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A B S T R A C T

Advanced stage ovarian clear cell carcinoma (OCCC) is poorly responsive to platinum-based chemotherapy and
has an unfavorable prognosis. Previous studies revealed heterogeneous mutations in PI3K/AKT/mTOR and
MAPK pathway nodules converging in mTORC1/2 activation. Here, we aimed to identify an effective low-dose
combination of PI3K/AKT/mTOR pathway and MAPK pathway inhibitors simultaneously targeting key kinases
in OCCC to preclude single-inhibitor initiated pathway rewiring and limit toxicity. Small molecule inhibitors of
mTORC1/2, PI3K and MEK1/2 were combined at monotherapy IC20 doses in a panel of genetically diverse OCCC
cell lines (n= 7) to determine an optimal low-dose combination. The IC20 dose triple combination reduced
kinase activity in PI3K/AKT/mTOR and MAPK pathways, prevented single-inhibitor induced feedback me-
chanisms and inhibited short and long-term proliferation in all seven cell lines. Finally, this low-dose triple drug
combination treatment significantly reduced tumor growth in two genetically characterized OCCC patient-de-
rived xenograft (PDX) models without resulting in weight loss in these mice. The effectiveness and tolerability of
this combined therapy in PDX models warrants clinical exploration of this treatment strategy for OCCC and
might be applicable to other cancer types with a similar genetic background.

1. Introduction

Ovarian clear cell carcinoma (OCCC) is the second most common
epithelial ovarian cancer subtype. Advanced stage OCCC responds
poorly to platinum-based chemotherapy and has a worse overall sur-
vival compared to the most common ovarian cancer subtype (high-
grade serous) [1]. There is an urgent need for targeted treatment stra-
tegies. Recent genomic analysis uncovered a heterogeneous mutation-
and copy number alteration (CNA) spectrum in OCCC. DNA binding AT-
rich interactive domain 1A gene (ARID1A), a key subunit of the SWI-
SNF chromatin remodeling complex, is deleteriously mutated in
40–57% of OCCC tumors [2–4]. This is the highest frequency among all
cancer types and strategies specifically targeting ARID1A mutated
OCCC are being explored extensively [4–6]. Interestingly, almost no
mutations in TP53 are found in OCCC [4]. The most frequent PI3K/

AKT/mTOR related alterations are found in the PI3K catalytic domain
encoding subunit PIK3CA, which is mutated in 30–40% of OCCC, and
the PI3K antagonist PTEN, with loss of expression in 40% of OCCC
[3,4,7,8]. Other alterations include deleterious mutations in the PI3K
regulatory subunit PIK3R1 and amplifications and mutations in the
PI3K downstream effectors AKT1 and AKT2 [4,9–11]. MAPK related
alterations are primarily found in the oncogene KRAS, which is mutated
in 5–14% and amplified in 18% of OCCC [3,4,7,11,12]. Occasionally,
NRAS and BRAFmutations have been detected [4,7,9,10]. Additionally,
ERBB family of receptor tyrosine kinases amplifications (EGFR, ERBB2
and ERBB3) and mutations (EGFR, ERBB2, ERBB3 and ERBB4) have
been described in OCCC [4,9,10,13,14]. Unfortunately, EGFR and
EGFR-ERBB2 dual inhibitors did not show efficacy in pretreated non-
subtype selected ovarian cancer patients [15–17]. In a recent report we
described the heterogeneous genomic landscape of PI3K/AKT/mTOR
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and MAPK pathways in OCCC patients and cell lines [4]. Interestingly,
we found high mTORC1/2 activity in tumors from OCCC patients
compared to this activity in tumors from high-grade serous ovarian
cancer patients, and demonstrated high efficacy of mTORC1/2 inhibi-
tion in vitro and in vivo [4]. Unfortunately, mTORC1/2 inhibitors have
only shown efficacy when used above the maximum tolerated dose in
non-OCCC patients, indicating that these inhibitors cannot be ad-
ministered at therapeutically relevant doses [25,26].

