 and (ii) Ω; Γ; ∆ ` P :: z:A[ω]193

Judgment (i) states that ω1 can directly access ω2 under the hypotheses in Ω. We write194

≺∗ for the reflexive, transitive closure of ≺, and ω1 6≺∗ ω2 when ω1 ≺∗ ω2 does not hold.195

Judgment (ii) states that process P offers the session behavior specified by type A on196

channel z; the session s resides at domain ω, under the accessibility hypotheses Ω, using197

unrestricted sessions in Γ and linear sessions in ∆. Note that each hypothesis in Γ and ∆ is198

labeled with a specific domain. We omit Ω when it is clear from context.199

Typing Rules Selected typing rules are given in Fig. 1; see [9] for the full listing. Right200

rules (marked with R) specify how to offer a session of a given type, left rules (marked201

with L) define how to use a session. The hybrid nature of the system induces a notion of202

well-formedness of sequents: a sequent Ω; Γ; ∆ ` P :: z : C[ω1] is well-formed if Ω ` ω1 ≺∗ ω2203

for every x:A[ω2] ∈ ∆, which we abbreviate as Ω ` ω1 ≺∗ ∆, meaning that all domains204

mentioned in ∆ are accessible from ω1 (not necessarily in a single direct step). No such205

domain requirement is imposed on Γ. If an end sequent is well-formed, every sequent in its206

proof will also be well-formed. All rules (read bottom-up) preserve this invariant; only (cut),207

(copy), (@R), (∀L) and (∃R) require explicit checks, which we discuss below. This invariant208

statically excludes interaction between sessions in accessible domains (cf. Theorem 3.7).209

We briefly discuss some of the typing rules, first noting that we consider processes modulo210

structural congruence; hence, typability is closed under ≡ by definition. Type A ( B211

denotes a session that inputs a session of type A and proceeds as B. To offer z:A( B at212

domain ω, we input y along z that will offer A at ω and proceed, now offering z:B at ω:213

((R)
Ω; Γ; ∆, y:A[ω] ` P :: z:B[ω]

Ω; Γ; ∆ ` z(y).P :: z:A( B[ω]
(⊗R)

Ω; Γ; ∆1 ` P :: y:A[ω] Ω; Γ; ∆2 ` Q :: z:B[ω]
Ω; Γ; ∆1,∆2 ` z〈y〉.(P | Q) :: z:A⊗B[ω]214

Dually, A⊗B denotes a session that outputs a session that will offer A and continue as B.215

To offer z:A⊗B, we output a fresh name y with type A along z and proceed offering z:B.216

CONCUR 2019



35:6 Domain-Aware Session Types

The (cut) rule allows us to compose process P , which offers x:A[ω2], with process Q,217

which uses x:A[ω2] to offer z:C[ω1]. We require that domain ω2 is accessible from ω1 (i.e.,218

ω1 ≺∗ ω2). We also require ω1 ≺∗ ∆1: the domains mentioned in ∆1 (the context for P )219

must be accessible from ω1, which follows from the transitive closure of the accessibility220

relation (≺∗) using the intermediary domain ω2. As in [10, 11], composition binds the name221

x:222

(cut)
Ω ` ω1 ≺∗ ω2 Ω ` ω1 ≺∗ ∆1 Ω; Γ; ∆1 ` P :: x:A[ω2] Ω; Γ; ∆2, x:A[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C[ω1]223

Type 1 means that no further interaction will take place on the session; names of type 1224

may be passed around as opaque values. &{li : Ai}i∈I types a session channel that offers225

its partner a choice between the Ai behaviors, each uniquely identified by a label li. Dually,226

⊕{li : Ai}i∈I types a session that selects some behavior Ai by emitting the corresponding227

label. For flexibility and consistency with merge-based projectability in multiparty session228

types, rules for choice and selection induce a standard notion of session subtyping [26].229

Type !A types a shared (non-linear) channel, to be used by a server for spawning an230

arbitrary number of new sessions (possibly none), each one conforming to type A.231

Following our previous remark on well-formed sequents, the only rules that appeal to232

accessibility are (@R), (@L), (copy), and (cut). These conditions are directly associated with233

varying degrees of flexibility in terms of typability, depending on what relationship is imposed234

between the domain to the left and to the right of the turnstile in the left rules. Notably, our235

system leverages the accessibility judgment to enforce that communication is only allowed236

between processes whose sessions are in (transitively) accessible domains.237

The type operator @ω realizes a domain migration mechanism which is specified both238

at the level of types and processes via name mobility tagged with a domain name. Thus, a239

channel typed with @ω2A denotes that behavior A is available by first moving to domain ω2,240

directly accessible from the current domain. More precisely, we have:241

(@R)

Ω ` ω1 ≺ ω2

Ω ` ω2 ≺∗ ∆ Ω; Γ; ∆ ` P :: y:A[ω2]
Ω; Γ; ∆ ` z〈y@ω2〉.P :: z:@ω2A[ω1]

(@L)
Ω, ω2 ≺ ω3; Γ; ∆, y:A[ω3] ` P :: z:C[ω1]

Ω; Γ; ∆, x:@ω3A[ω2] ` x(y@ω3).P :: z:C[ω1]242

Hence, a process offering a behavior z:@ω2 A at ω1 ensures: (i) behavior A is available at ω2243

along a fresh session channel y that is emitted along z and (ii) ω2 is directly accessible from244

ω1. To maintain well-formedness of the sequent we also must check that all domains in ∆ are245

still accessible from ω2. Dually, using a service x:@ω3A[ω2] entails receiving a channel y that246

will offer behavior A at domain ω3 (and also allowing the usage of the fact that ω2 ≺ ω3).247

Domain-quantified sessions introduce domains as fresh parameters to types: a particular248

service can be specified with the ability to refer to any existing directly accessible domain249

(via universal quantification) or to some a priori unspecified accessible domain:250

(∀R)
Ω, ω1 ≺ α; Γ; ∆ ` P :: z:A[ω1] α 6∈ Ω,Γ,∆, ω1

Ω; Γ; ∆ ` z(α).P :: z:∀α.A[ω1]

(∀L)
Ω ` ω2 ≺ ω3

Ω; Γ; ∆, x:A{ω3/α}[ω2] ` Q :: z:C[ω1]
Ω; Γ; ∆, x:∀α.A[ω2] ` x〈ω3〉.Q :: z:C[ω1]

