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Selective Modification of Ribosomally Synthesized and Post-
Translationally Modified Peptides (RiPPs) through Diels–Alder
Cycloadditions on Dehydroalanine Residues

Reinder H. de Vries,[a] Jakob H. Viel,[b] Ruben Oudshoorn,[a] Oscar P. Kuipers,[b] and
Gerard Roelfes*[a]

Abstract: We report the late-stage chemical modification

of ribosomally synthesized and post-translationally modi-
fied peptides (RIPPs) by Diels–Alder cycloadditions to nat-
urally occurring dehydroalanines. The tail region of the
thiopeptide thiostrepton could be modified selectively
and efficiently under microwave heating and transition-

metal-free conditions. The Diels–Alder adducts were isolat-
ed and the different site- and endo/exo isomers were iden-

tified by 1D/2D 1H NMR. Via efficient modification of the

thiopeptide nosiheptide and the lanthipeptide nisin Z the
generality of the method was established. Minimum inhib-

itory concentration (MIC) assays of the purified thiostrep-
ton Diels–Alder products against thiostrepton-susceptible

strains displayed high activities comparable to that of
native thiostrepton. These Diels–Alder products were also

subjected successfully to inverse-electron-demand Diels–

Alder reactions with a variety of functionalized tetrazines,
demonstrating the utility of this method for labeling of

RiPPs.

Ribosomally synthesized and post-translationally modified pep-
tides (RiPPs),[1] such as thiopeptides[2–5] and lanthipeptides[1, 6]

have attracted attention as potential alternatives to small-mol-
ecule antibiotics because of their high activity against a broad

range of bacteria and low level of resistance development.[7, 8]

Yet chemical editing of these peptides is necessary in order to

mitigate their poor pharmacological properties and to make
them suitable for clinical application and to synthesize ana-

logues and derivatives for the study of their mechanism of

action. Over the years, progress has been made towards late-
stage chemical modification of antimicrobial peptides isolated

from producing strains, although achieving (site) selective deri-
vatization of these structurally diverse and complex natural

products often poses a major synthetic challenge.[9]

Many thiopeptides and lanthipeptides contain one or more

uniquely reactive dehydroamino acids such as dehydroalanine

(Dha) and dehydrobutyrine (Dhb), which are the result of post-
translational enzymatic dehydration of Ser and Thr residues, re-

spectively.[10] The electrophilic nature of dehydroamino acids
has made them attractive functionalities for biorthogonal reac-

tions.[11–20] In recent years, these dehydroamino acids have
emerged as interesting targets for the late-stage modification

of RiPPs, through Michael additions,[21–24] hydrogenations,[25]

cross-coupling reactions,[26, 27] photoredox catalysis,[28] cyclopro-
panations,[29] and 1,3-dipolar cycloadditions.[30] These studies

have highlighted the potential of dehydroamino acid modifica-
tion in RiPPs, but also illustrate the challenge of achieving se-

lectivity due to the high structural complexity of RiPPs and the
difficulties of discriminating between the various dehydroami-

no acids present.

Here, we now report the Diels–Alder reaction with cyclopen-
tadiene as a mild and selective modification reaction for of de-
hydroalanine residues in antimicrobial RiPPs (Scheme 1). Fur-
thermore, the unactivated, strained alkene in the formed nor-

bornene product could be employed in Inverse Electron
Demand Diels–Alder (IEDDA, “click”) reactions with tetrazines

(Scheme 1), a popular labeling tool in chemical biology.[31]

As a starting point, the Diels–Alder reaction between cyclo-
pentadiene and a protected dehydroalanine substrate (1) was

studied (Supporting Information, SI-7). In previous studies only
anhydrous conditions and also high temperatures had been re-

Scheme 1. Two-step labeling of dehydroalanines in RiPPs through a Diels–
Alder and IEDDA sequence.
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ported for this reaction.[32] The Diels–Alder reaction is known
to be significantly accelerated in water.[33] Indeed, appreciable

conversion was observed in water at room temperature after
48 h, whereas no product was observed when using dichloro-

methane as solvent (SI-7).
Next, different co-solvents that are tolerated by peptides

were tested in order to help solubilize the cyclopentadiene
and thereby increase the conversion. It was found that 2,2,2-

trifluoroethanol (TFE) gave the best results, likely due to its

mild Brønsted acidity, which can give rise to activation of the
dienophile.[34] Using 20 mol % Sc(OTf)3 to activate the dieno-
phile improved the conversion further, up to 88 % after 48 h
with 10 equiv. cyclopentadiene.