PI3K, mTORC1/2 and MEK1/2 are attractive targets for treatment
given the high frequency of mutations present in regulatory proteins
and kinases of the PI3K/AKT/mTOR and MAPK pathway in OCCC.
Single-targeted and suboptimal inhibition of PI3K, mTORC1/2 or
MEK1/2 can result in re-activation of PI3K/AKT/mTOR or MAPK sig-
naling via negative feedback mechanisms or rewiring. For example,
inhibition of mTORC1/2 can upregulate the membrane receptor IRS-1
and induce phosphorylation of AKT [18,19]. Moreover, interactions
between the PI3K/AKT/mTOR pathway and the MAPK pathway in-
duces cross-activation, complicating sustainable inhibition of both
proliferation pathways [20]. Despite the strong reduction in p-S6, re-
flecting effective mTORC1/2 inhibition, we indeed observed evidence
for activation of feedback- or rewiring mechanisms in OCCC models
after mTORC1/2 inhibition, suggesting the involvement of PI3K [4].

Dual PI3K-mTOR1/2 inhibitors, e.g. BEZ235 and XL765, exhibit
high potency in in vitro models including ovarian cancer but severe
toxicity, especially hyperglycemia and gastrointestinal toxicity, was
observed in cancer patients at effective PI3K-mTORC1/2 inhibitor dose
[21–24]. This may well be related to the important role of PI3K/AKT/
mTOR and MAPK pathway signaling in normal tissue. These observa-
tions indicate that a careful titration of combined single-targeted in-
hibitors may result in optimal tumor efficacy with acceptable systemic
toxicity.

Therefore, we investigated whether the addition of PI3K or MEK1/2
inhibitors to mTORC1/2 targeting agents, all at low-dose, prevents
feedback mechanisms and cross-activation in OCCC, while maintaining
antitumor potency. Firstly, we determined the efficacy of PI3K/AKT/
mTOR pathway and MAPK pathway inhibitors in a panel of OCCC cell
lines reflecting the genetic diversity of OCCC. We tested if low con-
centrations of the inhibitors demonstrated potentiating interactions in
OCCC cell lines. Secondly, we studied the molecular interactions and
the cellular consequences of these combinations. Ultimately, two es-
tablished OCCC patient-derived xenograft (PDX) models were treated
with low-doses of the most effective in vitro triple drug combination,
i.e. concentrations far below the maximum tolerated doses of single
agents in mice, to demonstrate antitumor activity while minimizing
systemic toxicity in these mice.

2. Methods

2.1. Cell lines

We obtained seven human OCCC cell lines: RMG1, OVMANA, and
HAC2 (JCRB Cell Bank, Japan); JHOC5 (RIKEN Cell Bank, Japan);
SMOV2 and KOC7C (Dr. Hiroaki Itamochi, Tottori University School of
Medicine, Tottori, Japan) and ES2 (Dr. E. Berns, Erasmus MC,
Rotterdam, the Netherlands). All OCCC cells were maintained in RPMI
supplemented with 10% fetal calf serum. The non-transformed human
retinal pigment epithelial cell line (RPE1) was maintained in DMEM-
low medium supplemented with 10% fetal calf serum. All cell lines
were tested by STR profiling and tested mycoplasma free. All cells were
kept in culture for a maximum of 50 passages.

2.2. Inhibitors

AZD8055, GDC0941, selumetinib and MLN0128 were obtained
from Axon Medchem (the Netherlands). ABT-737 was obtained from
MedchemExpress (United Kingdom). All inhibitors were dissolved in

DMSO and stored at −80 °C.