251

Rule (∀R) states that a process seeking to offer ∀α.A[ω1] denotes a service that is located252

at domain ω1 but that may refer to any fresh domain directly accessible from ω1 in its253

specification (e.g. through the use of @). Operationally, this means that the process must be254

ready to receive from its client a reference to the domain being referred to in the type, which255

is bound to α (occurring fresh in the typing derivation). Dually, Rule (∀L) indicates that a256
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process interacting with a service of type x:∀α.A[ω2] must make concrete the domain that257

is directly accessible from ω2 it wishes to use, which is achieved by the appropriate output258

action. Rules (∃L) and (∃R) for the existential quantifier have a dual reading.259

Finally, the type-level operator ↓α.A allows for a type to refer to its current domain:260

(↓R)
Ω; Γ; ∆ ` P :: z:A{ω/α}[ω]

Ω; Γ; ∆ ` P :: z:↓α.A[ω]
(↓L)

Ω; Γ; ∆, x:A{ω/α}[ω] ` P :: z:C
Ω; Γ; ∆, x:↓α.A[ω] ` P :: z:C261

The typing rules that govern ↓α.A are completely symmetric and produce no action at the262

process level, merely instantiating the domain variable α with the current domain ω of the263

session. As will be made clear in § 4, this connective plays a crucial role in ensuring the264

correctness of our analysis of multiparty domain-aware sessions in our logical setting.265

By developing our type theory with an explicit domain accessibility judgment, we can266

consider the accessibility relation as a parameter of the framework. This allows changing267

accessibility relations and their properties without having to alter the entire system. To268

consider the simplest possible accessibility relation, the only defining rule for accessibility269

would be Rule (whyp) in Fig. 1. To consider an accessibility relation which is an equivalence270

relation we would add reflexivity, transitivity, and symmetry rules to the judgment.271

Discussion and Examples Being an interpretation of hybridized linear logic, our domain-272

aware theory is conservative wrt the Curry-Howard interpretation of session types in [10, 11],273

in the following sense: the system in [10, 11] corresponds to the case where every session274

resides at the same domain. As in [10, 11], the sequent calculus for the underlying (hybrid)275

linear logic can be recovered from our typing rules by erasing processes and name assignments.276

Conversely, a fundamental consequence of our hybrid interpretation is that it refines the277

session type structure in non-trivial ways. By requiring that communication only occurs278

between sessions located at the same (or accessible) domain we effectively introduce a new279

layer of reasoning to session type systems. To illustrate this feature, consider the following280

session type WStore, which specifies a simple interaction between a web store and its clients:281

WStore , addCart( &{buy : Pay , quit : 1} Pay , CCNum( ⊕{ok : Rcpt⊗ 1 , nok : 1}282

WStore allows clients to checkout their shopping carts by emitting a buy message or to quit.283

In the former case, the client pays for the purchase by sending their credit card data. If284

a banking service (not shown) approves the transaction (via an ok message), a receipt is285

emitted. Representable in existing session type systems (e.g. [10, 47, 31]), types WStore and286

Pay describe the intended communications but fail to capture the crucial fact that in practice287

the client’s sensitive information should only be requested after entering a secure domain. To288

address this limitation, we can use type-level domain migration to refine WStore and Pay:289

WStoresec , addCart( &{buy : @sec Paybnk, quit : 1}
Paybnk , CCNum( ⊕{ok : (@bnkRcpt)⊗ 1,nok : 1}290

WStoresec decrees that the interactions pertinent to type Paybnk should be preceded by a291

migration step to the trusted domain sec, which should be directly accessible from WStoresec’s292

current domain. The type also specifies that the receipt must originate from a bank domain293

bnk (e.g., ensuring that the receipt is never produced by the store without entering bnk).294

When considering the interactions with a client (at domain c) that checks out their cart, we295

reach a state that is typed with the following judgment:296

c ≺ ws; ·;x:@secPaybnk[ws] ` Client :: z:@sec1[c]297
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(whyp)
Ω, ω1 ≺ ω2 ` ω1 ≺ ω2

(id)
Ω; Γ;x:A[ω] ` [x↔z] :: z:A[ω]

(@R)
Ω ` ω1 ≺ ω2 Ω ` ω2 ≺∗ ∆ Ω; Γ; ∆ ` P :: y:A[ω2]

Ω; Γ; ∆ ` z〈y@ω2〉.P :: z:@ω2A[ω1]

(@L)
Ω, ω2 ≺ ω3; Γ; ∆, y:A[ω3] ` P :: z:C[ω1]

Ω; Γ; ∆, x:@ω3A[ω2] ` x(y@ω3).P :: z:C[ω1]
(∀R)
Ω, ω1 ≺ α; Γ; ∆ ` P :: z:A[ω1] α 6∈ Ω,Γ,∆, ω1

Ω; Γ; ∆ ` z(α).P :: z:∀α.A[ω1]

(∀L)
Ω ` ω2 ≺ ω3 Ω; Γ; ∆, x:A{ω3/α}[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆, x:∀α.A[ω2] ` x〈ω3〉.Q :: z:C[ω1]

(∃R)
Ω ` ω1 ≺ ω2 Ω; Γ; ∆ ` P :: z:A{ω2/α}[ω1]

Ω; Γ; ∆ ` z〈ω2〉.P :: z:∃α.A[ω1]
(∃L)

Ω, ω2 ≺ α; Γ; ∆, x:A[ω2] ` Q :: z:C[ω1]
Ω; Γ; ∆, x:∃α.A[ω2] ` x(α).Q :: z:C[ω1]

(↓R)
Ω; Γ; ∆ ` P :: z:A{ω/α}[ω]

Ω; Γ; ∆ ` P :: z:↓α.A[ω]
(↓L)

Ω; Γ; ∆, x:A{ω/α}[ω] ` P :: z:C
Ω; Γ; ∆, x:↓α.A[ω] ` P :: z:C

(copy)
Ω ` ω1 ≺∗ ω2 Ω; Γ, u:A[ω2]; ∆, y:A[ω2] ` P :: z:C[ω1]

Ω; Γ, u:A[ω2]; ∆ ` u〈y〉.P :: z:C[ω1]

(cut)
Ω ` ω1 ≺∗ ω2 Ω ` ω2 ≺∗ ∆1 Ω; Γ; ∆1 ` P :: x:A[ω2] Ω; Γ; ∆2, x:A[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C[ω1]

