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Strategic and operational decision-making in expanding supply chains
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Abstract

The European Union aims for a 40% reduction in greenhouse gas emissions by 2030, compared to
1990 levels, and recognizes the opportunities of Liquefied Natural Gas (LNG) as an alternative
fuel for transportation to reach this goal. The lack of a mature supply chain for LNG as a
fuel results in a need to invest in new (satellite) terminals, bunker barges and tanker trucks.
This network design problem can be defined as a Two-Echelon Capacitated Location Routing
Problem with Split Deliveries (2E-CLRPSP). An important feature of this problem is that
direct deliveries are allowed from terminals, which makes the problem much harder to solve
than the existing location routing literature suggests. In this paper, we improve the performance
of a hybrid exact algorithm and apply our algorithm to a real-world network design problem
related to the expansion of the European supply chain for LNG as a fuel. We show that
satellite terminals and bunker barges become an interesting option when demand for LNG grows
and occurs further away from the import terminal. In those situations, the large investments
associated with LNG satellites and bunker barges are offset by reductions in operational costs
of the LNG tanker trucks.

Keywords: sustainability, alternative fuel, liquefied natural gas (LNG), network design
problem, neighborhood search, exact algorithm

1. Introduction1

Through its Alternative Fuels Directive 2014/94/EU, the European Commission is seeking2

to promote the deployment of alternative fuel infrastructures to enable an increase in the uptake3

of alternative fuel vehicles. Among the currently available alternative fuels, Liquefied Natural4

Gas (LNG) is widely considered to be the best option for long-haul road-freight and maritime5

transportation. LNG is natural gas that is converted to a liquid state by cooling it down6

to approximately −162 ◦C. In this liquid state, it takes up much less volume compared to7

a (compressed) gaseous state, which makes LNG particularly suitable as a fuel for long-haul8

transportation. Using LNG as a transportation fuel is a recent development, and the supply9
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chain through which the fuel is made available to its customers is still noticeably in development10

[35, 26].11

In the last few years, the European LNG supply chain has been quickly expanding. Many12

LNG fuel stations have been opened and several ports can now supply ships with LNG as a13

fuel. The LNG is supplied from large import terminals, where specialized tanker trucks and14

bunker barges can load the LNG that is to be transported to fuel stations and ports. Since there15

are only a few, very large import terminals around the world, new (smaller) satellite terminals16

may need to be opened to efficiently transport LNG to ports and fuel stations in areas located17

further from the import terminals. Deciding whether to open one or more terminals, and if so,18

to determine their locations and sizes, are critically important decisions in the development of19

LNG supply chains, and may have a profound impact on the routing decisions of the tanker20

trucks and bunker barges. For the longer-term viability of the market for LNG as a fuel, it is21

critically important to make only the necessary investments, as any excess investment will have22

a negative impact on the price custumers pay for the fuel.23

This paper presents a new problem aimed at finding an efficient and cost-effective network24

design for fulfilling the demand for LNG as a fuel. The network can consist of two types of25

facilities: import terminals, which serve as the initial source of LNG for the whole network,26

and smaller-sized satellite terminals, which serve as intermediate facilities. Opening a facility27

is associated with an investment cost, and if opened, there are operating costs per unit volume28

of LNG. The facilities have a given capacity that can be upgraded at an additional investment29

cost. By Using tanker trucks and bunker barges as modes of transportation, the LNG can be30

transported from an import terminal to the demand points directly, or via a satellite terminal.31

Each of these vehicle types has a given capacity and is associated with a certain fixed and32

variable cost. The problem is to open and/or upgrade facilities, to decide upon the routes of33

the tanker trucks and bunker barges, and to allocate inventories, while minimizing facility and34

transportation costs over multiple periods.35

The problem we study consists of attributes that have not been considered in combination36

in previous studies. The concept of simultaneously determining location and routing decisions37

was put forward by Boventer [7], Maranzana [20] and Watson-Gandy and Dohrn [37] which led38

to the research field known as the location-routing problem (LRP). Surveys on this topic are39

published by Min et al. [22], Nagy and Salhi [24], Balakrishnan et al. [4], Prodhon and Prins [30]40

and Drexl and Schneider [10]. In the past decades, numerous extensions to the LRP have been41

identified. Karaoglan et al. [15], for example, worked on the LRP with simultaneous pickup42

and delivery by means of a branch-and-cut algorithm. Prins et al. [27] considered capacitated43

routes and depots in an LRP structure. Several papers address a multi-period setting. Prodhon44

[29] uses visiting patterns to customers and assigns customers to facilities for each period. A45

customer can be visited from different depots over time. Albareda-Sambola et al. [3] worked on46

the dynamic LRP and by considering different scales within the time horizon reflected on the47

stability of location decisions as compared to routing decisions. Schiffer and Walther [33] study48

a network design problem for electric logistics fleet in which location and routing decisions49

are considered. The authors studied a setting where customers induce uncertainty in terms of50

geographical distribution, time windows and demand.51

To solve the variety of LRPs different techniques based on heuristic methods and exact52

algorithms have been developed [2, 12, 14, 16, 18, 21]. Contardo et al. [8] developed an exact53

technique based on cut and column generation. They introduced a new set of inequalities and54
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tested instances from Perl and Daskin [25], Tuzun and Burke [36], Barreto [6], Prins et al.55

[28], Akca et al. [1] and Baldacci et al. [5] and improved the bounds found in the literature.56

In a recent work, Schneider and Löffler [34] developed a tree-based search heuristic that uses a57

large composite neighborhood.58

An important attribute when studying the LRPs is the hierarchical structure of the net-59

work and the existence of intermediate facilities [32]. Considering this, Guastaroba et al. [13]60

provided a survey on transportation problems where the presence of intermediate facilities a61

has significant influence on cost and distribution structure. A survey of two-echelon LRPs has62

been published by Cuda et al. [9]. Rieck et al. [31] studied a LRP where pickup and deliveries63

are performed on local multi-stop routes, starting and ending at an intermediate facility. They64

considered a static problem where one aggregate, representative planning period is assumed.65

In this paper, we study a variant of the LRP which can be defined as a Two-Echelon66

Capacitated Location Routing Problem with Split Deliveries (2E-CLRPSP). We further extend67

this problem with direct deliveries, and to tackle its complexity we propose three enhancements68

on an existing hybrid exact algorithm combining branch-and-bound and several local search69

structures. We apply our algorithm to find solutions for the expanding European supply chain70

for LNG as a fuel and gain interesting insights in this real-life network design problem.71

