
 

 

 

 

 

 

 

 

 

 

Copyright 

by 

Jianming Ma 

2006 

 

 



 

The Dissertation Committee for Jianming Ma certifies that this is the 

approved version of the following dissertation: 

 
BAYESIAN MULTIVARIATE POISSON-LOGNORMAL 

REGRESSION FOR CRASH PREDICTION ON RURAL TWO-

LANE HIGHWAYS 

 

 

 

 

 

 
Committee: 

     __________________________ 
Kara Kockelman, Supervisor 

     __________________________ 
Paul Damien 

     __________________________ 
Robert B. Gilbert 

     __________________________ 
Randy B. Machemehl 

     __________________________ 
Daniel A. Powers 
 

 



 

 

BAYESIAN MULTIVARIATE POISSON-LOGNORMAL 

REGRESSION FOR CRASH PREDICTION ON RURAL TWO-

LANE HIGHWAYS 

 

 

by 

Jianming Ma, B.S.; M.S. 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

the University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May, 2006 



 

To my wife for always giving me happiness and love, and to my parents and my 

siblings for their support and faith. 

 



 

v 

Acknowledgements 
 
The author would like to thank Dr. Kara Kockelman for her constant guidance 

and support in the development of this dissertation and his graduate studies in the 

University of Texas at Austin.  Thanks for being an excellent mentor and for 

providing him with an example of how to become a respectable educator and 

researcher.  The author would also like to thank the participation and advice of 

members of the preliminary and final dissertation committees, Drs. Paul Damien, 

Robert B. Gilbert, Randy B. Machemehl, Shaw-Pin Miaou, and Daniel A. 

Powers.  The author must acknowledge his indebtedness to Dr. Damien, whose 

statistical expertise guided him.  He is also grateful to Dr. Powers whose door was 

always open for many discussions.  The author also has to thank Dr. Machemehl 

for his help, guidance and understanding throughout the author’s career in the 

University of Texas at Austin.   

 
The author would like to thank the current and former members of the 

Transportation Program of the Civil, Environmental, and Architectural 

Engineering in the University of Texas at Austin for their support.  The author 

would also like to show his special gratitude to Ms. Annette Perrone for her never 

failing willingness to assist and encourage.  Special thanks also to Runhua Guo, 

Jared Heiner, Feng Hong, Tian Huang, Rong Luo, Feng Wang, Xiaokun Wang, 

Zhong Wang, Yong Zhao, Bin Zhou, and other fellow students for their 

friendship and kind help. 

 
Finally, the author would like to thank his family; especially his parents and his 

siblings for their unconditional love and support.  The author would also like to 

express his deep appreciation and gratitude to his wonderful wife, Zheng Li, for 

her compassionate love and encouragement.   



 

vi 

 

BAYESIAN MULTIVARIATE POISSON-LOGNORMAL 

REGRESSION FOR CRASH PREDICTION ON RURAL TWO-

LANE HIGHWAYS 

 

 

Publication No._____________ 

 

 

Jianming Ma, Ph.D. 

The University of Texas at Austin, 2006 

 

Supervisor: Kara Kockelman 
 
 

Roadway safety is a major concern for the general public and public agencies.  

Roadway crashes claim many lives and cause substantial economic losses each 

year.  The situation is of particular interest on rural two-lane roadways, which 

experience significantly higher fatality rates than urban roads.  There have been 

numerous efforts devoted to investigating crash occurrence as related to roadway 

design features, environmental and traffic conditions.  However, most of the 

research has relied on univariate count models; that is, traffic crash counts at 

different levels of severity are estimated separately.  The widely used univariate 

count data models ignore the following issues: (1) interdependence may exist 

between crash counts at different levels of severity for a specific segment of 
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roadway, and (2) road geometric design features, road use, and environmental 

conditions may have distinct effects on crashes of different severity.   

 

The objective of this research is to model correlated traffic crash counts 

simultaneously at different levels of severity using multivariate Poisson-

lognormal (MVPLN) models.  The MVPLN specification allows for a more 

general correlation structure as well as overdispersion.  This approach addresses 

some questions that are difficult to answer by estimating them separately.  With 

recent advancements in crash modeling and Bayesian statistics, the parameter 

estimation is done within the Bayesian paradigm, using a Gibbs Sampler and the 

Metropolis-Hastings (M-H) algorithms.   

 
As an illustration, the MVPLN specification is empirically applied to investigate 

crash frequency by severity using crashes that occurred on Washington State rural 

two-lane highways in the Puget Sound region in 2002.  Thanks to MCMC 

simulation techniques, the marginal posterior distributions of all parameters of 

interest were obtained.  The estimation results from the MVPLN approach did 

show statistically significant correlations between crash counts at different levels 

of injury severity.  The non-zero diagonal elements suggested an existence of 

overdispersion crash counts at all levels of severity.  The results lend themselves 

to several recommendations for highway safety treatments and design policies.  

For example, wide lanes and shoulders are key for reducing crash frequencies, as 

are longer vertical curves.  Moreover, using a cost-benefit approach and 

assumptions about travel speed changes, model results suggest that time savings 

from raising speed limits 10 mi/h (from 50 to 60 mi/h) may not be worth the 

added crash cost. 
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NOTATIONS 

The following is the order in which the notation is used in this dissertation. 

 

y : A vector of dependent variables 

X : A matrix of explanatory variables 

θ : A vector of unknown parameters 

( ) ( )Xπ θ π θ= : The prior density of the random parameters θ  ( X  is not 
relevant to θ ) 

( ),y Xπ θ : The likelihood of y given a particular set of values for θ  and X  

( )y Xπ : The marginal likelihood of y  given X  

( ),y Xπ θ : The posterior density of θ  given y  and X  

λ : The mean and variance of a Poisson distribution 
( )mΘ : The values that the state of the chain takes at time (or step) m  

( )
( ) ( )( )1

m
m mq −

Θ
Θ Θ : The transition kernel for the state of the chain at time (or step) 

m  given time (or step) 1m −  
( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1,m m m m m mp Pθ θ θ θ− − −= Θ = Θ = : The (one-step) transition 

probabilities for the state of the chain at time (or step) m  given time (or step) 
1m −  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ),m m m m m mp Pτ τ τ τθ θ θ θ− − −= Θ = Θ = : The τ -step transition 

probabilities for the state of the chain at time (or step) m  given time (or step) 
m τ−  

( ),ij i jp p θ θ= : The (one-step) transition probabilities for the chain at state jθ  

given iθ  

( )ijP p= : The one-step transition probability matrix   



 

xv 

( )i iπ θ θ− : The full conditional posterior density of iθ  given values of other 

parameters { }( ), , 1,2, ,i j j i j Kθ θ− = ≠ ∈ …  

( ) ( )( )1 ,m mα θ θ− : The acceptance rate function 

( ) ( )( )1 2,q τ τθ θ : A Markov chain transition kernel 

{ }I i : An indicator function 

iΩ : The variance covariance matrix of crash counts by severity on segment i  

isy : The number of crash counts on segment i  at severity level s  

isx : A vector of independent variables for segment i  at severity level s  

sβ : A vector of unknown parameters at severity level s  

( )1 2, , , n
′′ ′ ′=ε ε ε εG G G… : The severity-level-specific unobserved heterogeneity across 

roadway segments 

( )expis is s isxλ β ε′= + : The mean of Poisson distribution on segment i  at severity 
level s  

Σ : The variance covariance matrix of severity-level-specific error terms 

( )expis is sxξ β′=  

( )
1

2

0 0
0 0

0 0

i

i
i i

iS

diag

λ
λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥Λ = =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

λ

"
G "

#
"

 

 

( )0,Sφ Σ : The S -variate normal density with zero mean and covariance matrix Σ  

( ),Wf VνΣ Σ : The Wishart distribution with νΣ  degrees of freedom and scale 
matrix VΣ  

iC : The constant terms which do not involve the parameters ( iε
G ) to be estimated 
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( ), ,p
i iπ β Σε yG G : The posterior density after separating iC  

( )ˆ, ,Tf Vθ θνθ θ
G

: The multivariate t  distribution with mean θ̂ , variance covariance 

matrix Vθ , and θν degrees of freedom 

iε
gG : A vector of gradient for iε

G  

i
Hε : A Hessian matrix for iε

G  

sC− : The constant terms which do not involve the parameters ( sβ ) to be estimated 

sβ
gG : A vector of gradient for sβ  

s
Hβ : A Hessian matrix for sβ  

 
 



 

 

CHAPTER 1  INTRODUCTION 

 

1.1 Traffic Crashes – An Overview 
Roadway safety has been a major concern for the general public and various 

government agencies for many decades.  In 2002, the World Health Organization 

(WHO 2002a) estimated the death toll to exceed 1.2 million.  In that same year, 

traffic crashes ranked tenth among top killers in terms of years of life lost world 

wide (WHO 2002b).  In 2004, 42,636 people lost their lives in U.S. motor-vehicle 

crashes (NHTSA 2005a).  In the U.S., traffic crashes cause more loss of human 

life (as measured in human-years) than almost any other cause – falling behind 

only cancer and heart disease (NHTSA 2005b).   

 

Traffic injuries greatly exceed fatalities (the ratio is about 69:1), with about 

2,889,000 occurring in 2003 in the U.S. alone (NHTSA 2005c).  Traffic crashes 

also cause property damage to vehicles as well as public and private facilities.  

The present cost of U.S. crashes is estimated to be $230.6 billion annually; per 

capita this figure is over $800 per year (Blincoe et al. 2002).  These costs do not 

include the cost of delays imposed on other travelers, which may be similar in 

magnitude.  Schrank and Lomax (2002) estimated that approximately half (52-

58%) of all traffic delays are due to non-recurring events, such as crashes.  In 

urban areas, they estimated the non-recurrent cost to be $250 per year per capita.  

Thus, while vehicle and roadway design are improving, and growing congestion 

may reduce impact speeds, crashes are becoming more critical in many ways, 

particularly in societies that continue to motorize. 
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1.2 Fatal Crashes on Rural Roadways 
As of 2003, rural roadways accounted for 76.3% of all publicly maintained lane 

mileage in the U.S. (USDOT 2004).  Fatal crashes on these roadways comprise 

57.4% of the U.S. total in 2004 (NHTSA 2005a).  However, only 37.5% of 

vehicle miles traveled (VMT) takes place on these roadways.   

 

Rural two-lane roadways are the largest single class of roads by mileage in the 

U.S.  As shown in Table 1, crashes on rural two-lane roadways accounted for 

over 50% of all fatal U.S. crashes in 2004.   

 
Table 1  Distribution of Fatal Crashes by Number of Travel Lanes and 

Functional Class in the U.S. in 2004 (NHTSA 2005a) 
 

Number of Travel Lanes  
Blank  1 2 3 4 5 6 7+ Unknown 

Total 

Rural  10 148 19,523 543 1,545 54 39 9 94 21,965
Urban  22 382 9,259 2,149 2,955 408 461 116 282 16,034
Unknown  3 14 159 11 44 7 5 2 9 254
Total 35 544 28,941 2,703 4,544 469 505 127 385 38,253

 

Table 2  Distribution of Fatalities by Number of Travel Lanes and 
Functional Class in the U.S. in 2004 (NHTSA 2005a) 

 
Number of Travel Lanes  

Blank  1 2 3 4 5 6 7+ Unknown 
Total 

Rural  12 177 22,118 643 1,787 63 48 10 117 24,975
Urban  24 402 10,044 2,320 3,215 437 516 128 295 17,381
Unknown  3 14 182 12 46 7 5 2 9 280
Total 39 593 32,344 2,975 5,048 507 569 140 421 42,636

1.3 Crashes on Washington State Rural Two-Lane 
Roadways 
There are about 20,000 state-maintained centerline miles of public roadways in 

the State of Washington, over 67% of which are rural roads.  The nation’s Fatality 

Analysis Reporting System (FARS) crash data indicate that 63% of fatal 
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Washington crashes occur on rural roadways and over 37% of these are single-

vehicle run-off-road events.  The number of rural two-lane roadway fatalities in 

Washington in 2004 was 325, accounting for over half of that state’s fatalities. 

 

In 2004, 563 persons died on Washington State roadways – resulting in 1.01 

fatalities per 100 million VMT, or 9.55 fatalities per 100,000 in population.  

NHTSA (2004) estimates annual Washington State crash costs to be $5.31 billion, 

a considerable loss for the state and its citizens.   

 
Table 3  Distribution of Fatal Crashes by Number of Travel Lanes and 
Functional Class in the State of Washington in 2004 (NHTSA 2005a) 

 
Number of Travel Lanes  

1 2 3 4 5 6 
Total 

Rural 6 286 15 11 0 1 319
Urban 4 107 17 47 4 3 182
Unknown 0 4 0 0 0 0 4
Total 10 397 32 58 4 4 505

 

Table 4  Distribution of Fatalities by Number of Travel Lanes and 
Functional Class in the State of Washington in 2004 (NHTSA 2005a) 

 
Number of Travel Lanes  

1 2 3 4 5 6 
Total 

Rural 6 325 20 12 0 1 364 
Urban 4 115 20 48 5 3 195 
Unknown 0 4 0 0 0 0 4 
Total 10 444 40 60 5 4 563 

1.4 Factors Affecting Crash Occurrence and Their 
Significance 
There have been numerous research efforts devoted to relating crash occurrence, 

environmental conditions, roadway design features, traffic conditions, vehicle 

characteristics, and driver attributes, as well as traffic laws and enforcement 

levels.  (See, e.g., Solomon 1964; West and Dunn 1971; Burritt 1976; Dart 1977; 
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Baum et al. 1989, 1991; Brown et al. 1990; Chang and Paniati 1990; Garbacz 

1990; Loeb 1995, 2001; Shankar et al. 1997; Abdel-Aty et al. 1998; Milton and 

Mannering 1998; Wong and Wu 1998; Chu 1999; Davis 2000; Garber and 

Ehrhart 2000; Newstead et al. 2001; Bédard et al. 2002; Khattak et al. 2002; 

Golob and Recker 2002; Furness 2003; Shankar et al. 2003; Prinsloo and 

Goudanas 2003; Banihashemi and Dimaiuta 2005; Kweon and Kockelman 2004, 

2005; and Ma and Kockelman 2006.) 

 

Raised speed limits are expected to result in more crash fatalities and injuries (e.g., 

Fowles and Loeb 1989; Levy and Asch 1989; and Snyder 1989).  Based on the 

physical laws, a vehicle’s kinetic energy is proportional to the square of its speed.  

That is to say, for a twofold increase in speed, kinetic energy will increase by a 

factor of four.  Thus, speed plays an important role in predicting crash severity.  

However, several researchers have found that raised speed limits are associated 

with a reduction in crash fatalities and injuries (Lave and Elias 1994, 1997; and 

Houston 1999). 

 

Usually, the roadway geometric design focuses on function, capacity, economy, 

and aesthetics while little attention is placed on traffic safety.  According to 

Lamm et al. (1991), over 50 percent of highway fatalities occur on rural two-lane 

roads, and half of these fatalities occur on road segments with curves.  Human 

factors are usually identified as a major cause of crashes; it is difficult to control 

and design for driver’s psychological and physical conditions.  Highway 

engineers cannot influence drunk driving and seat-belt usage.  However, good 

geometric design should help to control traffic operating speeds and to reduce 

crashes. 
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Rural roadways are typically poorly lit or not lit at all.  Insufficient light 

conditions may result in more crashes in the evening or nighttime.  

 

In addition, hospital density and emergency response can affect the probability of 

a victim surviving serious injuries.  Hospital density is the number of hospitals 

per square mile.  Increased proximity to medical care facilities generally raises 

the likelihood of surviving a crash or suffering less serious injuries.  Therefore, a 

high hospital density is expected to enhance highway safety, all else constant.  

According to the National Highway Traffic Safety Administration (NHTSA), 

emergency response time (i.e. the time of notification until the arrival at the scene) 

decreases as the wireless subscribership of a region increases.  In rural areas, the 

EMS notification time is about 6.8 minutes in contrast to the urban EMS 

notification time of 3.7 minutes (NHTSA 2005d).  Such extra minutes can be 

critical in resuscitating and protecting victims.  Additionally, in some cases, 

regardless of whether the road is rural or urban, some states lack the necessary 

information to make decisions on potential highway safety solutions (USGAO 

2004). 

 

The findings related to speed limits, design, environmental factors, and traffic 

conditions are useful for roadway designers, law-enforcement agencies and policy 

makers because these stakeholders are in a position to affect a variety of factors, 

thereby reducing crash losses.  For instance, policy makers and law-enforcement 

agencies might want to predict the effects (including monetary benefits and costs) 

of increasing speed limits, given design features and traffic conditions.  Certainly, 

traffic engineers and roadway designers can better appreciate the impacts of their 

management and design choices on safety. 
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Moreover, insufficient funds and resources also have been hampering the rural 

highway safety development efforts because of rural highways’ huge mileage,  

Although, many sates are permitted to use their funds for public road safety 

improvements, the usage of funds is restricted to the development of certain rural 

highway systems only.  On the other hand, as local authorities are responsible for 

the maintenance of most of the rural highways, they might not be able to invest 

large amounts of money in improving these highways.  Moreover, investing large 

amounts of resources on rural roads might be questionable due to concerns related 

to cost effectiveness, as these highways account for lower traffic volume as 

compared to urban highways (USGAO 2004).  

1.5 Limitations of Existing Crash Occurrence Models 
One way of addressing the highway safety issues related to rural highways is to 

reduce crashes by implementing applicable countermeasures.  The other way is to 

reduce occupant injury severity, and this is especially important because of 

increased injury severities on rural highways.  However, these two methods can 

be applied only if the relevant factors contributing towards the occurrence and 

increased severity of crashes are known.   

 

There has been considerable research into the reasons behind crash occurrence 

(e.g., Hauer 1986; Persaud 1990; Hauer 1997; Abdel-Aty and Radwan 2000; 

Kweon and Kockelman 2005; and Lord et al. 2005).  Crash records are commonly 

collected for both frequencies and severities on relatively homogenous road 

segments, and, usually, separate analyses are performed to model counts at 

different levels of severity. 

 

There are several drawbacks to such methods.  First, a separate analysis may 

result in a substantial decrease in efficiency for parameter estimation.  For a 
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particular roadway segment, unobserved factors (e.g., pavement quality, adjacent 

land uses, sight distance, and grade) may simultaneously influence traffic crash 

counts at different levels of severity.  These unobserved factors create correlations 

that can improve prediction and estimation efficiency.  Secondly, separate 

analyses of severity can be conducted only on roadway segments where crashes 

have occurred – i.e., segments with at least one crash.  In practice, road segments 

with at least one crash may form a very biased sample of segments of interest.  

Moreover, an estimate of the marginal probability of observing a crash of a 

certain severity, conditional on first observing a crash, usually is not the same as 

the unconditional marginal probability of observing a crash at the same severity 

level.  In practice, the latter should prove more useful to policy makers, 

transportation engineers, and others.   

1.6 Models of Multivariate Count Data  
To address the drawbacks in the separate, univariate analyses of correlated count 

data, some efforts have turned to multivariate specifications.  Arbous and Kerrich 

(1951) examined crash proneness by assuming the number of crashes in several 

disjointed time intervals to be distributed as a mixture of independent Poisson 

distributions with a common gamma error term.  This is known as the 

multivariate Poisson-gamma (MVPG) mixture model.  Tsionas (1999, 2001) and 

Karlis (2003) adopted a special case of the multivariate Poisson (MVP) model 

with a single common additive term.  Kockelman (2001) applied a multivariate 

negative binomial (MVNB) specification to analyze time- and budget-constrained 

activity demand.  In her MVNB model, the same gamma error term was assumed 

for all demands generated by a single household.  Though they recognize some 

correlations between counts, these model specifications are rather restrictive for 

real applications since they assume that all pairs of counts share the same 

correlation (due to the same multiplicative gamma term or additive Poisson term).   
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Aichison and Ho (1989) discussed a multivariate lognormal (MVLN) mixture of 

independent Poisson distributions.  The MVLN distribution’s rich covariance 

structure can be retained, while preserving non-negativity of crash rates and 

counts.   

 

The multivariate Poisson-lognormal (MVPLN) distribution can offers a more 

flexible correlated count data process.  

1.7 Limitations of Frequentist Approaches in Crash 
Occurrence Modeling 
The MVP specifications discussed above are relatively hard to implement because 

of difficulties in parameter estimation using frequentist approaches.  Karlis (2003) 

developed an Expectation Maximization (EM) algorithm for estimating his 

special case of MVP regression models.  However, this algorithm only finds the 

parameter point estimates and does not provide full information on their 

distribution.  Moreover, in dealing with the multidimensional integrals, 

frequentist approaches appear to be too complicated for most practitioners to 

understand.  In very recent years, Bayesian methods have found applications in 

the traffic crash analysis (see, e.g., MacNab 2003; Miaou and Song 2005; and Ma 

and Kockelman 2006). 

1.8 Advantages of Bayesian Techniques in Crash 
Occurrence Modeling 

1.8.1 Hierarchical Modeling via Mixtures 
Hierarchical modeling via mixtures of distributions (e.g., a Poisson rate following 

a gamma distribution) provides a great degree of flexibility in data analysis.  For 

example, Qin et al. (2003) employed scale mixture methods to model skewed and 

heavy-tailed data while relaxing the assumption of homoscedasticity.  

8



 

 

1.8.2 Parameter Estimation via Markov Chain Monte Carlo 
Simulation (MCMC) 
As mentioned, parameter estimation in multivariate count data models can be 

complicated using frequentist approaches.  In a Bayesian approach, the unknown 

parameters are assumed to be random variables.  Data augmentation techniques 

can estimate both parameters of interest and nontrivial variables, such as latent 

variables (e.g., total number of crash counts under the situation of underreporting).  

Therefore, knowing the kernel density of all unknown variables is enough to 

estimate the parameters of interest (which form some of the unknown variables).  

In a frequentist approach, the likelihood function has to be transformed into 

unconditional distributions by integrating out the non-trivial variables.  

Sometimes, the multidimensional integrals can be very complicated and hard to 

implement.  The MCMC simulation techniques, such as Gibbs sampling and M-H 

algorithms, can be very powerful in estimating such complicated models. 

1.8.3 Incorporate Prior Beliefs with Data 
In data analysis, one may have some sense of the parameters of interest before 

looking at the data.  Bayesian statistics provides a coherent way to incorporate 

prior beliefs about parameter values via Bayes’ theorem.  In contrast, frequentist 

approaches have no way to incorporate such useful information into the modeling 

process.  Prior beliefs can be very useful to the problem solution, particularly 

when only a small data sample is available. 

1.8.4 Inference 
In simple terms, frequentists assume that there is an unknown but fixed set of 

parameters.  Bayesians assume that unknown parameters are by their nature 

random variables and then use probability theory to quantify this uncertainty.  

Frequentists consider all possible data sets generated by the unknown fixed 
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parameters, while Bayesians take data as given, and consider all possible values 

of unknown parameters.  For example, one may wish to estimate a population 

mean.  Frequentists believe that the population mean is fixed, but unknown and 

unknowable.  They estimate the population mean using the sample mean.  Given 

the distribution of the sample mean, the resulting 95% confidence interval is 

interpreted as follows: 95% of such intervals will contain the population mean, 

assuming each interval is obtained from a different random sample.  However, 

Bayesians take the data as given, and assume that the population mean follows a 

posterior distribution obtained by combining both the sample mean and their prior 

beliefs about the population mean.  Therefore, in a Bayesian paradigm, the 

population mean is estimated as a distribution.  The credible interval in Bayesian 

statistics can be interpreted as a so-called interval that contains the true population 

mean with 95% probability. 

1.9 Study Objective 
The objective of this research is to model traffic crash frequency by severity 

simultaneously with multivariate Poisson-lognormal models.  This approach 

addresses some questions that are difficult to answer by estimating them 

separately.  The parameter estimation will be done within the Bayesian paradigm.  

A Gibbs Sampler and M-H algorithms are constructed to assist the Bayesian 

statistical inference.  The methodology is empirically applied to investigate crash 

frequency by severity using crashes which occurred on Washington State rural 

two-lane highways in the Puget Sound region.  The results lend themselves to 

recommendations for highway safety treatments and design policies. 

1.10 Organization 
The rest of the dissertation is organized as follows.  Chapter 2 conducts an 

extensive review of early research on crash occurrence modeling.  Chapter 3 
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introduces the basics of Bayesian statistics.  This chapter also covers the two most 

widely used Markov chain simulation methods: the Gibbs sampler and the M-H 

algorithms.  Chapter 4 starts from UVP regression models and then moves to 

MVP models.  In addition, this chapter also establishes two MCMC simulation 

procedures to estimate the unknown parameters in the MVPLN model.  Chapter 5 

illustrates the merits of MVPLN models to investigate the correlated crash data on 

Washington State rural two-lane highways in the Puget Sound region.  A cost-

benefit analysis of raising speed limits is implemented based on the results from 

the MVPLN model.  Chapter 6 discusses the limitations and future extensions of 

MVPLN model and offers conclusions. 

1.11 Summary 
Roadway safety is a major concern for the general public and public agencies.  

Roadway crashes claim many lives and cause substantial economic losses each 

year.  The situation is of particular interest on rural two-lane roadways, which 

experience significantly higher fatality rates than urban roads.  With recent 

advancements in crash modeling and Bayesian statistics, this dissertation will 

develop, calibrate, and apply multivariate count data models.  
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CHAPTER 2  LITERATURE REVIEW 

 

There has been extensive research performed over the past decades to investigate 

traffic crash occurrence as related to many influencing factors such as roadway 

geometrics, environmental and traffic conditions, highway user attributes, and 

vehicular- and crash-related characteristics.  Various statistical approaches have 

been utilized in the process of developing an association between crash 

occurrence and those factors.  Research on the frequency of traffic crashes can be 

classified into two major streams: univariate count data models and multivariate 

count data models.   