Figure 1 Typing Rules (Excerpt – see [9])

At this point, it is impossible for a (typed) client to interact with the behavior that is298

protected by the domain sec, since it is not the case that c ≺∗ sec. That is, no judgment299

of the form c ≺ ws; ·; Paybnk[sec] ` Client′ :: z:T [c] is derivable. This ensures, e.g., that a300

client cannot exploit the payment platform of the web store by accessing the trusted domain301

in unforeseen ways. The client can only communicate in the secure domain after the web302

store service has migrated accordingly, as shown by the judgment303

c ≺ ws, ws ≺ sec; ·;x′:Paybnk[sec] ` Client′ :: z′:1[sec].304

305 Technical Results We state the main results of type safety via type preservation (The-306

orem 3.3) and global progress (Theorem 3.4). These results directly ensure session fidelity307

and deadlock-freedom. Typing also ensures termination, i.e., processes do not exhibit infinite308

reduction paths (Theorem 3.5). We note that in the presence of termination, our progress309

result ensures that communication actions are always guaranteed to take place. Moreover, as310

a property specific to domain-aware processes, we show domain preservation, i.e., processes311

respect their domain accessibility conditions (Theorem 3.7). The formal development of312

these results relies on a domain-aware labeled transition system [9], defined as a simple313

generalization of the early labelled transition system for the session π-calculus given in [10, 11].314

Type Safety and Termination. Following [10, 11], our proof of type preservation relies on315

a simulation between reductions in the session-typed π-calculus and logical proof reductions.316

I Lemma 3.2 (Domain Substitution). Suppose Ω ` ω1 ≺ ω2. Then we have:317

If Ω, ω1 ≺ α,Ω′; Γ; ∆ ` P :: z:A[ω] then318

Ω,Ω′{ω2/α}; Γ{ω2/α}; ∆{ω2/α} ` P{ω2/α} :: z:A[ω{ω2/α}].319

Ω, α ≺ ω2,Ω′; Γ; ∆ ` P :: z:A[ω] then320

Ω,Ω′{ω1/α}; Γ{ω1/α}; ∆{ω1/α} ` P{ω1/α} :: z:A[ω{ω1/α}].321

Safe domain communication relies on domain substitution preserving typing (Lemma 3.2).322

I Theorem 3.3 (Type Preservation). If Ω; Γ; ∆ ` P :: z:A[ω] and P −→ Q then323

Ω; Γ; ∆ ` Q :: z:A[ω].324



Caires et al. 35:9

Proof (Sketch). The proof mirrors those of [10, 11, 8, 44], relying on a series of lemmas325

relating the result of dual process actions (via our LTS semantics) with typable parallel326

compositions through the (cut) rule [9]. For session type constructors of [10], the results are327

unchanged. For the domain-aware session type constructors, the development is identical328

that of [8] and [44], which deal with communication of types and data terms, respectively. J329

Following [10, 11], the proof of global progress relies on a notion of a live process, which330

intuitively consists of a process that has not yet fully carried out its ascribed session behavior,331

and thus is a parallel composition of processes where at least one is a non-replicated process,332

guarded by some action. Formally, we define live(P ) if and only if P ≡ (νñ)(π.Q | R), for333

some R, names ñ and a non-replicated guarded process π.Q.334

I Theorem 3.4 (Global Progress). If Ω; ·; · ` P :: x:1[ω] and live(P ) then ∃Q s.t. P −→ Q.335

Note that Theorem 3.4 is without loss of generality since using the cut rules we can compose336

arbitrary well-typed processes together and x need not occur in P due to Rule (1R).337

Termination (strong normalization) is a relevant property for interactive systems: while338

from a global perspective they are meant to run forever, at a local level participants should339

always react within a finite amount of time, and never engage into infinite internal behavior.340

We say that a process P terminates, noted P ⇓, if there is no infinite reduction path from P .341

I Theorem 3.5 (Termination). If Ω; Γ; ∆ ` P :: x:A[ω] then P ⇓.342

Proof (Sketch). By adapting the linear logical relations given in [38, 39, 8]. For the system343

in § 3 without quantifiers, the logical relations correspond to those in [38, 39], extended to344

carry over Ω. When considering quantifiers, the logical relations resemble those proposed for345

polymorphic session types in [8], noting that no impredicativity concerns are involved. J346

Domain Preservation. As a consequence of the hybrid nature of our system, well-typed347

processes are guaranteed not only to faithfully perform their prescribed behavior in a deadlock-348

free manner, but they also do so without breaking the constraints put in place on domain349

accessibility given by our well-formedness constraint on sequents.350

I Theorem 3.6. Let E be a derivation of Ω; Γ; ∆ ` P :: z:A[ω]. If Ω; Γ; ∆ ` P :: z:A[ω] is351

well-formed then every sub-derivation in E well-formed.352

While inaccessible domains can appear in Γ, such channels can never be used and thus353

can not appear in a well-typed process due to the restriction on the (copy) rule. Combining354

Theorems 3.3 and 3.6 we can then show that even if a session in the environment changes355

domains, typing ensures that such a domain will be (transitively) accessible:356

I Theorem 3.7. Let (1) Ω; Γ; ∆,∆′ ` (νx)(P | Q) :: z : A[ω], (2) Ω; Γ; ∆ ` P :: x:B[ω′],357

and (3) Ω; Γ; ∆′, x:B[ω′] ` Q :: z:A[ω]. If (νx)(P | Q) −→ (νx)(P ′ | Q′) then: (a) Ω; Γ; ∆ `358

P ′ :: x′:B′[ω′′], for some x′, B′, ω′′; (b) Ω; Γ,∆′, x′:B′[ω′′] ` Q′ :: z:A[ω]; (c) ω ≺∗ ω′′.359

4 Domain-Aware Multiparty Session Types360

We now shift our attention to multiparty session types [32]. We consider the standard361

ingredients: global types, local types, and the projection function that connects the two. Our362

global types include a new domain-aware construct, p moves q̃ toω forG1 ; G2; our local types363

exploit the hybrid session types from Def. 3.1. Rather than defining a separate type system364

based on local types for the process model of § 2, our analysis of multiparty protocols extends365
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the approach defined in [7], which uses medium processes to characterize correct multiparty366

implementations. The advantages are twofold: on the one hand, medium processes provide a367

precise semantics for global types; on the other hand, they enable the principled transfer of368

the correctness properties established in § 3 for binary sessions (type preservation, global369

progress, termination, domain preservation) to the multiparty setting. Below, participants370

are ranged over by p, q, r, . . .; we write q̃ to denote a finite set of participants q1, . . . , qn.371