2. Formal description and mathematical formulation72

The network addressed in our problem consists of roadway edges Er, waterway edges Ew,73

and a set of demand points C where customers take on LNG. We consider two types of facilities74

F from which LNG can be delivered to the demand points: import terminals (value of 1 in set75

F) and satellite facilities (value of 2 in set F). We define the sets D and S as the candidate76

locations for terminals and satellites, respectively. A candidate facility location can also be a77

demand point; hence, a single node in the network may belong to all three sets D, S and C.78

The problem is then defined on an undirected graph G = (V , E), where V = D ∪ S ∪ C and79

E = Er ∪ Ew, considering a finite horizon T , where T = (1, 2, 3..., T ), and the demand of node i80

is known for every period t and denoted by Dt
i .81

Each type of facility e ∈ F at every candidate location i ∈ D ∪ S has an initial capacity82

Be
i that can be expanded by investing in modular storage tanks with capacity Ce, up to a83

maximum capacity Ae
i . Moreover, a facility of type e ∈ F at location i ∈ D ∪ S has an initial84

construction cost F e
i , an operating cost Oe

i (per m3 of the total capacity) and an upgrade cost85

U e
i . We define the set Mk as a set of vehicles for each type k ∈ K. All the LNG that flows86

through the network can be transported by two types of vehicles K: bunker barges (with a87

value of 1 in set K) moving across waterway edges, and tanker trucks (with a value of 2 in88

K) moving across roadway edges. Each type of vehicle k ∈ K has a maximum capacity Gk.89

Each facility has a dedicated fleet of vehicles. The maximum number of vehicles of type k ∈ K90

at location i ∈ D ∪ S for facility type e ∈ F is Rek
i . Vehicles have an investment cost Hk, a91

fixed cost W k when loading LNG at an import terminal, and a variable cost V k per kilometer92

traveled.93

The variables used to model the problem are as follows. Location decisions are modeled94

using binary variables γeti equal to 1 if facility type e is located at node i in period t. Let ιeti95

indicate the capacity of facility type e installed at location i in period t, and ζeti the number of96

upgrade modules installed at facility e at location i in period t. Routing decisions related to97
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routes originated at terminals are modeled using binary variables αvkt
ijd , which indicate whether98

a vehicle v of type k starting its trip from terminal d travels edge (i, j) ∈ E in period t. When99

a vehicle starts its trip from a satellite, the routing decisions are modeled with binary variables100

βvt
ijs. Note that satellites can only be the start of the trip for tanker trucks, which means that101

the types of vehicles are not embedded into variables β. When a satellite is visited by a bunker102

barge, this barge had started its trip at a terminal. Delivery variables δvktdj indicate the volume103

of LNG delivered to customer j ∈ C from terminal d using vehicle v of type k in period t.104

Likewise, εvtsj indicates the volume of LNG delivered to customer j ∈ C from satellite s ∈ S105

using vehicle v in period t. Note that in this problem we allow for split deliveries, which implies106

that a single customer may receive multiple deliveries from different facilities and different types107

of vehicles in a single period. Fleet size and mix decisions are modeled using variables κekti ,108

which represent the size of the fleet of vehicle type k at facility e at location i in period t.109

Finally, inventory is controlled using variables θts to measure the volume available at satellite s110

in period t. A graphical representation of the distribution network considered in this problem111

is shown in Figure 1.112

Figure 1: Graphical representation of the distribution network under consideration

We make the following assumptions: 1) Demand is assumed to be deterministic. Due to the113

early-stage development of the supply chain for LNG as a fuel, developers of new fuel stations114

or port locations often deploy contracts with customers to assure a certain demand volume per115

time period. Nevertheless, in real-world problems, demand will never be fully deterministic. In116

our case study design, we will therefore consider different demand volumes and geographical117

dispersion to incorporate various demand scenarios. 2) We assume that an import terminal is118

always fully replenished with LNG at the beginning of each period. This assumption is realistic119

because import terminals are very large and typically serve the supply chain for LNG as a fuel120
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Set Description

V Nodes
E Edges
Ew Waterway edges
Er Roadway edges
C Demand points
D Candidate terminal locations
S Candidate satellite locations
F Facility types (1 = terminal, 2 = satellite)
K Vehicle types (1 = bunker barges, 2 = tanker trucks)
Mk Set of vehicles of type k ∈ K
T Set of periods

Parameter Description

F e
i Opening cost of facility type e ∈ F at location i ∈ D ∪ S
Oe

i Operating cost of facility type e ∈ F at location i ∈ D ∪ S
Ue
i Unit upgrade cost of facility type e ∈ F at location i ∈ D ∪ S

Be
i Initial capacity of facility type e ∈ F at location i ∈ D ∪ S

Ce Capacity of one module for upgrading facility type e ∈ F
Ae

i Maximum capacity of facility type e ∈ F at location i ∈ D ∪ S
Hk Investment cost of a vehicle of type k ∈ K
W k Fixed cost of using a vehicle of type k ∈ K
V k Variable cost of vehicle type k ∈ K per km
Gk Capacity of vehicle type k ∈ K
Rek

i Maximum number of vehicles of type k ∈ K at facility type e ∈ F at location i ∈ D ∪ S
Dt

i Demand at location i ∈ C in period t ∈ T
Lk
ij Distance between locations i and j for vehicle type k ∈ K
T Horizon

Variable Description

γeti if facility type e is open at location i in period t
αvkt
ijd if vehicle v of type k starting from terminal d travels edge (i, j) ∈ E in period t

βvt
ijs if vehicle v (of type tanker truck) starting from satellite s travels edge (i, j) ∈ Er in period t
δvktdj volume delivered to j from terminal d using vehicle v of type k in period t

εvtsj volume delivered to j from satellite s using vehicle v in period t
µvkt
ijd load of vehicle v of type k starting from terminal d traveling edge (i, j) ∈ E in period t