2.1 Univariate Count Data Models 
In the first stream of research, the frequency of traffic crashes by severity is 

usually separately modeled using univariate count data models1.  Poisson and 

negative binomial (NB) regression models based on counting processes have 

found extensive use in studies of crash frequency over the last 20 years.  For 

example, in traffic safety analysis, Poisson and the related negative binomial 

regression models2 (where the latter are deduced from the combination of a 

Poisson process with a gamma distribution of rates to allow for unobserved 

heterogeneity and allow for “overdispersion” in the conditional distributions) 
                                                 
1 Some research modeled crash rates as a continuous number and applied linear regression models 
to investigate the crash occurrence (see, e.g. Shah 1968; and Mulinazzi and Michael 1969).  It is a 
straightforward method that models crash rates for a relatively homogeneous segment.  Although 
linear regression models are relatively easy in estimating and interpreting the results, research has 
suggested that linear regression models have many drawbacks, such as lack of distributional 
properties to describe random, sporadic, crash count events.  The linear regression models for 
crash counts can, thus, result in inconsistent parameter estimates. 
2 The Poisson model has been criticized because of its implicit assumption that the variance of the 
dependent variable equals its mean.  Many extensions of the Poisson model that relax this 
assumption have been proposed by many econometricians in 1980s.  The negative binomial model 
is one kind of such extensions of the Poisson model by relaxing the assumption of equi-dispersion. 
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have been the primary device used for investigating the associations between 

crash frequency and several factors such as traffic volume, access density, posted 

speed limit and number of lanes.  The following sections describe previous 

research efforts. 

2.1.1 Poisson Regression Models 
In 1992, Miaou et al. employed a Poisson regression model to investigate the 

relationship between truck crashes and roadway geometric design variables such 

as annual average daily traffic per lane, horizontal curvature, vertical grade, and 

shoulder width.  The data set they used was collected from rural interstate 

highways from 1985 to 1987 through the Highway Safety Information System 

(HSIS), operated by the University of North Carolina Highway Safety Research 

Center (HSRC) and LENDIS Corporation, and administrated by the Federal 

Highway Administration (FHWA).  Besides quantifying the relationships 

between truck crashes and the key variables listed above, they also suggested that 

better truck exposure data and additional important variables could improve the 

goodness-of-fit of the Poisson specification. 

 
Miaou and Lum (1993) applied the Poisson regression model to evaluate the 

effects of highway geometric design on truck crash occurrence.  They also 

estimated and quantified the uncertainties of the expected reductions in truck 

crashes due to improvements of highway geometric design.  Truck crash data 

from 1985 to 1989 on Utah rural interstate highways was obtained through the 

HSIS to illustrate the use of the proposed methods.   

 
Kumara and Chin (2005) adopted a Poisson specification to describe the reported 

crash counts and a probit model to represent the reporting mechanism to 

investigate the crash occurrence at three-legged signalized intersections.  After 

taking into account the underreporting, they found that some geometric, traffic 
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and traffic control factors significantly affect the crash occurrence; for example, 

left-turn volumes and shorter sight distance may increase the crash occurrence at 

the three-legged signalized intersections. 

 
There has been a considerable interest in Poisson regression models that capture 

the non-negativity and discrete characteristics in traffic crash data.  (See, e.g., 

Abdel-Aty and Pemmanaboina 2005; Khattak et al. 2004; Daniel and Chien 2004; 

Hallmark and Muller 2004; Oh et al. 2004; Whitfield and Whitfield 2004; 

Chipman et al. 2003; Daniel et al. 2002; Khattak and Knapp 2001; Quddus et al. 

2001; Ivan et al. 2000; Abdel-Aty and Radwan 1999; Ivan et al. 1999; Scuffham 

and Langley 1997; and Laberge-Nadeau et al. 1996.) 

2.1.2 Negative Binomial Regression Models 
A well-known limitation of the Poisson distribution is its equi-dispersion; i.e., its 

mean equals its variance.  The possibility of overdispersion (its variance is greater 

than its mean) is always a concern in modeling traffic crashes and may produce 

incorrect inference.  Negative binomial distribution has been widely used as an 

alternative to relax the equi-dispersion constraints imposed by the Poisson model.  

 
Johansson (1996) examined the effects of speed limit reduction on the crashes 

which occurred on Swedish motorways.  He applied the extensions of the Poisson 

and negative binomial regression model to address the serial correlation as well as 

overdispersion.  His results suggested that lowering speed limit was predicted to 

reduce the number of crashes involving minor injuries and vehicle damage. 

 
Vogt and Bared (1998) investigated the crash occurrence for rural two-lane 

roadway segments as well as intersections in the states of Minnesota and 

Washington.  They employed a negative binomial specification and its extension 

to control for many important variables such as traffic, horizontal and vertical 
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alignments, lane and shoulder widths, roadside hazard rating, channelization, and 

the number of driveways.  Their results indicated that segment crash occurrence 

primarily depends on roadway features, while intersection-related crashes are 

mainly determined by traffic. 

 
Vogt (1999) investigated the crashes occurring on rural roadway intersections in 

the states of California and Michigan for the years 1993-1995.  The crash data 

was obtained through the HSIS containing the type of intersection, traffic volume, 

roadside hazard rating, the number of driveways, channelization, intersection 

angles, and speed limits.  He employed the negative binomial regression models 

to address the overdispersion in the crash count data. 

 
Miaou (2001) employed the negative binomial regression model to estimate 

vehicle roadside encroachment rates for rural two-lane undivided roads.  His data 

was obtained from the seven states cross-section data base of the FHWA.  His 

model controlled for AADT, lane width, horizontal curvature, and vertical grade.   

 
Zegeer et al. (2001) employed Poisson and negative binomial regression models 

to examine the effects of the presence of marked crosswalks on pedestrian crashes.  

The data sets used involved five years of pedestrian crashes at 1000 marked 

crosswalks and 1000 unmarked comparison sites, all of which are unsignalized, 

uncontrolled intersections.  Besides the presence of marked crosswalks, they 

controlled for traffic volume, pedestrian exposure, the number of lanes, the type 

of median, speed limits, and other site variables.  Their study showed that raised 

medians could significantly reduce pedestrian crash rates on multilane roads, and 

older pedestrians tended to have higher crash rates. 
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2.1.3 Zero-Inflated Count Data Models 
Poisson regression models provide a standard framework for the analysis of crash 

count data.  However, count data are often overdispersed relative to the Poisson 

distribution.  One frequent manifestation of overdispersion is that the incidence of 

zero counts is greater than expected for the Poisson distribution and this is of 

interest because zero counts frequently have special status.  For example, a 

segment of roadway may have no crashes during the study period, either because 

it is so well designed that no crash would occur, or simply because no crash has 

yet occurred on it by chance.  This is the distinction between structural zeros, 

which are inevitable, and sampling zeros, which occur by chance.  In recent years, 

there has been considerable interest in models for count data that allow for excess 

zeros, such as zero-inflated Poisson (ZIP), and zero-inflated negative binomial 

(ZINB) models.  Zero-inflated (or zero-altered) count data models3 have been 

applied to capture the apparent excess zeros, which commonly exist in crash data 

sets, such as segment-based crash data. 

 
As an extension of a standard Poisson regression model, zero-inflated Poisson 

regression models have gained considerable recognition in analyzing crashes.  

The zero-inflated Poisson regression models allow one to distinguish safe roads 

with a zero probability of crash occurrence from unsafe roads which have 

recorded no crash during the study period due to randomness. 

 
Miaou (1994) investigated the relationship between truck crash occurrence and 

geometric design of road segments using Poisson regression, ZIP regression, as 

well as negative binomial regression models.  He examined the performance of 

                                                 
3 Zero inflated count models basically assume two sources for zero outcomes.  One source is 
because a segment of roadway happens to have zero crashes due to randomness.  Another source 
is that that segment of roadway will never have crashes regardless of the characteristics of the 
roadway.  This assumption is apparently not appropriate for modeling crash occurrence since no 
roadways will never have crashes given a long period of time. 
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these models from the following five perspectives: (1) estimated coefficients, (2) 

overall goodness-of-fit, (3) estimated relative frequency of truck crash occurrence 

across road segments, (4) analyzed sensitivity to the short road segments, and (5) 

predicted total number of truck crashes. 

 
Shankar et al. (1997) applied a zero-altered counting process to analyze road 

traffic crashes.  In the zero-altered count process, they tried to distinguish 

roadway segments that are truly safe from those that are not, but happen to have 

zero crashes during the period of investigation.  They estimated the ZIP as well as 

ZINB regression models using crashes on principal arterials in western 

Washington for the years 1992 to 1993. 

 
Garber and Wu (2001) applied the Poisson, negative binomial, ZIP, and ZINB 

regression models using traffic data obtained from the Smart Travel Lab at the 

University of Virginia.  The controlled variables include volume, speed, 

occupancy, curvature, exposure, and standard deviation of speed at the time of 

crash occurrence.  Their results indicated that negative binomial and ZIP are the 

preferred modeling methods in their case.   

 
Lee and Mannering (2002) applied ZIP and ZINB regression models to examine 

single-vehicle run-off-roadway crashes occurring on a section of highway in 

Washington State.  Their focus was on the effects of roadside features on crash 

occurrence.  Their results showed the following treatments which can be 

implemented to reduce run-off-roadway crashes: 1) avoiding cut side slopes, 2) 

decreasing the distance from outside shoulder edge to guardrail, 3) decreasing the 

number of isolated trees along roadway sections, and 4) increasing the distance 

from outside shoulder edge to utility poles. 
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Kumara and Chin (2003) employed the zero-inflated negative binomial (ZINB) 

specification to address the problem of excess zero crash counts.  The ZINB 

model allows one to distinguish safe intersections from those at which no crash 

happened due to randomness.   

 
Rodriguez et al. (2003) examined the effects of truck-driver wages and working 

conditions on crash occurrence.  They adopted a zero-inflated Poisson regression 

model to quantify the impacts of human capital and occupational factors such as 

pay, job tenure, and percentage of miles driven during winter.  Their results 

indicated that higher pay rates and pay increases are associated with lower crash 

rates.   

 
Shankar et al. (2003) estimated the NB and ZIP models using data on reported 

crashes involving pedestrians and motorized traffic in Washington State.  Their 

results based on the data suggested that zero-inflated count models are promising 

approaches to explore pedestrian-related crashes. 

 
Qin et al. (2004) analyzed the relationship between crashes and exposure 

measures using crashes occurring on two-lane highway segments in Michigan.  

They used ZIP specification to model crash counts as a function of AADT, 

segment length, speed limit and roadway width.  They found that the relationship 

between crash counts and AADT is nonlinear and is different from the 

relationship between crash counts and segment length.  

 
Lord et al. (2005) provided some guidance in selecting appropriate count data 

models to predict crashes in terms of statistical fit and theoretic foundation.  For 

example, they would suggest using zero-inflated models for datasets with a 

preponderance of zeros.  
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There also has been considerable interest in models that allow for excessive zeros, 

such as zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) 

regression approaches.  (See, e.g., Liu et al. 2005.) 

2.1.4 Panel Count Data Models 
To address the heterogeneity issue across individuals (e.g., a segment of roadway, 

an intersection), some recent studies have analyzed panel data sets using panel 

count data models such as random effect negative binomial (RENB) and fixed 

effect negative binomial (FENB) regression models.  

 
Chin and Quddus (2003) proposed the use of random effect negative binomial 

(RENB) models to account for unobserved heterogeneity and serial correlation in 

the crash data.  They conducted an empirical study by examining the relationship 

between crash occurrence and the geometric, traffic and control characteristics of 

signalized intersections in Singapore. 

 
Kumara et al. (2003) utilized the random-effect negative binomial model to 

examine crashes occurring at signalized intersections.  Their results, based on the 

Singapore data, showed the following factors resulting in more crashes:  1) 

uncontrolled left-turn, 2) insufficient sight distance, 3) a large number of signal 

phases, 4) permissive right-turn phases, 5) horizontal curves, and 6) total and left-

turn volumes.  

 
Noland (2003) analyzed the effects of road infrastructure improvements on traffic 

fatalities and injuries using a fixed-effects negative binomial regression model to 

account for heterogeneity in the data.  Noland’s negative binomial models 

accounted for various variables at the aggregate level, total lane miles, the 

proportion of lane miles in different categories of roadways, average number of 

lanes for each road category, lane widths, as well as demographics.  Their results 
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suggested the following factors contributing to overall reductions in fatalities: 1) 

increased seat-belt use, 2) reduced alcohol consumption, and 3) increases in 

medical technology. 

 
Kumara and Chin (2004) estimated a fixed-effect negative binomial (FENB) 

model to examine the effect of socioeconomic and infrastructure factors on fatal 

traffic crashes in Asian Pacific countries.  The data set was collected from 41 

countries for the years of 1980 to 1994.  Their FENB model results showed the 

following factors resulting in more fatal crashes: 1) size of road network, 2) gross 

national product per capita, 3) population, and 4) the number of registered 

vehicles.  Additionally, they found that fatal crashes decrease with time for all 

countries. 

 

Kweon and Kockelman (2004) employed the fixed-effects and random-effects 

Poisson and negative binomial regression models to examine the impacts of the 

repeal of the National Maximum Speed Limit (NMSL) of 55 mi/h law using 

crashes occurring on Washington State highways for the years of 1993 to 1996.  

They relied on segment-based panel data for thousands of roadway segments 

averaging just 0.1 mile in length.  They predicted crash counts based on a number 

of design variables (such as degree of curvature and vertical curve length); 

however, their data set contained only five interstate highways and did not 

consider speed choices. 

 

Kweon and Kockelman (2005) examined the safety effects of speed limit changes 

using panel count data models as well as non-panel count data models.  Based on 

the two information criteria (AIC and BIC), the RENB model proved the most 

effective for modeling fatality, fatal crash, injury, injury crash, property-damage-

only (PDO) crash, and total crash occurrence. 
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2.1.5 Other Count Data Models 
Fridstrøm et al. (1995) investigated the road traffic crashes using a generalized 

Poisson regression model.  Based on the analysis of a four-country, segmented 

data base, they concluded that randomness and exposure played a dominant role 

in predicting crash occurrence.   

 
Unlike previous research, Ulfarsson and Shankar (2003) adopted a negative 

multinomial specification to analyze the panel median crossover crash data and to 

explore the section-specific serial correlation across time.  Their results showed 

that the negative multinomial regression model is significantly better than the 

negative binomial and random-effects negative binomial regression models in 

terms of fit.  Besides, the negative multinomial specification provides more 

intuitive results. 

 
Pernia et al. (2004) employed the Poisson, negative binomial and lognormal 

regression models to investigate the two-way left-turn lane (TWLTL) median 

treatment on crash occurrence.  They used traffic crashes in Florida for the years 

of 1996 to 1998 as the data sample which also included some variables such as 

access density, posted speed limits, and number of lanes. 

 
There have been many other efforts devoted in modeling crash occurrence using 

some extensions of count data models.  (See, e.g., Djauhari 2002; Koorey 2005; 

and Miaou et al. 2005.) 

2.1.6 Limitations of Univariate Approaches 
The methods discussed above more or less ignored the following issues: (1) 

interdependence may exist between crashes of different levels of severity for a 

specific segment of roadway, and (2) road geometric design features, road use, 
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and environmental conditions may have distinct effects on crashes of different 

severity.   

 

Specifically, there are at least three drawbacks making a separate analysis 

inappropriate for addressing this problem.  First, a separate analysis may result in 

a substantial decrease in efficiency for parameter estimation4 since the 

relationship between crash severity and frequency is ignored in this setting.  

Second, a separate analysis of severity can only be conducted on road segments 

where crashes occurred, i.e., the segments with at least one crash.  In practice, the 

road segments with at least one crash may consist of a biased sample of the 

roadway of interest.  Moreover, an estimate of the marginal probability of 

observing a certain severity level conditional on observing a crash usually are not 

the same as the unconditional marginal probability of observing a crash at the 

same severity level.  For example, there are 1000 crashes (e.g., 600 property-

damage-only (PDO) crashes, 350 injury crashes, and 50 fatal crashes) in a city, 

which has a population of 1 million.  For an arbitrary person living in the city, the 

probability of becoming involved in a fatal crash is 50/1,000,000=0.5%.  If we 

know this person was involved in a crash, the probability of that crash being fatal 

is 50/1000=5%.  Obviously, the marginal probability, 5%, is far larger than the 

unconditional probability of 0.5%.  In practice, the latter is more useful to policy 

makers, transportation engineers, etc.   

2.2 Multivariate Count Data Models 
Multivariate count data models, which can address the above three issues, are the 

focus of the second stream of research.  In the second stream of research, the 
                                                 
4 When the interdependence exists among crash counts by severity on a segment, the estimates of 
standard errors of the regression coefficients will be underestimated because each observation 
actually contributes less information than it is assumed to contribute under the assumption of 
independence.  The consequence is that the t-ratios will be inflated and incorrect statistical 
inferences will be made. 
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frequency of traffic crashes by severity is simultaneously modeled using 

multivariate count data models such as multivariate Poisson, multivariate zero-

inflated Poisson, and Poisson-lognormal regression models.  Ladron de Guevara 

and Washington (2004) investigated the simultaneity of fatality and injury crash 

outcomes.  Bijleveld (2005) estimated the variance-covariance structure between 

the number of crashes and the number of injuries.   

2.3 Bayesian Approaches 
The multivariate Poisson specification is challenging to implement because of 

difficulties in the estimation of parameters.  Karlis (2003) developed an EM 

algorithm for estimating multivariate Poisson regression models.   

 

In more recent years, Bayesian methods have found applications in the traffic 

crash analysis.  Christiansen et al. (1992) developed a hierarchical Poisson model 

for investigating traffic crashes.  MacNab (2003) investigated traffic crash and 

injury surveillance data using a Bayesian hierarchical model.  Miaou and Song 

(2005) employed the Bayesian methodologies in ranking the sites for engineering 

safety improvements.  Liu et al. (2005) used a hierarchical Bayesian framework to 

estimate ZIP regression models to develop safety performance functions (SPF) for 

two-lane highways. 

 

However, to our knowledge, none of the studies applied Bayesian methods to 

estimate multivariate Poisson models in traffic safety analysis.  The Bayesian 

methods give an approximation to the whole posterior distribution of parameters 

of interest, as opposed to the EM algorithm which only gives the mode of 

parameters of interest. 
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2.4 Previous Models of Rural Two-lane Roadway Crash 
Occurrence 
Crashes on rural roads accounted for more than 60% of US 42,815 traffic death in 

2002 (USGAO 2004), while rural roadways carry only 40% of US traffic each 

year.  There are more than 3.9 million miles of roadway in the US, about 50% of 

which are in rural areas.  The fatality rate on rural roadways was 2.29 per million 

vehicle miles traveled (MVMT) in 2002, while the fatality rate was 0.97 per 

MVMT for urban roadways (USGAO 2004).  

 

During the past two decades, the number of drivers and vehicles has risen steadily.  

The number of traffic fatalities in 2002 was 2.6 percent less than the number in 

1982, while the number of fatalities on rural roadways increased slightly.  The 

increase is possibly due to a variety of reasons, including the aging of the 

roadway surfaces and an evolution in population settlement patterns.  Given their 

relatively low traffic volumes, it is difficult to justify the major construction 

necessary to redesign or rehabilitate rural roadways.  A strong understanding of 

the benefits of such actions is needed.  To this end, numerous efforts have been 

devoted to investigating crash occurrence as related to other factors, such as 

average annual daily traffic (AADT), shoulder width, degree of curvature, vertical 

grades, and speed limits.  (See, e.g., Zeeger et al. 1981; Vogt 1998, 1999; Ogden 

1997; Fitzpatrick 2002; and Lamm et al. 2002.) 

 

Fitzpatrick et al. (2003) examined the different characteristics between urban and 

rural crashes in Texas.  They found that urban areas had 46% of possible injury 

(C-level) crashes, compared with 28% in rural areas; urban areas had less than 

20% of single-vehicle crashes, compared with 50% of single vehicle crashes in 

rural areas; a higher percentage of rural crashes happened at night, and were twice 

as likely to involve striking a fixed object compared to urban crashes. 
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Carlson et al. (2005) examined daytime high-speed passing maneuvers using 

surveys on a rural two-lane, two-way highway in Texas.  They found that the 

AASHTO Passing Sight Distance (PSD) model would provide inadequate PSD 

for speeds overtaken greater than those assumed. 

 

Chen and Cottrell (2005) evaluated the effects of centerline rumble strips (CLRS) 

on rural two-lane and undivided multilane highways to reduce cross-over-the-

centerline (COCL) crashes.  A benefit-cost analysis they conducted showed a b/c 

ratio of at least 7.6 for installing CLRS. 

 

Two-lane rural roads are perilous everywhere.  Passing occurs in the opposing 

lane, turning vehicles affect flow in both directions, access is minimally 

controlled (with driveways introducing slow-moving vehicles), and head-on 

collisions are not uncommon.  Streff and Kostyniuk (1997) found that most fatal 

crashes in rural areas of Michigan occurred on two-lane collectors and local roads 

with speed limits of 55 miles per hour.  And Huang et al. (2001) found that rural 

two-lane roads in North Carolina (from 1993 to 1997) were associated with the 

highest crash severities.   

 

Horizontal curves also present special dangers.  Viner’s (1995) analysis of a 

variety of roadway types across the U.S. noted that the areas of highest risk for 

run-off-road crashes are on rural two-lane roads in the outer lanes of horizontal 

curves. Using data from two-lane rural roads in both the U.S. and Germany, 

Lamm et al. (2002) regressed operating speeds and crash rates on various design 

features of horizontal curves, including rate of change in curvature, curve length 

and superelevation, lane and shoulder widths, sight distance, grades, and traffic 
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volume.  While they found only curvature change rate to be a statistically 

significant contributor to crash rates, their sample size was quite limited.  

 

In reality, a great many factors likely are at play (e.g., pavement and weather 

conditions).  Intersections also perform very differently from basic roadway 

segments.  Using data from Minnesota and Washington State, Vogt and Bared’s 

(1998) negative-binomial crash models for rural two-lane roadway segments and 

intersections controlled for traffic levels, roadside hazard ratings, degree of curve, 

grades, lane and shoulder widths, channelization and driveway frequency.  Their 

results suggest that basic roadway segment crashes depend mainly on design 

features, while intersection crashes depended largely on traffic levels. 

 

Vogt’s (1999) investigation of rural intersections in four states controlled for a 

variety of factors, including the number of approach legs, control type (signalized 

or stop-controlled), the number of approach lanes (four and two), the use of 

channelization, the angle of intersection, left-turn and truck percentages, and 

speed limits.  His negative binomial model for predicting crash counts suggested 

that virtually all variables were statistically significant (thanks in part to a very 

large sample of over 20,000 intersections. 

 

Work zones also tend to be hazardous locations.  Venugopal and Tarko’s (2000) 

negative binomial models for crashes in work zones on rural two-lane highways 

controlled for AADT, work-zone length, project duration, and project cost.   They 

found that crash rates in such zones depend greatly on geometrics, traffic control, 

and traffic levels. 

 

One-vehicle crashes are distinct from multi-vehicle crashes.  Ivan and Wang’s 

(2000) Poisson regression models for rural two-lane crash counts found that 
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daylight conditions, a higher volume-to-capacity ratio, narrow shoulders, 

extensive passing permission, and the presence of many intersections tended to 

reduce the number of single-vehicle crashes.  For multi-vehicle crashes, the 

number of intersections also had a negative effect, but daylight conditions and 

driveway density had positive effects.  

 

Information on adjacent activity types/land uses also aids prediction. Using a 

logistic regression model to predict crash counts on two-lane undivided rural and 

suburban roadways in Strafford County, New Hampshire, Ossenbruggen et al. 

(2001) found that “village” sites were safer than residential and shopping sites.  In 

addition, something as simple as striping can play an important role: Miller’s 

(1992) review of the literature suggested that edgelines on rural two-lane 

highways reduce crashes by 8 percent.  In contrast, something as fundamental as 

speed limits may not play a real role: Najjar et al.’s (2002) study of rural two-lane 

Kansas highways found no statistically significant increases in system-wide crash 

rates after speed limits were raised.  However, some Kansas sections did 

experience crash rate (and fatal crash rate) increases and these mainly were rural 

two-lane highways.   

 

There is also research on the crash countermeasures and safety improvement 

methods on rural two-lane roads.  Agent et al. (2001) analyzed a sample of 150 

fatal crashes that occurred on a rural two-lane road.  Based on their analysis, they 

recommended several crash countermeasures and evaluated the potential 

effectiveness of these countermeasures.  The specific countermeasures were 

divided into roadway and non-roadway areas (e.g., centerline rumble strips, clear 

zone improvements, and regular pavement inspection); the non-roadway area was 

further divided into legislation, enforcement, and education/training.  Agent and 

Pigman’s (2001) before-after analysis of 25 locations with added lanes and 24 
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locations with wider lanes and shoulders estimated crash rates (total, as well as 

injury and fatal crash rates) to fall by over 50 percent in both cases.  Council and 

Stewart’s (2000) cross-sectional models predicted that conversion of rural roads 

from undivided two-lane designs to divided four-lane designs reduced crash rates 

by roughly 50 percent.  In contrast, conversion without directional division was 

found to have only a minor impact.  

 

Clarke and Sarasua (2003) and Lacy (2002) analyzed crash data for South and 

North Carolina. The data was collected primarily on rural two-lane roads, and 

their Bayesian approach resulted in crash reduction factors (CRFs) for specific 

countermeasures. Twenty-five countermeasures spanning pavement, roadway, 

roadside, and lighting improvements, as well as regulations, were examined.  

Clear-zone improvements and guardrail additions had the greatest effects on crash 

rates; geometric realignments and speed limit enforcement also had major effects.  

Fitzpatrick and colleagues’ recent work for TxDOT (Fitzpatrick and Brewer 2002; 

Fitzpatrick et al. 2001 and 2002) reviewed a lot of literature regarding design 

treatments for rural, low-volume two-lane roads; however, they did not analyze 

any data or provide design or treatment recommendations. 