Besides the new domain-aware global type, our syntax of global types includes constructs372

from [32, 21]. We consider value passing in branching (cf. U below), fully supporting373

delegation. To streamline the presentation, we consider global types without recursion.374

I Definition 4.1 (Global and Local Types). Define global types (G) and local types (T ) as375

U ::= bool | nat | str | . . . | T
G ::= end | p�q:{li〈Ui〉.Gi}i∈I | p moves q̃ toω forG1 ; G2

T ::= end | p?{li〈Ui〉.Ti}i∈I | p!{li〈Ui〉.Ti}i∈I | ∀α.T | ∃α.T | @αT | ↓α.T
376

The completed global type is denoted end. Given a finite I and pairwise different377

labels, p� q:{li〈Ui〉.Gi}i∈I specifies that by choosing label li, participant p may send a378

message of type Ui to participant q, and then continue as Gi. We decree p 6= q, so reflexive379

interactions are disallowed. The global type p moves q̃ toω forG1 ; G2 specifies the migration380

of participants p, q̃ to domain ω in order to perform the sub-protocol G1; this migration is lead381

by p. Subsequently, all of p, q̃ migrate from ω back to their original domains and protocol382

G2 is executed. This intuition will be made precise by the medium processes for global types383

(cf. Def. 4.8). Notice that G1 and G2 may involve different sets of participants. In writing384

p moves q̃ toω forG1 ; G2 we assume two natural conditions: (a) all migrating participants385

intervene in the sub-protocol (i.e., the set of participants of G1 is exactly p, q̃) and (b) domain386

ω is accessible (via ≺) by all these migrating participants in G1. While subprotocols and387

session delegation may appear as similar, delegation supports a different idiom altogether,388

and has no support for domain awareness. Unlike delegation, with subprotocols we can389

specify a point where some of the participants perform a certain protocol within the same390

multiparty session and then return to the main session as an ensemble.391

I Definition 4.2. The set of participants of G (denoted part(G)) is defined as: part(end) = ∅,392

part(p� q:{li〈Ui〉.Gi}i∈I) = {p, q} ∪
⋃
i∈I part(Gi), part(p moves q̃ toω forG1 ; G2) = {p} ∪393

q̃ ∪ part(G1) ∪ part(G2). We sometimes write p ∈ G to mean p ∈ part(G).394

Global types are projected onto participants so as to obtain local types. The terminated395

local type is end. The local type p?{li〈Ui〉.Ti}i∈I denotes an offer of a set of labeled396

alternatives; the local type p!{li〈Ui〉.Ti}i∈I denotes a behavior that chooses one of such397

alternatives. Exploiting the domain-aware framework in § 3, we introduce four new local398

types. They increase the expressiveness of standard local types by specifying universal and399

existential quantification over domains (∀α.T and ∃α.T ), migration to a specific domain400

(@αT ), and a reference to the current domain (↓α. T , with α occurring in T ).401

We now define (merge-based) projection for global types [21]. To this end, we rely on a402

merge operator on local types, which in our case considers messages U .403

I Definition 4.3 (Merge). We define t as the commutative partial operator on base and404

local types such that bool t bool = bool (and analogously for other base types), and405

1. T t T = T , where T is one of the following: end, p!{li〈Ui〉.Ti}i∈I , @ωT , ∀α.T , or ∃α.T ;406

2. p?{lk〈Uk〉.Tk}k∈K t p?{l ′j〈U ′j〉.T ′j}j∈J =407

p?
(
{lk〈Uk〉.Tk}k∈K\J ∪ {l ′j〈U ′j〉.T ′j}j∈J\K ∪ {ll〈Ul t U ′l 〉.(Tl t T ′l )}l∈K∩J

)
408

and is undefined otherwise.409
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Therefore, for U1 t U2 to be defined there are two options: (a) U1 and U2 are identical410

base, terminated, selection, or “hybrid” local types; (b) U1 and U2 are branching types, but411

not necessarily identical: they may offer different options but with the condition that the412

behavior in labels occurring in both U1 and U2 must be mergeable.413

To define projection and medium processes for the global type p moves q̃ toω forG1 ; G2,414

we require ways of “fusing” local types and processes. The intent is to capture in a single415

(sequential) specification the behavior of two distinct (sequential) specifications, i.e., those416

corresponding to protocols G1 and G2. For local types, we have the following definition,417

which safely appends a local type to another:418

I Definition 4.4 (Local Type Fusion). The fusion of T1 and T2, written T1 ◦ T2, is given by:419

p!{li〈Ui〉.Ti}i∈I ◦ T = p!{li〈Ui〉.(Ti ◦ T )}i∈I end ◦ T = T

p?{li〈Ui〉.Ti}i∈I ◦ T = p?{li〈Ui〉.(Ti ◦ T )}i∈I (∃α.T1) ◦ T = ∃α.(T1 ◦ T )
(∀α.T1) ◦ T = ∀α.(T1 ◦ T ) (@αT1) ◦ T = @α(T1 ◦ T )
(↓α.T1) ◦ T = ↓α.(T1 ◦ T )

420

This way, e.g., if T1 = ∃α.@α p?{l1〈Int〉.end , l2〈Bool〉.end} and T2 = @ω q!{l〈Str〉.end}, then421

T1 ◦T2 = ∃α.@α p?{l1〈Int〉.@ω q!{l〈Str〉.end} , l2〈Bool〉.@ω q!{l〈Str〉.end}}. We can now define:422

I Definition 4.5 (Merge-based Projection [21]). Let G be a global type. The merge-based423

projection of G under participant r, denoted G�r, is defined as end�r = end and424

p�q:{li〈Ui〉.Gi}i∈I�r =


p!{li〈Ui〉.Gi�r}i∈I if r = p

p?{li〈Ui〉.Gi�r}i∈I if r = q

ti∈I Gi�r otherwise (t as in Def. 4.3)
425

(p moves q̃ toω forG1 ; G2)�r =


↓β.(∃α.@αG1�r) ◦@β G2�r if r = p

↓β.(∀α.@αG1�r) ◦@β G2�r if r ∈ q̃

G2�r otherwise
426

When no side condition holds, the map is undefined.427

The projection for the type p moves q̃ tow forG1 ; G2 is one of the key points in our analysis.428