νvtijs load of vehicle v starting from satellite s traveling edge (i, j) ∈ E in period t
ζeti number of module upgrades at facility type e at location i in period t
θti inventory at satellite i in period t
ιeti capacity of facility type e at location i in period t
κekti fleet size of vehicle type k of facility type e at location i in period t
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with only a small part of their total capacity. 3) Any demand at nodes with an open terminal121

or satellite is fulfilled by that facility directly, without the need of a tanker truck or bunker122

barge. Most operating or scheduled terminals and satellites provide the option to also take on123

fuel by customers directly. 4) All the inventories in the satellites are to be replenished from the124

terminals. 5) Satellites can only be replenished by means of bunker barges, and can only deliver125

LNG to demand points by means of tanker trucks. This restriction is not driven by physical126

constraints (in principle a tanker truck could replenish a satellite), but rather by economic127

logic. If, for example, a tanker truck were to first replenish a satellite, and a demand point is128

satisfied by a tanker truck from that satellite, it would always be more cost-effective to simply129

replenish the demand point without the extra handling at the satellite. One implication of this130

assumption is that satellites can only be located at nodes that are connected to both waterway131

and roadway edges. Another implication is that lateral transshipment between satellites is not132

allowed.133

The objective function is formulated in (1). Its first part minimizes the opening, upgrade134

and periodic operating costs of the facilities as well as the total investment costs associated135

with the fleet of vehicles. The second part minimizes the fixed cost associated with using the136

vehicles. The third part minimizes the variable routing costs of the vehicles.137

minimize
∑

i∈D∪S

∑
e∈F

(
γeTi F e

i + ζeTi Ue
i +

∑
t∈T

ιeti O
e
i +

∑
k∈K

κekTi Hk

)
+

∑
t∈T

∑
j∈V

(∑
k∈K

∑
d∈D

∑
v∈Mk

αvkt
djdW

k +
∑
s∈S

∑
w∈M2

βwt
sjsW

2

)
+

∑
t∈T

∑
i∈V

∑
j∈V

(∑
k∈K

∑
d∈D

∑
v∈Mk

αvkt
ijdL

k
ijV

k +
∑
s∈S

∑
w∈M2

βwt
ijsL

2
ijV

2

)
(1)

138

Constraints (2)–(12) deal with the opening of facilities and the fulfillment of customer139

demand. Constraints (2) and (3) prevent terminals and satellites to be opened at nodes where140

they cannot be constructed. Constraints (4) imply that at most one of both facility types can141

be open at a node. Constraints (5) ensure that an open facility stays open for all future time142

periods. Constraints (6) ensure that a satellite is exclusively served by an LNG bunker ship, by143

prohibiting LNG tanker trucks, originating from either import terminals or other satellites, to144

deliver LNG to this facility. Constraints (7) guarantee that no deliveries of LNG are made to145

locations where a terminal is open. Constraints (8) and (9) ensure that deliveries of LNG can146

only be made from open facilities. Constraints (10) ensure that the demand of each customer147

is satisfied by means of a tanker truck or a bunker barge whenever there is no open terminal148

or satellite. Constraints (11) and (12) ensure that vehicle capacities are respected.149

γ1ti = 0 i ∈ V \ D, t ∈ T (2)

γ2ti = 0 i ∈ V \ S, t ∈ T (3)

γ1ti + γ2ti ≤ 1 i ∈ D ∪ S, t ∈ T (4)

γeti ≥ γet−1i i ∈ D ∪ S, e ∈ F , t ∈ T \ 1 (5)∑
v∈M2

(∑
d∈D

δv2tds +
∑
i∈S

εvtis

)
≤
(
1− γ2ts

)
G2 s ∈ S, t ∈ T (6)
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∑
k∈K

∑
v∈Mk

∑
u∈D

δvktud +
∑
s∈S

εvtsd ≤
(
1− γ1td

)
G1 d ∈ D, t ∈ T (7)

∑
k∈K

∑
v∈Mk

∑
j∈C∪S

δvktdj ≤ γ1td A1
d d ∈ D, t ∈ T (8)

∑
v∈M2

∑
j∈C

εvtsj ≤ γ2ts A2
d s ∈ S, t ∈ T (9)

∑
d∈D

∑
k∈K

∑
v∈Mk

δvktdj +
∑
s∈S

∑
w∈M2

εwt
sj ≥

(
1−

∑
e∈F

γetj

)
Dt

j j ∈ C, t ∈ T (10)

∑
j∈C∪S

δvktdj ≤ Gk d ∈ D, v ∈Mk, k ∈ K, t ∈ T (11)

∑
j∈C

εvtsj ≤ G2 d ∈ S, v ∈M2, t ∈ T (12)

150

Constraints (13)–(19) control the facility inventory and capacity. Constraints (13) ensure151

that the inventory level of a satellite is zero when the satellite is not open. Constraints (14)152

keep track of the inventory level of the satellites at the end of every period. In these constraints,153

we incorporated incoming deliveries of LNG from other satellites (even though lateral trans-154

shipment is not allowed) because we need to ensure that the constraint is also valid when no155

satellite is built at the location. Similarly, we included the term (1− γ1ts ) in order to guarantee156

that the constraints are valid in case a terminal is built at the location. Constraints (15) and157

(16) ensure the capacity of the facilities is not exceeded. Constraints (17) bound the capacity of158

the facilities while constraints (18) track and update the facility sizes. Constraints (19) ensure159

that the capacity of the facilities is not downgraded.160

γ2ts A2
s ≥ θts s ∈ S, t ∈ T (13)

θt−1s +
∑
d∈D

∑
k∈K

∑
v∈Mk

δvktds +
∑

w∈M2

∑
u∈S

εwt
us −

∑
j∈C

εwt
sj

− (1− γ1ts )Dt
s = θts s ∈ S, t ∈ T (14)

θt−1s +
∑
d∈D

∑
k∈K

∑
v∈Mk

δvktds −

(
1−

∑
e∈F

γets

)
Dt

s ≤ ι2ts s ∈ S, t ∈ T (15)

∑
k∈K

∑
v∈Mk

∑
j∈C∪S

δvktdj + γ1td D
t
d ≤ ι1td d ∈ D, t ∈ T (16)

γeti A
e
i ≥ ιeti i ∈ D ∪ S, e ∈ F , t ∈ T (17)

γeti B
e + ζeti C

e = ιeti i ∈ D ∪ S, e ∈ F , t ∈ T (18)

ζeti ≥ ζ
e,t−1
i i ∈ D ∪ S, e ∈ F , t ∈ T \ 1 (19)

161

Constraints (20) and (21) control the fleet of vehicles available at each facility. Constraints162