While cross-classification of crash rates according to several variables at a time 

offers a glimpse of relationships between design practices, traffic conditions, and 

crash consequences, more sophisticated, multivariate methods are the standard 

(see, e.g., Duncan 1998; Golob et al. 1987; Kockelman and Kweon 2002; Kweon 

and Kockelman 2003; Quddus et al. 2002; Abdel-aty et al. 1998; Farmer et al. 

1997; and O’Donnell and Connor 1996).  For example, Duncan et al. (1998) 

investigated the effects of several factors on injuries endured during two-vehicle 

rear-end crashes using the ordered probit modeling technique.  Their results 

suggested that darkness, high speed differentials, higher speed limits, and 
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excessive grades contributed to substantially more severe crashes.  Using the 

same statistical specification, Ma and Kockelman (2004) found that higher design 

speeds5 (holding speed limits fixed) and speeding contribute to injury severity, 

while lighting and pavement wetness appear to play no role.  And Kweon and 

Kockelman (2001) found that vehicle type can be key in protecting (or not 

protecting) occupants and crash partners.   

 

There many other studies on traffic safety of rural two-lane roads; for example, 

Jaarsma et al. (2005) investigated passing bays for slow-moving vehicles; Schurr 

et al. (2004) modeled appropriate design speed for horizontal curves approaching 

stop-controlled intersections; Fitzpatrick (2004) summarized some important 

documents for users to conduct safety studies and select treatments; Gattis et al. 

(2003) proposed an alternate passing lane to improve the safety of rural two-lane 

roadways; Persaud et al. (2003) evaluated the effects of centerline rumble strips 

on crash reductions; Ranck (2003) applied safety and operational effects of 

highway design features to two-lane rural highways; Wooldridge et al. (2003) 

discussed geometric design consistency; Kindler et al. (2003) developing the 

Intersection Diagnostic Review Module (IDRM).  

 

Notably, prior research on crash severity has not controlled for roadway design 

and traffic conditions, examining only a subset of severe crash causes.  Thanks to 

the compilation of new, more extensive data sets, these analyses provide 

additional control variables, such as driveway density and the presence of 

improved roadside.  Their inclusion allows for new insights and recommendations. 

                                                 
5 Design speed is the minimum speed for which the road is designed.  In other words, the most 
restrictive geometric features which make up a highway’s design such as degree of curvatures and 
vertical grades should safely allow an operating speed at least equal to the design speed. 
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2.5 Summary 
A review of early research on crash occurrence shows: 

• Most crash occurrence modeling efforts are based on univariate count data 

models such as Poisson, NB and their extensions to address issues of 

overdispersion and/or heterogeneity; few of them address the issue of 

correlated counts of crashes at different levels of severity. 

• Although empirical Bayesian approaches have seen wide application in 

traffic safety fields, the full Bayesian analysis of crash data has not found 

many applications in the field. 

• Many studies on the safety of rural two-lane roadways have focused on 

different aspects of treatments, exhibiting a great deal of inconsistency in 

their findings. 
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CHAPTER 3  BAYESIAN STATISTICS 

 

This chapter first briefly discusses Baye’s theorem and Markov chain Monte 

Carlo (MCMC) simulation techniques such as the Gibbs sampler and Metropolis-

Hastings (M-H) algorithms.  Then, univariate Poisson regression models are 

introduced with a discussion of potential challenges to the application of 

correlated count data.  After that, the discussion focuses on addressing the 

problems of correlated counts using multivariate Poisson-lognormal (MPLN) 

regression models.  Finally, a Gibbs sampler and M-H algorithms are constructed 

to estimate the unknown parameters in the model. 

3.1 Bayesian Theory 
The essential part of the Bayesian paradigm is Bayes’ theorem.  Let ( ),y X  

denote data, where y  is a vector of dependent variables and X  is a matrix of 

explanatory variables.  Let θ  be a vector of unknown parameters that, along with 

X , statistically determines the distribution of y  values.  Notationally, Bayes’ 

theorem can be written as 

 

( ) ( ) ( )
( ) ( ) ( ),

, ,
X y X

y X X y X
y X

π θ π θ
π θ π θ π θ

π
= ∝    (1) 

 

where ( ) ( )Xπ θ π θ=  (i.e., X  is not relevant to θ ) is the prior distribution of 

the random parameters θ  to serve as one’s beliefs about the parameters before 

taking a look at the data; ( ),y Xπ θ  is the conditional probability of the observed 

response given a particular set of values for θ  and X , commonly referred to as 
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the likelihood function of y ; and ( )y Xπ  is the marginal likelihood of y .  

Usually, ( )y Xπ  is dropped from the equality part of Equation (1) because this 

term does not explicitly involve the unknown parameters.   

 

( ),y Xπ θ  is the density of the posterior distribution of θ , standing for one’s 

updated prior beliefs about the parameters after incorporating the new information 

contained in data ( ),y X .   

 

Bayesian statistics is an approach to statistical problems that aims to combine two 

pieces of information optimally: the beliefs or information one has before taking a 

look at the sample data and the information extracted from the sample data.  

Bayes’ theorem is basically a rule for combining these two sources of information 

into the new information about the parameters or hypotheses of interest.   

Figure 1 schematically shows how the two pieces of information are incorporated 

into the posterior distribution of θ  via Bayes’ theorem. 

 

32



 

 

 

( )Xπ θ  Prior 
distribution of θ  

( )Xy ,θπ  
Likelihood of y  

( )Xy,θπ  
Kernel posterior 

density 

Bayes’ theorem 
( ) ( ) ( ), ,y X X y Xπ θ π θ π θ∝

 

 

Figure 1  Schematic Diagram of Bayes’ Theorem 
 

The relative weight of the two pieces of information depends on their precision6; 

that is, the smaller the variance of the distribution, the larger its role in 

determining the posterior distribution.  Let us explain this using an example. 

 

Suppose ( )1 2, , , ny y y y ′= …  is an independent random sample from a Poisson 

distribution with mean λ .  Since the gamma distribution is a conjugate prior7 for 

the Poisson parameter, let us assume that the prior distribution of λ  is a gamma 

with parameters 0α ≥  and 0β ≥ .  Applying Bayes’ theorem, one can write the 

posterior distribution of λ  as (Winkelmann 2003):  
                                                 
6 Here, precision is defined as the inverse of the variance (Gelman et al. 2004). 
7 ( )π λ  is said to be a conjugate prior if the posterior density ( ) ( ) ( )y yπ λ π λ π λ∝  has the same 

class of distributions as ( )π λ  (Lee 2004). 
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( ) ( ) ( )

( )
( ) ( )1

1
1 1

1

n

i
i i

n y
n ny ny

i

y y

e e e e
β α

λ β λ βλ α λβ α

π λ π λ π λ

αλ λ λ λ
α

=

+ −
− + − +− − − + −

=

∝ ∝

∑⎡ ⎤ ∝ =⎢ ⎥ Γ⎣ ⎦
∏

  (2) 

 

As can be seen from Equation (2), the posterior distribution of λ  is a gamma with 

parameters nyα α= +�  and nβ β= +� .  The mean of the prior gamma distribution 

is obtained using ( )0E αλ β= .  The mean of the posterior distribution of λ  is 

similarly obtained as: 

 

( ) ( )0, , ny nE y E y
n n n

α βλ α β λ
β β β
+

= = +
+ + +

 

( ) ( )
2

02 2, , nE y E y
n n

β α β αλ α β λ
β α β α β α β α

= +
+ +

   (3) 

 

The variance of the prior distribution of λ  is 20
ασ β= .  The precision of a 

random variable is the inverse of its variance; that is, the precision of λ ’s prior is 
2

0
βτ α= .   

 

( ) ( )2 2
1 1

1 1 1n n

i i
i i

Var y Var y Var y n
n n n n

α α
β β= =

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠
∑ ∑    (4) 
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Hence, the precision of y  is nβ
α

.  The posterior mean of λ  is a weighted average 

of the prior mean and sample mean.  The weights given to them (
n

β
β +

 and 

n
nβ +

) are proportional to their precisions (
2β

α
 and nβ

α
), shown as Equation (3).  

The posterior precision is the sum of the prior’s precision and the sample 

average’s precision, which is 2 nβ α β α+ . 

3.2 Bayesian Inference via Posterior Simulation 
Bayesian inference is usually implemented by random draws from the posterior 

distribution of the model parameters.  For example, percentiles of the posterior 

distribution of a specific parameter provide Bayesian credible intervals as well as 

skewness in its marginal posterior distribution.  Furthermore, scatterplots and 

histograms of simulated values illustrate the posterior distributions.  

 

In simple Bayesian models, such as the ones using a conjugate prior distribution, 

it is often very straightforward to make random draws from the posterior 

distribution directly.  The Poisson example in the previous section can be 

conveniently implemented to make inferences about the unknown parameters, 

since a gamma (conjugate) prior is assumed for λ .   

 

Taking one step further, if ( )1 2, , , ny y y y ′= …  is an independent random sample 

from a Poisson distribution with a mean function ( )expi ixλ β′= , the likelihood is 

proportional to 

 

( ) ( ) ( )
1

, exp exp exp i
n y

i i
i

y X x xπ β β β
=

′ ′∝ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∏     (5) 
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where ( )1 2, , , nX x x x ′= …  and the β ’s are coefficients for the explanatory 

variables in each vector ix . 

 

If a non-informative prior8 is assumed for β , its posterior density can be written 

as proportional to this same likelihood: 

 

( ) ( ) ( )
1

, exp exp exp i
n y

i i
i

y X x xπ β β β
=

′ ′∝ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∏     (6) 

 

This expression is apparently not the kernel of any known parametric distribution 

for β .  There are two approaches to estimate the unknown parameters β .  One is 

the use of the Laplace Approximation (see, e.g., Albert and Pepple 1989; and 

Gelman et al. 2004).9  The other is estimation of the posterior distribution of 

parameters using MCMC simulation techniques. 

3.3 MCMC Simulation 
Bayesian inference is almost exclusively based on MCMC simulation techniques, 

such as the Gibbs sampler and the M-H algorithm.  (See, e.g., Metropolis et al. 

1953; Hastings 1970; Tanner and Wong 1987; Gelfand and Smith 1990; Smith 

and Roberts 1993; Tierney 1994; Gelman et al. 2004; and Lee 2004.)  The Gibbs 

                                                 
8 Using informative prior distributions allows the incorporation of information available to traffic 
safety researchers from the literature and in light of their experience with crash analysis.  However, 
using informative priors may lead to problems because of the subjective beliefs of the researchers.  
To avoid such issues, non-informative priors are commonly used.  Uniform priors are generally 
chosen when non-informative priors are needed. 
9 The Laplace Approximation method is basically based on a Taylor series expansion of the 
logarithm of the posterior density around its mode.  The term involving the first derivatives is zero 
at the mode; and the third and higher derivatives are approximately zero.  Thus, the new 
transformed posterior density looks like a multivariate normal kernel.  The statistical inference 
about the parameters of interest can be readily obtained using the multivariate normal density.  
Further details about normal approximation methods can be found in Gelman et al. (2004).  
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sampler and M-H algorithm set up a Markov chain10 in the parameter space.  

MCMC simulation proceeds by making random draws of unknown parameters 

θ from approximate distributions to better approximate the target posterior 

distribution of the parameters ( ),y Xπ θ .  The draws are sampled sequentially, 

with the distribution of the sampled draws depending on the most recent (or 

previous) values sampled.  The Gibbs sampler and M-H algorithms provide 

marginal and joint distributions of all parameter estimates.  

 

By sampling from a Markov chain whose stationary long-run distribution is the 

desired sample distribution, it is possible to generate observations from 

distributions that would otherwise be very difficult to sample.  The drawbacks of 

this technique are: (1) it is generally unknown how long the chain must be run to 

reach a good approximation to the stationary distribution, and (2) the values 

generated are not independent. 

 

First some background material on Markov chains will be reviewed, and then 

some specific methods for constructing Markov chains with a specified stationary 

distribution will be introduced. 

 

The major applications driving development of MCMC methods have been to 

problems of Bayesian inference, but they are also useful for a variety of other 

problems where direct generation of independent observations from the joint 

distribution is difficult, such as in conditional frequentist inference problems for 

categorical data, where the conditional sampling distributions can have complex 

forms, and for Monte Carlo evaluation of integrals appearing in the E 

                                                 
10 A Markov chain can be thought of as a stochastic process with a finite number of states, which 
moves randomly through the states without having any memory of where it has been (Lee 2004).  
That is, the probability of occurrence of a future state depends on only the current state. 
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(Expectation) step of EM algorithms (see, e.g., Chan and Ledolter 1995; and 

Booth and Hobert 1999). 

3.3.1 Markov Chains 
A Markov chain is a discrete state stochastic process.  It is a sequence of random 

variables ( ) ( ) …,, 21 θθ , where the distribution of current state ( )mθ  at time (or step) 

m  depends only on the most recent state ( )1mθ −  at time (or step) 1m −  (Gelman et 

al. 2004).  That is, the Markov chain is memoryless.  Only chains with a finite 

number of possible states will be considered formally here, although in 

applications it will often be convenient to think in terms of continuous 

distributions.  The discrete state model is always technically true if the 

calculations are done on a computer, since there are only a finite number of 

values that can be represented on the computer.  That is, when generating data 

from continuous distributions, such as the uniform or normal, the values are 

actually drawn from a discrete approximation to the continuous distribution. 

 

Let ( )mΘ  be the values that the state of the chain takes at time (or step) m .  Let 

{ }SS θθθ ,,, 21 …=  be the state space, which is the set of possible values for ( )mΘ .  

(Note: The number of possible states S  could be enormously large, as long as it 

is finite.)  The possible states jθ  could be virtually anything, but in statistical 

applications they usually can be thought of as points in pR , where p  is the 

dimension of Θ . 

 

The chain starts from an initial state ( )0Θ  at time (or step) 0.  The distribution of 

the state of the chain at time (or step) m , given the state at time (or step) 1m − , is 
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given by a transition kernel ( )
( ) ( )( )1

m
m mq −

Θ
Θ Θ .  The Markov property states that 

the transition kernel depends on only the most recent draw ( )1m−Θ .  That is,  

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 1, 1,2, ,m m i i m m m mP i m Pθ θ θ θ− − − −Θ = Θ = = = Θ = Θ =…  (7) 

 

Let ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1m m m m m mp Pθ θ θ θ− − −= Θ = Θ = .  Throughout it will be assumed 

that the chain is homogeneous in time, meaning that the transition kernel is the 

same for all m .  Let ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )m m m m m mp Pτ τ τ τθ θ θ θ− − −= Θ = Θ =  be the τ -

step transition probabilities.  A Markov chain is irreducible if there exists a value 

,i jτ  such that ( ) ( ),

, 0i j

i j j ip τ θ θ >  for each pair of possible states iθ , jθ .  That is, for 

an irreducible chain, every state can be reached from every other state. 

 

A state iθ  is periodic if there exists an integer 1>d  such that ( ) ( ) 0i ip τ θ θ =  

whenever τ  is not divisible by d .  A state is aperiodic if it is not periodic.  A 

chain is aperiodic if all states are aperiodic.  For irreducible chains with a finite 

state space, it can be shown that either all states are aperiodic or all are periodic. 

 

The one-step transition probabilities ( )j ip θ θ  can be organized in an SS ×  

matrix ( )ijpP = , where ( )ij j ip p θ θ= .  Also, in general the τ -step transition 

probabilities can be put in a matrix ( ) ( ) ( )( )j iP pτ τ θ θ= .  Since the two-step 

transition probabilities satisfy ( ) ( ) ( ) ( )2

1

S

j i l i j l
l

p p pθ θ θ θ θ θ
=

= ∑ , it follows that 

( ) PPPP ×== 22 , the ordinary matrix product of P  with itself.  Continuing in 

the same fashion, it can be seen that ( ) ττ PP = . 
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Let ( )( ) ( )( )jj P θθπ =Θ= 00  be the initial distribution of the chain.  (Note: If the 

chain always starts in a particular state iθ , then this will be the degenerate 

distribution with ( )( ) 10 =iθπ .)  Also, let ( ) ( ) ( )( )m m
j jPπ θ θ= Θ =  be the marginal 

distribution of ( )mΘ , and let ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2, , ,m m m m
Sπ π θ π θ π θ

′
= … .  Since 

( ) ( ) ( ) ( ) ( )1 0

1

S

j l j l
l

pπ θ π θ θ θ
=

= ∑ , it follows that ( ) ( )01 ππ P= , and continuing in the 

same fashion, ( ) ( )0m mPπ π= . 

 

For irreducible, aperiodic chains, there is a unique probability distribution with 

mass probabilities ( )jj θππ =  (for state jθ ) satisfying ππ P= , where 

( )′= Sππππ ,,, 21 … .  This distribution is known as the stationary distribution.  If 

the initial distribution ( )0π  is the stationary distribution π , then 
( ) ( ) ππππ === PP 01 , and continuing in the same fashion, ( )mπ π=  for all m .  

Thus if the chain starts from its stationary distribution, the marginal distribution 

of the state at time m  is again given by the stationary distribution. 

 

Another important result is that for an irreducible, aperiodic chain with stationary 

distribution π , ( )lim m

m
π π
→∞

= ，regardless of the initial distribution ( )0π .  That is, 

the marginal distribution of ( )mΘ  converges to the stationary distribution as 

m →∞ .  Thus if an irreducible, aperiodic Markov chain is started from some 

arbitrary state, then for sufficiently large m , the current state ( )mΘ  is essentially 

generated from the stationary distribution on a state space S .  Also, once the 

distribution ( )mπ  converges to the stationary distribution the marginal distribution 
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of the state at all future times is again given by the stationary distribution, so these 

values are an identically distributed sample from this distribution.  (However, 

they generally are not independent.)  Thus, a way to generate values from a 

distribution ( )g θ  on a state space S  is to construct a Markov chain with ( )g θ  

as its stationary distribution, and to run the chain from an arbitrary starting value 

until the distribution ( )mπ  converges to ( )g θ .  Two important problems are: (1) 

how to construct an appropriate Markov chain, and (2) how long the chain needs 

to be run to reach the stationary distribution. 

 

For an irreducible, aperiodic chain, if 

 

( ) ( )i j i j i jp pπ θ θ π θ θ=        (8) 

 

for all i  and j , then π  is the stationary distribution.  This follows from Equation 

(8), since ( )
1

1
S

i j
i

p θ θ
=

=∑ , so by definition, π  must be the stationary distribution.  

Equation (8) is called the reversibility condition, since it states that for the 

stationary distribution, the probability of being in state iθ  and moving to state jθ  

on the next step is the same as the probability of being in state jθ  and moving to 

state iθ .  Equation (8) is usually easy to check, and will be very useful in helping 

to construct chains with arbitrary stationary distributions. However, not all chains 

have stationary distributions that satisfy this condition. 

 

Several methods for constructing Markov chains are described next. 
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3.3.2 The Gibbs Sampler 
The Gibbs sampler is logically simpler than the M-H algorithm, but requires 

knowledge of the conditional distributions of the unknown parameters.  It 

generates random draws from a joint density ( ) ( )1 2, , , Kπ θ π θ θ θ= … , where θ  is 

the parameter vector.  Let ( )i iπ θ θ−  denote the full conditional posterior density 

of iθ  given values of other parameters { }( ), , 1,2, ,i j j i j Kθ θ− = ≠ ∈ … , 

{ }1,2, ,i K∈ … .  Taking a starting point ( ) ( ) ( ) ( )( )0 0 0 0
1 2, , , Kθ θ θ θ= … , successive 

random draws are made from each of the conditional 

distributions ( )i iπ θ θ− 1,2, ,i K= … , using the following subroutine: 

 
Draw a value ( )1

1
mθ +  from ( )( )1 1

mπ θ θ− ; 

Draw a value ( )1
2

mθ +  from ( ) ( ) ( )( )1
2 1 3, , ,m m m

Kπ θ θ θ θ+ … ; 

#  
Draw a value ( )1m

Kθ
+  from ( )( )1m

K Kπ θ θ +
− . 

 

where 1,2, ,m M= … .  Iterating the subroutine M  times produces M draws from 

the joint density ( )π θ .  Thus, the problem of sampling a multivariate distribution 

is reduced to the much easier problem of sampling from a series of univariate 

distributions.  Under mild regularity conditions (Roberts and Smith, 1994), the 

sample ( ){ }; 1,2, ,m m Mθ = …  converges in distribution to ( )π θ .   

3.3.3 The Metropolis-Hastings Algorithm 
Practical application of MCMC sampling goes back at least to Metropolis et al 

(1953).  Hastings (1970) extended the basic proposal from that paper and offered 

some of the first applications in the statistical literature.  These methods did not 
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become popular until the wide-spread availability of high-speed computers in the 

last decade.  Beginning with Tanner and Wong (1987) and Gelfand and Smith 

(1990), there is now a sizable literature devoted to MCMC. 

 

Hastings’ extension of the Metropolis et al. algorithm is referred to as the M-H 

algorithm here.  The M-H algorithm gives a general method for constructing a 

Markov chain with stationary distribution using an arbitrary mass function (or 

approximating density) ( )g θ .   

 

In order to use the Gibbs sampler, one needs to have the conditional distributions 

for each of parameters, which are not always straightforward to obtain.  For 

example, given a non-informative prior for β , its posterior expressed in Equation 

(6) cannot be written as any known parametric distribution (conditional or 

otherwise).  Thus, the Gibbs sampler, thus, cannot be employed to make random 

draws from the posterior distributions.  The M-H algorithm allows one to make 

random draws from such non-standard distributions.   

 

Let ( ) ( )( )1 2,q τ τθ θ  be any Markov chain transition kernel whose state space is the 

same as the sample space of ( )π θ .  Some specific proposals for ( ) ( )( )1 2,q τ τθ θ  are 

discussed below.  To be useful, ( )( )1 ,q τθ i  should be easy to sample from, but 

generally q  does not have ( )π θ  as its stationary distribution.  Let us define an 

acceptance rate function as follows: 

 

43



 

 

( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

1

1
1 1

1 1

1 1

,

,
min ,1 , 0

,

1 , 0

m m

m m m
m m m

m m m

m m m

q
q

q

q

α θ θ

π θ θ θ
π θ θ θ

π θ θ θ

π θ θ θ

−

−

− −

− −

− −

=

⎧ ⎧ ⎫⎪ ⎪⎪ >⎨ ⎬⎪
⎪ ⎪⎨ ⎩ ⎭

⎪
=⎪⎩

  (9) 

 

Given the state of the chain at 1m − , ( )1m−Θ , the M-H algorithm samples a trial 

value ( )m
qΘ  from ( )( )1 ,mq −Θ i , sets ( ) ( )m m

qΘ = Θ  with probability ( ) ( )( )1 ,m m
qα −Θ Θ , 

and sets ( ) ( )1m m−Θ = Θ  with probability ( ) ( )( )11 ,m m
qα −− Θ Θ .  In practice this is 

accomplished by drawing a standard uniform random value ( ) ( )0,1mU U∼  and 

setting ( ) ( ) ( ) ( ) ( )( ){ } ( ) ( ) ( ) ( )( ){ }1 1 1, ,m m m m m m m m m
q q qI U I Uα α− − −Θ = Θ ≤ Θ Θ +Θ > Θ Θ . 

 

The transition kernel of the resulting chain is given by 

 

( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )
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1 1 1
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⎧ ≠⎪= ⎨
− =⎪⎩ ∑

  (10) 

 

Approximately, if ( ) ( )( )1 , 1m m
qα −Θ Θ <  then ( )1m−Θ  is underrepresented relative to 

( )m
qΘ  in the chain generated by q , and occasionally rejecting ( )m

qΘ  and keeping 

( )1m−Θ  adjusts for this underrepresentation.  More formally, it can be shown that 

( )π θ  satisfies the reversibility Equation (8) for the transition kernel (10) for all 

( )1mθ −  and ( )mθ  in the sample space of ( )π θ , guaranteeing that ( )π θ  is the 

stationary distribution.  For example, suppose ( ) ( )1m mθ θ− ≠  are such that 
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 (11) 

 

Note that since ( )π θ  terms appear in both the numerator and dominator of 

Equation (9), ( )π θ  only needs to be known to a normalizing constant. 

 

The success of this algorithm depends on how ( ) ( )( )1 ,m mq θ θ−  is close to ( )( )mπ θ .  

If ( )π i  is small while ( )( )1 ,mq θ − i  is large, then most trial points sampled will be 

rejected and the chain will remain in the same state for long periods of time.  

Thus, choosing an appropriate q  is in general not a trivial problem.   

 

Three specific methods for constructing transitional kernels ( ) ( )( )1 ,m mq θ θ−  will 

now be described.  In the following, let ( )1ˆ mθ −  be the mode of ( )( )1mπ θ − , and let 
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( )( ) ( ) ( ){ } 1
1 1 12 ˆˆ ln m m mH π θ θ θ

−
− − −⎡ ⎤ ′= − ∂ ∂ ∂⎣ ⎦

11.  If these quantities cannot be easily 

approximated, other approximations to the mean and variance of ( )( )1mπ θ −  may 

be considered. 

3.3.3.1 Random Walk Chain 
The first of three methods for constructing transitional kernels is called the 

random walk chain.  Let ( )h θ  be a density defined on the same space as ( )π θ , 

and set ( ) ( )( ) ( ) ( )( )1 1,m m m mq hθ θ θ θ− −= − .  One choice for ( )h θ  is the normal 

density with zero mean and a variance covariance matrix Ĥ .  A multivariate t  

distribution with a variance covariance matrix Ĥ  may also be a better choice 

since its degrees of freedom can be used as a tuning factor (Lee 2004). 

 

If ( )h θ  is symmetric about zero, then  
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  (12) 

 

                                                 
11 The mode and Hessian of log-likelihood can be readily obtained using the Newton-Raphson 
method shown in Appendix A. 
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Equation (12) is the algorithm originally proposed by Metropolis et al (1953). 