The local type for p, the leader of the migration, starts by binding the identity of its current429

domain (say, ωp) to β. Then, the (fresh) domain ω is communicated, and there is a migration430

step to ω, which is where protocol G1�p will be performed. Finally, there is a migration step431

from ω back to ωp; once there, the protocol G2�p will be performed. The local type for all of432

qi ∈ q̃ follows accordingly: they expect ω from p; the migration from their original domains433

to ω (and back) is as for p. For participants in G1, the fusion on local types (Def. 4.4) defines434

a local type that includes the actions for G1 but also for G2, if any: a participant in G1 need435

not be involved in G2. Interestingly, the resulting local types ↓β.(∃α.@αG1�p) ◦@β G2�p436

and ↓β.(∀α.@αG1�qi)◦@β G2�qi define a precise combination of hybrid connectives whereby437

each migration step is bound by a quantifier or the current domain.438

The following notion of well-formedness for global types is standard:439

I Definition 4.6 (Well-Formed Global Types [32]). We say that global type G is well-formed440

(WF, in the following) if the projection G�r is defined for all r ∈ G.441

Analyzing Global Types via Medium Processes A medium process is a well-typed process442

from § 2 that captures the communication behavior of the domain-aware global types of443

Def. 4.1. Here we define medium processes and establish two fundamental characterization444

results for them (Theorems 4.11 and 4.12). We shall consider names indexed by participants:445

given a name c and a participant p, we use cp to denote the name along which the session446

behavior of p will be made available. This way, if p 6= q then cp 6= cq. To define mediums, we447

need to append or fuse sequential processes, just as Def. 4.4 fuses local types:448
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I Definition 4.7 (Fusion of Processes). We define ◦ as the partial operator on well-typed449

processes such that (with π ∈ {c(y), c〈ω〉, c(α), c〈y@ω〉, c(y@ω), c /l}) :450

c〈y〉.([u↔y] | P ) ◦Q , c〈y〉.([u↔y] | (P ◦Q)) 0 ◦Q , Q

c .
{

li : Pi
}
i∈I
◦Q , c .

{
li : (Pi ◦Q)

}
i∈I

(π.P ) ◦Q , π.(P ◦Q)451

and is undefined otherwise.452

The previous definition suffices to define a medium process (or simply medium), which uses453

indexed names to uniformly capture the behavior of a global type:454

I Definition 4.8 (Medium Process). Let G be a global type (cf. Def. 4.1), c̃ be a set of455

indexed names, and ω̃ a set of domains. The medium of G, denoted Mω̃JGK(c̃), is defined as:456 

0 if G = end

cp .
{

li : cp(u).cq /li; cq〈v〉.([u↔v] | Mω̃JGiK(c̃))
}
i∈I

if G = p�q:{li〈Ui〉.Gi}i∈I

cp(α).cq1〈α〉. · · · .cqn〈α〉. if G = p moves q1, . . . , qn tow forG1 ; G2

cp(yp@α).cq1 (yq1 @α). · · · .cqn (yqn @α).
Mω̃{α/ωp,...,α/ωqn}JG1K(ỹ) ◦

(yp(mp@ωp).yq1 (mq1 @ωq1 ). · · · .yqn (mqn @ωqn ).
Mω̃JG2K(m̃))

457

where Mω̃JG1K(c̃) ◦Mω̃JG2K(c̃) is as in Def. 4.7.458

The medium for G = p � q:{li〈Ui〉.Gi}i∈I exploits four prefixes to mediate in the459

interaction between the implementations of p and q: the first two prefixes (on name cp)460

capture the label selected by p and the subsequently received value; the third and fourth461

prefixes (on name cq) propagate the choice and forward the value sent by p to q. We omit462

the forwarding and value exchange when the interaction does not involve a value payload.463

The medium for G = p moves q1, . . . , qn tow forG1 ; G2 showcases the expressivity and464

convenience of our domain-aware process framework. In this case, the medium’s behavior465

takes place through the following steps: First, Mω̃JGK(c̃) inputs a domain identifier (say, ω)466

from p which is forwarded to q1, . . . , qn, the other participants of G1. Secondly, the roles467

p, q1, . . . , qn migrate from their domains ωp, ωq1 . . . , ωqn
to ω. At this point, the medium468

for G1 can execute, keeping track the current domain ω for all participants. Finally, the469

participants of G1 migrate back to their original domains and the medium for G2 executes.470

Recalling the domain-aware global type of § 1, we produce its medium process:471

ccl .
{

request : ccl(r).cmw /request; cmw〈v〉.([r↔v] |
cmw .

{
reply : cmw(a).ccl /reply; ccl〈n〉.([a↔n] | cmw .

{
done : cserv /done; 0

}
),

wait : ccl /wait;cmw .
{

init : cserv /init; cmw(wpriv).cserv〈wpriv〉.
cmw(ymw@wpriv).cserv(yserv@wpriv).M ˜wprivJOffloadK(ymw, yserv) ◦
(ymw(zmw@wmw).yserv(zserv@wserv).
zmw .

{
reply : zmw(a).ccl /reply; ccl〈n〉.([a↔n] | 0)

}
)
}}

)
}

The medium ensures the client’s domain remains fixed through the entire interaction,472

regardless of whether the middleware chooses to interact with the server. This showcases473

how our medium transparently manages domain migration of participants.474

Characterization Results We state results that offer a sound and complete account of the475

relationship between: (i) a global type G (and its local types), (ii) its medium process476

Mω̃JGK(c̃), and (iii) process implementations for the participants {p1, . . . , pn} of G. In a477

nutshell, these results say that the typeful composition of Mω̃JGK(c̃) with processes for each478
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p1, . . . , pn (well-typed in the system of § 3) performs the intended global type. Crucially, these479

processes reside in distinct domains and can be independently developed, guided by their local480

type—they need not know about the medium’s existence or structure. The results generalize481

those in [7] to the domain-aware setting. Given a global type G with part(G) = {p1, . . . , pn},482

below we write npart(G) to denote the set of indexed names {cp1 , . . . , cpn
}. We define:483