(20) guarantee that the maximum number of vehicles allowed at a single location is not exceeded.163

Constraints (21) ensure that the number of vehicles at each location cannot be downgraded.164

Rek
i ≥ κekti i ∈ D ∪ S, e ∈ F , k ∈ K, t ∈ T (20)

κekti ≥ κekt−1i i ∈ D ∪ S, e ∈ F , k ∈ K, t ∈ T (21)
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165

Constraints (22)–(35) manage the routing part of the problem. Constraints (22) ensure that166

a delivery of LNG from terminals to any node can only be made if that specific node is visited167

in the route. Constraints (23) ensure that every route starts at its corresponding terminal and168

constraints (24) ensure the route flow. Constraints (25) and (26) impose a limit of at most one169

outgoing and one incoming edge per vehicle in a node. Constraints (27) prevent using more170

vehicles than there are available in the fleet. Constraints (28)–(33) act in a similar way for the171

satellites. Constraints (34) and (35) avoid that tanker trucks travel over waterways and bunker172

barges over roadways.173

∑
j∈V

αvkt
jidG

k ≥ δvktdi d ∈ D, i ∈ C ∪ S, v ∈Mk, k ∈ K, t ∈ T (22)

∑
j∈V

αvkt
djdG

k ≥
∑
j∈V

δvktdj d ∈ D, v ∈Mk, k ∈ K, t ∈ T (23)

∑
j∈V

(
αvkt
ijd − αvkt

jid

)
= 0 d ∈ D, i ∈ V, v ∈Mk, k ∈ K, t ∈ T (24)

∑
j∈V

αvkt
ijd ≤ 1 d ∈ D, i ∈ V, v ∈Mk, k ∈ K, t ∈ T (25)

∑
j∈V

αvkt
jid ≤ 1 d ∈ D, i ∈ V, v ∈Mk, k ∈ K, t ∈ T (26)

∑
j∈V

∑
v∈Mk

αvkt
djd ≤ κ1ktd d ∈ D, k ∈ K, t ∈ T (27)

∑
j∈V

βvt
sjsG

2 ≥
∑
j∈V

εvtsj s ∈ S, v ∈M2, t ∈ T (28)

∑
j∈V

βvt
jisG

2 ≥ εvtsi s ∈ S, i ∈ C, v ∈M2, , t ∈ T (29)

∑
j∈V

(
βvt
ijs − βvt

jis

)
= 0 s ∈ S, i ∈ V, v ∈M2, t ∈ T (30)

∑
j∈V

βvt
ijs ≤ 1 s ∈ S, i ∈ V, v ∈M2, t ∈ T (31)

∑
j∈V

βvt
jis ≤ 1 s ∈ S, i ∈ V, v ∈M2, t ∈ T (32)

∑
j∈V

∑
v∈M2

βvt
sjs ≤ κ22ts s ∈ S, t ∈ T (33)

∑
v∈M1

∑
t∈T

∑
d∈D

αv1t
ijd = 0 {i, j ∈ V|(i, j) 6∈ Ew} (34)

∑
v∈M2

∑
t∈T

(∑
d∈D

αv2t
ijd +

∑
s∈S

βvt
ijs

)
= 0 {i, j ∈ V|(i, j) 6∈ Er} (35)

174

Subtours in the routes of both types of vehicles are eliminated using commodity flow con-175

straints (36)–(43) based on [17]. Two new decision variables are introduced: µvkt
ijd and νvtijs, which176

represent the load of LNG on vehicle v of type k traversing edge (i, j) in period t when the177

route originates at a terminal or a satellite, respectively. Constraints (36) ensure that all the178

demand allocated to a terminal leaves the facility and constraints (37) ensure that the volume179

of LNG decreases after a demand location is satisfied. Constraints (38) impose that a vehicle180
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returns to its terminal with no LNG and constraints (39) ensure that the flows of commodity181

only occur in edges visited in the route. Constraints (40)–(42) are similar for the fleet serving182

satellites only.183

∑
d∈D

∑
j∈V

∑
v∈Mk

∑
k∈K

µvkt
djd =

∑
d∈D

∑
j∈V

∑
v∈Mk

∑
k∈K

δvktdj t ∈ T (36)

∑
j∈V

µvkt
jid −

∑
j∈V

µvkt
ijd = δvktdi d ∈ D, i ∈ V \ d, v ∈Mk, k ∈ K, t ∈ T (37)

µvkt
idd = 0 d ∈ D, i ∈ V, v ∈Mk, k ∈ K, t ∈ T (38)∑

j∈V
αvkt
jidG

k ≥
∑
j∈V

µvkt
jid d ∈ D, i ∈ V, v ∈Mk, k ∈ K, t ∈ T (39)

∑
s∈S

∑
j∈V

∑
v∈M2

νvtsjs =
∑
s∈S

∑
j∈V

∑
v∈M2

εvtsj t ∈ T (40)

∑
j∈V

νvtjis −
∑
j∈V

νvtijs = εvtsi s ∈ S, i ∈ V \ s, v ∈M2, t ∈ T (41)

νvtiss = 0 s ∈ S, i ∈ V, v ∈M2, t ∈ T (42)∑
j∈V

βvt
jisG

2 ≥
∑
j∈V

νvtjis s ∈ S, i ∈ V, v ∈M2, t ∈ T (43)

184

The formulation of the model can be further tightened by adding constraints (44) and (45),185

which break symmetry for the routes of both types of vehicles.186

∑
d∈D

∑
i∈C∪S

(
δvktdi − δv−1ktdi

)
≤ 0 v ∈Mk \ 1, k ∈ K, t ∈ T (44)∑

s∈S

∑
i∈C

(
εvtsi − εv−1tsi

)
≤ 0 v ∈M2 \ 1, t ∈ T (45)

187

Constraints (46)–(48) define the domain of the decision variables.188

αvkt
ijd , β

vt
ijs, γ

t
ie ∈ {0, 1} (46)

δvktij , εvtij , ι
t
ie, θ

t
i , µ

vkt
ijd , ν

vkt
ijd ≥ 0 (47)

ζtie, κ
t
ek ∈ Z+ (48)

189

3. Solution algorithm190

In this section we describe the algorithm used to solve the problem and several improve-191

ments we have made to it. This algorithm is inspired by the variable MIP neighborhood descent192