3.3.3.2 Independence Chain 
A second algorithm is the independence chain, since trial values are independent 

of all prior draws.  Here, ( ) ( )( ) ( )( )1 ,m m mq hθ θ θ− = .  Again, common choices for 

( )h θ  are a normal or t  distribution, but with a mean value of ( )1ˆ mθ −  and a 

variance covariance matrix Ĥ  (Gelman et al. 2004; and Lee 2004).  In this case 

( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

1
1

1 1 1
, min ,1 min ,1

m m m m
m m

m m m m

h h

h h

π θ θ π θ θ
α θ θ

π θ θ π θ θ

−

−

− − −

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

, so 

( ) ( )( )1 ,m m
qα −Θ Θ  is the ratio of the importance sampling weights at the current and 

trial point values. 

3.3.3.3 Rejection Sampling Chain 

For rejection sampling, it is necessary to find a function ( )h θ  which everywhere 

dominates the density of ( )π θ .  It is often difficult to prove a function dominates 

everywhere.  For example, let ( )h θ  be a t  density function with relatively few 

degrees of freedom, a mean value of ( )1ˆ mθ −  and a variance covariance matrix ˆcH  

for some 1c > , rescaled so that ( )( ) ( )( )11 −− > mmh θπθ .  Such a function often 

dominates ( )π θ  everywhere (or nearly everywhere), but this dominance 

generally is difficult to prove.  Tierney (1994) offered a method for using the 

standard M-H algorithms to correct for possible non-dominance in the proposed 

dominating function ( )h θ . 
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Suppose then that there is a rejection-sampling algorithm that samples from a 

density proportional to a function ( )h θ , which may not actually dominate ( )π θ  

everywhere.  In Tierney’s method, at each step in the M-H algorithm, the 

rejection-sampling algorithm is run, and the M-H trial value ( )m
qΘ  is the first value 

not rejected in the rejection sampling.  If ( )h θ does not actually dominate, then 

the density/mass function for ( )m
qΘ  is ( )( ) ( )( ) ( )( ){ }1 1 1min ,m m mf hθ π θ θ− − −∝  and 

the M-H transition kernel ( ) ( )( ) ( )( )1 ,m m mq fθ θ θ− = .  Then, defining 

( ) ( )( )
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=⎪⎩

 gives an M-

H chain that corrects the sample for possible non-dominance of ( )h θ .  If ( )h θ  

does dominate ( )π θ , then ( ) ( )( )1 , 1m mα θ θ− ≡ , and this algorithm is identical to 

rejection sampling.  If ( )h θ  does not dominate, then points where 

( )( ) ( )( )1 1m mh θ π θ− −<  will have ( ) ( )( )1 , 1m mα θ θ− <  for some values of ( )mθ  

(assuming ( )h θ  does dominate at some points), so when these non-dominant 

points do occur, the M-H algorithm will sometimes reject the new trial point, 

increasing the frequency of the non-dominant points.  It is straightforward to 

verify that ( )π θ  satisfies the reversibility Equation (8) for the transition kernel of 

this chain, guaranteeing that ( )π θ  is the stationary distribution. 
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Given the similarities among importance sampling, independence chain sampling, 

and rejection chain sampling, it is an interesting question as to which can be 

implemented more efficiently in particular applications. 

This research adopts the independence chain since it is difficult to find the 

function ( )h θ  which dominates the posterior density of ( )π θ . 

3.3.4 Gibbs Sampler Using Auxiliary Variables 
As discussed earlier, practitioners usually turn to the M-H algorithm when facing 

complicated posteriors, rather than known parametric distributions.  However, the 

M-H algorithm usually is difficult to set up and requires “tuning” to achieve 

satisfactory performance (Chi and Greenberg 1995; and Damien et al. 1999).  A 

Gibbs sampler using auxiliary variables (also known as the slice sampler) in an 

MCMC simulation allows one to construct Markov chains that mix faster and are 

easier to simulate than the M-H algorithm.  (See, e.g., Swendsen and Wang 1987; 

Edwards and Sokal 1988; Besag and Green 1993; Mira and Tierney 1997; Higdon 

1998; and Damien et al. 1999.) 

 

The introduction of auxiliary variable allows one to explore a complicated lower 

dimensional problem, which may become more tractable once it is embedded in a 

higher dimensional framework.  The lower dimensional problem solution is 

obtained by discarding the auxiliary variables from the higher dimensional 

problem solutions.   

 

Let ( )π θ  denote the posterior density specified up to a normalizing constant.  

The key idea of the auxiliary variable methods is to introduce a new variable, V , 

and to construct the joint distribution of Θ  and V  by keeping the marginal 

distribution of Θ  unchanged and defining the conditional distribution of V  given 
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Θ : ( ) ( ) ( ),v vπ θ π θ π θ= .  It is necessary to specify a transition kernel 

( ) ( )( ), , , ,vK v vθ θ θ ′ ′  which is irreducible, aperiodic, and has ( ),vπ θ  as its 

stationary distribution.  Thus, the marginal distribution of Θ  converges to ( )π θ .  

Typically, the joint transitional kernel is obtained by specifying the two kernels 

( ) ( )( ), , ,K v vθ θ θ ′  and ( ) ( )( ), , ,vK v vθ θ ′ .  This allows one to use the Gibbs 

sampler to update Θ  and V  conditionally on each other.  The simplest choice for 

the conditional transition functions is (Higdon 1998): 

 

( ) ( )( ) ( ), , ,K v v vθ θ θ π θ′ ′=  and ( ) ( )( ) ( ), , ,vK v v vθ θ π θ′ ′=   (13) 

 

This framework allows one to choose: (1) the conditional distribution of the 

auxiliary variable ( )vπ θ , (2) the transitional kernels that define the Markov 

chain, and (3) the specification of the updating scheme between the transitional 

kernels. 

 

Following Damien et al. (1999), specification of the conditional distribution, 

( )vπ θ , is given in the following.  Suppose the posterior density, ( )π θ , can be 

decomposed into two parts, ( ) ( ) ( )q lπ θ θ θ∝ , where ( )q θ  is a density (e.g., the 

prior) and ( )l θ might be the likelihood.  Given the decomposition, the conditional 

distribution, ( )vπ θ , can be taken as uniformly distributed on the interval 

( )( )0, l θ .  It leads to a joint distribution of Θ  and V  with density proportional to 

( ) ( ) ( )( ),v q I v lπ θ θ θ∝ < , where I  is an indicator function.  Given the 

transition kernels in Equation (13), Θ  and V are iteratively sampled from ( )q θ  
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(though restricted to the set ( ){ }:vA l vθ θ= > , i.e., a truncated ( )q θ ), and from 

a uniform distribution on the interval ( )( )0, l θ , respectively.  This sampling 

scheme is called the Gibbs sampler using auxiliary variables (or the auxiliary 

variable method).   

 

The auxiliary variable method has proven very efficient for non-conjugate and 

hierarchical models (Damien et al. 1999).  As pointed out in Besag and Green 

(1993), this method is also very appealing for multidimensional problems, when 

( )q θ  has a simpler structure than ( )π θ .  As mentioned in Damien et al. (1999), 

several decompositions ( ) ( ) ( )q lπ θ θ θ∝  may be available.  It is difficult to 

determine an optimal decomposition (Mira and Tierney 1997).  However, a 

significant improvement can be achieved if sampling the truncated ( )q θ  is more 

convenient than sampling ( )π θ  directly.  Damien et al. (1999) provide several 

examples for decomposition of several Bayesian non-conjugate models. 

3.3.5 Sampling Strategy 
If the above algorithms were the full extent of what could be achieved with 

Markov chain sampling, then there might be little to be gained over other methods 

such as importance sampling.  The real power of Markov chain sampling is that, 

when using a chain to generate observations from a multivariate distribution, it is 

not necessary to update all components simultaneously, so that a complex 

problem can be broken down into a series of simpler problems.  This leads to 

Gibbs sampling techniques. 
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Suppose ( )~ π θΘ  can be divided into U  and V , ( ),U VΘ = , where U  and V  

can also be vectors.  Let ( )U V u vπ  and ( )V U v uπ  be the conditional distributions 

of VU  and UV , respectively.  Suppose ( ),U Vq v⋅ ⋅  is a Markov chain transition 

kernel with stationary distribution ( )U V u vπ , and ( ),V Uq u⋅ ⋅  is a Markov chain 

transition kernel with stationary distribution ( )V U v uπ . 

 

Given the current state ( ) ( ) ( )( )1 1 1,m m mU V− − −Θ = , consider the two-step update 

1. generate ( )mU  from ( ) ( )( )1 1,m m
U Vq U V− −⋅ ; 

2. generate ( )mV  from ( ) ( )( )1 1,m m
V Uq V U− −⋅ . 

 

These two steps can be thought of as generating a single update, ( )mΘ .  This 

update has transition kernel 
( ) ( )( ) ( ) ( )( ) ( ) ( )1 , , , , , ,m m

U V V Uq q u v w z q u w v q v z wθ θ− = = . 

 

This transition kernel generally does not satisfy the reversibility Equation (8), but 

it does have ( )π θ  as its stationary distribution.  To see this, note that 

 
( ) ( ) ( )( ) ( ) ( ) ( ) ( ), , , , , ,VU V U V V U

u v u v

u v q u v w z u v v q u w v q v z wπ π π=∑∑ ∑∑  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

,

,

VU V V U
v

UV U V U
v

UV U

w v v q v z w

v w w q v z w

z w w w z

π π

π π

π π π

=

=

= =

∑

∑   (14) 
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where the second line follows because ( )U V w vπ  is the stationary distribution of 

( ),U Vq u w v , and the last line because ( )V U z wπ  is the stationary distribution of 

( ),V Uq v z w .  Thus, to find a Markov chain with stationary distribution ( )π θ , it 

is only necessary to find transition kernels for the conditional distributions of 

blocks of components.  These can be simpler to construct and to sample from. 

 

This approach can be extended to any number of blocks (i.e., subsets of 

parameters).  Any M-H-type update can be used within each block, and different 

types of updates can be used in different blocks. 

 

The advantage of the block-at-a-time algorithm is that it is often much easier to 

find good approximations to the conditional distributions to use in M-H and other 

Markov chain updating schemes, leading to simpler methods of generating new 

values and greater acceptance rates of generated trial values.  In some 

applications the conditional distributions can be sampled directly as described in 

the following subsection.  However, separately updating blocks will often induce 

greater autocorrelation in the resulting Markov chain, leading to slower 

convergence (Gelman et al. 2004).  Transformations to reduce the correlation 

between blocks can greatly improve the performance of block-at-a-time 

algorithms, although there are no simple general recipes for finding appropriate 

transformations. 

 

Gibbs sampling is a block-at-a-time update scheme, where the new values for 

each block are generated directly from the full conditional distributions.  That is, 

in terms of the previous notation, ( ) ( ),U V U Vq u w v w vπ=  and 

( ) ( ),V U V Uq v z w z wπ= . 
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It turns out that a variety of problems can be put in a framework where the 

conditional distributions are easy to sample.  Gelfand et al. (1990) offer several 

examples.  This is especially true of hierarchical normal random-effects models 

and incomplete data problems involving normal distributions (Gelfand et al. 

1995). 

 

The idea of generating data from a series of conditional distributions was 

discussed by Geman and Geman (1984), and independently by Tanner and Wong 

(1987).  The origin of the term ‘Gibbs sampling’ is not completely clear, since 

neither of these papers used this term.  However, Geman and Geman did use 

Gibbs distributions in their paper. 

3.3.6 Implementation Issues 
The goal of Markov chain sampling is to generate observations from a specified 

distribution ( )π θ .  Having constructed a transition kernel with stationary 

distribution ( )π θ , the usual approach to is to start from an arbitrary point and run 

the chain until it is thought to have converged, and to discard the values generated 

prior to convergence (Gelman et al. 2004).  The values generated before 

convergence (and discarded) are referred to as the “burn-in.”12 

 

                                                 
12 Gelfand and Smith (1990) proposed just keeping a single value from the chain and starting a 
new chain to generate each new observation from ( )π θ .  In this way they obtain an independent 

series of observations from ( )π θ .  It is now generally recognized that this is inefficient.  If the 
marginal distributions of the Markov chain have converged, then more information would be 
obtained by continuing to sample from the same chain than from starting a new one, since each 
time the chain is restarted from an arbitrary value there is a new burn-in period that needs to be 
discarded. 
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Empirical monitoring for convergence of a Markov chain is not a simple problem, 

and examples can be constructed that will fool any particular test.  Gelman and 

Rubin (1992) advocate running several parallel chains, starting from widely 

dispersed values, and offer a convergence diagnostic based on an analysis of 

variance procedure for comparing the within-chain and between-chain variations.  

At a minimum, it seems sensible to run several chains from different starting 

values and to compare inferences from the different chains.  There have been a 

number of other convergence diagnostics proposed.  Cowles and Carlin (1996) 

provide a comparative review.  Simple plots of the trace of generated values over 

the iterations ( ( )mΘ  versus m ) and of cumulative sums ( )( )( )m
m
Θ −Θ∑ , can 

reveal serious problems, and apparently “good” results in selected plots do not 

guarantee overall convergence. 

 

Perhaps the greatest danger is that a chain run for some finite period of time will 

completely miss some important region of the sample space.  For example, if a 

density has distinct local modes, with little probability mass between these, then 

the chain will tend to become trapped in one of the modes and could completely 

miss the others.  In this case, although technically the chain may be irreducible, 

practically speaking it is not, since the probability of a transition from the 

neighborhood of one mode to another is very small.  Gelman and Rubin (1992) 

also advocated doing an extensive search for local modes and starting chains 

within the distinct modes.  Once the modes are located, M-H sampling based on 

mixtures of components centered on each mode could be considered.   

 

Additional issues arising in implementation of the M-H algorithm is detailed by 

Smtih and Roberts (1993), Besag et al. (1995), and Gilks et al. (1996) among 

many others. 
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3.3.7 Precision of Estimates 

If ( )1Θ , ( )2Θ , … , ( )MΘ  are the values generated from a single long run of a 

Markov chain with stationary distribution ( )π θ , and if the chain has 

approximately converged by the thτ  iteration, then an approximately unbiased 

estimator for ( )( ) ( )( ) ( )m m mb dθ π θ θ∫  is ( )( )
1

1 M
m

m

b b
M ττ = +

= Θ
− ∑�  (see e.g. Tierney, 

1994, for a more precise statement of consistency and asymptotic normality of 

average of sequences from Markov chains).  Since the ( )mΘ  are generally not 

independent, determining the precision of this estimator is not a trivial problem.  

Let ( )( )2 mVar bσ ⎡ ⎤= Θ⎣ ⎦  be the marginal variance and 

( )( ) ( )( ),m m k
k cor b bρ +⎡ ⎤= Θ Θ⎣ ⎦  be the lag k  autocorrelation in the sequence.  If the 

chain is assumed to have converged by the thτ  step, 2σ  and kρ  should not 

depend on m  for m τ> .  If the autocorrelations die out reasonably fast and can 

be assumed to be negligible for Kk >  for some K , then  

 

( )
( )

2 2
2

1

1 2
M

j m
m m j

Var b
M τ

σ ρ σ
τ −

= + <

⎛ ⎞
= +⎜ ⎟

− ⎝ ⎠
∑ ∑�      (15) 

( )
( )

2

2
1

2
K

j
j

M M j
M
σ τ τ ρ
τ =

⎛ ⎞
= − + − −⎜ ⎟

− ⎝ ⎠
∑  

 

If the autocorrelations do go to zero reasonably quickly, then the usual empirical 

moments will be consistent (although somewhat biased) for 2σ  and kρ , so that 

this quantity is straightforward to estimate. 

 

Since Markov chain Monte Carlo runs are often quite long, a simpler approach is 

to group the data into blocks and estimate the variance from each block’s means.  
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That is, suppose M Jlτ− = , and let ( )( )
( )1 1

jl
m

j
m j l

b b l
τ

τ

+

= + + −

= Θ∑� , Jj ,,2,1 …=  be the 

means of groups of l  consecutive values.  Note that ∑
=

=
J

j
j Jbb

1

~~ .  If l  is large 

relative to the point at which the autocorrelations die out, then the correlations 

among the jb~  should be negligible, and the variance can be estimated as if the jb~  

were independent.  If the correlation is slightly larger, then it might be reasonable 

to assume that the correlation between jb~  and 1
~

+jb  is some value ρ  to be 

estimated, but that correlations at larger lags are negligible.  In this case  

 

( ) ( )( ) JbVarbVar j ρ21~~
+≈        (16) 

 

and ρ  and ( )jbVar ~  can be estimated using empirical moments.  

3.4 Summary 
This chapter introduces the basics of Bayesian statistics, the most important of 

which is Bayes’ theorem.  Bayesian theorem allows one to incorporate one’s prior 

beliefs and observed data into the decision-making process.  This chapter also 

presents the two most widely used Markov chain simulation methods: the Gibbs 

sampler and the Metropolis-Hastings algorithm.  Additionally, some 

implementation issues in applying Markov chain Monte Carlo (MCMC) 

simulation techniques are briefly discussed. 
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CHAPTER 4  MULTIVARIATE POISSON COUNT DATA 
MODELS 

 

Poisson regression models and their extensions have been widely used in 

modeling traffic crash occurrence.  In this section, the univariate Poisson 

regression model is briefly introduced before discussing the multivariate Poisson-

lognormal regression model.  A Gibbs sampler and M-H algorithms are 

developed to estimate the unknown parameters. 

4.1 Mathematical Formulation 

4.1.1 Univariate Poisson Regression Models 
The Poisson regression model plays an essential role in analyzing count data in 

much the same way as the normal linear model plays a role in modeling 

continuous data.  A comprehensive account of both methodological contributions 

and applications of existing methods for count data can be found in several 

references.  (See, e.g., Johnson et al. 1997; Cameron and Trivedi 1998; and 

Winkelmann 2003.) 

 
Let isy  denote the crash count for roadway segment i  and severity level s , for 

1, 2, ,i n= …  and 1,2, ,s S= … , where n  is the number of roadway segments and 

S  is the number of severity levels.  Let ( )1 2, , ,i i i iSy y y ′=yG …  denote the vector of 

crash counts for roadway segment i  over the different levels of severity.  For 

example, if a segment of roadway exhibits 10 PDO crashes, 4 possible injury 

crashes, 3 non-disabling injury crashes, 1 disabling injury crashes, and 0 fatal 
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crashes in a given year, its ( )10, 4, 3, 1, 0i
′=yG .  Let ( )1 2, , , n

′′ ′ ′=y y y yG G G…  denote 

the vector of crash counts by severity across all roadway segments.   

 
Suppose there is no spatial correlation among roadway segments (e.g., more 

proximate segments are not more likely to perform similarly ceteris paribus) and 

that crash counts at different levels of severity for segment i  are independent of 

one another.  Based on these two assumptions, we have the following variance-

covariance matrix for crash counts in the sample: 

 

( )

1

2

n

Var

Ω⎡ ⎤
⎢ ⎥Ω⎢ ⎥=
⎢ ⎥
⎢ ⎥Ω⎣ ⎦

0 0
0 0

y

0 0

"
"
#
"

      (17) 

 

where 

11

22

0 0
0 0

0 0

i

i

i

i
SS

ω
ω

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥Ω =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
#
"

 for 1, 2, ,i n= …     (18) 

 
This is equivalent to modeling crash counts at different levels of severity 

separately, as univariate Poisson models.  We have the following specifications 

for common univariate Poisson regression models: 

 
( ), ~ ;is is is ss

y x Poisson xβ λ β⎡ ⎤⎣ ⎦  for 1, 2, ,i n= …  and 1,2, ,s S= …   (19) 

where ( ) ( ); expis s is sx xλ β β′=  

 
Therefore, given isx  and sβ , the conditional probability distribution of isy  can be 

written as 
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( ) ( ) ( )exp exp exp
,

!

isy
is s is s

is is s
is

x x
p y x

y
β β

β
′ ′−⎡ ⎤⎣ ⎦=  for 0,1,2,isy = …   (20) 

 
The conditional expectation and variance functions can be obtained as follows. 

 
( ) ( ), expis is s is sE y x xβ β′=  

 
and 

 
( ) ( ), expis is s is sVar y x xβ β′=  

 
This specification of univariate Poisson regression models can be readily 

estimated in both a Bayesian paradigm (via MCMC simulation) and frequentist 

framework (via maximum likelihood estimation (MLE)) techniques.   

 
To account for correlations, Tsionas (2001) developed a multivariate Poisson 

(MVP) regression model to examine forest damage.  Ma and Kockelman (2006) 

applied the MVP specification to predict crash counts by severity simultaneously.  

More details about this application of MVP regression model can be found in 

Appendix B.  However, the MVP specification allows for a common positive 

correlation among crash counts by severity and a very specific data pattern where 

all counts are equally shifted (by δ ) which is very unreasonable for crash counts 

(e.g., common PDO vs. rare fatal crashes).  This specification is too restrictive for 

modeling crash counts by severity.  Specification with a more general correlation 

structure is pursued next. 

4.1.2 Multivariate Poisson-Lognormal Regression Models 
In practice, omitted variables (such as driveway density and sight distances) may 

simultaneously affect all crash counts at different levels of severity for a 
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particular roadway segment, including correlation.  The univariate Poisson 

regression models cannot account for such correlations.  One needs to turn to 

multivariate count data models to address the issue of correlated count data.  

There have been several multivariate count data regression models developed (see, 

e.g., Arbous and Kerrich 1951; King 1989; Winkelmann 2000; Kockelman 2001; 

Tsionas 2001; and Karlis 2003).  However, these specifications only support a 

common positive correlation among counts. 

 
Here, the focus is placed on the correlated counts within individual roadway 

segments.  Crash counts across roadway segments are assumed to be independent, 

i.e., no spatial correlation.  The variance-covariance matrix of y  can be expressed 

as below: 

 

( )

1

2

n

Var

Ω⎡ ⎤
⎢ ⎥Ω⎢ ⎥=
⎢ ⎥
⎢ ⎥Ω⎣ ⎦

0 0
0 0

y

0 0

"
"
#
"

      (21) 

 

where 

11 12 1

21 22 2

1 2

i i i
S

i i i
S

i

i i i
S S SS

ω ω ω
ω ω ω

ω ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥Ω =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
#
"

 for 1,2, ,i n= …     (22) 

 

Let ( )1 2, ,i i i iSε ε ε ′=εG …  denote the severity-level-specific unobserved 

heterogeneity for roadway segment i , and let ( )1 2, , , n
′′ ′ ′=ε ε ε εG G G…  denote the 

severity-level-specific unobserved heterogeneity across roadway segments.   
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Assume that crash counts isy , conditioned on iε
G , the severity-level-specific 

explanatory variables isx′  and their coefficients of sβ , are independent Poisson 

distributed for 1,2, ,s S= … . 

 
( ), , ~is i s is isy x Poissonβ λεG        (23) 

 
where ( )expis is s isxλ β ε′= +  for 1,2, ,s S= …  and 1,2, ,i n= … .  The unobserved 

heterogeneity iε
G  are assumed to be uncorrelated with the control (i.e., explanatory) 

variables, for 1, 2, ,i n= … .   

 
Aitchison and Ho (1989) developed a multivariate Poisson-lognormal (MVPLN) 

distribution by mixing Poisson counts with lognormally distributed (unobserved) 

rates.  This MVPLN distribution takes advantage of the rich covariance structure 

of the multivariate lognormal distribution.  An MVPLN regression model can be 

further developed by specifying the mean and variance of counts as functions of 

explanatory variables. 

 
The unobserved heterogeneity iε

G  are assumed to be multivariate normally 

distributed with a mean vector 0  and an unrestricted variance-covariance matrix 

Σ .  Notationally, 

 
[ ]~ ,i SφΣ Σε 0G , for 1, 2, ,i n= …       (24) 

 

where 

11 12 1

21 22 2

1 2

S

S

S S SS

σ σ σ
σ σ σ

σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥Σ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
#
"

 and jiij σσ =  for { }Sji ,,2,1, …∈ . 
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Let ( )expi i=u εG G , where ( )1 2, , ,i i i iSu u u ′=uG … .  Based on this setting, iuG  follow a 

multivariate lognormal distribution with mean ( ) ( )exp 2iE diag= = Σ⎡ ⎤⎣ ⎦μ uG  and 

the variance-covariance matrix 

( ) ( ) ( ) ( )expiZ Var diag diag′= = Σ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦u μ 11 μG 13.  Thus, one obtains the 

following expression: 

 
( ), ~is is is Poisson is isy u f uξ ξ        (25) 

 
where ( )expis is sxξ β′=  for 1, 2, ,i n= …  and 1,2, ,s S= … ; ( )Poissonf ⋅  is the 

univariate Poisson probability mass function.. 