I Definition 4.9 (Compositional Typing). We say Ω; Γ; ∆ ` Mω̃JGK(c̃) :: z:C is a composi-484

tional typing if: (i) it is a valid typing derivation; (ii) npart(G) ⊆ dom(∆); and (iii) C = 1.485

A compositional typing says that Mω̃JGK(c̃) depends on behaviors associated to each parti-486

cipant of G; it also specifies that Mω̃JGK(c̃) does not offer any behaviors of its own.487

The following definition relates binary session types and local types: the main difference is488

that the former do not mention participants. Below, B ranges over base types (bool, nat, . . .).489

I Definition 4.10 (Local Types→Binary Types). Mapping 〈〈·〉〉 from local types T (Def. 4.1)490

into binary types A (Def. 3.1) is inductively defined as 〈〈end〉〉 = 〈〈B〉〉 = 1 and491

〈〈p!{li〈Ui〉.Ti}i∈I〉〉 = ⊕{li : 〈〈Ui〉〉 ⊗ 〈〈Ti〉〉}i∈I 〈〈∀α.T 〉〉 = ∀α.〈〈T 〉〉
〈〈p?{li〈Ui〉.Ti}i∈I〉〉 = &{li : 〈〈Ui〉〉( 〈〈Ti〉〉}i∈I 〈〈∃α.T 〉〉 = ∃α.〈〈T 〉〉
〈〈@ωT 〉〉 = @ω〈〈T 〉〉 〈〈↓α.T 〉〉 = ↓α.〈〈T 〉〉

492

Our first characterization result ensures that well-formedness of a global type G guarantees493

the typability of its medium Mω̃JGK(c̃) using binary session types. Hence, it ensures that494

multiparty protocols can be analyzed by composing the medium with independently obtained,495

well-typed implementations for each protocol participant. Crucially, the resulting well-typed496

process will inherit all correctness properties ensured by binary typability established in § 3.497

I Theorem 4.11 (Global Types → Typed Mediums). If G is WF with part(G)= {p1, . . . , pn}498

then Ω; Γ; cp1 :〈〈G� p1〉〉[ω1], . . . , cpn :〈〈G� pn〉〉[ωn] ` Mω̃JGK(c̃) :: z : 1[ωm] is a compositional499

typing, for some Ω, Γ, with ω̃ = ω1, . . . , ωn. We assume that ωi ≺ ωm for all i ∈ {1, . . . , n}500

(the medium’s domain is accessible by all), and that i 6= j implies ωi 6= ωj.501

The second characterization result, given next, is the converse of Theorem 4.11: binary502

typability precisely delineates the interactions that underlie well-formed multiparty protocols.503

We need an auxiliary relation on local types, written �t↓ , that relates types with branching504

and “here” type operators, which have silent process interpretations (cf. Figure 1 and [9]).505

First, we have T1 �t↓ T2 if there is a T ′ such that T1 t T ′ = T2 (cf. Def. 4.3). Second,506

we have T1 �t↓ T2 if (i) T1 = T ′ and T2 = ↓ α.T ′ and α does not occur in T ′; but also if507

(ii) T1 = ↓α.T ′ and T2 = T ′{ω/α}. (See [9] for a formal definition of �t↓ ).508

I Theorem 4.12 (Well-Typed Mediums→ Global Types). Let G be a global type (cf. Def. 4.1).509

If Ω; Γ; cp1 :A1[ω1], . . . , cpn :An[ωn] ` Mω̃JGK(c̃) :: z : 1[ωm] is a compositional typing then510

∃T1, . . . , Tn such that G�pj �t↓ Tj and 〈〈Tj〉〉 = Aj, for all pj ∈ part(G).511

The above theorems offer a static guarantee that connects multiparty protocols and well-typed512

processes. They can be used to establish also dynamic guarantees relating the behavior513

of a global type G and that of its associated set of multiparty systems (i.e., the typeful514

composition of Mω̃JGK(c̃) with processes for each of pi ∈ part(G)). These dynamic guarantees515

can be easily obtained by combining Theorems 4.11 and 4.12 with the approach in [7].516

5 Related Work517

There is a rich history of works on the logical foundations of concurrency (see, e.g., [4, 27, 1, 3]),518

which has been extended to session-based concurrency by Wadler [47], Dal Lago and Di519
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Giamberardino [35], and others. Medium-based analyses of multiparty sessions were developed520

in [7] and used in an account of multiparty sessions in an extended classical linear logic [14].521

Two salient calculi with distributed features are the Ambient calculus [16], in which522

processes move across ambients (abstractions of administrative domains), and the distributed523

π-calculus (Dpi) [29], which extends the π-calculus with flat locations, local communication,524

and process migration. While domains in our model may be read as locations, this is just one525

specific interpretation; they admit various alternative readings (e.g., administrative domains,526

security-related levels), leveraging the partial view of the domain hierarchy. Type systems527

for Ambient calculi such as [15, 6] enforce security and communication-oriented properties in528

terms of ambient movement but do not cover issues of structured interaction, central in our529

work. Garralda et al. [25] integrate binary sessions in an Ambient calculus, ensuring that530

session protocols are undisturbed by ambient mobility. In contrast, our type system ensures531

that both migration and communication are safe and, for the first time in such a setting,532

satisfy global progress (i.e., session protocols never jeopardize migration and vice-versa).533

The multiparty sessions with nested protocols of Demangeon and Honda [19] include534

a nesting construct that is similar to our new global type p moves q̃ tow forG1 ; G2, which535

also introduces nesting. The focus in [19] is on modularity in choreographic programming;536

domains nor domain migration are not addressed. The nested protocols in [19] can have local537

participants and may be parameterized on data from previous actions. We conjecture that538

our approach can accommodate local participants in a similar way. Data parameterization539

can be transposed to our logical setting via dependent session types [44, 46]. Asynchrony and540

recursive behaviors can also be integrated by exploiting existing logical foundations [23, 45].541

Balzer et al. [2] overlay a notion of world and accessibility on a system of shared session542

types to ensure deadlock-freedom. Their work differs substantially from ours: they instantiate543

accessibility as a partial-order, equip sessions with multiple worlds and are not conservative544

wrt linear logic, being closer to partial-order-based typings for deadlock-freedom [34, 37].545

6 Concluding Remarks546

We developed a Curry-Howard interpretation of hybrid linear logic as domain-aware session547

types. Present in processes and types, domain-awareness can account for scenarios where548

domain information is only determined at runtime. The resulting type system features strong549

correctness properties for well-typed processes (session fidelity, global progress, termination).550