(VMND) of Larrain et al. [19]. The algorithm is described in Section 3.1, after which improve-193

ment opportunities are described in Section 3.2. In Section 3.3, we show how to apply this194

algorithm to the problem at hand.195
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3.1. Description of the variable MIP neighborhood descent algorithm196

VMND was introduced to solve an inventory management and vehicle routing problem197

arising in the cash logistics industry, and is based on formulating the problem as a MIP, which198

is then solved with several heuristic rules, such as in a fix-and-optimize framework. Such a199

structure allows for quickly obtaining upper bounds, while still retaining the information of200

the lower bound, thus being able to prove optimality and/or to compute the gap of a solution.201

Hence, VMND is an exact algorithm, which alternates between two phases, a local search phase202

and an exact phase.203

During the local search phase, the main problem is restricted by new constraints, i.e.,204

performing a local search similar to a Variable Neighborhood Search (VNS) [23]. Different205

neighborhoods are explored using the best improvement heuristic. The solution of the best206

improvement is given back to the exact phase as a starting solution, which significantly increases207

the performance of the exact phase. Moreover, the exact phase is limited by the amount of208

time that the algorithm spends in the local search phase. The algorithm switches back to the209

local search phase when a new solution is found, or the time limit has been exceeded.210

3.2. Improvement opportunities211

Figure 2 visualizes the new algorithm. Three opportunities have been identified that can212

increase the performance of the VMND algorithm proposed by Larrain et al. [19]. The first213

one relates to the number of times the algorithm alternates between the two phases. Initially,214

the VMND algorithm was designed to switch from the local search phase to the exact phase215

when an improved solution is found in a neighborhood or when the largest neighborhood has216

been exhausted. This entails invoking the exact phase several times, which can be beneficial217

for small problems for which the exact phase is easy and not very time-consuming. However,218

when the size of the problem increases due to a larger number of demand points, vehicles, or219

candidate facility locations, the model size increases and the exact phase will take significantly220

longer. Therefore, a first improvement is to change neighborhoods similar to a Basic VNS as221

described in Duarte et al. [11]. This will decrease the number of alternations while improving222

the best found solution. The benefit will also come from the reduced time spent in the exact223

phase.224

A second improvement opportunity resides in ensuring that the exact phase only switches225

back to the local search phase when a new solution has been found. This can be beneficial226

because it prevents the algorithm from switching back to the local phase when the optimal227

upper bound is reached, but an optimality gap still exists. In addition, new solutions obtained228

form the exact phase are needed in order to prevent the algorithm from getting stocked in local229

optimal solutions.230

The third improvement opportunity is to decrease the amount of redundant time spent231

exploring the neighborhoods. During the exploration of neighborhoods, a significant proportion232

of computing time can be devoted to decreasing the relative MIP gap from, say, 2% to 0%.233

It can be observed empirically, however, that there is little to no added value for the last234

explorations when no improvement is found. For this reason, two new parameters have been235

added to the algorithm which cut off the exploration of neighborhoods. The first parameter is236

a time limit φ and the second one is a relative MIP gap tolerance for exploring neighborhoods,237

denoted as λ.238
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Figure 2: Improved VMND algorithm

3.3. Applying the improved VMND to the 2E-CLRPSP239

We have designed four neighborhoods based on the structure of the problem. These are240

meant to allow the algorithm to change all decisions variables while not yielding too difficult241

MIPs. The neighborhoods together with their defining operations are:242

1. Route: changing one route of one vehicle in one time period. This neighborhood fixes the243

routes of all vehicles except one, and iterates over all vehicles and periods.244

2. Vehicles: changing the routes of one specific vehicle across all periods. Here, we allow one245

vehicle to be kept free over all the planning horizon, while the routes of all other vehicles246

are fixed.247

3. Periods: changing all variables in two periods. We take every pair of periods and let all248

their associated variables be free.249

4. Satellites: changing one terminal and two satellites across all periods. Here, we allow250

more flexibility by exploring the interactions among three facilities, being one terminal251

and a pair of satellites.252

Table 1: Neighborhood definitions

n Neighborhood Pn p MIP size
1 Route M×K× T (vp, kp, tp) E
2 Vehicles M×K (vp, kp) ET
3 Periods T (t1p, t2p) 2EKSM
4 Satellites D × (S × S−1)/2 (dp, s1p, s2p) 2EKTM

11



Table 1 describes the neighborhoods and their characteristics. A neighborhood is defined253

as the solutions that can be reached by applying an operator to a given solution. Every254

neighborhood n ∈ V has an associated set of valid parameterizations Pn. A parametrized255

neighborhood is denoted as np with parameters p ∈ Pn. In this table, E represents the number256

of edges, T the number of time periods, K the number of different types of vehicles, M the257

number of vehicles and S the number of candidate satellite locations. One parametrization of258

neighborhood “Route” could be v = 2, k = 1 and t = 3, which allows the model to change the259

route of the second bunker barge (vehicle type k = 1) in the third time period. All other routes260

are fixed in the current solution.261

The developed neighborhoods differ in size and complexity. In order to provide an estimate262

of the complexity of the subproblem, the MIP size is given. The MIP size is the upper bound to263

the number of free variables per individual decision variable in a neighborhood. The complexity264

of a neighborhood can be calculated by multiplying the MIP size by the number of possible265

combinations Pn in the neighborhood.266

Each neighborhood can be seen as a new subproblem that results in a local optimal solution267

when solved. Neighborhoods “Route” and “Vehicles” can be defined as LRPs with one vehicle268

and semi-fixed facilities; “Periods” as a 2E-LRP with two periods; “Satellites” as a 2E-LRP269

with one terminal and two satellites. Facilities are said to be semi-fixed, as the decision variable270

γ handling the opening of facilities is free. However, when routing variables are fixed, the271

facilities that are part of the route must be open. Table 2 shows the fixed variables for each272

neighborhood.273

Table 2: Fixed values in neighborhoods

Variable Route Vehicles Periods Satellites
αvkt
ijd t 6= tp k 6= kp t 6= tp Free

k 6= kp v 6= vp
v 6= vp

βvt
ijs t 6= tp k 6= kp t 6= tp Free

k 6= kp v 6= vp
v 6= vp

γeti Free Free Free i 6= ip
e 6= 2

δvktdj t 6= tp k 6= kp t 6= tp Free

k 6= kp v 6= vp
v 6= vp

εvtsj t 6= tp k 6= kp t 6= tp Free
k 6= kp v 6= vp
v 6= vp

ζeti Free Free Free Free
θti Free Free Free Free
ιeti Free Free Free Free
κekt Free Free Free Free