 
Let ( )i idiagΛ = λ

G
 (=S×S matrix), where ( )1 2, , ,i i i iSλ λ λ=λ

G
… , and is is isuλ ξ=  for 

1, 2, ,i n= …  and 1,2, ,s S= … .  Conditioning on β  and Σ , the mean and 

covariance matrix of the marginal distribution of iyG  can be obtained as follows: 

 
( ) ( )( ), , , , ,

i i ii i i i iE x E E xβ βΣ = Σu y uy y uG G G
G G G  

( )( )i i i iE diag= =u ξ u λG
G GG        (26) 

 

( ) ( )( ) ( )( ), , , , , , , ,
i ii i i ii i i i i i i iVC x E Var x Var E xβ β βΣ = Σ + Σu uy u y uy y u y uG GG G G G

G G G G G  

(Greene, 2003) 

( )( )( ) ( )( )i ii i i iE diag diag Var diag= +u uξ u ξ uG G
G GG G

 

( )expi i i′= Λ + Λ Σ − Λ⎡ ⎤⎣ ⎦11        (27) 

                                                 
13 11 ′  is an S×S matrix with all elements equal to 1; ( )μdiag  also is an S×S matrix with diagonal 
elements equal to the vector μ  and off-diagonal elements equal to zero. 
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where ( )1 2, , , Sβ β β β ′= … , ( )1 2, , ,i i i iSx x x x ′= …  and ( )1 2, , ,i i i iSξ ξ ξ ′=ξ
G

… .  The 

length of β  is 1 2 Sk k k k= + + +" , where sk  is the length of sβ .  From Equation 

(27), the covariance between the counts can be obtained as follows: 

 
( ) ( ), 0 exp 1is il is sl ilCov y y λ σ λ= + −⎡ ⎤⎣ ⎦  

        ( ) ( ) ( )exp 2 exp 1 exp 2is ss sl il llξ σ σ ξ σ= −⎡ ⎤⎣ ⎦ , for s l≠   (28) 

 
( ) ( ), exp 1is is is is ss isVar y y λ λ σ λ= + −⎡ ⎤⎣ ⎦  

 
The correlation between crash counts within segments is obtained as follows: 

 
( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

2 2

1 1

,

exp 1

exp 2 exp 1 exp 2 exp 1

exp 1

exp 2 exp 1 exp 2 exp 1

is il

is sl il

is ss is ss il ll il ll

sl

is ss ss il ll ll

Corr y y

ξ σ ξ

ξ σ ξ σ ξ σ ξ σ

σ

ξ σ σ ξ σ σ− −

=

−⎡ ⎤⎣ ⎦
− + − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−
=

− + − − + −

 (29) 

 
where s l≠ . 

 
The correlation between crash counts within segments can be positive or negative, 

depending on the sign of slσ , which is the ( ),s l  element of Σ .  That is, a positive 

correlation between isy  and ily  is expected for a positive slσ , and vice versa.  

The correlation structure of the crash counts is thus unrestricted.  Moreover, this 

specification also implies overdispersion14, since 0ssσ >  for 1,2, ,s S= … . 

 

                                                 
14 Overdispersion refers to the situation in which variance is greater than mean. 
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Based on Equation (25), the likelihood of observation i  can be represented by the 

following equation: 

 

( ) ( )
1

, ,
S

i i i Poisson is is
s

P x f yβ λ
=

=∏y εG G       (30) 

 
where ( )expis is is is s isu xλ ξ β ε′= = + . 

 
Unfortunately, the marginal distribution of the crash counts iyG  cannot be 

obtained by direct computation.  Obtaining the marginal distribution requires the 

evaluation of an S -variate integral of the Poisson distribution with respect to the 

distribution of iε
G , 

 

( ) ( )
1

, , , ,
S

i i Poisson is is s is S i i
s

P f y x dβ ε φ
=

Σ = ⎡ Σ⎤⎣ ⎦∏∫y λ ε 0 ε
GG G G    (31) 

 
where Sφ  is the S -variate normal distribution.  This S -dimensional integral 

cannot be algebraically implemented in closed form for arbitrary Σ .   

4.2 Parameter Estimation of MVPLN Model via MCMC 
Simulation 

4.2.1 Preparations for Estimation 
The multivariate Poisson-lognormal (MVPLN) regression model was developed 

in the previous section.  In order to appreciate crash behaviors, the unknown 

parameters in the model need to be estimated.  Conditioning on a ( 1S × ) vector of 

roadway segment and severity-level-specific random effects ( )1 2, ,i i i iSε ε ε ′=εG … , 

iyG  follows an independent Poisson distribution: 
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( ) ( ) ( )( )
1

, , exp exp
S

i i i Poisson is is s is
s

x f y xπ β β ε
=

′=∏y εG G     (32) 

 

where ( )( ) ( ) ( )exp exp exp
exp

!

isy
is is is is

Poisson is is is
is

f y
y

ξ ε ξ ε
ξ ε

−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= . 

 
and 

 
( ) ( ),i Sπ φΣ = Σε 0G         (33) 

 
where ( )Poissonf ⋅  is Poisson probability mass function with a rate ( )expis isξ ε , and 

Sφ  is the S -variate normal density with covariance matrix Σ .  Calculating the 

likelihood function requires the evaluation of an S -variate integral of the Poisson 

distribution with respect to the distribution of iε
G ; that is, 

 

( ) ( ) ( )
1

, , , , ,
S

i i Poisson is i is S i i
s

x f y x dπ β β ε φ
=

Σ = Σ∏∫y ε 0 εG G G    (34) 

 
Related to this, Chib et al. (1998) showed how to estimate a posterior distribution 

of unknown parameters for their panel count data models15, and Plassmann and 

Tideman (2001) developed a Gibbs sampler to estimate parameters in a univariate 

Poisson-lognormal model.   

 
Based on Press (1982) and Gelman et al. (2004), the Wishart distribution has been 

commonly used as a conjugate prior for the inverse of variance-covariance 

parameters.  According to Press (1982), the Wishart and normal distributions are 

                                                 
15 Estimation of β  in the panel count data models is similar to estimation of sβ  in the MVPLN 
model.  
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very helpful for multivariate analysis.  Suppose that the parameters ( ),β Σ  

independently follow the prior distributions: 

 
( )00~ ,k Vββ φ β , ( )1 ~ ,Wf Vν−

Σ ΣΣ       (35) 

 

where ( )0 01 02 0, , , Sβ β β β ′= … , 

01

02

0

0

0 0

0 0 0

0 0
S

V

V
V

V

β

β
β

β

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

# # % #
"

, ( ),Wf ⋅ ⋅ is the Wishart 

distribution with νΣ  degrees of freedom and scale matrix VΣ , and 
00 , ,Vββ νΣ  and 

VΣ  are known hyperparameters.  Since there is correlation between 
0 s

Vβ  and 
0 l

Vβ , 

the prior distribution for β  can written as ( )00~ ,
s ss k s Vββ φ β  for 1,2, ,s S= … . 

 
According to Bayes’ theorem ( posterior prior likelihood∝ × ), the posterior 

kernel can be written as follows: 

 

( ) ( ) ( ) ( ) ( )
00

1 1

, , , , , , ,
n S

k W Poisson is is s is S i i
i s

y X V f V f y x dβπ β φ β ν β ε φΣ Σ
= =

Σ ∝ Σ∏ ∏∫ ε 0 εG G  

 

Using data augmentation16, the latent effects ε  can be thought of as parameters to 

be estimated.  Therefore, the joint posterior density of Σ , ε , and β  is written as 

follows: 

 

                                                 
16 Data augmentation uses unobserved data or latent variables as unknown parameters (to be 
estimated) to establish iterative algorithms. 
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( )

( ) ( ) ( ) ( )
00

1 1

, , ,

, , , , ,
n S

k W Poisson is is s is S i
i s

y X

V f V f y xβ

π β

φ β ν β ε φΣ Σ
= =

Σ ∝

Σ∏∏

ε

ε 0G
  (36) 

 
Therefore, the parameters can be “blocked” as Σ , ε , and β , after which the joint 

posterior is simulated by iteratively sampling from the following three conditional 

distributions: 1pπ −⎡ ⎤Σ⎣ ⎦ε , , , ,p y Xπ β Σ⎡ ⎤⎣ ⎦ε , and , , ,p y Xπ β Σ⎡ ⎤⎣ ⎦ε , where ( )pπ ⋅ ⋅  

is the posterior density function. 

 
The draws are sampled sequentially using the most recent values of the 

conditioning variables at each step.  A schematic flowchart for sampling the 

parameters of interest is shown as Figure 2. 
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Input M , εν , βν , νΣ , 0β , 

0
Vβ , VΣ  

Sample ( ) ( ) ( )11 , ,
mm m

i i β
++ Σε yG G  

using an M-H algorithm 
Repeat for 1,2, ,i n= …  

Sample ( ) ( ) ( )1 1 1, , ,m m m
s y Xβ + + +Σε

using an M-H algorithm 
Repeat for 1,2, ,s S= …  

Sample ( ) ( )11 m m+−Σ ε  using a 

Gibbs sampler 

Store ( )11 m+−Σ , ( )1m+ε , and ( )1mβ +   

m M> ? 

Make inference using 
the M  draws 

No Yes

1m m= +  

 
 

Figure 2  A Schematic Flowchart for the MCMC Simulation 
 

4.2.2 Gibbs Sampler with Embedded M-H Algorithms 

4.2.2.1 Gibbs Sampler to Draw 1−Σ  
After manipulating the posterior equation (36), the posterior of 1−Σ  conditional on 

data and other parameters can be written as 

 

( ) ( ) ( )1 1

1

, ,
n

W S i
i

f Vπ ν φ− −
Σ Σ

=

Σ ∝ Σ Σ∏ε ε 0G      (37) 
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where Wf  denotes the Wishart density with νΣ  degrees of freedom and scale 

matrix VΣ .  

 
After manipulating Equation (37), this density can be written as a Wishart kernel 

with degrees of freedom n νΣ+  and scale matrix ( )
1

1

1

n

i i
i

V
−

−
Σ

=

⎡ ⎤′+⎢ ⎥⎣ ⎦
∑ ε εG G . In other 

words, 

 

( )
1

1 1

1

~ ,
n

W i i
i

f n Vε ν
−

− −
Σ Σ

=

⎛ ⎞⎡ ⎤′Σ + +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ε εG G      (38) 

 

This is a known parametric distribution and thus can be sampled using a Gibbs 

sampler. 

4.2.2.2 M-H Algorithm to Draw iε
G  

In order to sample ε  from its posterior density ( ) ( )
1

, , , ,
n

i i
i

yπ β π β
=

Σ = Σ∏ε ε yG G , 

consider simply the ith posterior kernel density of iε
G  since the assumption of no 

spatial correlation across segments was made in Section 4.1.2. 

 

( ) ( ) ( ) ( )
1

, , , exp , , ,is

S
y p

i i i i S i is is i i i i
s

x C C xπ β φ λ λ π β
=

Σ = Σ − = Σ∏ε y ε ε yG G G G G  (39) 

 
where ( )expis is s isxλ β ε′= + .  Draws from this conditional density can be obtained 

by developing an M-H algorithm in the remainder of this section. 
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Following Chib et al. (1998), the multivariate t  distribution is used as the 

proposal density17.  Let ( )ˆ ln , , ,arg max
i

p
i i i ixπ β⎡ ⎤= Σ⎣ ⎦

ε

ε ε y
G

G G G  and ( ) 1

i i
V Hε ε

−
= −  

be the inverse of the Hessian of ( )ln , , ,p
i i ixπ β Σε yG G  at the mode ˆ

iε
G .  The mode 

ˆ
iε
G  and variance-covariance matrix 

i
Vε  can be obtained using the Newton-Raphson 

algorithm (see Appendix A) with the gradient vector 

( )1 exp
i i ixε β−= −Σ + − +⎡ ⎤⎣ ⎦i ig ε y εG G G G  and Hessian matrix 

( )1 exp
i i iH diag xε β−= −Σ − +⎡ ⎤⎣ ⎦εG , where 

1

2

0 0
0 0

0 0

i

i
i

iS

x
x

x

x

′⎡ ⎤
⎢ ⎥′⎢ ⎥=
⎢ ⎥
⎢ ⎥′⎣ ⎦

…
…

# # % #
…

 and 

1

2

S

β
β

β

β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
.  

Then, the proposal density is given by ( )ˆ , ,
iT i if Vε ενε εG , a multivariate- t  

distribution with εν degrees of freedom (where εν  can be used as a tuning 

parameter in the M-H algorithms to make sure that the acceptance rate18 lies 

between 20 and 45 percent19).  A proposal value *
iε
G  is drawn from 

( )ˆ , ,
iT i if Vε ενε εG , and the chain moves to *

iε
G  from the current point iε

G  with 

probability 

 

( ) ( ) ( )
( ) ( )

*

*

*

ˆ, , , , ,
, , , , min ,1

ˆ, , , , ,
i

i

p
i i i T i i

i i i i p
i i i T i i

x f V
x

x f V

ε ε

ε ε

π β ν
α β

π β ν

⎧ ⎫Σ⎪ ⎪Σ = ⎨ ⎬
Σ⎪ ⎪⎩ ⎭

ε y ε ε
ε ε y

ε y ε ε

G G G
G G G

G G G  (40) 

                                                 
17 See Section 3.3.3 for the discussions of proposal density functions. 
18 The acceptance rate is the fraction of proposed samples that is accepted.  If the proposal steps 
are too small, the chain will move around the space slowly and thus converge slowly on the true 
posterior density.  If the proposal steps are too large, the acceptance rate will be very low because 
the proposals are likely to land in regions of much lower probability density. 
19 Chib and Greenberg (1995) believe that an acceptance rate of 23 percent is desirable as the 
number of dimensions approaches infinity, and an acceptance rate of 45 percent is desirable for a 
one-dimensional random-walk chain. 
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If ( )*, , , ,i i i ixα β Σε ε yG G G  is greater than U (where U  is uniformly distributed on 

[ ]0,1 ), the proposal value *
iε
G is accepted; otherwise, the current value iε

G  is kept as 

the new draw for the Markov chain.  

4.2.2.3 M-H Algorithm to Draw sβ  
The samples of sβ , conditional on ε , y , X , Σ , and, sβ−  (where 

[ ]1 2 1 1, , , , , ,s s s Sβ β β β β β− − += … … ) are drawn from the posterior distribution, 

which is proportional to 

 
( )

( ) ( )
( )

1,

, , ,

, , , , , ,

, , ,

p
s

S
p p

s s s j j j
j j s

p
s s s s

y X

y X y X

C y X

π β

π β ε π β ε

π β ε

⋅ ⋅ ⋅ ⋅
= ≠

− ⋅ ⋅

Σ

= Σ Σ

= Σ

∏

ε

 

( ) ( ) ( )
00

1

, exp exp exp is

s s

n y
k s s is s is is s is

i

V x xβφ β β β ε β ε
=

′ ′∝ − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∏  

( ) ( )
00 , ,

s sk s s s s sV p yβφ β β β ε⋅ ⋅∝       (41) 

 

where ( )
1,

, , ,
S

p
s j j j

j j s

C y Xπ β ε− ⋅ ⋅
= ≠

= Σ∏  (which does not involve sβ  and thus 

serves as a constant), and 

( ) ( ) ( )
1

, , exp exp exp is
n y

s s s is is is is
i

p y X x xβ ε β ε β ε⋅ ⋅
=

′ ′= − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∏  is the probability 

mass function of ( )1 2, , ,s s s nsy y y y⋅ = …  given sβ , X  and ( )1 2, , ,s s s nsε ε ε ε⋅ = … .  

Note that sβ ’s ( { }1, 2, ,s S∈ … ) are assumed to be independent of one another. 
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A scheme similar to the one sampling iε
G  is developed here to sample sβ .  The 

multivariate - t  is also used as the proposal density.  Let 

( )ˆ ln , , , ,arg max
s

p
s s s s sy X

β

β π β ε β⋅ ⋅ −⎡ ⎤= Σ⎣ ⎦  be the mode, and ( ) 1

s s
V Hβ β

−
= −  the 

inverse of the Hessian of ( )ln , , , ,p
s sy Xπ β β− Σε  at the mode ˆ

sβ .  The mode ˆ
sβ  

and variance-covariance matrix 
s

Vβ  can be obtained using the Newton-Raphson 

algorithm with the gradient vector ( )
0

1
0s s s sVβ β β β−= − − +gG  

( )
1

exp
n

is is s is is
i

y x xβ ε
=

′− +⎡ ⎤⎣ ⎦∑  and Hessian matrix 
0

1
s s

H Vβ β
−= − −  

( )
1

exp
n

is s is is is
i

x x xβ
=

′ ′+⎡ ⎤⎣ ⎦∑ εG .  Then, the proposal density is given by 

( )ˆ , ,
sT s sf Vβ ββ β ν , a multivariate- t  distribution with βν degrees of freedom 

(where βν  can be used as a tuning parameter in the M-H algorithms to make sure 

that the acceptance rate lies between 20 and 45 percent).  A proposal value *
sβ  is 

drawn from ( )ˆ , ,
sT s sf Vβ ββ β ν , and the chain moves to *

sβ  from the current point 

sβ  with probability 

 

( )
( ) ( )
( ) ( )

*

*

*

ˆ, , , , , ,
, , , , , min ,1

ˆ, , , , , ,
s

s

p
s s T s s

s s s p
s s T s s

y X f V
y X

y X f V

β β

β β

π β β β β ν
α β β β

π β β β β ν

−

−

−

⎧ ⎫Σ⎪ ⎪Σ ⎨ ⎬
Σ⎪ ⎪⎩ ⎭

ε
ε

ε
 (42) 

 
If ( )*, , , , ,s s sy Xα β β β− Σε  is greater than U (where U  is uniformly distributed 

on [ ]0,1 ), the proposal value *
sβ is accepted; otherwise, the current value sβ  is 

kept as the new draws for the Markov chain.  
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4.2.3 Gibbs Sampler Using Auxiliary Variables 
The M-H algorithms are commonly used to sample draws from the posterior 

density which cannot be written as a known parametric distribution.  However, 

much effort is needed to make the acceptance rate lying between 20 and 45 

percent.  The Gibbs sampler using auxiliary variables (or slice sampler) avoids 

the M-H algorithms by introducing auxiliary variables to transform the posterior 

density into a series known conditional distributions.  Thus, the parameters can be 

estimated by sampling draws from the conditional distributions.   

4.2.3.1 Gibbs Sampler to Draw 1−Σ  
The posterior distribution of 1−Σ  can be written as a Wishart distribution and thus 

can be sampled using a Gibbs sampler.  Please see Section 4.2.2.1 for details 

about sampling 1−Σ .   

4.2.3.2 Gibbs Sampler Using Auxiliary Variables to Draw iε
G  

Please refer to Section 3.3.4 for details about the Gibbs sampler using auxiliary 

variables (i.e., the Slice Sampler).  Equation (39) can be written as 

 

( ) ( ) ( )( ) ( )
1

, , , exp exp exp is
S

y
i i i S i is s is is s is

s

x x xπ β φ β ε β ε
=

′ ′Σ ∝ Σ − + +∏ε y εG G G  (43) 

 
Let ( ) ( )( ),1 exp expis is is s isl xε β ε′= − +  and ( ) ( ),2 exp isy

is is is s isl xε β ε′= + .  We can 

introduce the variables isU  and isV  whose joint distribution with isε  is given by 

 

( ) ( ) ( )( ) ( )( ),1 ,2
1

, ,
S

i i i S i is is is is is is
s

f I u l I v lφ ε ε
=

∝ Σ < <∏ε u v εG G G G    (44) 

 

where ( )1 2, , ,i i i iSε ε ε ′=εG … , ( )1 2, , ,i i i iSu u u ′=uG … , and ( )1 2, , ,i i i iSv v v ′=vG … .  The 

full conditionals are given by 
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( ) ( )( ),10,is is is isf u Uniform lε ε= , 

( ) ( )( ),20,is is is isf v Uniform lε ε=  

( ) ( ),i i i S if φ∝ Σε u v εG G G G  with isε  restricted to isM  for 1,2, ,s S= …  

 
where ( ) ( ){ }1

,1 ,2 : log log logis is is is is is is s is is is sM M M y v x u xε β ε β− ′ ′= = − < < − −⎡ ⎤⎣ ⎦∩ , 

( ){ },1 : log logis is is is is sM u xε ε β′= < − −⎡ ⎤⎣ ⎦ , and 

( ){ }1
,2 : logis is is is is is sM y v xε ε β− ′= > − . 

 
The conditional distribution of iε

G , ( ),i i if ε u vG G G , is in fact a truncated multivariate 

normal kernel.  The difficulty lies in obtaining random draws from the truncated 

multivariate normal distribution.  One way is to sample from a multivariate 

normal distribution and determine if the sampled values meet the truncation 

criteria.  This algorithm tends to be inefficient when drawing many samples.  

Geweke (1991) and Rodriguez-Yam (2003) proposed two efficient ways to 

sample from truncated multivariate normal distributions.  This research adopts 

their method. 

4.2.3.3 Gibbs Sampler Using Auxiliary Variables to Draw sβ  
Based on Equation (41), the posterior kernel of sβ  (conditional on data and other 

parameters) can be written as  

 

( ) ( ) ( )
00

1

, , , , exp exp exp is

s s

n yp
s k s s is s is is s is

i

y X V x xβπ β φ β β β ε β ε
=

′ ′⎡ Σ⎤ ∝ − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ∏ε
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Similarly, let ( ) ( )( ),1 exp expi s is s isl xβ β ε′= − +  and ( ) ( ),2 exp isy
i s is s isl xβ β ε′= + .  

One can introduce the variables iU  and iV  whose joint distribution with sβ  is 

given by 

 

( ) ( ) ( )( ) ( )( )
00 ,1 ,2

1

, , ,
s s

n

s k s s i i s i i s
i

f V I u l I v lββ φ β β β β
=

∝ < <∏u vG G   (45) 

 

where ( )1 2, , , nu u u ′=uG … , and ( )1 2, , , nv v v ′=vG … .  The full conditionals are given 

by 

 
( ) ( )( ),10,i s i sf u Uniform lβ β= , 

( ) ( )( ),20,i s i sf v Uniform lβ β=  

( ) ( )00, ,
s ss k s sf Vββ φ β β∝u vG G  with sβ  restricted to the sample space M  

 
where 

[ ] ( ) [ ] ( ){ }
1 2

1 11: log log logs is is is is i is s is is is i is

M M M

x x x y v x x x uβ ε β ε− −−

= =

⎡ ⎤′ ′⎡ ⎤− < < − −⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦

∩
20, 

[ ] ( ){ }1
1 : log logs s is is is i isM x x x uβ β ε− ⎡ ⎤′= < − −⎡ ⎤⎣ ⎦⎣ ⎦ , and 

[ ] ( ){ }1 1
2 : logs s is is is is i isM x x x y vβ β ε− −′ ⎡ ⎤= > −⎣ ⎦ . 

 
The conditional distribution of sβ , ( ),sf β u vG G , is in fact a truncated multivariate 

normal kernel which can be sampled using the methods proposed in Rodriguez-

                                                 
20 In order to make this inequality work, one has to transform all of explanatory into positive 
values.  Given the data sets in the next chapter, the explanatory variables only take non-negative 
values.  To guarantee the positive explanatory variables, all of zeros in observations are replaced 
with a small number 10-10. 
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Yam (2003).  Damien and Walker (2001) also developed a Gibbs sampler within 

the Gibbs sampler to sample random variates from truncated normal densities.  

The slice sampler developed in this research eliminates the need to “tune” 

proposal distribution as in general M-H algorithms.  However, it requires stronger 

assumptions to construct full conditions.  In addition, the acceptance rate for new 

points is always 100% in the slice sampler. 

4.3 Summary 
This chapter starts from univariate Poisson regression models and then moves to 

multivariate Poisson models.  The MVP regression model is briefly discussed 

since it only allows for a common positive correlation between each pair of 

counts.  The MVPLN regression specification is developed to allow for a more 

general correlation structure for traffic crash counts at different levels of severity 

on a particular segment.  Additionally, two MCMC simulation procedures are 

established to estimate the unknown parameters in the MVPLN model. 
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 CHAPTER 5  EMPIRICAL ANALYSES 

 
Therefore, this research conducts an empirical analysis using Washington State 

rural two-lane crash data sets in the Puget Sound region.  An MVPLN regression 

model is estimated using the data sets.  

5.1 Data Description 
The crash data sets used here were collected from Washington State through the 

Highway Safety Information System (HSIS).  After filtering off unreasonable 

observations (such as segments with zero speed limits), a total of 103,106 

Washington State homogeneous highway segments are available for analysis 

(with an average segment length of 0.0814 miles and a total distance of 8,400 

centerline miles).  In the year 2002, there were 177 fatal crashes, 1,013 disabling 

injury crashes, 5,630 non-disabling injury crashes, 13,060 possible injury crashes 

and 29,006,100 property-damage-only (PDO) crashes along these segments.  

These segments serve as distinct observational units, and the HSIS dataset 

contains information on their design features, including curve attributes, shoulder 

and surface width, speed limit, and average annual daily traffic (AADT).  A total 

of 12 explanatory variables are controlled for in the model. 

 
In order to examine traffic crashes patterns on rural two-lane roadways, this 

research considers crashes occurring on rural two-lane roads in the Puget Sound 

region.  A random sample of 60%21 of rural two-lane road segments in this region 

was used for model estimation.  A total of 7,773 rural two-lane highway segments 

(with an average segment length of 0.0655 miles and a total of 510 miles) are 

available for analysis.  This sample contains 16 fatal crashes, 50 disabling-injury 
                                                 
21 A preliminary implementation of the MCMC algorithms shows that it would take more than a 
year to get 6,000 draws using the entire Washington State data.   
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crashes, 180 non-disabling-injury crashes, 175 possible-injury crashes and 532 

property-damage-only (PDO).  Table 5 reports summary statistics for the 

dependent and independent variables employed in the analysis.   

 
Table 5  Summary Statistics of Variables for Puget Sound Roadway 

Segments 2002 
 

Variable Name Mean Std. Dev. Min Max 
Dependent Variables 

Number of fatal crashes 0.002058 .04533 0 1
Number of disabling injury crashes 0.006433 .07995 0 1
Number of non-disabling injury crashes 0.02316 .1587 0 3
Number of possible injury crashes 0.02251 .2045 0 11
Number of PDO crashes 0.06844 .3345 0 12

Independent Variables 
Segment length (miles) 0.0655 .08689 .00 1.92
Horizontal curve length (feet) 247.6 475.4 .00 4715
Degree of curvature (°/100feet) 2.337 5.462 .00 100.5
Vertical curve length (feet) 302.7 376.0 .00 3200
Vertical grade (%) 1.805 1.991 .00 16.13
Average shoulder width (feet) 2.087 1.298 .00 16.50
Surface width (feet) 24.00 4.461 16.0 73.0
Posted speed limit (miles/hour) 49.62 8.163 25.0 60.0
Posted speed limit squared (miles2/hour2) 2528 715.5 625 3600
Average annual daily traffic (AADT) 3757 2,729 254 28,624
Indicator for principal arterial: 1=yes, 0=otherwise 0.48 0.499 0 1
Indicator for minor arterial: 1=yes, 0=otherwise 0.28 0.451 0 1
Indicator for collector: 1=yes, 0=otherwise 0.24 0.430 0 1
Indicator for level terrain: 1=yes, 0=otherwise 0.36 0.482 0 1
Indicator for rolling terrain: 1=yes, 0=otherwise 0.60 0.491 0 1
Indicator for mountainous terrain: 1=yes, 
0=otherwise 0.04 0.194 0 1

Vehicle miles traveled (VMT) in 2002 88,106 142,830 .00 2,679,710
The natural logarithm of VMT 10.45 2.737 -22.35 14.80
Number of observations 7,773
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5.2 Model Estimation and Results 

5.2.1 Model Estimation 
The MVPLN regression model described in Chapter 4 was estimated using a 

Bayesian approach.  The starting values for β  came from distinct univariate 

Poisson models (using the method of maximum likelihood estimation (MLE)).  