The endo/exo ratio was &40:60 in all cases, which is in
agreement with previous reports about the secondary orbital

interactions between this particular Dha substrate (1) and cy-

clopentadiene.[32] 1,3-cyclohexadiene, 1,3-dimethylbutadiene,
and furan were also evaluated as dienes, but did not give any

conversion at room temperature (SI-7).
The conditions established with the protected Dha substrate

appeared suitable for modification of the thiopeptide thio-
strepton (Figure 1 A), given its high solubility in TFE. During ini-

tial screening and subsequent LC-MS analysis, it was found

that addition of Sc(OTf)3 did not give rise to increased conver-
sions compared to reactions performed without the scandium

salt.
On the contrary, the transition metal free conditions gave

rise to the cleanest transformations, giving mainly single- and

double modified thiostrepton (Figure 1 B). After seven days of
reaction time (while adding freshly distilled cyclopentadiene

daily) 64 % conversion to single- and double-modified thio-
strepton was obtained as based on peak integration of the

starting material and the products in analytical HPLC.
Performing the reaction at 50 8C in a microwave reactor

greatly improved the conversion to 72 % after only 16 h of re-
action time, compared to 28 % conversion after 16 h at room

temperature and 50 % conversion when heating the reaction

at 50 8C in an oil bath. A mixture of single- and double-modi-
fied products was obtained and the starting material and the

products proved to be stable under the microwave conditions.
Even hydrolytic cleavage of the Dha-tail, which is a common

side reaction in thiostrepton modification,[23] was not observed.
The reaction was performed on a 25 mg scale, after which

the three major single modified products (2 a–c) were isolated

using preparative HPLC (Figure 1 C). Products 2 a–c, obtained
as mixtures of diastereomers that could not be separated,

were analyzed by NMR. When comparing the 1H NMR spectra
of unmodified thiostrepton and the products, with particular

focus on the region between 5.00 ppm and 7.00 ppm (Fig-
ure 1 D, only showing product 2 b for this example, see SI-10–

12, 33–37 for all spectra) it can be seen that the methylene

signals of Dha3 (purple) and Dhb8 (yellow) are conserved in
product 2 b. From the two sets of signals originating from the

methylenes in the tail, that is, Dha16 (blue) and Dha17 (green),
one set of signals has disappeared and the other has shifted

upfield, indicating that the reaction has taken place in the tail

Figure 1. A) Scheme depicting the Diels–Alder reaction between thiostrepton and cyclopentadiene to give the corresponding products 2 a–c. Conditions:
1 mm thiostrepton and 0.6 m freshly distilled cyclopentadiene in 1 mL H2O/TFE 1:1, microwave-assisted heating at 50 8C for 16 h. B) Zoom in of LC-MS chroma-
togram of the crude product showing products 2 a–c (* = single modification, ** = double modification). C) Full LC-MS chromatograms of purified products
2 a–c. D) Stacked 1H NMR spectra of thiostrepton (top) and product 2 b (bottom), showing the region between 5.0 and 7.0 ppm.
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region of thiostrepton. Moreover, the appearance of two dou-
blets of doublets (red) is characteristic for the formation of the

alkene of norbornene. The NMR spectra of 2 a and 2 c showed
similar changes in signals (SI-11, 33–37).