4. Computational experiments274

In this section, we present the computational experiments. In Section 4.1, we describe the275

experimental design used to evaluate our algorithm. In Section 4.2, we show the results of a276

12



detailed sensitivity analysis performed on the parameters and neighborhoods of our algorithm to277

determine the best combination of parameter values. In Section 4.3 we assess the performance278

of our algorithm against the original VMND algorithm of Larrain et al. [19] and against CPLEX.279

4.1. Experimental design280

We have generated 26 instances by varying the number of candidate terminal locations (D),281

candidate satellite locations (S), demand points (C), and time periods (T ). An instance is282

then characterized by its configuration D/S/C/T . The demand at each customer node was283

generated using a uniform distribution. For nodes that can be accessed exclusively through284

roadway edges, the demand was generated using the range [100, 200]; the demand for locations285

that can be accessed by both types of edges was generated using the range [150, 250]. All286

approaches were coded in Java and we used CPLEX 12.8 as a MIP solver. Unless otherwise287

specified, all tests were executed with a time limit of 3 hours and a memory limit of 30GB. The288

experiments are carried out on an Intel Xeon E5 2680v3 CPU (2.5GHz) with 40GB memory.289

We allow CPLEX to use up to 4 threads in every execution.290

4.2. Sensitivity analysis on the time limit and optimality gap parameters of the local search291

We evaluated the performance of the algorithm with respect to the time limit φ put on292

solving the subproblems arising in the local search, and with respect to the optimality gap λ293

that must be achieved before the problem is deemed solved. We define a default case, which294

allows each subproblem to be solved for up to 1000 seconds, or when optimality has been proven295

at a 0.00% gap. We select a subset of 10 test instances with a different size and vary the time296

limit φ and the relative gap tolerance λ to guide how to order the neighborhoods and to define297

suitable values for those parameters.298

4.2.1. Time limit φ299

In order to test the influence of the time limit parameters, three different input values are300

given for φ: 10, 20 and 50 seconds. Table 3 shows the decrease in computing time for the301

different input values. A positive value reflects a decrease in computing time compared to the302

default case, while a negative value points to an increase in computation time.303

Table 3: Average decrease in computing times compared to the default case φ = 1000s

φ Route Vehicles Periods Satellites Average
10s 16.82% 5.81% -9.94% 55.42% 17.03%
20s 3.89% 4.68% -3.63% 5.25% 2.55%
50s -1.10% 4.67% 3.97% -6.56% 0.25%

The quality of the results depicted in Table 3 show a high dependency on the complexity304

of the newly created subproblem. The smaller and less complex neighborhoods “Route”, “Ve-305

hicles” and “Periods” show little impact on their behavior. This is due to the low complexity306

of the problem and the relatively high time limit for these specific neighborhoods. The time307

limit is only exceeded in the last iteration of the local search phase for these relatively small308

problems. A greater impact is seen in the more complex neighborhood “Satellites”. The local309

search phase is then truncated. This can lead to less redundant computations and therefore310

increase performance.311
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The influence of the time limit can also be observed in the behavior of the solution over312

time. Figure 3a shows two typical behaviors related to a low time limit, applied to a typical313

instance. The first phenomenon that can be observed is that a low time limit can negatively314

influence the neighborhoods’ ability to quickly decrease the objective value. This can result in315

fewer new solutions and a higher upper bound in the local search phase, and can potentially316

lead to longer computing times in the exact phase. The second phenomenon shows that a low317

time limit can be beneficial. After some time, the low time limit can outperform the default318

case. The local search takes longer as the relative gap in the exact phase is becoming smaller.319

Therefore, the time limit will mainly cut the local search later in the algorithm. A similar320

behavior is observed for another neighborhood in Figure 3b.321
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Figure 3: The behavior related to the time limit φ of two neighborhoods in instance 26

The test results show that it can be beneficial to lower the time limit such that long neigh-322

borhood explorations are eliminated. As the complexity of each neighborhood varies, setting a323

low time limit can help finish the execution of a more complex neighborhood, while it will have324

no effect in a smaller neighborhood. The time limit can be used in such a way that it operates325

as an upper bound of the largest neighborhood.326

4.2.2. Relative gap tolerance λ327

The relative gap tolerance limit λ restricts the exploration of a neighborhood up until the328

set value. The influence of this limit is tested on four values of λ: 2%, 5%, 10% and 20%. Table329

4 shows the decrease in computing times for the subset of tested instances.330

The lowest value of λ results in the worst average performance and decreases the average331

computing time by 37.35% when compared to the default case. The best average performance332

is achieved when setting the relative gap limit to 10%. This decreases the average running times333

by 59.36% and consistently decreases running times in all neighborhoods by more than 40%.334

The lower performance of the lowest value for the gap tolerance limit is due to longer computing335

times in the local search phase. A higher value of λ can also result in decreased performance.336
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Table 4: The decrease in computing times compared to λ = 0%

Value of λ Route Vehicles Periods Satellites Average
0.02 61.86% 37.41% 33.54% 16.59% 37.35%
0.05 72.85% 52.95% 42.56% 60.24% 57.15%
0.10 53.86% 57.86% 43.67% 82.06% 59.36%
0.20 56.97% 57.90% 43.31% 15.30% 43.37%

This happens when the gap tolerance is too high and does not allow the neighborhood to337

converge and find new solutions.338

Figure 4 shows the behavior of neighborhoods “Satellites” and “Periods” applied to a typical339

instance. It can be seen from Figure 4b that most variations outperform the default case. The340

long and extensive local searches are cut off which allows the exact phase to find a new better341

solution. Figure 4a shows a behavior in which the lowest value is the weakest performer, after342

the default case. In this case, the lower quality solutions given to the exact phase result in a343

weaker performance of that phase.344

The test results show that the relative gap tolerance limit can eliminate excessive neigh-345

borhood exploration and considerably increase performance. It must be chosen in such a way346

that it is not so low that it would not exhaust neighborhoods and not so high that valuable347

information would be lost.348
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Figure 4: The behavior related to the time limit λ of two neighborhoods in instance 26