The starting values for Σ  are 5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

I

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  Tables C-1 through C-5 in 

Appendix C provide the MLE estimates for the five univariate Poisson models.  A 

Gibbs sampler and two M-H algorithms were coded in R language (an open-

source statistical computing environment described at http://www.r-project.org/).  

The priors for the estimation are defined by the hyperparameters νΣ =10, 1
5V I−

Σ = , 

( )0 0,0, ,0sβ ′= … , and 
0 14100

s
V Iβ = × .  The Gibbs sampler was implemented to 

obtain M = 8,000 draws for Σ .  The two M-H algorithms were implemented to 

obtain M = 8,000 draws for each of the 70145 =×  s'β  and each of the 

865,385773,7 =×  ε ’s, respectively.  The initial 1,000 draws were discarded as 

“burn-ins.”  As described in Section 3.3.6, an adequate burn-in period eliminates 

the influence of the starting values.  To help ensure chain convergence, the Gibbs 

sampler and the two M-H algorithms were implemented using two sets of initial 

values22 and both converged at the same posterior distribution of parameters.  

Estimation results are presented in Tables 6 through 10. 

                                                 
22 Zero was used as the initial values for β  in the second chain.  
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Table 6  PDO Crash Frequency MVPLN Model for the Puget Sound Region 
in 2002 

 
Variable definition Mean Std. Err. The 95% (2.5-97.5%) 

HDR 
Constant -12.64 0.4562 -13.38 -11.88
Horizontal curve length (feet) 2.09E-05 1.35E-05 -1.31E-06 4.27E-05 
Degree of curvature (°/100feet) 0.1241 6.31E-03 0.1136 0.1344
Vertical curve length (feet) -2.05E-04 1.97E-05 -2.37E-04 -1.73E-04
Vertical grade (%) 0.1377 0.01441 0.1134 0.1609
Average shoulder width (feet) -0.01125 3.54E-03 -0.01694 -5.28E-03
Surface width (feet) -0.01520 5.25E-04 -0.01607 -0.01434
Posted speed limit (miles/hour) 0.01493 2.89E-03 0.01014 0.01972
Posted speed limit squared 
(miles2/hour2) -1.53E-04 8.64E-05 -2.97E-04 -1.33E-05

Average annual daily traffic (AADT) 4.79E-05 2.03E-06 4.46E-05 5.13E-05
Indicator for minor arterial: 1=yes, 
0=otherwise -0.01112 0.01631 -0.03759 0.01568 

Indicator for collector: 1=yes, 
0=otherwise -0.009441 0.01872 -0.04049 0.02080 

Indicator for rolling terrain: 1=yes, 
0=otherwise 0.03929 0.01439 0.01526 0.06240

Indicator for mountainous terrain: 
1=yes, 0=otherwise 0.6120 0.04687 0.5355 0.6888

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically 

significant way, based on the 95% (2.5-97.5) high density region (HDR). 
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Table 7  Possible-Injury Crash Frequency MVPLN Model for the Puget 
Sound Region in 2002 

 
Variable definition Mean Std. Err. The 95% (2.5-97.5%) 

HDR 
Constant -15.85 0.8120 -17.22 -14.53
Horizontal curve length (feet) 2.90E-05 2.37E-05 -8.46E-06 6.90E-05 
Degree of curvature (°/100feet) 0.1031 7.09E-03 0.09136 0.1147
Vertical curve length (feet) -2.97E-04 1.30E-05 -3.18E-04 -2.76E-04
Vertical grade (%) 0.1616 9.20E-03 0.1465 0.1766
Average shoulder width (feet) -8.71E-03 9.48E-04 -0.01027 -7.17E-03
Surface width (feet) -0.01258 7.16E-04 -0.01371 -0.01139
Posted speed limit (miles/hour) 0.03116 5.25E-03 0.02238 0.03970
Posted speed limit squared 
(miles2/hour2) -1.40E-05 1.57E-05 -4.02E-05 1.19E-05 

Average annual daily traffic (AADT) 1.08E-04 3.28E-06 1.03E-04 1.13E-04
Indicator for minor arterial: 1=yes, 
0=otherwise 0.2257 0.02809 0.1799 0.2729

Indicator for collector: 1=yes, 
0=otherwise 0.4971 0.03114 0.4448 0.5478

Indicator for rolling terrain: 1=yes, 
0=otherwise -0.2344 0.02530 -0.2756 -0.1934

Indicator for mountainous terrain: 
1=yes, 0=otherwise -0.3552 0.1301 -0.5677 -0.1452

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically 

significant way, based on the 95% (2.5-97.5) high density region (HDR). 
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Table 8  Non-disabling Injury Crash Frequency MVPLN Model for the 
Puget Sound Region in 2002 

 
Variable definition Mean Std. Err. The 95% (2.5-97.5%) 

HDR 
Constant -15.37 0.9321 -16.89 -13.81
Horizontal curve length (feet) -2.01E-05 2.41E-06 -2.41E-05 -1.61E-05
Degree of curvature (°/100feet) 0.1576 6.04E-03 0.1477 0.1676
Vertical curve length (feet) -2.04E-04 1.12E-05 -2.22E-04 -1.85E-04
Vertical grade (%) 0.1850 0.01532 0.1602 0.2110
Average shoulder width (feet) -4.69E-03 9.17E-04 -6.22E-03 -3.22E-03
Surface width (feet) -0.01079 1.25E-03 -0.01287 -8.72E-03
Posted speed limit (miles/hour) 0.01335 1.73E-03 0.01051 0.01621
Posted speed limit squared 
(miles2/hour2) -2.30E-04 1.56E-04 -4.82E-04 3.38E-05 

Average annual daily traffic (AADT) 2.37E-06 3.55E-06 -3.46E-06 8.24E-06 
Indicator for minor arterial: 1=yes, 
0=otherwise 0.2489 0.02867 0.2025 0.2963

Indicator for collector: 1=yes, 
0=otherwise 0.4896 0.03679 0.4292 0.5508

Indicator for rolling terrain: 1=yes, 
0=otherwise 0.1341 0.02343 0.09553 0.1733

Indicator for mountainous terrain: 
1=yes, 0=otherwise -0.1685 0.1100 -0.3428 0.01523 

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically 

significant way, based on the 95% (2.5-97.5) high density region (HDR). 
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Table 9  Disabling Injury Crash Frequency MVPLN Model for the Puget 
Sound Region in 2002 

 
Variable definition Mean Std. Err. The 95% (2.5-97.5%) 

HDR 
Constant -16.73 2.182 -20.37 -13.12
Horizontal curve length (feet) 6.49E-05 3.97E-05 3.70E-07 1.30E-04
Degree of curvature (°/100feet) 0.02029 6.64E-03 9.62E-03 0.03097
Vertical curve length (feet) -3.69E-04 3.63E-05 -4.28E-04 -3.10E-04
Vertical grade (%) 0.1431 0.01101 0.1255 0.1607
Average shoulder width (feet) 6.27E-03 0.01656 -0.02102 0.03334 
Surface width (feet) -9.85E-03 1.47E-03 -0.01226 -7.41E-03
Posted speed limit (miles/hour) 0.01040 1.81E-03 7.42E-03 0.01344
Posted speed limit squared 
(miles2/hour2) 3.48E-04 3.22E-04 -1.94E-04 8.64E-04 

Average annual daily traffic (AADT) 5.34E-04 5.78E-05 4.38E-04 6.30E-04
Indicator for minor arterial: 1=yes, 
0=otherwise 0.3470 0.04676 0.2700 0.4243

Indicator for collector: 1=yes, 
0=otherwise 0.4106 0.05675 0.3171 0.5033

Indicator for rolling terrain: 1=yes, 
0=otherwise 0.2814 0.04212 0.2133 0.3498

Indicator for mountainous terrain: 
1=yes, 0=otherwise 167.6 115.3 -24.93 355.2 

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically 

significant way, based on the 95% (2.5-97.5) high density region (HDR). 
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Table 10  Fatal Crash Frequency MVPLN Model for the Puget Sound 
Region in 2002 

 
Variable definition Mean Std. Err. The 95% (2.5-97.5%) 

HDR 
Constant -24.46 6.780 -35.61 -13.63
Horizontal curve length (feet) -3.56E-05 5.67E-06 -4.47E-05 -2.63E-05
Degree of curvature (°/100feet) 0.02080 1.23E-03 0.01868 0.02274
Vertical curve length (feet) 3.67E-05 1.07E-05 1.93E-05 5.39E-05
Vertical grade (%) -0.05849 0.02737 -0.1032 -0.01380
Average shoulder width (feet) 0.01766 0.03147 -0.03503 0.06981 
Surface width (feet) 0.05338 0.02102 0.01937 0.08909
Posted speed limit (miles/hour) 0.01463 2.27E-03 0.01073 0.01835
Posted speed limit squared 
(miles2/hour2) 1.78E-04 9.08E-04 -1.34E-03 1.64E-03 

Average annual daily traffic (AADT) 1.64E-05 1.30E-05 -4.62E-06 3.83E-05 
Indicator for minor arterial: 1=yes, 
0=otherwise 0.1532 0.09024 3.70E-03 0.3053

Indicator for collector: 1=yes, 
0=otherwise 0.4176 0.1206 0.2263 0.6169

Indicator for rolling terrain: 1=yes, 
0=otherwise -0.1714 0.07712 -0.2997 -0.04648

Indicator for mountainous terrain: 
1=yes, 0=otherwise 1.801 0.2251 1.436 2.172

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically 

significant way, based on the 95% (2.5-97.5) high density region (HDR). 
 
 
Figures 3 through 7 illustrate the estimates of posterior distributions for these 

regression coefficients.  Based on the posterior density of Σ  (shown in Figures 8a 

and 8b), positive correlations between crash counts at different levels of severity 

within the segment do appear to exist, in a statistically significant way.  The 

univariate models are a special case of the MVPLN, with off-diagonal elements 

of Σ  equal to zero.  Given the MVPLN predictions’ added flexibility to represent 

such pattern, it is expected that they will offer somewhat better predictions.   
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Figure 3a  Posterior Density of Variables of Interest for PDO Crash 
Frequency 
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Figure 3b  Posterior Density of Variables of Interest for PDO Crash 
Frequency 
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Figure 4a  Posterior Density of Variables of Interest for Possible-Injury 
Crash Frequency 
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Figure 4b  Posterior Density of Variables of Interest for Possible-Injury 
Crash Frequency 
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Figure 5a  Posterior Density of Variables of Interest for Non-disabling Injury 

Crash Frequency 
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Figure 5b  Posterior Density of Variables of Interest for Non-disabling 
Injury Crash Frequency 
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Figure 6a  Posterior Density of Variables of Interest for Disabling Injury 
Crash Frequency 
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Figure 6b  Posterior Density of Variables of Interest for Disabling Injury 
Crash Frequency 
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Figure 7a  Posterior Density of Variables of Interest for Fatal Crash 
Frequency 
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Figure 7b  Posterior Density of Variables of Interest for Fatal Crash 
Frequency 
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Note: 1 stands for fatal crashes; 2 stands for disabling injury crashes; 3 stands for non-disabling 
injury crashes; 4 stands for possible injury crashes; 5 stands for PDO crashes. 

 
Figure 8a  Posterior Density of Variance-Covariance for isε  
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Figure 8b  Posterior Density of Variance-Covariance for isε  
 

 
Figures C-1 through C-6 in Appendix C display the traces of all of samples for 

five groups of severity-specific parameters, as well as the variance-covariance 

matrix, Σ .  
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5.2.2 Interpretation of Results 
The following discussion of results emphasizes disabling and fatal injuries 

(Tables 9 and 10), since these arguably are of greatest concern to agencies and 

policymakers.  Moreover, the data on such outcomes are more likely to be 

reported and more reliably recorded than that for other crash outcomes (Blincoe et 

al. 2002).  Tables 6 through 8 provide crash count model estimates for the other 

three severity levels.  The signs of most coefficients are consistent throughout the 

models, indicating robust directions of effect for most control variables. 

 
Parameter estimates shown in Tables 6 through 10 suggest that roadway design 

plays an important role in predicting crash counts.  For example, holding all other 

factors fixed, more severe injury crashes are expected on sharper horizontal 

curves, while wider shoulders tend to reduce rates of less severe crashes (perhaps 

by offering added maneuverability space for crash avoidance).  Based on an 

average road segment’s attributes and the MVPLN model’s average parameter 

estimates, Table 11 provides estimates of percentage changes in crash rates as a 

function of various design details.  For example, a 5-feet increase in (average) 

right shoulder width (from 2 to 7 feet) is predicted to result in 7.04% fewer 

crashes (total) per 100 million VMT.  Higher average annual daily traffic levels 

(rising from 3757 to 4757 vehicles) are predicted to increase total crash count by 

16.41% — while reducing the total crash rate by 5.51%.  In this way, the 

MVPLN model offers statistically (and practically) significant insights into crash 

counts’ dependence on roadway design.  
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Table 11  Expected Percentage Changes in Crash Rates Corresponding to 

Changes in Variables 
 

Percentage change in crash rates (per 100 million VMT) 
Variables Averages 

Changes 
in 

Variable Fatal Disabling Non-
disabling Possible  PDO  Total 

CURV_LGT 248 (ft) +100 -0.36% 0.65% -0.20% — — 0.30%
DEG_CURV 2.3 (°/100ft) +2 4.08% 3.98% 27.04% 18.63% 21.98% 18.58%
VCUR_LGT 303 (ft) +100 0.37% -3.76% -2.06% -3.01% -2.08% -2.52%
PCT_GRAD 1.805 +2 -12.41% 24.88% 30.93% 27.62% 24.07% 24.86%
SHLDWID 2.1 (ft) +5 — — -5.54% -6.49% -7.89% -7.04%
SURF_WID 24 (ft) +5 -12.52% -58.65% -5.36% -6.49% 4.76% 0.04%
SPD_LIMT 50 (mi/h) +10 28.97% 38.56% -12.72% 25.64% -1.95% 12.99%
AADT 3757 +1000 — 41.37% — 10.24% 4.68% 16.42%

 
 

The magnitudes of the parameter estimates for the MVPLN specification are not 

directly comparable to those of univariate Poisson models (shown in Appendix C) 

or those of univariate Negative Binomial (UVNB) models (shown in Appendix C).  

The reason for this is that the MVPLN model accounts for correlations across 

crash counts (by severity), and is therefore somewhat different from the univariate 

models.  However, a comparison of parameter signs shows that sharper curves are 

associated with more fatal crashes in all three models (MVPLN, UVP, and 

UVNB).  The rest of control variables are not statistically significant in both the 

UVP and UVNB models; however, some of these control variables remain 

showing a statistically significant effect on fatal crash occurrence in the MVPLN 

model.  For example, speed limit is not statistically significant in the univariate 

models but is expected to increase fatal crash rates in the MVPLN model.  

Vertical curve length and segment grade show the same pattern of effects on 

disabling-injury crashes in all three models.  For example, long vertical curves are 

predicted to reduce disabling-injury crashes, but steeper segments are associated 
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more disabling-injury crashes.  The coefficients on remaining control variables 

are not in agreement across all three models. 

 

The MVPLN specification yields a superior crash prediction model because the 

crash counts by severity on the same segment of roadway are found to be 

correlated with one another shown as Table 12.  It also allows for overdispersion, 

as does the MVNB approach.  The correlations may be caused by omitted 

variables (such as pavement quality, sight distance, driveway density, and 

surrounding land use), which can influence crash occurrence at all levels of 

severity.  Essentially, higher crash rates of one type are associated with higher 

crash rates of other types.  Negative correlations are not likely in models of crash 

prediction since crash likelihood for all crash types is likely to rise due to the 

same deficiencies in roadway design, or other unobserved factors. 

 

Table 12  Correlation-Coefficients of iε
G  

 

 Fatal Disabling Non-Disabling Possible injury PDO 
Fatal 1 0.04207 0.01777 0.02191 0.02718 
Disabling 0.04207 1 0.05061 0.06100 0.4328 
Non-Disabling 0.01777 0.05061 1 0.08071 0.1304 
Possible injury 0.02191 0.06100 0.08071 1 0.3552 
PDO 0.02718 0.4328 0.1304 0.3552 1 

 

So far, our discussion has concentrated on the regression coefficients and the 

correlation structure.  In addition, the model can be used to obtain predictive 

distributions.  The probability functions of the model depend on the slope 

parameters sβ , the latent effects isε , and the control variables isx .  Theoretically, 

one can compute the (average) probability of crash counts (by severity) by 
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integrating ( ), ,is is i sy xπ ε β  for a given count isy and set of control variables over 

the joint posterior distribution of sβ  and iε .  In practice, this approach is simple 

to implement because it requires only the output from the MCMC simulation.  For 

each iteration’s set of m
sβ  and { }m

isε  from the MCMC simulation, one can 

compute ( )expm m m
is is s isxλ β ε′= + .  To predict marginal probabilities, one can 

simply average the associated probabilities: 

 

( )
1 1

1 1ˆ
s

n M
m

y p s is
i m

p y
n M

π λ
= =

= ∑∑ , 0,1, ,sy = …      (46) 

 

The prediction of joint probabilities (e.g., ( )iSiSiiii YyYyYyP === ,,, 2211 … ) is 

even more interesting and is generally difficult in such cases that proper modeling 

of the correlation structure is important.  However, in this Bayesian MCMC 

instance, predictions of joint probabilities for the MVPLN model are quite simple 

because, conditional on iε
G , the crash counts at each level of severity are 

independently Poisson distributed.  Thus, the joint probabilities can be obtained 

via direct multiplication of these average probabilities.  

 

In addition, out-of-sample predictions can be conducted.  In this case, iε
G  for the 

new data points must be drawn from a normal distribution with zero mean and 

variance-covariance Σ .  

 

( )m
is

m
sis

m
is x εβλ +′= exp  for Mburninburninm ,,2,1 "++=  
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Therefore, the prediction distribution can be readily obtained using the above 

equation. 

5.2.3 Example Application: A Cost-Benefit Analysis of Raised Speed 
Limits 
Results in Tables 6 through 10 offer several suggestions for design changes that 

transportation agencies may consider.  As indicated in Table 11, a speed limit 

increase of 10 mi/h (from 50 mi/h to 60 mi/h, on the “average” roadway section in 

the database) is predicted to increase fatal crash rates by 28.97% and disabling 

injury crash rates by 38.56% (according to the MVPLN model’s average 

parameter values).  Total crash rates are predicted to increase 12.99% given the 

same amount of increase in speed limits, everything else constant.  One might 

argue that travel time savings due to a raise in limits can offset the costs of 

increases in these and other crash outcomes.  This section considers this question, 

as an example application of the model results. 

 
Table C-8 in Appendix C presents estimates of injury costs.  Its first two rows 

summarize a National Highway Traffic Safety Administration (NHTSA) study by 

Blincoe et al. (2002).  The first row presents the “market costs” of injuries (based 

on medical treatment, emergency services, losses in market and household 

productivity, insurance administration, workplace cost, and legal costs).  The 

second row gives comprehensive costs, accounting for injured persons’ Quality-

Adjusted Life Years (QALYs) and accounting for pain and suffering by family 

members.  Since the HSIS database recognizes five injury levels (rather than 

NHTSA’s six), injury costs were calculated using a weighted average of the six 

MAIS (Maximum Abbreviated Injury Scale)23 costs.   

 

                                                 
23 MAIS denotes the highest (maximum) abbreviated injury severity score (AIS) that corresponds 
to a crash victim’s incurred injuries.  It can take on values from 0 (minor injury) to 5 (fatal injury).  
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Table C-9 in Appendix C presents driving speed increases that have been 

observed in a variety of published studies following speed limit increases24.  

Based on Table C-9, there is approximately a 3.1 mi/h increase in average, 

observed traffic speeds if speed limits are raised 10 mph.  Thus, the time savings 

per 100 million VMT due to a 10 mph increase in speed limits is estimated to be 

94,043 hours.  This time savings is equivalent to $1,414,420, assuming a 

$15.04/vehicle-hour value of travel time savings (USDOT, 1997, 2003).  A 10 

mph increase in speed limits is predicted to result in 0.68, 2.82, and 6.55 more 

fatal, disabling injury, and possible injury cases, respectively, and in 3.34 and 

1.51 fewer non-disabling injury and no injury cases (per 100 million VMT), 

respectively.  The equivalent average cost estimate for such shifts in crash types is 

estimated to be $9.02 million (in 2000 dollars, using the values of crash costs in 

the last row of Table C-825).  Therefore, the estimated cost-benefit ratio is 6.4:1.  

These results suggest that raising speed limits does not offer adequate time-

savings benefits.  Moreover, if actual travel speeds were to increase one-to-one 

with speed limits (i.e., by 10 mi/h, rather than 3.1 mi/h), this ratio would fall to 

2:1 – but remain greater than 1:1.  Thus, the results consistently suggest that a 

speed limit change (an increase from 50 to 60 mile/hour) on this set of two-lane 

roadways cannot be justified in terms of time savings benefits. 

 

Let’s consider another scenario.  Extending the average shoulder width from 2 to 

7 feet is expected to result in 10, 11, and 42 fewer non-disabling injury, possible 

injury and no injury cases on those 7,773 segments annually, respectively.  The 
                                                 
24 Most of the studies listed here (except that in NCHRP Project 17-23) examined speeds on rural 
interstate highways, following a change from 55 mi/h to 65 mi/h.  Kockelman and Bottom’s 
NCHRP study (2005) examined an urban and rural site, both experiencing a 5 mi/h increase. (The 
resulting average speed change was therefore doubled in that case, to estimate the change that 
would have occurred had the speed limit change been 10 mi/h.) 
25 Mrozek and Taylor (2002) investigated the value of a statistical life (VOSL) using a meta-
analysis.  Based on 33 previous studies, they recommended a VOSL of $1.5 to $2.5 million, which 
is considerably lower than NHTSA’s $3.37 million recommendation.   
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equivalent average benefit estimate for such shits in crash types is estimated to be 

$462,259 per year.  If the cost of one foot of shoulder addition (on both sides of 

the roadway) is assumed to be $20,000 per mile, then the total cost for treating 

those 7,773 segments is estimated to $10.18 million.  The treatment is a one-time 

investment.  Without any discounting of future crash benefits, it would pay for 

itself in 22 years.  With discounting, it would take longer for expected crash 

benefits to offset the costs.  Thus, adding shoulder width may not be justified in 

the long run.  

5.3 Goodness of Fit and Model Comparison 
Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) are 

used compare alternative models.  The AIC and BIC model selection criteria 

penalize models with additional parameters (Box, Jenkins, and Reinsel 1994).   

 

( )ˆ2 log , 2AIC L y X Kθ⎡ ⎤= − +⎣ ⎦  

( ) ( )ˆ2 log , logBIC L y X K nθ⎡ ⎤= − + ⋅⎣ ⎦  

 

where ˆ ,L y Xθ⎡ ⎤
⎣ ⎦  refers to the likelihood at convergence, K  is the number of 

parameters, and n  is the number of observations. 

 

Calculations of AIC and BIC are shown in Table C-15.  Models with lower AIC 

and BIC criteria are preferred.  According to Table C-15, the MVPLN model has 

both the lowest AIC and BIC measure, compared to the UVP and UVNB models. 

 

In addition, out-of-sample predictions from both univariate and multivariate 

models are compared one another.  Table C-16 suggests that the MVPLN model 

with MCMC draws predicts better than the univariate models (UVP and UVNB).  
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This is simply because MVPLN model addresses the issue of unobserved 

heterogeneity and allows for correlations among crash counts at all levels of 

severity.   

5.4 Conclusions 
This study developed a model that allows one to model crash outcomes by 

severity simultaneously, based on an MVPLN specification that can be estimated 

within a Bayesian framework using Metropolis-Hastings algorithms within a 

Gibbs sampler.  Crash counts for 7,773 homogeneous segments of rural two-lane 

roadways in the Puget Sound region of Washington State in 2002 were used to 

estimate the model.   