2.3. MTT assays

Cells were seeded in 96-wells plates and cultured overnight
(16–18 h) before 96 h treatment with increasing inhibitor concentra-
tions. Plating concentrations were: ES2, JHOC5 and KOC7C 2000 cells/
well, RMG1 and SMOV2 4000 cells/well, HAC2 and OVMANA
6000 cells/well. After 96 h methyl thiazolyl tetrazolium (MTT) was
added to a final concentration of 0.5 mg/ml and cells were incubated
for four additional hours. Cells were then dissolved in DMSO, and the
produced formazan was measured at 520 nm with a Bio-Rad iMark
spectrometer. IC20 inhibitory concentrations were determined in
Graphpad Prism® 6.01.

2.4. Long-term survival assays

Cells were seeded in 12-well plates and cultured overnight
(16–18 h) before treatment was added. Plating concentrations were:
ES2 500 cells/well, HAC2 5000 cells/well, JHOC5 1000 cells/well,
KOC7C 250 cells/well, RMG1 5000 cells/well, SMOV2 5000 cells/well,
OVMANA 8000 cells/well and RPE1 500 cells/well. RPE1 cells were
treated with AZD8055, GDC0941 and selumetinib concentrations at
25% and 75% of the difference between the lowest and highest IC20

from our OCCC cell line panel. After 7–14 days cells were fixed with 4%
formaldehyde and stained with 0.1% crystal violet and subsequently
scanned.

2.5. Western blotting

Cells were collected with rubber policemen cell scrapers and lysed
in M-PER mammalian protein extraction reagent (Thermo Fischer, USA,
78501) containing Halt protease and phosphatase inhibitors (1:100)
(Thermo Fischer, USA, 78444). For Western blot primary antibodies
against p-AKT308 (9275, 1:1000), p-AKT473 (9271, 1:1000), p-ERK1/2
(9102, 1:1000), p-S6 (2211, 1:1000), p-4EBP1 (9455, 1:1000), PARP
(9532, 1:1000) and Cleaved Caspase-3 (9661, 1:1000) were obtained
from Cell Signaling Technology (USA). β-Actin (C4, 1:1000) was ob-
tained from MPbiomedicals (USA). Protein membranes were stained
with horseradish peroxidase bound Rabbit anti-Goat and Mouse anti-
Rabbit secondary antibodies (DAKO, USA, 1:1000) and visualized on a
ChemiDoc MP imaging system (Bio-Rad, USA) with chemiluminescent
HRP substrate.

2.6. Apoptosis flow cytometry

Cells were seeded in 6-wells plates and incubated overnight
(16–18 h) before treatment was added. Cells were harvested in their
own media using trypsine, stained with 1,1′,3,3,3′,3′-hexamethylindo-
dicarbo-cyanine iodide (DiIC1 (5)) dye (Thermo Fischer, USA) for
30min at 37 °C and subsequently stained with propidium Iodide
(Thermo Fischer, USA). At least 10,000 events were measured on a
FACS Calibur (Becton Dickinson, USA). DiIC1 (5), a dye that accumu-
lates in mitochondria, is lost when cells undergo apoptosis via the in-
trinsic apoptosis pathway. By combining the quartiles of cells that were
propidium iodide positive or had lost DiIC1 (5) dye, both apoptotic and
necrotic cells could be quantified. FlowJo software was used for data
analysis. Statistical significance was determined using repeated mea-
sures one-way ANOVA with post-hoc Tukey's multiple comparison test.