4.3. Computational results349

We solved 26 instances using CPLEX 12.8, the original algorithm proposed by Larrain et al.350

[19] and the improved algorithm proposed in this paper. The sequence of the neighborhoods351

is based on the results of Sections 4.2.1 and 4.2.2 and on increasing neighborhood complexity.352

We used the same sequence of neighborhoods for the implementation of the VMND Larrain353

et al. [19] and the improved VMND.354
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Table 5 shows the results of all 26 instances for the three approaches. For each approach,355

we report the upper bound, the relative gap and the wall time (s). In those cases where the356

execution of an instance is stopped because the memory limit was exceeded, an asterisk is357

placed next to the running time.358

The results show that from the 26 instances, 8 instances were solved to optimality for at359

least one of the three approaches; all these instances have a planning horizon of two periods,360

which is the shortest considered in this study. All three approaches solved 6 of these instances361

to optimality (i.e., instances 10, 18-21, 23). The improved algorithm was the only approach362

that solved instance 11 to optimality within the allowed time frame, but it was also the only363

one that did not close the gap for instance 22. From those 6 instances that were solved to364

optimality for all three approaches, the average wall time was 58.8 seconds for CPLEX, 160365

seconds for the VMND and 80 seconds for the improved algorithm. This result is intuitive given366

that for relatively small and easy instances, CPLEX can obtain the optimal solution very fast367

without the help of a local search heuristic.368

Considering only the 18 instances that were not solved to optimality by any of the ap-369

proaches, the average gap was 4.3% for the CPLEX model, 3.7% for the VMND and 2.7% for370

the improved algorithm. For 13 of these instances the improved algorithm had the lowest gap371

of all approaches (e.g., instances 6, 14) while it was outperformed by either CPLEX and/or the372

original VMND for only three instances (i.e., instances 1, 9, 12). In instances 15 and 17, which373

are among the largest instances considered in this study, the improved algorithm performed374

notably good against the other approaches. In both instances the gap difference between the375

improved algorithm and CPLEX and the VMND was 13.2% and 10.6% respectively. These376

results suggest that the improved algorithm performs better than the other two approaches on377

relatively large instances that cannot be solved within the time limit.378

Regarding the upper bound, all three approaches obtained the same upper bound for the379

majority of instances. In total, CPLEX obtained the best upper bound for 20 instances, while380

the VMND and the improved algorithm obtained the best upper bound for 23 and 25 instances,381

respectively. Although we observe no major difference among the approaches in this regard,382

during the computational experiments we did observe that the improved algorithm obtained383

better upper bounds faster than the other two approaches, which helped the B&B procedure384

to prune more branches in the early stages of the exact phase and, hence, achieve a lower gap385

than the other two approaches at the moment where the time limit was reached.386

5. Case study387

We apply our algorithm to gain insights into how best to expand the supply chain for LNG388

as a fuel in Europe. The Alternative Fuels Directive 2014/94/EU specifies that Member States389

of the European Union should ensure the availability of alternative fuels, such as LNG, at least390

along the TEN-T Core Network by the end of 2030. In this case study, we focus our analyses on391

a part of the TEN-T Core Network that is connected to the LNG import terminal at the Port392

of Rotterdam (see Figure 5). The network includes 18 nodes where demand for LNG as a fuel393

is starting to develop. Those nodes are connected by means of four of the TEN-T corridors.394

Some nodes are connected by roadway and waterway, others only by roadway. Our case study395

design is aimed at gaining insight into the conditions under which one or more satellites will be396

opened. To this end, three candidate satellite locations are considered, with each one located397
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at an intersection of two TEN-T corridors.398

Figure 5: The part of the TEN-T core network considered in the case study

We rely on several sources of data and observations in practice for creating scenarios that399

reflect the current and planned development of the supply chain for LNG as a fuel in Europe.400

The Netherlands has been a front runner in developing the supply chain for LNG as a fuel,401

with 25 LNG fuel stations and 7 port locations being operational by the end of 2018. These402

numbers are increasing, and the network of fuel stations locations for bunkering is expanding403

into Europe. To reflect this growth, our case study considers three different supply chain404

maturity phases, during which the network grows from 8 to 14, to 18 demand points, and405

three different demand scenarios (i.e., low, medium, high) as shown in Figure 6. Throughout406

the experiments, we consider a time horizon of 10 weeks, consisting of 5 periods of two weeks.407

These two-week periods are chosen to reflect the typical replenishment cycle of LNG fuel stations408

and bunkering of ships that sail on LNG as a fuel.409

Given the very large investments involved with opening an LNG import terminal, and due410

to its much broader purpose than providing LNG as a fuel, only a fraction of the investment411

and operational costs translate into costs relevant for the supply chain for LNG as a fuel. Our412

experimental design follows the current state of practice, where specific terminal investments413

related to facilitating LNG as a fuel are translated into a fixed fee for bunker barges and414

tanker trucks when they load the fuel at the terminal. These so-called slot costs are roughly415

e20,000 for a bunker barge, and e500 for tanker trucks. In 2018, two bunker barges were under416

construction for the European LNG supply chain. None were yet in use. For the purpose of417

our case study, we consider a capacity of 2000m3, which resembles the capacity of the “Clean418

Jacksonville”, the first LNG bunker barge built in North America, which was delivered by the419

end of 2018. The capacity of a tanker truck is 50m3. Note that the slot cost per m3 of LNG420

are equal for the tanker truck and bunker barge when they are fully loaded.421

The initial investment associated with opening a satellite with a capacity of 300m3 is es-422

timated at e1,000,000. The satellite capacity can be upgraded with at most two modules of423

300m3 at a cost of e500,000 each. Developing the site for a satellite (e.g., acquiring permits,424
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Figure 6: Demand scenarios

19



foundations, piping) makes up a considerable part of the total investment, which is why upgrad-425

ing a satellite is far less expensive than opening one. Tanker trucks for transporting cryogenic426

liquids (such as LNG) are widely available. We consider a cost of e1.5 per kilometer for using a427

tanker truck, which is based on a full operational lease price for such a vehicle, including initial428

investment, maintenance and all operational costs. Since the capacity of tanker trucks often429

does not allow for replenishing multiple LNG demand points, we consider only direct vehicle430

routes from a facility to a demand point in the case study. The initial investment of an LNG431

bunker barge is estimated at e5,000,000; its variable costs per kilometer at e7. We translated432

the investment costs of satellites and bunker barges into periodic costs by computing constant433

payments over a depreciation period of 30 years, an interest rate of 5% and a scrap value of434