 

Thanks to MCMC simulation techniques, the marginal posterior distributions of 

all parameters of interest were obtained.  As expected, positive correlations in 

unobserved factors affecting count outcomes were found to exist across severity 

levels, resulting in statistically significant additive latent terms.  The non-zero 

diagonal elements suggest the existence of overdispersion in crash counts at all 

levels of severity.  The estimation results from the MVPLN approach offered 

more intuitive interpretations and better predictions than those from the univariate 

Poisson models.  As anticipated, the results lend themselves to several 

recommendations for highway safety treatments and design policies.  For 

example, wide lanes and shoulders are helpful for reducing the total crash 

frequencies, as are long horizontal and vertical curves.  Moreover, using a cost-

benefit approach and assumptions about travel speed changes, model results 

suggest that time savings from raising speed limits 10 mi/h (from 50 to 60 mi/h) 

may not be worth the added crash cost. 
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5.5 Summary 
This chapter illustrates the merits of an MVPLN model of count data for 

investigations of the correlated crash counts.  The MVPLN specification used 

here allows for a very general correlation structure for each pair of crash counts at 

different levels of severity for a particular roadway segment.  The empirical 

results from Metropolis-Hastings algorithms within a Gibbs sampler are 

summarized.  Finally, cost-benefit analyses of raised speed limits and shoulder 

widening are performed, based on the results.  These suggest that speed limit 

increases along such roads probably is not worth the time savings, and shoulder 

widening costs may not be worth the crash savings benefits obtained. 
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CHAPTER 6  CONCLUSIONS AND FURTHER WORK 

 

6.1 Summary 
Roadway safety is a major concern for the general public and public agencies.  

Roadway crashes claim many lives and cause substantial economic losses each 

year.  The situation is of particular interest on rural two-lane roadways, which 

experience significantly higher fatality rates than urban roads.  There have been 

numerous efforts devoted to investigating crash occurrence as related to roadway 

design features, environmental conditions and traffic levels.  However, most such 

research has relied on univariate count models; that is, traffic crash counts at 

different levels of severity have been estimated separately.  The widely used 

univariate count data models ignore the interdependence of crash counts at 

different levels of severity for a specific segment of roadway. 

 

This research simultaneously models correlated crash counts at different levels of 

severity using multivariate Poisson-lognormal (MVPLN) regression models.  The 

MVPLN specification allows for a more general correlation structure as well as 

overdispersion.  With recent advancements in crash modeling and Bayesian 

statistics, the parameter estimation is done within the Bayesian paradigm, using a 

Gibbs Sampler and Metropolis-Hastings algorithms. 

 

Crash counts for over 7,773 homogeneous segments of rural two-lane 

Washington State roadways in the Puget Sound region in 2002 were used to 

estimate the model.  Thanks to MCMC simulation techniques, the marginal 

posterior distributions of all parameters of interest were obtained, and estimation 

107



 

 

results from the MVPLN approach offered better predictions than those from 

univariate Poisson and negative binomial models.   

 

As anticipated, the results lend themselves to several recommendations for 

highway safety treatments and design policies.  For example, adding shoulder 

width is predicted to be highly cost-effective, in terms of the crash cost reductions 

over the long run. 

 

The MVPLN model’s estimation was conducted using MCMC simulation 

techniques.  Could an MLE estimation be performed for the same specification?  

Theoretically, it is feasible.  For example, one can use the technique of maximum 

simulated likelihood estimator (MSLE) to estimate the parameters in the MVPLN 

specification.  The intricate part is integrating Equation (34) with respect to iε
G .  

According to Greene (2003), the likelihood for segment i  can be written as: 

 

( ),i i iL π= Σy λ
GG  

       

( ) ( )

( )
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The multivariate normal latent effects ( ) ( ) ( ) ( )( )1 2, ,m m m m
i i i iSε ε ε=εG …  can be sampled 

through ( ) ( )m m
i iL=ε ηGG , where ( )m

iη
G  is a vector of S  independent draws from the 

standard normal distribution and L  is the lower triangular matrix of Σ ’s 

Cholesky decomposition.  Therefore, the log-likelihood of the data sample can be 

written as follows: 

 

( )
1 1 1

1ln ,
n M S

data p is is
i m s

L y L
M

π ξ
= = =

= ∑ ∑∏       (48) 

 

Then, a maximization procedure can be applied to maximize the log-likelihood 

(Equation (48)) with respect to β  and L .   

 

However, when the dimension of the (intractable) likelihood’s integral is large, 

numerical approximation methods are generally not recommended.  For example, 

Evans and Swartz (1995) conclude that numerical techniques can be very 

inefficient for integral dimensions exceeding 4.  Moreover, they also point out 

that error estimates for numerical approximation uncertainties are typically hard 

to come by.  For these reasons, Monte Carlo methods are an attractive alternative. 

 

In addition to estimation and application benefits, Monte Carlo methods allow 

one to make use of Bayes’ theorem and incorporate one’s prior beliefs and 

knowledge into the modeling process.  Of course, some limitations remain in the 

current specification. 
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6.2 Limitations 
The current MVPLN specification assumes no spatial correlation across roadway 

segments.  Various unobserved variables may play very similar roles in 

determining crash frequency on adjacent roadway segments.  The assumption of 

no spatial correlation is actually too strong in this case.  These uncontrolled (or 

simply unobserved) factors may also render significant spatial correlations over 

time. (See, e.g. Meliker et al. 2004; Miaou, Song, and Mallick 2003; Pawlovich, 

Souleyrette, and Strauss 2000.)  

 

The framework of this research is established in its parametric assumptions.  

Parametric methods can be implemented using assumptions of underlying 

distributions and relationships.  Misspecification of the distribution may lead to 

serious errors in the subsequent data analysis.  Semi-parametric and 

nonparametric regression analysis relaxes these assumptions26 (see, e.g., Gurmu, 

Rilstone, and Stern 1999; Wooldridge 1999; Alfò and Trovato 2004).  For 

example, Gurmu, Rilstone and Stern (1999) developed a semiparametric 

estimation approach to investigate overdispersed count data using series 

expansion of unknown density of the unobserved heterogeneity.  In their work, 

the distribution of the unobserved heterogeneity was approximated by the 

Laguerre expansion. 

 

The cost of relaxing such assumption requires more computation and, in some 

instances, a more difficult-to-understand result.  The benefits of nonparametric 

methods include a potentially more accurate estimate of the regression function 

                                                 
26 Damien (2005) suggests that nonparametric distributions actually have an infinite-dimensional 
parameter space.  That is, they have too many parameters to be described in the way that 
parametric distributions are. 
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and often “exact” probability statements, regardless of the shape of the population 

distribution from which the random sample was drawn (Damien, 2005).   

 

The MVPLN model estimated here incorporates the safety effects of several 

roadway design and traffic features of interest to traffic and transportation 

engineers.  However, several features of interest that are not available have been 

omitted from the model, including, for example, driveway density and sight 

distance.  In addition, the model generally treats the effects of individual 

geometric design features as independent of one another and ignores potential 

interactions among them.  It is likely that such interactions exist (such as 

combinations of horizontal and vertical curves on the same segment), and they 

should be accounted for in the crash prediction model in the future endeavor.   

6.3 Extensions 
Based on the above limitations and potential applications of the model, several 

recommendations can be made.  These include: 

• Modelers should seek to relax the assumption that the latent effects iε
G  are 

independent of the explanatory variables by letting the mean of iε
G  be a 

function of one or more of the available explanatory variables; 

• Use a multivariate t  distribution, instead of a multivariate normal, as the 

parametric distribution of iε
G  in order to allow for thicker tails; 

• Relax the parametric assumption of iε
G  using nonparametric methods; 

• Account for the spatial and temporal correlations in crash data obtained over 

several years, across a connected network; 

• Calibrate the model using crashes occurring on the entire Washington State 

highway system; 
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• Improve data quality and accessibility (for example, driver-based crash data 

sets can be used to investigate the safety effects of driver attributes and 

driving behavior);  

• Apply the calibrated model to identify critical high-crash sites for design 

enhancements/treatments; 

• Develop a software package to integrate model calibration, crash prediction, 

and treatment evaluation; 

• Extend the model to intersection-related crash predictions. 

 

Several model extensions were discussed in Section 6.2.  Calibrating the models 

using region-wide data is a prerequisite for agencies seeking to identify potential 

segments for treatment.  The crash prediction models developed in this research 

target roadway segments.  In order to obtain a general estimate of an area’s or 

region’s crash frequency, intersection- (or driveway-) related crashes should be 

considered as well.  Developing crash prediction models for intersections 

involves adjusting the assumptions and collecting intersection-related data, such 

as intersection geometric features, types of traffic control, and designation of 

travel lanes.  

 

Estimating the models requires a lot of coding work and may not be convenient 

for practitioners and engineers.  To make estimating and updating models easier, 

the development of a software package oriented towards consolidating all 

possible models into a single platform is needed.   

 

Data improvement and accessibility efforts would be helpful to further application 

of the Bayesian models.  Improved roadway inventory data, both segment-based 
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and intersection-based, are valuable for the enhanced performance of crash 

prediction models (e.g., AADT improvements).   

6.4 Policy Implications 
The crash prediction model is intended to help traffic and transportation engineers, 

law enforcement agencies and policy makers make unbiased estimates of the 

expected safety performance of various roadway designs.  Crash prediction helps 

users evaluate one or more proposed design alternatives by comparing the 

predictions of safety performance. 

 

The MVPLN crash model can better predict crash frequencies than its univariate 

counterparts by recognizing correlations among crash counts at different levels of 

severity on an individual roadway segment.  The unbiased prediction of crash 

counts at different levels allows highway agencies to calculate the rankings of 

safety performance of individual sites more precisely and thus more judicially 

prioritize safety improvement projects.  For example, sharper curves are predicted 

to result in higher crash rates at all levels of severity.  The expected crash 

frequencies are calculated using the crash prediction model for all sites with 

horizontal curves.  Roadway improvement alternatives and the costs associated 

with those alternatives are provided based on site-specific attributes.  An 

economic benefit ranking of all sites is estimated by comparing their benefit-cost 

(b/c) ratios (i.e., the benefit refers to the crash reduction and the cost is the 

expenditure associated with the treatment, [e.g., elimination of tight horizontal 

curves]).  Higher b/c ratios receive higher rankings and thus higher priority is 

granted for planning safety improvement programs. 
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6.5 Concluding Remarks 
Traffic crashes remain a major health problem for the U.S. as well as for other 

countries.  Roadway design and speed limit policies are important determinants of 

crash outcomes.  The MVPLN specification yields a superior crash prediction 

model because crash counts by severity on the same segment of roadway are 

found to be correlated.  The correlations may be caused by omitted variables such 

as sight distance, pavement quality, land use type, and driveway density, which 

can influence crash occurrence at all levels of severity.  Moreover, the correlation 

structure is found to be heterogeneous: more PDO crashes generally mean more 

crashes of other types, ceteris paribus.  PDO crashes are found to be most closely 

correlated with disabling-injury and possible-injury crashes.  Negative 

correlations are not likely to be the case in modeling crash prediction; if one type 

of crashes exhibits a higher probability of occurrence, the other types of crashes 

are more likely to occur due to the same deficiencies in roadway design or other 

crash-causing factors.  In addition, the MVPLN model readily allows one to 

predict the joint probabilities.  Bayesian methods offers a valuable framework for 

tackling this complicated, yet flexible, model of behavior, illuminating 

relationships that have not been rigorously quantified previously. 
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APPENDIX A  NEWTON-RAPHSON METHOD 

 

The Newton-Raphson method (Mathworld, 2006) can be used to find local 

maxima (or minima) of a twice-differentiable function ( )f x  with respect to x , 

where x  can be a scalar or a vector.  Its schematic iterative steps are as follows: 

 

( )max
x

f x  

1. Set ( )0
0x x=  and 0δ  (a vector of thresholds (convergence criteria)) 

2. ( ) ( ) ( )( ) ( )( )1
1n n n nx x Hf x f x

−
+ ⎡ ⎤= − ∇⎣ ⎦  

3. 1n n= +  

4. ( ) ( )1n nx xδ += −  

Repeat steps 2 through 4, until 0δ δ< . 

 

The geometric interpretation of this method is that at each iteration one 

approximates ( )f x  via a quadratic function around ( )nx , and then takes an 

appropriate step towards the maximum (or minimum) of that function. 
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APPENDIX B  TSIONAS’ MULTIVARIATE POISSON 
REGRESSION MODELS 

 

The following describes Tsionas’ (2001) multivariate model of Poisson counts.  

For ease of presentation, a trivariate MVP mathematical formulation is shown, to 

analyze counts of crash-involved persons across three levels of injury severity.  

Extending the specification to accommodate additional levels of severity (e.g., 5 

levels) is conceptually and mathematically straightforward.  Suppose we have a 

sample { }nii ,,2,1; …=y  from a trivariate Poisson distribution, where 

[ ]1 2 3, ,i i i iy y y ′=y  denotes the number of crash-involved persons on the ith 

roadway segment in the sample experiencing no injury ( 1iy ), injury ( 2iy ), and 

fatal injury ( 3iy ), over a given time period (such as a year).  According to Karlis 

(2003), a rather general trivariate Poisson model can be specified as follows:  

 

ii Azy =          (B-1) 

 

where [ ]321 AAAA = , 
⎥
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⎥
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⎢
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3A . 

 

Substituting matrix A  into Equation (B-1), one arrives at the following: 

 

1 1 12 13 123

2 2 12 23 123

3 3 13 23 123

i i i i i

i i i i i

i i i i i

y z z z z
y z z z z
y z z z z

= + + +
= + + +
= + + +

       (B-2) 
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where all ikz ’s are independently Poisson distributed random variables with 

parameters ikθ , { }123,23,13,312,2,1∈k .  Parameters ikjθ  are actually covariance 

parameters between ikY  and ijY , and ikjlθ  is a common, 3-way covariance 

parameter among ikY , ijY , and ilY . 

 

For ease of implementation, the following assumption is made for the trivariate 

Poisson distribution, as employed by Tsionas (2001) for his models of forest 

damage: 

 

1 1

2 2

3 3

i i i

i i i

i i i

y z
y z
y z

δ
δ
δ

= +
= +
= +

   123

12 13 23 0
i i

i i i

z
z z z
δ =⎧
⎨ = = =⎩

   (B-3) 

 

where 1 2 3, , , i i i iz z z δ  have independent Poisson distributions with parameters 

1 2 3, , ,i i iθ θ θ λ , respectively for each ni ,,2,1 …= .   

 

Like the univariate Poisson regression, the MVP regression model is constructed 

so that the parameters depend on explanatory variables isx ( )1, 2,3s = .   

 

( )
( )
( )

1

2

3

1 1 1

2 2 2

3 3 3

exp
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i i

i i

E
E
E
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′=
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x γ
x γ
x γ

        (B-4) 
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where isx  and sγ  are 1sp ×  column vectors.  sEα  denotes an exposure measure 

(such as VMT), and the exponential transformation ensures non-negativity of 

crash rates.  Equation (B-4) can be further expressed as follows: 

 

( )( )
( )( )
( )( )

1 1 1 1

2 2 2 2

3 3 3 3

exp ln

exp ln

exp ln

i i

i i

i i

E

E

E

θ α

θ α

θ α

′= +

′= +

′= +

x γ

x γ

x γ

 ⇒  
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( )
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exp

i i

i i

i i
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where 
( )
( )
( )

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

ln
ln
ln

i i

i i

i i

E
E
E

α
α
α

′ ′= +
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x β x γ
x β x γ
x β x γ

. 

 

In this way the set of regressors (and their number) may differ across isθ ’s.  It 

also is assumed that iδ  is independent of the isx ’s.  

 

For application of computational Bayesian models, the MVP regression model 

requires a distributional assumption for iδ , as well as knowledge of each 

observational unit’s contribution to the likelihood, , ,i i iδy β x , where 

( )′= 321 ,, ββββ and ( )1 2 3, ,i i i i
′′ ′ ′=x x x x .  Here, the iδ  is assumed to come from a 

univariate Poisson distribution, with parameterλ .  According to Equation (B-3) 

the likelihood contribution by the ith segment is a product of univariate Poisson 

distributions with rate parameters 1 2, i iθ λ θ λ+ + , and 3iθ λ+ .  Thus, the joint 

probability mass function of , ,i iδy β x  can be expressed as follows: 
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 (B-5) 

 

which is simply the product of the individual univariate probability mass 

functions for each 1 2,i iy y , and 3iy .  Thus the likelihood function is simply 

{ }( ) ( )∏
=

==
n

i
iii pniL

1

,,,,,2,1,, xβyyxβ δδ … .  According to Bayes’ theorem, the 

posterior distribution is proportional to the product of the likelihood function and 

the joint prior of all parameters, so it must be given by 

( ) ( ) ( )
1

, , ,
n

i i i
i

p p pδ δ λ λ
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∏ y β x β .  Therefore, the kernel posterior distribution 

of the model is obtained as follows: 

 

( ) ( )
( )( )( ) ( ) ( )

3

1 1 1

exp
, , , exp ,

!exp exp !

is i i
yn n

is s

i s i iis s is i

p n p
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δ δλλ λ λ
δδ

−

= = =

′
∝ −

′ −∏∏ ∏
x β

β δ x y β
x β

(B-6) 

 

where ( )1 2 3min , ,i i i iy y yδ ≤ , ni ,,2,1 …= .  This constraint is caused by the fact 

that the variables following Poisson distributions take on only nonnegative 

integers.  Simply put, it is assumed that β  and λ  are independent of x .  The 

parameters ( ),λβ  can be assumed to have the following flat (uninformative) prior. 

 

( ) 1,p λ λ−∝β          (B-7) 
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Tsionas (2001) and Ma and Kockelman (2006) have calibrated such models using 

MCMC simulation.  This MVP specification only allows for positive correlation 

between each pair of counts.  Specification with a much more general correlation 

structure was pursued here instead, in Chapter 4.
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APPENDIX C  ADDITIONAL TABLES AND FIGURES 

 
Table C-1  PDO Crash Frequency UVP Model for the Puget Sound Region in 

2002 
 

Variable definition Variable Coef. Std. Err. P-value 
Constant CONST -18.44 1.356 0
Horizontal curve length (feet) CURV_LGT -8.65E-05 9.40E-05 0.358 
Degree of curvature (°/100feet) DEG_CURV 2.96E-02 8.28E-03 0
Vertical curve length (feet) VCUR_LGT -3.85E-04 1.42E-04 0.007
Vertical grade (%) PCT_GRAD -0.02892 0.02925 0.323 
Average shoulder width (feet) SHLDWID -0.02113 0.03672 0.565 
Surface width (feet) SURF_WID 0.04612 0.007516 0
Posted speed limit (miles/hour) SPD_LIMT 0.1596 0.06044 0.008
Posted speed limit squared 
(miles2/hour2) SLSQ -1.83E-03 6.87E-04 0.008

Average annual daily traffic (AADT) AADT 2.37E-05 1.31E-05 0.071 
Indicator for minor arterial: 1=yes, 
0=otherwise MINARTRL -0.1142 0.1127 0.311 

Indicator for collector: 1=yes, 
0=otherwise COLLECTOR 0.05141 0.1253 0.682 

Indicator for rolling terrain: 1=yes, 
0=otherwise ROLLING 0.04746 0.09782 0.628 

Indicator for mountainous terrain: 
1=yes, 0=otherwise MOUNTAIN 0.4308 0.3643 0.237 

Number of observations 7,773
Log-Likelihood at convergence -1,764.2
Log-Likelihood at constant -1,810.8
LRI 0.0257

Note: Smaller, italicized font is used for parameters that are not statistically significant at the 5 
percent level. 
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Table C-2  Possible Injury Crash Frequency UVP Model for the Puget 
Sound Region in 2002 

 
Variable definition Variable Coef. Std. Err. P-value 

Constant CONS -21.09 2.371 0
Horizontal curve length (feet) CURV_LGT -6.31E-05 1.69E-04 0.709 
Degree of curvature (°/100feet) DEG_CURV 0.02726 0.01610 0.09 
Vertical curve length (feet) VCUR_LGT -1.35E-03 2.86E-04 0
Vertical grade (%) PCT_GRAD 0.1484 0.04756 0.002
Average shoulder width (feet) SHLDWID 0.04942 0.06133 0.42 
Surface width (feet) SURF_WID 0.07502 0.01007 0
Posted speed limit (miles/hour) SPD_LIMT 0.1302 0.1066 0.222 
Posted speed limit squared 
(miles2/hour2) SLSQ -1.12E-03 1.22E-03 0.356 

Average annual daily traffic (AADT) AADT 7.65E-05 2.01E-05 0
Indicator for minor arterial: 1=yes, 
0=otherwise MINARTRL 0.2269 0.1896 0.231 

Indicator for collector: 1=yes, 
0=otherwise COLLECTOR 0.3033 0.2230 0.174 

Indicator for rolling terrain: 1=yes, 
0=otherwise ROLLING -0.3461 0.1761 0.049

Indicator for mountainous terrain: 
1=yes, 0=otherwise MOUNTAIN -0.9991 1.042 0.338 

Number of observations 7,773
Log-Likelihood at convergence -750.1
Log-Likelihood at constant -811.1
LRI 0.0751

Note: Smaller, italicized font is used for parameters that are not statistically significant at the 5 
percent level. 
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Table C-3  Non-disabling Injury Crash Frequency UVP Model for the Puget 
Sound Region in 2002 

 
Variable definition Variable Coef. Std. Err. P-value 

Constant CONS -14.95 2.065276 0
Horizontal curve length (feet) CURV_LGT -3.89E-04 1.96E-04 0.047
Degree of curvature (°/100feet) DEG_CURV 0.03524 0.01120 0.002
Vertical curve length (feet) VCUR_LGT -4.36E-04 2.40E-04 0.069 
Vertical grade (%) PCT_GRAD 0.06332 0.04574 0.166 
Average shoulder width (feet) SHLDWID 7.20E-04 0.06283 0.991 
Surface width (feet) SURF_WID 0.005933 0.01734 0.732 
Posted speed limit (miles/hour) SPD_LIMT -6.26E-03 0.09347 0.947 
Posted speed limit squared 
(miles2/hour2) SLSQ -1.87E-05 1.08E-03 0.986 

Average annual daily traffic (AADT) AADT 5.24E-06 2.30E-05 0.82 
Indicator for minor arterial: 1=yes, 
0=otherwise MINARTRL 0.2020 0.1867 0.279 

Indicator for collector: 1=yes, 
0=otherwise COLLECTOR 0.2334 0.2190 0.287 

Indicator for rolling terrain: 1=yes, 
0=otherwise ROLLING -0.05135 0.1670 0.759 

Indicator for mountainous terrain: 
1=yes, 0=otherwise MOUNTAIN -1.073 1.036 0.3 

Number of observations 7,773
Log-Likelihood at convergence -780.9
Log-Likelihood at constant -791.9
LRI 0.0139

Note: Smaller, italicized font is used for parameters that are not statistically significant at the 5 
percent level. 
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Table C-4  Disabling Injury Crash Frequency UVP Model for the Puget 
Sound Region in 2002 

 
Variable definition Variable Coef. Std. Err. P-value 

Constant CONS -17.94 5.912 0.002
Horizontal curve length (feet) CURV_LGT -2.72E-04 3.42E-04 0.426 
Degree of curvature (°/100feet) DEG_CURV 0.02508 0.03821 0.512 
Vertical curve length (feet) VCUR_LGT -9.78E-04 4.95E-04 0.048
Vertical grade (%) PCT_GRAD 0.1472 0.08333 0.077 
Average shoulder width (feet) SHLDWID -0.2000 0.1306 0.126 
Surface width (feet) SURF_WID -0.05071 0.06149 0.41 
Posted speed limit (miles/hour) SPD_LIMT 0.04997 0.2493 0.841 
Posted speed limit squared 
(miles2/hour2) SLSQ 1.52E-04 2.72E-03 0.956 

Average annual daily traffic (AADT) AADT 1.88E-05 4.60E-05 0.683 
Indicator for minor arterial: 1=yes, 
0=otherwise MINARTRL 0.2597 0.3605 0.471 

Indicator for collector: 1=yes, 
0=otherwise COLLECTOR 0.4217 0.4204 0.316 

Indicator for rolling terrain: 1=yes, 
0=otherwise ROLLING 0.01805 0.3230 0.955 

Indicator for mountainous terrain: 
1=yes, 0=otherwise MOUNTAIN -12.27 483.6 0.98 

Number of observations 7,773
Log-Likelihood at convergence -270.6
Log-Likelihood at constant -279.7
LRI 0.0328

Note: Smaller, italicized font is used for parameters that are not statistically significant at the 5 
percent level. 
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Table C-5  Fatal Crash Frequency UVP Model for the Puget Sound Region 
in 2002 

 
Variable definition Variable Coef. Std. Err. P-value 

Constant CONS -21.87 12.76 0.087
Horizontal curve length (feet) CURV_LGT -4.34E-04 6.17E-04 0.482 
Degree of curvature (°/100feet) DEG_CURV 0.06714 0.02076 0.001
Vertical curve length (feet) VCUR_LGT -3.21E-04 8.02E-04 0.689 
Vertical grade (%) PCT_GRAD 0.03037 0.1693 0.858 
Average shoulder width (feet) SHLDWID -0.1415 0.2255 0.53 
Surface width (feet) SURF_WID -0.05304 0.1176 0.652 
Posted speed limit (miles/hour) SPD_LIMT 0.1879 0.5281 0.722 
Posted speed limit squared 
(miles2/hour2) SLSQ -1.27E-03 5.66E-03 0.822 

Average annual daily traffic (AADT) AADT -1.4E-05 8.57E-05 0.869 
Indicator for minor arterial: 1=yes, 
0=otherwise MINARTRL 0.07047 0.6246 0.91 

Indicator for collector: 1=yes, 
0=otherwise COLLECTOR 0.1256 0.7750 0.871 

Indicator for rolling terrain: 1=yes, 
0=otherwise ROLLING -0.6376 0.5621 0.257 

Indicator for mountainous terrain: 
1=yes, 0=otherwise MOUNTAIN -13.23 782.81 0.987 

Number of observations 7,773
Log-Likelihood at convergence -100.6
Log-Likelihood at constant -105.0
LRI 0.0417

Note: Smaller, italicized font is used for parameters that are not statistically significant at the 5 
percent level. 
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Table C-6  Estimates of MVPLN Variance-Covariance Matrix Terms ( slσ ) 
 