2.7. Combination treatment in patient-derived xenograft models

All animal experiments were approved by the Institutional Animal
Care and Use Committee of the University of Groningen (Groningen, the
Netherlands) and carried out in accordance with the approved guide-
line “code of practice: animal experiments in cancer research”
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(Netherlands Inspectorate for Health Protection, Commodities and
Veterinary Public Health, 1999). Establishment and studies of PDX
models were performed in accordance with the PDX-MI standard [25].
Before surgery, all patients from whom tumor samples were obtained
for PDX modeling gave written informed consent for collection and
storage of tissue samples in a tissue bank for future research. All re-
levant patient data were retrieved and transferred into an anonymous,
password-protected, database. The patients' identity was protected by
study-specific, unique patient codes and their true identity was only
known to two dedicated data managers. According to Dutch regula-
tions, these precautions meant no further institutional review board
approval was needed (http://www.federa.org/). PDX.180 was derived
from tumor material obtained at interval debulking surgery from a 59
year old FIGO stage IIIC OCCC patient treated with neoadjuvant car-
boplatin/paclitaxel (CP) chemotherapy and deceased 10 months after
initial diagnosis with disease. PDX.247 was established from tumor
material obtained at primary surgery from a 54 year old FIGO stage IIB
OCCC patient, who had a complete debulking followed by CP che-
motherapy and no evidence of disease after 29 months of follow-up.
Surgical tissues were implanted in NOD.CB17-Prkdcscid/NCrHsd (NSG)
mice (internally bred, Central Animal Facility, University of Groningen)
and propagated successfully to the F3 or F4 generation according to
previously described methods [26]. The PDX models were sequenced
for 40 genes, including genes with a high mutation frequency in OCCC,
ARID1A and other cancer-related genes using Haloplex custom kit
(Agilent technologies®, USA) [4]. Additional SNP genotyping of the PDX
models was performed with HumanOmniExpressExome-8BeadChip (Illu-
mina, USA) [4]. F3 or F4 tumor pieces were cut into 3×3x3 mm3
sections and subcutaneously implanted in the flank of 12–16 week old
NSG mice. Weight, fur quality and overall activity of the mice were
monitored at least once per three days. Tumor growth was quantified at
least once per three days by caliper measurements according to the
formula (width2 x length)/2. Sacrifice criteria included 15% weight
loss, tumor size> 1500mm3 or prolonged severe overall activity ac-
cording to the approved guidelines “code of practice: animal experi-
ments in cancer research” (Netherlands Inspectorate for Health Pro-
tection, Commodities and Veterinary Public Health, 1999). When
tumors demonstrated sustained growth (on average after 27 days), mice
were randomized into vehicle control or treatment groups (n=3–5
mice/group). AZD8055 (4mg/kg), GDC0941 (30mg/kg), selumetinib
(20mg/kg) or the combination were diluted in 0.2% Tween-80 0.5%
hydroxyl-propyl methylcellulose (Sigma-Aldrich, USA) and adminis-
tered by oral gavage daily. Treatment with AZD8055, GDC0941, selu-
metinib, the combination or vehicle was continued for 21 days, after
which all mice were sacrificed. One mouse in the selumetinib treated
group died on treatment day four due to undefined reasons. In historical
data, AZD8055 (10mg/kg in 10% DMSO, 40% Polyethylene glycol
300) was administered intraperitoneally daily [4]. Relative tumor
growth was determined by tumor volume/tumor volume at start of first
treatment (day 0). For further analysis the tumors were resected, split
into two parts of which one part was snap frozen at −80 °C while the
other part was paraffin embedded. Statistical significance for tumor
growth was determined using two-way ANOVA with Bonferoni post-hoc
test correction in Graphpad Prism® 6.01.

2.8. Immunohistochemical analysis

From paraffin-embedded PDX tumors slices (3 μm thick) were cut
using a microtome and placed on 3-aminopropyltriethoxysilane-coated
glass slides. Heat-induced antigen retrieval was performed in 10mM
citrate buffer using a 400W rotary microwave. Endogenous peroxidase
was blocked by 30min incubation with 0.3% H2O2 in PBS. Endogenous
avidin/biotin activity was blocked using a commercially available
blocking kit (Vector Laboratories, USA). Slides were incubated with
primary antibodies detecting human Ki67 (DAKO M7240, USA, 1:350)
and Cleaved Caspase-3 (Cell Signaling #9661, 1:100). Staining was