Using 1H-1H TOCSY NMR, products 2 a and 2 b were both
identified as Dha16-modified thiostrepton (see SI-11 for a de-

tailed explanation). By comparing the methylene signals of
Dha17 in products 2 a and 2 b, thereby taking into account the
shielding effect of the newly formed carbon-carbon double

bond in the norbornene, it was established that product 2 a is
Dha16-endo and product 2 b is Dha16-exo (see SI-11). In a simi-

lar manner, using 1H NMR and 1H-1H TOCSY NMR techniques,
product 2 c could be identified as Dha17-modified thiostrepton

(SI-12).
To further demonstrate the selectivity for the tail region, a

truncated variant of thiostrepton (3) was synthesized via selec-

tive base-mediated cleavage of Dha17 from the tail of thio-
strepton using Et2NH, leaving only Dha16 as a reactive site

(Scheme 2, SI-6).[23] When 3 was subjected to the optimized re-

action conditions, only two major single modified products
(4 a and 4 b, Scheme 2) were obtained. Using analytical HPLC a

41 % total conversion was observed (SI-13). Both products

were isolated as mixtures of diastereomers and identified (SI-
16–17) as endo- (4 a) and exo (4 b) isomers of Dha16-modified

3 (SI-13) using NMR analysis analogous to the identification of
products 2 a–c.

Collectively, these results show that the reaction is highly se-
lective for the tail region of thiostrepton. Also, the LC-MS UV
signal areas of products 2 a and 2 b compared to product 2 c
(Figure 1 B) indicate a significant preference for modification at
Dha16, which can be explained by the fact that this residue is
the most electron-poor site due to the neighboring thiazole15
and Dha17, both electron-withdrawing moieties.

The scope of the reaction was evaluated by performing the
reaction on different RiPPs. The Diels–Alder reaction of cyclo-

pentadiene and the thiopeptide nosiheptide was performed
under the optimized conditions and after microwave-assisted
heating at 50 8C for 32 h a conversion of 75 % to single modi-
fied nosiheptide was observed (Scheme 3 A, SI-18). The com-
mercial nosiheptide starting material contained a small

amount of nosiheptide that lacks the terminal Dha, having a
terminal amide instead. The product of the reaction of this im-

purity with cyclopentadiene was not observed in the LC-MS
analysis, confirming that the reaction is selective for the termi-

nal Dha over the internal Dhb residue, which is consistent with
the results obtained using thiostrepton and 3.

The reaction between cyclopentadiene and the lanthipep-

tide nisin Z was investigated next (Scheme 3 B). In this case,
the same conditions as for the thiopeptides were used, except

for the substitution of ddH2O for 0.1 % AcOH (aq.) due to solu-
bility- and stability issues of nisin at pH>5. In addition to the

inevitable, but well-documented addition of water to Dha in
nisin,[35] a 52 % conversion to single Diels–Alder modified prod-

uct was observed after 16 h of microwave irradiation at 50 8C
(SI-19–20). For nisin Z, which bears one Dhb and two Dha resi-
dues, the site selectivity could not be determined due to poor

separation of isomers on LC-MS and HPLC. However, good sta-
bilities under microwave irradiation were observed for both

nosiheptide and nisin Z, demonstrating the general applicabili-
ty of our approach for the modification of Dha-containing

RiPPs.

Previous studies have shown that modification of the tail
region of thiostrepton does not severely impact its activity.[23, 26]

To confirm that this is also true for the norbornene modifica-
tions, thiostrepton and purified derivatives 2 a–c, 3, and 4 a,b
were tested against S. aureus (ATCC29213) and E. faecalis
(ATCC29212) strains in a MIC-assay (SI-21). The results (Table 1)

Scheme 2. Synthesis and Diels–Alder reaction of truncated thiostrepton (3).

Scheme 3. Diels–Alder reactions of cyclopentadiene with A) the thiopeptide
nosiheptide and B) the lanthipeptide nisin Z. For nisin Z only one of the pos-
sible products is shown.
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show that all derivatives have excellent antimicrobial activity,

with a MIC value that is within one order of magnitude com-

pared to native thiostrepton for both strains. Moreover, varia-
tions in activity towards both strains and between the different

site- and endo/exo isomers remained limited to a factor of 4.
The activity of 3 also very closely resembles that of thiostrep-

ton, showing that even removing part of the tail region has
little effect on its activity.