Moreover, by leveraging a parametric accessibility relation, it rules out processes that551

communicate with inaccessible domains, thus going beyond the scope of previous works.552

As an application of our framework, we presented the first systematic study of domain-553

awareness in a multiparty setting, considering multiparty sessions with domain-aware migra-554

tion and communication whose semantics is given by a typed (binary) medium process that555

orchestrates the multiparty protocol. Embedded in a fully distributed domain structure, our556

medium is shown to strongly encode domain-aware multiparty sessions; it naturally allows us557

to transpose the correctness properties of our logical development to the multiparty setting.558

Our work opens up interesting avenues for future work. Mediums can be seen as monitors559

that enforce the specification of a domain-aware multiparty session. We plan to investigate560

contract-enforcing mediums building upon works such as [28, 33, 20], which study runtime561

monitoring in session-based systems. Our enforcement of communication across accessible562

domains suggests high-level similarities with information flow analyses in multiparty sessions563

(cf. [13, 12, 17]), but does not capture the directionality needed to model such analyses564

outright. It would be insightful to establish the precise relationship with such prior works.565



Caires et al. 35:15

References566

1 Samson Abramsky. Computational interpretations of linear logic. Theor. Comput. Sci.,567

111(1&2):3–57, 1993. URL: https://doi.org/10.1016/0304-3975(93)90181-R, doi:10.568

1016/0304-3975(93)90181-R.569

2 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom for570

shared session types. In Programming Languages and Systems - 28th European Symposium on571

Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and572

Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,573

pages 611–639, 2019.574

3 Emmanuel Beffara. A concurrent model for linear logic. Electr. Notes Theor. Comput. Sci.,575

155:147–168, 2006. URL: https://doi.org/10.1016/j.entcs.2005.11.055, doi:10.1016/j.576

entcs.2005.11.055.577

4 Gianluigi Bellin and Philip J. Scott. On the pi-calculus and linear logic. Theor. Comput. Sci.,578

135(1):11–65, 1994. URL: https://doi.org/10.1016/0304-3975(94)00104-9, doi:10.1016/579

0304-3975(94)00104-9.580

5 Torben Braüner and Valeria de Paiva. Intuitionistic hybrid logic. J. of App. Log., 4:231–255,581

2006.582

6 Michele Bugliesi and Giuseppe Castagna. Behavioural typing for safe ambients. Comput.583

Lang., 28(1):61–99, 2002.584

7 Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory,585

and beyond. In Formal Techniques for Distributed Objects, Components, and Systems - 36th586

IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th International587

Federated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete,588

Greece, June 6-9, 2016, Proceedings, pages 74–95, 2016. Extended version with proofs at589

https://sites.google.com/a/jorgeaperez.net/www/publications/medium16long.pdf.590

8 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral polymorphism591

and parametricity in session-based communication. In ESOP, volume 7792 of LNCS. Springer,592

2013.593

9 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-aware session594

types (extended version). Technical report, NOVA University Lisbon, 2019. URL: http:595

//ctp.di.fct.unl.pt/~btoninho/hybrid19_extended.pdf.596

10 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR,597

volume 6269 of LNCS, pages 222–236. Springer, 2010.598

11 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session599

types. Mathematical Structures in Computer Science, 26(3):367–423, 2016. URL: https:600

//doi.org/10.1017/S0960129514000218, doi:10.1017/S0960129514000218.601

12 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information flow safety602

in multiparty sessions. In Bas Luttik and Frank Valencia, editors, EXPRESS, volume 64 of603

EPTCS, pages 16–30, 2011.604

13 Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. Session605

types for access and information flow control. In CONCUR, volume 6269 of LNCS, pages606

237–252. Springer, 2010.607

14 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.608

Coherence generalises duality: A logical explanation of multiparty session types. In 27th609

International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec610

City, Canada, pages 33:1–33:15, 2016.611

15 Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Types for the ambient calculus. Inf.612

Comput., 177(2):160–194, 2002.613

16 Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–213,614

2000.615

17 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation616

and secure information flow in multiparty communications. Formal Asp. Comput.,617

CONCUR 2019

https://doi.org/10.1016/0304-3975(93)90181-R
http://dx.doi.org/10.1016/0304-3975(93)90181-R
http://dx.doi.org/10.1016/0304-3975(93)90181-R
http://dx.doi.org/10.1016/0304-3975(93)90181-R
https://doi.org/10.1016/j.entcs.2005.11.055
http://dx.doi.org/10.1016/j.entcs.2005.11.055
http://dx.doi.org/10.1016/j.entcs.2005.11.055
http://dx.doi.org/10.1016/j.entcs.2005.11.055
https://doi.org/10.1016/0304-3975(94)00104-9
http://dx.doi.org/10.1016/0304-3975(94)00104-9
http://dx.doi.org/10.1016/0304-3975(94)00104-9
http://dx.doi.org/10.1016/0304-3975(94)00104-9
https://sites.google.com/a/jorgeaperez.net/www/publications/medium16long.pdf
http://ctp.di.fct.unl.pt/~btoninho/hybrid19_extended.pdf
http://ctp.di.fct.unl.pt/~btoninho/hybrid19_extended.pdf
http://ctp.di.fct.unl.pt/~btoninho/hybrid19_extended.pdf
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
http://dx.doi.org/10.1017/S0960129514000218


35:16 Domain-Aware Session Types

28(4):669–696, 2016. URL: https://doi.org/10.1007/s00165-016-0381-3, doi:10.1007/618

s00165-016-0381-3.619

18 Kaustuv Chaudhuri, Carlos Olarte, Elaine Pimentel, and Joëlle Despeyroux. Hybrid Linear620

Logic, revisited. Mathematical Structures in Computer Science, 2019. URL: https://hal.621

inria.fr/hal-01968154.622

19 Romain Demangeon and Kohei Honda. Nested protocols in session types. In CONCUR623

2012 - Concurrency Theory - 23rd International Conference, CONCUR 2012, Newcastle upon624

Tyne, UK, September 4-7, 2012. Proceedings, pages 272–286, 2012. URL: https://doi.org/625

10.1007/978-3-642-32940-1_20, doi:10.1007/978-3-642-32940-1\_20.626

20 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.627

Practical interruptible conversations: distributed dynamic verification with multiparty session628

types and python. Formal Methods in System Design, 46(3):197–225, 2015. URL: https:629