visualized after incubation with biotinylated or peroxidase-bound sec-
ondary antibodies using streptavidin-biotin/horseradish peroxidase
complex (Dako, USA, 1:100) and 3,3′-diaminobenzidine (Sigma-
Aldrich, USA). Hematoxylin counterstaining was applied routinely, and
hematoxylin & eosin (H&E) staining was used to analyze tissue viability
and morphology. Photographs were acquired by digitalized scanning of
slides using the NanoZoomer 2.0-HT multi-slide scanner (Hamamatsu,
Japan). Ki67 stainings were quantified by scoring Ki67 positive nuclei
in five randomly assigned 40× magnified areas from each slide. For
Cleaved Caspase-3 stainings, the positive cytoplasm was scored with
Aperia ImageScope software (Leica). Statistical significance was de-
termined using one-way ANOVA with post-hoc Tukey's multiple com-
parison test.

2.9. Synergy determination

Drug synergy was assessed with the Chou-Talalay method in
CompuSyn (Version 1.0, Combosyn incorporated) to determine the dose
effect of combination therapy [27]. For this analysis, cells were treated
with single inhibitors in increasing concentrations to determine a
standard curve, and in combination using the IC20 of each compound.
Strong synergism, synergism, additive effects and antagonism were
defined by CI < 0.25, CI < 0.75, CI= 1 or CI > 1, respectively.

3. Results

3.1. mTORC1/2, PI3Kα/δ and MEK1/2 inhibitor susceptibility of OCCC
cell lines

Considering the high mTORC1/2 inhibition susceptibility of OCCC
[4], we searched for synergistic combinations with PI3K and MEK1/2
inhibitors. A panel of seven OCCC cell lines was selected, largely re-
sembling the genetic makeup of OCCC, for evaluation of mTORC1/2,
PI3K and MEK1/2 inhibitor sensitivity. We recently characterized
PI3K/AKT/mTOR pathway and MAPK pathway alterations in these cell
lines [4]. Alterations include activating hotspot mutations in the PI3K/
AKT/mTOR pathway signaling node PIK3CA, deleterious mutations in
PTEN, amplifications in AKT1 and AKT2 and a hotspot mutation in the
MAPK pathway signaling node KRAS (Fig. 1A). Western blot analysis
demonstrated universal expression of mTORC1/2 downstream target p-
S6, indicating mTOR activity in all seven OCCC cell lines. Activity of
PI3K (p-AKT308 and p-AKT473) and MAPK (p-ERK) pathways, upstream
of mTORC1/2, varied across the cell lines (Fig. 1B). We subsequently
determined sensitivity towards mTORC1/2 inhibition (AZD8055),
PI3Kα/δ inhibition (GDC0941) and MEK1/2 inhibition (selumetinib)
using a short term (96 h) viability assay and defined cell line specific
IC10, IC20 and IC30 concentrations. All cell lines revealed nanomolar
range AZD8055 sensitivity (Fig. 1C). GDC0941 and selumetinib sensi-
tivity varied more widely across the cell lines (Fig. 1C). Gene alteration
and protein phosphorylation status (Fig. 1A and B) did not correlate
with sensitivity for these inhibitors (Mann-Whitney U test, data not
shown), corresponding to an earlier report studying PI3K/AKT/mTOR
inhibition in OCCC cell lines [28].

3.2. Synergistic effects of IC20 mTORC1/2, PI3Kα/δ and MEK1/2 inhibitor
combinations

AZD8055, GDC0941 and selumetinib were combined at cell line
specific IC20 concentrations calculated from short term viability assay
results (Fig. 2A). IC10 and IC30 combinations were not further evaluated
owing to high variation with the first and limited synergy due to the
high efficacy of the latter with triple combinations. IC20 combinations
of AZD8055 and GDC0941 induced synergistic effects (CI < 0.75) in
two cell lines and the combination of AZD8055 with selumetinib in
three cell lines (Fig. 2B, Supplementary Fig. 1A). Interestingly, the IC20

combination of AZD8055, GDC0941 and selumetinib (from here on

J.J. Caumanns, et al. Cancer Letters 461 (2019) 102–111

104

http://www.federa.org/


referred to as AGS), demonstrated strongly synergistic reduced survival
(CI < 0.25) of JHOC5, KOC7C and RMG1 cells and synergistic survival
reduction (CI < 0.75) of ES2 and SMOV2 cells. Only additive effects
were observed in HAC2 and OVMANA cells, which might be related to
their initial high sensitivity to all three inhibitors.