The selective incorporation of the norbornene functionality

in the tail of thiostrepton while leaving the inherent activity
intact enables further derivatization through IEDDA click reac-

tions with tetrazines.[31] Purified 2 a was treated with di-2-pyrid-
yl tetrazine (5) in H2O/ACN 1:1 at room temperature (Fig-

ure 2 A) and after overnight reaction full conversion to singly
labeled dihydropyridazine (m/z = 1938) and pyridazine (m/z =

1936) products was observed by MALDI-TOF MS of the crude

reaction mixture (Figure 2 B). As a control, unmodified thio-
strepton was subjected to the same conditions, after which

only starting material (m/z = 1664, Figure 2 B inset) was ob-
served, illustrating the high chemoselectivity for the norbor-

nene moiety over the other unsaturated motifs in thiostrepton.
Next, the IEDDA reaction with a range of different function-

alized tetrazines was investigated. An amine-functionalized tet-

razine building block (8)[36] was derivatized with a fluorescein-
(9) or biotin (10) moiety (Figure 2 C). MALDI-TOF MS showed
efficient labeling of 2 b with both tetrazines using the same
conditions as described above (SI-22).

A BODIPY-labeled tetrazine (12) with fluorescence turn-on
properties was synthesized using a procedure by Carlson et al.

with minor modifications (SI-3).[37] The fluorescence of 12 is
quenched almost completely by the tetrazine motif. However,
this effect is lifted upon reaction of the tetrazine in the IEDDA

click reaction (Figure 3 A).[37] Upon addition of 2 a to a solution
of 12, fluorescence measurements indeed showed a rapid in-

crease in fluorescence compared to an identical solution of 12
where only DMSO was added as a control (SI-23). This fluores-

cence turn-on effect could even be visualized by shining UV

light (365 nm) on the undiluted samples (Figure 3 B), which
shows the potential for using this two-step labeling method in

the detection of new Dha-containing peptides.
We have established the Diels–Alder reaction as a powerful

tool for efficient and selective late-stage chemical editing of
peptide antibiotics. This approach, which only requires cyclo-

pentadiene as a reagent and microwave-assisted heating,
allows for straightforward and transition-metal-free installation
of the norbornene functionality on these complex natural

products by reacting with the naturally occurring Dha residues
under mild conditions. Especially attractive is the possibility of

employing the norbornene product in Inverse Electron
Demand Diels–Alder reactions with tetrazines, which gives

Table 1. MIC-assay results of Diels–Alder analogues of thiostrepton
against S. aureus and E. faecalis.

Antibiotic MIC [mg mL@1] against
S. aureus

MIC [mg mL@1] against
E. faecalis

Vancomycin 1 4
Thiostrepton 0.5 0.5
2 a 2 2
2 b 2 2
2 c 2 1
3 0.5 1
4 a 4 2
4 b 2 2

Figure 2. A) IEDDA reaction of norbornene-modified thiostrepton with di-2-
pyridyl tetrazine (5). B) MALDI-TOF MS spectra of IEDDA reaction of di-2-pyr-
idyl tetrazine with 2 a and control reaction with unmodified thiostrepton
(inset). C) Structures of fluorescein-tetrazine (9) and biotin-tetrazine (10).

Figure 3. A) Scheme depicting fluorescence turn-on of BODIPY-tetrazine
upon click reaction with the norbornene-modified peptide. B) Image show-
ing fluorescence under UV light (365 nm) for DMSO control (left) and click
reaction with 2 a (right).
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access to a variety of new semisynthetic derivatives. Addition-
ally, the norbornene moiety could potentially be used in other

labeling reactions.[38, 39] These results demonstrate the potential
of this methodology for the tailoring of RiPPs.
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