20% of the initial investment. This results in a period investment cost of e11,930 for a bunker435

barge, and e2,386 for a satellite.436

The problem considered in this case study is a special case of the problem described in437

Section 2, as we investigate an LNG network where decisions regarding the establishment of438

import terminals are predefined. Furthermore, we note that split deliveries play a critical role439

in the case study since a single tanker truck is seldom large enough to fulfill the demand of a440

customer in a period. This implies that demand points served from a satellite facility would441

require split deliveries in most cases.442

5.1. Results443

An overview of the results for the nine cases, each with a different supply chain maturity444

phase and demand scenario, can be found in Table 6. In this table, we show which satellites445

open in each scenario (between parenthesis, we show the number of upgrade modules for each446

open satellite).447

Table 6: An overview of the case study results

Instance Hannover Frankfurt Dusseldorf Barges Cost per m3

Low 1 Closed (0) Closed (0) Closed (0) 0 e29.4
Low 2 Closed (0) Closed (0) Closed (0) 0 e30.4
Low 3 Open (1) Open (2) Closed (0) 1 e30.8
Medium 1 Closed (0) Closed (0) Closed (0) 0 e28.6
Medium 2 Open (2) Open (2) Closed (0) 1 e34.2
Medium 3 Open (2) Open (2) Closed (0) 2 e30.0
High 1 Closed (0) Closed (0) Closed (0) 0 e29.1
High 2 Open (1) Open (1) Closed (0) 1 e28.5
High 3 Open (2) Open (2) Closed (0) 2 e30.1

Using the cost and capacity values mentioned above, no satellites are opened in the least448

mature supply chain phase (i.e., Phase 1) in any of the demand scenarios. In the most mature449

supply chain phase (i.e., Phase 3), two satellites are opened: one in Hannover, and one in450

Frankfurt. Both satellites receive one capacity upgrade in the low demand scenario, and two451

in the medium and high demand scenarios. In maturity Phase 2, no satellites are opened in452

the low demand scenario, while Hannover and Frankfurt are opened for the medium and high453

demand scenarios.454

Each case where a satellite is opened also involves the use of one or two bunker barges,455

which is logical since satellites can only be replenished by a bunker barge. While bunker barges456
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could also be used without an open satellite in the network, the case study results show that457

bunker barges are only used when at least one satellite is opened. Our analysis indicates that458

a bunker barge generally uses most of its capacity to replenish the satellite(s), and visits a few459

demand points with the remainder of its load. Due to the relatively high slot costs, the barge460

is filled to maximum capacity at the import terminal.461

What is noticeable in Table 6, is that the total cost per m3 of demand is relatively stable.462

This implies that the cost increase that is to be expected when LNG needs to be transported463

further from the import terminal can be largely mitigated by investing in one or more bunker464

barges and satellites.465

5.2. Sensitivity analysis466

We conducted a sensitivity analyses to gain further insights into the role of different cost467

components and capacities of the satellites and fleets of vehicles. We were particularly interested468

to study the impact of the investment costs associated with satellites and bunker barges since469

these costs are seldom formally documented and yet may have a large impact on the network470

design decisions. Specifically, we consider the situation when the investment in a bunker barge471

would be e3,000,000 or e10,000,000 ceteris paribus. Similarly, we consider the situation when472

the investment involved in opening a satellite would be e500,000 or e2,000,000, while the473

upgrade costs remain half the initial investment per module. We also study the effect of the474

costs for using tanker trucks (i.e., either e0.75 or e3 per kilometer). Lastly, to study the475

impact of the capacity of the bunker barge, we consider the situation where the capacity would476

be 1000m3 or 3000m3, while adjusting the slot costs and investment costs so that they remain477

equal per m3 of capacity.478

The results from the sensitivity analyses show that the network designs are robust to changes479

in the investment costs for the bunker barge. Our algorithm identifies exactly the same network480

designs as best solution for all nine cases when considering lower bunker barge investment costs.481

At higher bunker barge investment costs, the use of bunker barges and satellites is somewhat482

postponed, indicated by the fact that no satellites or bunker barges are used in the medium483

demand scenarios for maturity phases 1 and 2. The results behave similarly to changes in the484

investment costs associated with opening and upgrading satellites. Of course, the total supply485

chain costs are higher or lower due to the differences in investment costs associated with bunker486

barges or satellites, but overall, the routing costs appear to be a larger part of the total supply487

chain costs.488

It is therefore not surprising that the case study results are more sensitive to the variable489

costs associated with using the vehicles, and the capacity of the bunker barges. When the use490

of tanker trucks is cheap (i.e., when the variable costs amount to e0,75 per kilometer), our491

algorithm identifies the solution without any satellites and bunker barges as the best network492

design. High variable costs for the tanker trucks (i.e., e3 per kilometer) result in network493

designs with (larger) satellites opening in lower demand scenarios and earlier supply chain494

maturity phases.495

The capacity of the bunker barges also affects the network designs. Smaller capacity of the496

bunker barges leads to either an extra bunker barge being operational, and hence, an increase497

in the variable routing costs associated with barge usage; or a lower number of satellites, while498

a larger part of the network is serviced by tanker trucks from the import terminal. When the499

capacity of bunker barges is large, it becomes more cost-effective to service larger parts of the500
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network by means of one barge. Satellites are then opened only in the higher demand scenarios501

and more mature supply chain phases, to service mostly those nodes that are not connected502

by means of waterways. Overall, the cost savings that can be made by improving the routes503

of the different vehicles in the network quickly outweigh the additional investments needed to504

open and upgrade satellites and use bunker barges.505

6. Conclusions506

Inspired by a real-world network design problem related to the expansion of the European507

supply chain for LNG as a fuel, this paper introduces the Two-Echelon Location Routing508

Problem with Split Deliveries. Allowing direct shipments from terminals at different levels509

of the LNG supply chain to the costumers makes this location routing problem complex to510

solve. We have improved the performance of a hybrid exact algorithm, which outperforms its511

previous version and a commercial solver. A detailed case study sheds light on the development512

of opening satellite terminal(s) and investing in bunker barges when expanding the supply chain513

for LNG as a fuel into Europe.514
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