Single inhibitor IC20 treatment in long-term survival reduced
growth in ES2 (GDC0941), HAC2 (AZD8055, GDC0941), JHOC5
(AZD8055, GDC0941), KOC7C (GDC0941) and OVMANA (selumetinib)
(Fig. 2C). The combination of AZD8055 with either GDC0941 or selu-
metinib caused additional growth inhibition in SMOV2. Importantly,
AGS induced a persistent growth reduction in all cell lines, confirming
the results of the short term assays (Fig. 2C). MLN0128 (sapanisertib),
another mTORC1/2 inhibitor currently in clinical development, re-
duced growth in combination with GDC0941 and selumetinib at IC20

concentrations as well (Supplementary Fig. 1B). The inhibitory effect of
AGS was less profound in immortalized human retinal epithelial RPE1
cells, when treated with AGS at intermediate and high concentrations
(Fig. 2C). At the molecular level, AZD8055 treatment led to upregula-
tion of either p-ERK, p-AKT308 or p-AKT473 or combinations of these
responses in HAC2, JHOC5, KOC7C, RMG1 and SMOV2 cells. More-
over, GDC0941 treatment induced p-ERK or p-AKT473 in three cell lines
(JHOC5, KOC7C and RMG1), while selumetinib induced p-AKT473 in
four cell lines (JHOC5, KOC7C, RMG1, and OVMANA) (Fig. 2D). These
results indicate that combined treatment is essential to prevent single
treatment induced pathway cross-activation. Interestingly, a near-uni-
versal reduction of p-AKT308, p-AKT473, and p-ERK was observed with
AGS resulting in a downstream reduction of p-S6 and p-4EBP1, another
transcriptional regulator downstream of mTORC1 [29], across all our
OCCC cell lines (Fig. 2D). MLN0128 in combination with GDC0941 and
selumetinib demonstrated similar results (Supplementary Fig. 1C).

In conclusion, synergistic growth inhibition was observed with AGS
in five OCCC cell lines and an additive effect with AGS in two other
OCCC cell lines. This observation was supported by long-term survival
assays and extensive downregulation of phosphorylated target proteins
of the PI3K/AKT/mTOR pathway and MAPK pathway.

3.3. Low-dose mTORC1/2, PI3Kα/δ and MEK1/2 inhibitor combination is
effective in OCCC PDX models

Next, we explored the effect of combining AZD8055, GDC0941 and
selumetinib at low-dose in vivo in an unbiased manner by using two
unique OCCC PDX models. Both PDX.180 and PDX.247 tumors have
PI3K/AKT/mTOR pathway related alterations (Fig. 3A). To mimic the
IC20 concentrations used in vitro, dosing for each drug was set at 20% of
the maximum dose daily used for monotherapy in mice, as described
[30–32]. Growth inhibition was observed in AZD8055, GDC0941 and
selumetinib single treatment arms as compared to vehicle. The effect of
monotherapy treatment became significant at day 21 in both PDX
models (Supplementary Fig. 2A). AGS low-dose combination treatment
caused significant tumor regression in PDX.180 and significantly re-
duced tumor growth in PDX.247 bearing mice (Fig. 3B and C). Im-
portantly, weight of the mice remained stable during the course of
treatment and none of the mice had to be prematurely sacrificed sug-
gesting no combination treatment related systemic toxicity (Fig. 3D and
E). Reduced expression of the proliferation marker Ki67 and an increase
in apoptosis (active Caspase-3) accompanied tumor regression in
PDX.180 mice in the AGS low-dose combination treatment arm (Fig. 4A
and B). Reduced Ki67 expression was also observed in the AGS low-dose
combination treatment arm of PDX.247 mice (Fig. 4C and D). The in-
hibitory effect of the combination treatment was stronger than that of
10mg/kg AZD8055 treatment in PDX.180 mice in historical data [4]. A
similar growth reduction was observed with the combination treatment
and 10mg/kg AZD8055 in PDX.247 mice (Supplementary Figs. 2A–B)
[4].