//doi.org/10.1007/s10703-014-0218-8, doi:10.1007/s10703-014-0218-8.630

21 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating631

automata: Characterisation and synthesis of global session types. In Fedor V. Fomin,632

Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages,633

and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,634

2013, Proceedings, Part II, volume 7966 of Lecture Notes in Computer Science, pages635

174–186. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-39212-2_18, doi:636

10.1007/978-3-642-39212-2\_18.637

22 Joëlle Despeyroux, Carlos Olarte, and Elaine Pimentel. Hybrid and subexponential linear638

logics. Electr. Notes Theor. Comput. Sci., 332:95–111, 2017.639

23 Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho. Cut reduction in linear640

logic as asynchronous session-typed communication. In Computer Science Logic (CSL’12) -641

26th International Workshop/21st Annual Conference of the EACSL, CSL 2012, September642

3-6, 2012, Fontainebleau, France, pages 228–242, 2012.643

24 Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and session types: An overview.644

In WS-FM 2009, volume 6194 of LNCS, pages 1–28. Springer, 2010.645

25 Pablo Garralda, Adriana B. Compagnoni, and Mariangiola Dezani-Ciancaglini. Bass: boxed646

ambients with safe sessions. In Annalisa Bossi and Michael J. Maher, editors, PPDP, pages647

61–72. ACM, 2006.648

26 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Inf.,649

42(2-3):191–225, 2005. URL: https://doi.org/10.1007/s00236-005-0177-z, doi:10.1007/650

s00236-005-0177-z.651

27 Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In TAPSOFT’87: Pro-652

ceedings of the International Joint Conference on Theory and Practice of Software Development,653

pages 52–66, 1987. URL: https://doi.org/10.1007/BFb0014972, doi:10.1007/BFb0014972.654

28 Hannah Gommerstadt, Limin Jia, and Frank Pfenning. Session-typed concurrent contracts.655

In Programming Languages and Systems - 27th European Symposium on Programming, ESOP656

2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,657

ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, pages 771–798, 2018.658

29 Matthew Hennessy and James Riely. Resource access control in systems of mobile agents. Inf.659

Comput., 173(1):82–120, 2002.660

30 Kohei Honda. Types for dynamic interaction. In CONCUR, volume 715 of LNCS, pages661

509–523. Springer, 1993.662

31 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and type663

discipline for structured communication-based programming. In ESOP’98, LNCS. Springer,664

1998.665

32 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.666

In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-667

SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,668

https://doi.org/10.1007/s00165-016-0381-3
http://dx.doi.org/10.1007/s00165-016-0381-3
http://dx.doi.org/10.1007/s00165-016-0381-3
http://dx.doi.org/10.1007/s00165-016-0381-3
https://hal.inria.fr/hal-01968154
https://hal.inria.fr/hal-01968154
https://hal.inria.fr/hal-01968154
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
http://dx.doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
http://dx.doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/BFb0014972
http://dx.doi.org/10.1007/BFb0014972


Caires et al. 35:17

California, USA, January 7-12, 2008, pages 273–284. ACM, 2008. URL: https://doi.org/669

10.1145/1328438.1328472, doi:10.1145/1328438.1328472.670

33 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment671

for higher-order session types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT672

Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,673

January 20 - 22, 2016, pages 582–594, 2016.674

34 Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR 2006 -675

Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn, Germany, August676

27-30, 2006, Proceedings, pages 233–247, 2006.677

35 Ugo Dal Lago and Paolo Di Giamberardino. Soft session types. In EXPRESS, volume 64 of678

EPTCS, pages 59–73, 2011.679

36 Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes, part I/II.680

Inf. Comput., 100(1):1–77, 1992.681

37 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In Joint Meeting of the682

Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-683

Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,684

Vienna, Austria, July 14 - 18, 2014, pages 72:1–72:10, 2014.685

38 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations686

for session-based concurrency. In ESOP, volume 7211 of LNCS, pages 539–558. Springer, 2012.687

39 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations688

and observational equivalences for session-based concurrency. Inf. Comput., 239:254–302, 2014.689

URL: https://doi.org/10.1016/j.ic.2014.08.001, doi:10.1016/j.ic.2014.08.001.690

40 Jason Reed. Hybridizing a logical framework. Electr. Notes Theor. Comput. Sci., 174(6):135–691

148, 2007.692

41 Davide Sangiorgi. pi-calculus, internal mobility, and agent-passing calculi. Theor. Comput.693

Sci., 167(1&2):235–274, 1996.694

42 Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Processes. Cambridge695

University Press, New York, NY, USA, 2001.696

43 Alex K. Simpson. The proof theory and semantics of intuitionistic modal logic. PhD thesis,697

University of Edinburgh, UK, 1994. URL: http://hdl.handle.net/1842/407.698

44 Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic699

linear type theory. In Proc. of PPDP ’11, pages 161–172, New York, NY, USA, 2011. ACM.700

URL: http://doi.acm.org/10.1145/2003476.2003499, doi:http://doi.acm.org/10.1145/701

2003476.2003499.702

45 Bernardo Toninho, Luís Caires, and Frank Pfenning. Corecursion and non-divergence in703

session-typed processes. In Trustworthy Global Computing - 9th International Symposium,704

TGC 2014, Rome, Italy, September 5-6, 2014. Revised Selected Papers, pages 159–175, 2014.705

46 Bernardo Toninho and Nobuko Yoshida. Depending on session-typed processes. In Foundations706

of Software Science and Computation Structures - 21st International Conference, FOSSACS707

2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,708

ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, pages 128–145, 2018.709

47 Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.710

CONCUR 2019

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1328438.1328472
https://doi.org/10.1016/j.ic.2014.08.001
http://dx.doi.org/10.1016/j.ic.2014.08.001
http://hdl.handle.net/1842/407
http://doi.acm.org/10.1145/2003476.2003499
http://dx.doi.org/http://doi.acm.org/10.1145/2003476.2003499
http://dx.doi.org/http://doi.acm.org/10.1145/2003476.2003499
http://dx.doi.org/http://doi.acm.org/10.1145/2003476.2003499

	Introduction
	Process Model
	Domain-aware Session Types via Hybrid Logic
	Domain-Aware Multiparty Session Types
	Related Work
	Concluding Remarks