Variable Pairs Mean Std. Err. The 95% (2.5-97.5%) 
HDR 

Fatal Fatal 1.76E-03 3.10E-05 1.71E-03 1.81E-03
Fatal Disabling 1.42E-04 7.17E-07 1.41E-04 1.43E-04
Fatal Non-disabling 1.15E-04 2.03E-05 8.13E-05 1.48E-04
Fatal Possible injury 1.85E-04 2.72E-05 1.40E-04 2.30E-04
Fatal PDO 4.02E-04 5.16E-05 3.19E-04 4.89E-04
Disabling Disabling 6.48E-03 1.63E-03 3.79E-03 9.16E-03
Disabling Non-disabling 6.27E-04 1.06E-04 4.53E-04 8.02E-04
Disabling Possible injury 9.88E-04 2.53E-04 5.70E-04 1.40E-03
Disabling PDO 1.82E-03 7.88E-06 1.81E-03 1.83E-03
Non-disabling Non-disabling 0.02368 6.36E-03 0.01336 0.03428
Non-disabling Possible injury 2.50E-03 5.65E-04 1.58E-03 3.43E-03
Non-disabling PDO 7.08E-03 8.17E-04 5.74E-03 8.42E-03
Possible injury Possible injury 0.04051 1.72E-03 0.03767 0.04336
Possible injury PDO 0.025233 6.88E-04 0.02408 0.02636
PDO PDO 0.124587 0.02205 0.08804 0.1608
Number of observations 7,773
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Table C-7  Estimates of Variance-Covariance Matrix of iε
G  

 

 Fatal Disabling Non-Disabling 
Possible 
injury PDO 

Fatal 0.001760 0.0001421 0.0001147 0.0001850 0.0004025 
Disabling 0.0001421 0.006478 0.0006268 0.0009882 0.001821 
Non-Disabling 0.0001147 0.0006268 0.02368 0.002500 0.007084 
possible injury 0.0001850 0.0009882 0.0025 0.04051 0.02523 
PDO 0.0004025 0.001821 0.007084 0.02523 0.1246 
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Table C-9  Speed Increases Following a 10 mi/h Speed Limit Increase (from 
55 - 65 mi/h) 

 
Studies Change in Observed Speeds (mi/h) 

Brown et al. (1990) 2.4 
Freedman and Esterlitz (1990) 2.8 
Mace and Heckard (1991) 3.5 
NHTSA (1989) 1.9 
NHTSA (1992) 3.4 
Parker (1997) 0.2-2.3 
Pfefer, Stenzel, and Lee (1991) 4-5 
Kockelman and Bottom (2006)  3.4-4.8 
TRB (1998) 4 

Average 3.1 
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Table C-10  PDO Crash Frequency UVNB Model for the Puget Sound 
Region in 2002 

Initial Model Final Model 
Variables 

Coef. P-value Coef. P-value 
Constant -17.09 0 -17.78 0 
Horizontal curve length (feet) -9.23E-05 0.393   
Degree of curvature (°/100feet) 0.03063 0.004 0.02589 0.012 
Vertical curve length (feet) -3.47E-04 0.031 -4.12E-04 0.005 
Vertical grade (%) -0.02468 0.453   
Average shoulder width (feet) -0.02390 0.575   
Surface width (feet) 0.03471 0 0.04223 0 
Posted speed limit (miles/hour) 0.1241 0.068 0.1517 0.02 
Posted speed limit squared 
(miles2/hour2) -1.53E-03 0.050 -1.86E-03 0.012 

Average annual daily traffic (AADT) 2.69E-05 0.103   
Indicator for minor arterial: 1=yes, 
0=otherwise -0.1981 0.132   

Indicator for collector: 1=yes, 
0=otherwise 8.27E-03 0.955   

Indicator for rolling terrain: 1=yes, 
0=otherwise -0.01940 0.866   

Indicator for mountainous terrain: 1=yes, 
0=otherwise 0.3896 0.321   

Number of observations 7,773 7,773 
Log-Likelihood at convergence -1713.7 -1717.3 
Log-Likelihood at constant -1748.3 -1748.3 
LRI 0.0198 0.0177 
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Table C-11  Possible Injury Crash Frequency UVNB Model for the Puget 
Sound Region in 2002 

 
Initial Model Final Model 

Variables 
Coef. P-value Coef. P-value 

Constant -16.48 0 -16.15 0 
Horizontal curve length (feet) -2.80E-05 0.885   
Degree of curvature (°/100feet) 0.01928 0.349   
Vertical curve length (feet) -1.45E-03 0 -1.31E-03 0 
Vertical grade (%) 0.1526 0.007 0.1412 0.008 
Average shoulder width (feet) 0.06819 0.365   
Surface width (feet) 0.04487 0.002 0.03602 0.004 
Posted speed limit (miles/hour) -0.04121 0.742   
Posted speed limit squared 
(miles2/hour2) 6.87E-04 0.631   

Average annual daily traffic (AADT) 9.19E-05 0.002 8.10E-05 0.002 
Indicator for minor arterial: 1=yes, 
0=otherwise 0.2907 0.209   

Indicator for collector: 1=yes, 
0=otherwise 4.86E-01 0.066   

Indicator for rolling terrain: 1=yes, 
0=otherwise -0.3346 0.108 -0.3582 0.066 

Indicator for mountainous terrain: 1=yes, 
0=otherwise -0.8846 0.411   

Number of observations 7,773 7,773 
Log-Likelihood at convergence -719.9 -723.8 
Log-Likelihood at constant -754.1 -754.1 
LRI 0.0453 0.0402 
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Table C-12  Non-disabling Injury Crash Frequency UVNB Model for the 
Puget Sound Region in 2002 

 
Initial Model Final Model 

Variables 
Coef. P-value Coef. P-value 

Constant -16.48 0 -16.15 0 
Horizontal curve length (feet) -2.80E-05 0.885   
Degree of curvature (°/100feet) 0.01928 0.349   
Vertical curve length (feet) -1.45E-03 0 -1.31E-03 0 
Vertical grade (%) 0.1526 0.007 0.1412 0.008 
Average shoulder width (feet) 0.06819 0.365   
Surface width (feet) 0.04487 0.002 0.03602 0.004 
Posted speed limit (miles/hour) -0.04121 0.742   
Posted speed limit squared 
(miles2/hour2) 6.87E-04 0.631   

Average annual daily traffic (AADT) 9.19E-05 0.002 8.10E-05 0.002 
Indicator for minor arterial: 1=yes, 
0=otherwise 0.2907 0.209   

Indicator for collector: 1=yes, 
0=otherwise 4.86E-01 0.066   

Indicator for rolling terrain: 1=yes, 
0=otherwise -0.3346 0.108 -0.3582 0.066 

Indicator for mountainous terrain: 1=yes, 
0=otherwise -0.8846 0.411   

Number of observations 7,773 7,773 
Log-Likelihood at convergence -779.1 -780.4 
Log-Likelihood at constant -789.5 -789.5 
LRI 0.0132 0.0115 
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Table C-13  Disabling Injury Crash Frequency UVNB Model for the Puget 
Sound Region in 2002 

 
Initial Model Final Model 

Variables 
Coef. P-value Coef. P-value 

Constant -17.94 0.002 -18.80 0 
Horizontal curve length (feet) -2.72E-04 0.426   
Degree of curvature (°/100feet) 0.02508 0.512   
Vertical curve length (feet) -9.78E-04 0.048 -9.68E-04 0.045 
Vertical grade (%) 0.1472 0.077 0.1379 0.072 
Average shoulder width (feet) -0.2000 0.126 -0.2108 0.081 
Surface width (feet) -0.05068 0.410   
Posted speed limit (miles/hour) 0.04984 0.842 0.05652 0.030 
Posted speed limit squared 
(miles2/hour2) 1.53E-04 0.955   

Average annual daily traffic (AADT) 1.88E-05 0.683   
Indicator for minor arterial: 1=yes, 
0=otherwise 0.2598 0.471   

Indicator for collector: 1=yes, 
0=otherwise 4.22E-01 0.316   

Indicator for rolling terrain: 1=yes, 
0=otherwise 0.01808 0.955   

Indicator for mountainous terrain: 1=yes, 
0=otherwise -15.98 0.996   

Number of observations 7,773 7,773 
Log-Likelihood at convergence -270.6 -273.1 
Log-Likelihood at constant -279.7 -279.7 
LRI 0.0328 0.0238 
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Table C-14  Fatal Crash Frequency UVNB Model for the Puget Sound 
Region in 2002 

 
Initial Model Final Model 

Variables 
Coef. P-value Coef. P-value 

Constant -21.86 0.087 -17.67 0 
Horizontal curve length (feet) -4.34E-04 0.482   
Degree of curvature (°/100feet) 0.06714 0.001 0.05459 0.004 
Vertical curve length (feet) -3.21E-04 0.689   
Vertical grade (%) 0.03037 0.858   
Average shoulder width (feet) -0.1415 0.530   
Surface width (feet) -0.05304 0.652   
Posted speed limit (miles/hour) 0.1879 0.722   
Posted speed limit squared 
(miles2/hour2) -1.27E-03 0.822   

Average annual daily traffic (AADT) -1.42E-05 0.869   
Indicator for minor arterial: 1=yes, 
0=otherwise 0.07045 0.910   

Indicator for collector: 1=yes, 
0=otherwise 0.1256 0.871   

Indicator for rolling terrain: 1=yes, 
0=otherwise -0.6375 0.257   

Indicator for mountainous terrain: 1=yes, 
0=otherwise -18.56 0.999   

Number of observations 7,773 7,773 
Log-Likelihood at convergence -100.6 -103.4 
Log-Likelihood at constant -105.0 -105.0 
LRI 0.0417 0.0143 
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Table C-16  Comparisons of Crash Predictions from Univariate and 
Multivariate Models 

 

 PDO Possible Non-
disabling Disabling Fatal 

Observed 981 331 287 83 23 
Prediction 1050 432.6 384.3 120.8 30.44 
Difference 69.24 101.6 97.32 37.77 7.444 UVP 
Percentage Difference 7.06% 30.70% 33.91% 45.51% 32.37% 
Prediction 1039 396.5 345.4 104.8 29.91 
Difference 58 65.5 58.4 21.8 6.91 UVNB 
Percentage Difference 5.91% 19.79% 20.35% 26.27% 30.04% 
Prediction 1013 358.2 310.1 96.8 27.13 
Difference 32 27.2 23.1 13.8 4.13 MVPLN129 
Percentage Difference 3.26% 8.22% 8.05% 16.63% 17.96% 
Prediction 1005 348.3 306.4 97.17 26.52 
Difference 24 17.3 19.4 14.17 3.52 MVPLN230 
Percentage Difference 2.45% 5.23% 6.76% 17.07% 15.30% 

Note: A total of 13,050 rural two-lane road segments in the Puget Sound region were used for 
model prediction. 

 

                                                 
29 The MVPLN1 prediction is conducted as follows: (1) sampling 1,000 times of severity-specific 
parameters from a multivariate normal distribution with a mean equal to the posterior mean and 
correlation correlations shown in Tables C-17 through C-21; (2) sampling 1,000 times observed 
heterogeneity from a multivariate normal with a mean equal to zero and variance-covariance 
matrix shown in Table C-7; (3) calculating the expected crash counts for each segment; (4) repeat 
(1) through (3) for all segments in the sample. 
30 The MVPLN2 prediction is obtained as follows: (1) sampling 7,000 draws of unobserved 
heterogeneity from a multivariate normal with a mean equal to zero and variance-covariance 
matrix shown in Table C-7; (2) calculating the expected crash counts for each segment using the 
7,000 draws of unobserved heterogeneity and 7,000 draws from the MCMC simulation; (3) repeat 
(1) and (2) for all segments in the sample. 
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Figure C-1a  Trace of Variables of Interest for PDO Crash Frequency 
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Figure C-1b  Trace of Variables of Interest for PDO Crash Frequency 
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Figure C-2a  Trace of Variables of Interest for Possible Injury Crash 
Frequency 
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Figure C-2b  Trace of Variables of Interest for Possible Injury Crash 
Frequency 
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Figure C-3a  Trace of Variables of Interest for Non-disabling Injury Crash 
Frequency 
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Figure C-3b  Trace of Variables of Interest for Non-disabling Injury Crash 

Frequency 
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Figure C-4a  Trace of Variables of Interest for Disabling Injury Crash 
Frequency 
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Figure C-4b  Trace of Variables of Interest for Disabling Injury Crash 
Frequency 
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Figure C-5a  Trace of Variables of Interest for Fatal Crash Frequency 
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Figure C-5b  Trace of Variables of Interest for Fatal Crash Frequency 
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Figure C-6a  Trace of Variance-Covariance of isε  
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Figure C-6b  Trace of Variance-Covariance of isε  
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APPENDIX D  R CODE 

 
inputdata <- function() {  
 A <- 
read.table(file="C:\\Jianming\\MVPLN\\Data\\wa02roadsegbased_crash_rural2lane_concisedPugetSound_60percentage.da
t", 
   na.strings=".", col.names=c("fatal", "disablin", "nondisab", "possible", "noinjry", "seg_lng", 
"curv_lgt",  
   "deg_curv", "vcur_lgt", "pct_grad", "shldwid", "surf_wid", "spd_limt", "slsq", "aadt", "MinArtrl",  
   "Collector", "Rolling", "Mountain", "vmt", "lnvmt")) 
 return(A) 
} 
 
 
 
writedata <- function(x) { 
 write.table(x, file = "C:\\Jianming\\MVPLN\\Results\\MVPLN.out", append = TRUE, quote = FALSE, 
 sep = ",", eol = "\n", na = "NA", dec = ".", row.names = FALSE, col.names = FALSE, qmethod = "double") 
} 
 
 
 
NewtonRaphsonEpsi <-function(NRE_xi, NRE_yi, NRE_beta, NRE_epsilon, NRE_SIGMA) { 
 
 eps <- 0.0001 
 maxit <- 10 
  
 nvar <- length(NRE_xi)-1 
  
 invSIGMA <- solve(NRE_SIGMA) 
 
 expxb_eps <- matrix(0,5,1) 
 
 for(k in 1: maxit) { 
  for(j in 1:5) { 
   expxb_eps[j] <- exp(t(as.matrix(NRE_xi[1:nvar]))%*%as.matrix(NRE_beta[,j]) + 
NRE_xi[nvar+1] + NRE_epsilon[j]) 
  } 
 
  grad <- -invSIGMA%*%NRE_epsilon + (t(NRE_yi) - expxb_eps) 
 
  Hess <- -invSIGMA - diag(expxb_eps) 
 
  del <- solve(Hess, grad) 
  if (sum(abs(del) < (eps*abs(NRE_epsilon)))==5) { 
   return(list(NRE_epsilon=NRE_epsilon, V=solve(-Hess), ier=0)) 
  } 
  else { 
   NRE_epsilon <- NRE_epsilon - del 
  } 
 } 
 return(list(NRE_epsilon=NRE_epsilon, V=solve(-Hess), ier=1)) 
} 
 
NewtonRaphsonBetaj <-function(NRB_x, NRB_yj, NRB_betaj0, NRB_bjSIGMA0, NRB_betaj, NRB_epsilonj, NRB_df) 
{ 
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 eps <- 0.0001 
 maxit <- 15 
 n_obs <- nrow(NRB_yj) 
 nvar <- length(NRB_betaj0)  
 
 for(k in 1: maxit) { 
  sumtmp <- matrix(0,nvar,1) 
  for(i in 1:n_obs) { 
   expxb_eps <- exp(t(as.matrix(NRB_x[i,1:nvar]))%*%NRB_betaj + 
as.matrix(NRB_x[i,(nvar+1)]) + NRB_epsilonj[i]) 
   expxb_eps <- NRB_yj[i] - expxb_eps 
   sumtmp <- sumtmp + expxb_eps[1]*as.matrix(NRB_x[i,1:nvar]) 
  } 
 
  grad <- -solve(NRB_bjSIGMA0)%*%(NRB_betaj - NRB_betaj0) + sumtmp 
 
  sumtmp <- matrix(0, length(NRB_betaj0),length(NRB_betaj0)) 
 
  for(i in 1:n_obs) { 
   expxb_eps <- exp(t(as.matrix(NRB_x[i,1:nvar]))%*%NRB_betaj + 
as.matrix(NRB_x[i,(nvar+1)]) + NRB_epsilonj[i]) 
   sumtmp <- sumtmp + 
expxb_eps[1]*as.matrix(NRB_x[i,1:nvar])%*%t(as.matrix(NRB_x[i,1:nvar])) 
  } 
 
  Hess <- -solve(NRB_bjSIGMA0) - sumtmp 
 
  del <- solve(Hess, grad) 
 
  if (sum(abs(del) < (eps*abs(NRB_betaj)))==nvar) { 
   return(list(NRB_betaj=NRB_betaj, V=solve(-Hess), ier=0)) 
  } 
  else { 
   NRB_betaj <- NRB_betaj - del 
  }   
 } 
 return(list(NRB_betaj=NRB_betaj, V=solve(-Hess), ier=1)) 
} 
 
 
 
SampleEpsiloni <- function(SE_xi, SE_yi, SE_beta, SE_epsilon, SE_SIGMA, SE_df) { 
 
 mu_Sigma <- NewtonRaphsonEpsi(SE_xi, SE_yi, SE_beta, t(SE_epsilon), SE_SIGMA) 
 nvar <- length(SE_xi)-1 
  
 mu <- mu_Sigma$NRE_epsilon 
 Sigma <- mu_Sigma$V  
 
 Sigma <- Sigma*SE_df/(SE_df-2) #SE_df>2 
 
 epsilon_star <- rmt(1,mu,Sigma,SE_df)  
 zeros <- matrix(0, 1,5) 
 
 tmplik <- 0 
 for (j in 1:5) { 
  tmplik <- tmplik -exp(SE_xi[1:nvar]%*%as.matrix(SE_beta[,j]) + SE_xi[nvar+1] + SE_epsilon[j]) 
+ SE_yi[j]*(SE_xi[1:nvar]%*%as.matrix(SE_beta[,j]) + SE_xi[nvar+1] + SE_epsilon[j]) 
 }  
 
 post_old <- log(dmvnorm(SE_epsilon, zeros, SE_SIGMA)) + tmplik 
 

155



 

 

 tmplik <- 0 
 for (j in 1:5) { 
  tmplik <- tmplik -exp(SE_xi[1:nvar]%*%as.matrix(SE_beta[,j])+ SE_xi[nvar+1] + epsilon_star[j]) 
+ SE_yi[j]*(SE_xi[1:nvar]%*%as.matrix(SE_beta[,j])+ SE_xi[nvar+1] + epsilon_star[j]) 
 } 
 post_new <- log(dmvnorm(epsilon_star, zeros, SE_SIGMA)) + tmplik 
 
 prop_old <- log(dmt(SE_epsilon, mu, Sigma, SE_df)) 
 
 prop_new <- log(dmt(epsilon_star, mu, Sigma, SE_df)) 
 tmp <- post_new+prop_old -(post_old+prop_new) 
 logalpha <- min(tmp,0) 
 u <- log(runif(1,0,1)) 
 if (u < logalpha) { 
  return(epsilon_star) 
 } 
 else { 
  return(SE_epsilon) 
 } 
} 
 
 
 
SampleBetaj <- function(SB_x, SB_yj, SB_betaj0, SB_bjSIGMA0, SB_betaj, SB_epsilonj, SB_df) { 
 
 mu_Sigma <- NewtonRaphsonBetaj(SB_x, SB_yj, SB_betaj0, SB_bjSIGMA0, SB_betaj, SB_epsilonj, SB_df) 
 mu <- mu_Sigma$NRB_betaj 
 Sigma <- mu_Sigma$V 
  
 nvar <- length(SB_betaj0) 
  
 Sigma <- Sigma*SB_df/(SB_df-2) #SB_df>2 
 beta_star <- rmt(1,mu,Sigma,SB_df)  
 beta_star <- t(beta_star) 
   
 tmplik <- 0 
 for(i in 1:nrow(SB_yj)) { 
  
  tmplik <- tmplik -exp(t(as.matrix(SB_x[i,1:nvar]))%*%SB_betaj + SB_x[i,(nvar+1)] + 
SB_epsilonj[i]) + SB_yj[i]*(t(as.matrix(SB_x[i,1:nvar]))%*%SB_betaj + SB_x[i,(nvar+1)] + SB_epsilonj[i]) 
 } 
 
 post_old <- log(dmvnorm(t(SB_betaj), t(SB_betaj0), SB_bjSIGMA0)) + tmplik 
  
 tmplik <- 0 
 for(i in 1:nrow(SB_yj)) { 
  tmplik <- tmplik -exp(t(as.matrix(SB_x[i,1:nvar]))%*%beta_star + SB_x[i,(nvar+1)] + 
SB_epsilonj[i]) + SB_yj[i]*(t(as.matrix(SB_x[i,1:nvar]))%*%beta_star + SB_x[i,(nvar+1)] + SB_epsilonj[i]) 
 } 
 
 post_new <- log(dmvnorm(t(beta_star), t(SB_betaj0), SB_bjSIGMA0)) + tmplik 
   
 prop_old <- log(dmt(t(SB_betaj), mu, Sigma, SB_df)) 
 prop_new <- log(dmt(t(beta_star), mu, Sigma, SB_df)) 
 
 tmp <- post_new+prop_old -(post_old+prop_new) 
 logalpha <- min(tmp,0) 
 u <- log(runif(1,0,1)) 
 if (u < logalpha) { 
  return(list(SB_betaj=beta_star, accept=1)) 
 } 
 else { 
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  return(list(SB_betaj=SB_betaj, accept=0)) 
 } 
} 
 
 
 
SampleSIGMA <- function(n_obs, SS_epsilon, SS_R0, SS_df0) { 
 invR0 <- solve(SS_R0) 
 
 sumeps <- matrix(0, 5,5) 
 for(i in 1: n_obs) { 
  sumeps <- sumeps + as.matrix(SS_epsilon[i,])%*%t(as.matrix(SS_epsilon[i,])) 
 } 
 nu <- n_obs + SS_df0 
 V <- solve(invR0 + sumeps) 
 
 SS_Sigma <- rwishart(nu,V)$IW 
 return(SS_Sigma) 
} 
 
 
 
mainfxn <- function(nn=10000,burnin=1000) { 
 library(mnormt) 
 library(bayesm) 
 library(mvtnorm) 
 
 numSevrty <- 5 
 numVars <- 14 
 
 A <- inputdata() 
 n_obs <- nrow(A) 
 
 Y <- as.matrix(A[,1:numSevrty]) 
 ones <- matrix(1,n_obs,1) 
  
 df <- 10 
 beta_df <- matrix(0,numSevrty,1) 
 beta_df[1,1] <- 5  
 beta_df[2,1] <- 6  
 beta_df[3,1] <- 7  
 beta_df[4,1] <- 8  
 beta_df[5,1] <- 9  
 
 X <- as.matrix(A[,c((numSevrty+2):19, 21)]) 
 X <- matrix(c(ones,X), nrow(X), ncol(X) +1) 
  
 beta_i00 <- matrix(c(-21.86518, -0.0004342, 0.0671409, -0.0003211, 0.0303661, -0.1414917,  
  -0.053037, 0.1878789, -0.0012703, -0.0000142, 0.0704688, 0.1255906, -0.6375601, -13.23141, 
  -17.9396, -0.0002722, 0.0250824, -0.0009782, 0.1471798, -0.2000386, -0.0507062, 0.0499684,  
  0.0001516, 0.0000188, 0.2597195, 0.4217457, 0.0180495, -12.27068, 
  -14.95219, -0.000389, 0.0352405, -0.0004357, 0.0633192, 0.0007201, 0.0059334, -0.0062552,  
  -0.0000187, 0.00000524, 0.2019583, 0.2333786, -0.0513502, -1.072978, 
  -21.08788, -0.0000631, 0.0272553, -0.001352, 0.1484341, 0.0494227, 0.0750188, 0.1301605,  
  -0.001124, 0.0000765, 0.2269426, 0.3033065, -0.3461112, -0.9991414, 
  -18.44129, -0.0000865, 0.0296366, -0.0003852, -0.0289177, -0.0211329, 0.0461202, 0.1596419,  
  -0.0018342, 0.0000237, -0.1142281, 0.0514133, 0.0474628, 0.4307832), 1, numVars*numSevrty) 
 
 for (i in 1:(numVars*numSevrty)) { 
  beta_i00[i] <- rnorm(1, beta_i00[i], abs(beta_i00[i])*0.5) 
 } 
 beta_i0 <- matrix(beta_i00, numVars,numSevrty) 
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 for (i in 1: numSevrty) { 
  writedata(c("Initial value for betas'", i)) 
  writedata(beta_i0[,i]) 
 } 
 beta_smpled <- beta_i0 
 
 beta0 <- matrix(0,numVars,1) 
 
 bSIGMA0 <- 100*diag(numVars) 
 df_SIGMA <- 9 
 
 R0 <- diag(numSevrty) 
  
 eps_smpled <- matrix(0,n_obs,numSevrty) 
 SIGMA_smpled  <- 1*diag(numSevrty) 
 betaacceptflag <- matrix(0,1,numSevrty) 
 
 writedata(date()) 
 for (ii in 1: nn) { 
  for (i in 1: n_obs) { 
   eps_smpled[i,]<-SampleEpsiloni(t(as.matrix(X[i,])), t(as.matrix(Y[i,])), beta_smpled, 
t(as.matrix(eps_smpled[i,])), SIGMA_smpled, df) 
  } 
 
  SIGMA_smpled <- SampleSIGMA(n_obs, eps_smpled, R0, df_SIGMA) 
 
  for(j in 1: 5) { 
   betatmp <- SampleBetaj(X, as.matrix(Y[,j]), as.matrix(beta0), bSIGMA0, 
as.matrix(beta_smpled[,j]), as.matrix(eps_smpled[,j]), beta_df[j,1]) 
   beta_smpled[,j] <- betatmp$SB_betaj 
   betaacceptflag[j] <- betatmp$accept 
  } 
 
  lentmp <- nrow(SIGMA_smpled)*ncol(SIGMA_smpled) + nrow(beta_smpled)*ncol(beta_smpled) 
+ 5 
  tmpresults <- matrix(c(SIGMA_smpled,beta_smpled,betaacceptflag),1,lentmp) 
  writedata(tmpresults) 
  print(c(ii, " iterations have been finished..."),quote=FALSE) 
 } 
 writedata(date()) 
} 
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