3.4. The Bcl-2, Bcl-XL and Bcl-w inhibitor ABT-737 enhances efficacy of
AGS in OCCC cells

AGS had a strong effect on growth of OCCC cells in both short term
and long term assays. However, no apoptosis was induced by AGS
treatment and regrowth of OCCC cell lines was observed after AGS was
removed from the media (data not shown). Remarkably, the AGS low-

Fig. 1. Determination of monotherapy sensitivity in seven OCCC cell lines. (A) Mutations and CNAs in PI3K/AKT/mTOR pathway and MAPK pathway signaling
nodes across seven OCCC cell lines [4]. wt indicates wild-type, CNgain indicates copy number gain, CNloss indicates copy number loss, * indicates stop-gained
alteration, fs indicates frameshift alteration. (B) Expression of p-AKT308, p-AKT473, p-ERK, p-S6 and p-4EBP1 in the OCCC cell line panel determined by Western blot.
β-Actin was used as loading control. (C) MTT assays with AZD8055, GDC0941 and selumetinib in the OCCC cell line panel. Error bars indicate SD and are derived
from three experiments.
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dose combination did induce apoptosis in PDX.180 but not in the
second model (PDX.247). These results suggest that apoptosis induction
may contribute to the efficacy of the AGS combination in vivo.
Therefore, we investigated whether AGS in combination with cisplatin
would affect proliferation and apoptosis in OCCC cell lines, since

platinum-based chemotherapy is still the standard of care for OCCC
patients, despite its limited efficacy in this TP53 wild-type ovarian
cancer subtype [4,33,34]. Cisplatin did not induce massive apoptosis in
OCCC cell lines, also not at high doses (Supplementary Fig. 3A and
results not shown). Disappointingly, AGS did not enhance proliferation

Fig. 2. Synergystic IC20 combination effects of AZD8055, GDC0941 and selumetinib. (A) IC20 concentrations as determined from MTT assay data. KOC7C IC20

for selumetinib could not be determined within the used concentration range. Accordingly, KOC7C was treated with 5 μM selumetinib in subsequent experiments. (B)
Synergy determination of AZD8055, GDC0941 and selumetinib IC20 combinations in the OCCC cell line panel with the Talalay–Chou method [27]. Combinations
were regarded synergistic when Combination Index (CI) < 0.75 or < 0.25 was observed in at least two out of three MTT assay experiments. (C) AGS inhibitory
effects were measured in a long-term colony formation assay. RPE1 cells were treated with 25% (5 nM AZD8055, 540 nM GDC0941 and 119 nM selumetinib) and
75% (15 nM AZD8055, 1620 nM GDC0941 and 356 nM selumetinib) of the difference between the lowest and highest IC20 from our OCCC cell line panel. Results
shown are representative of two experiments (D) Expression of p-AKT308, p-AKT473, p-ERK, p-S6 and p-4EBP1 after 48 h of treatment with IC20 concentration of
AZD8055, GDC0941, selumetinib or AGS as determined by Western blot. β-Actin was used as loading control. Membranes were individually exposed to visualize
protein bands. Results shown are representative of three experiments.
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inhibition and apoptosis induction by cisplatin, suggesting that the
mechanisms through which AGS and cisplatin act do not beneficially
interact in OCCC (Supplementary Figs. 3A–B). These results led us to
further investigate whether a specific apoptosis inducing agent could
sensitize OCCC cells towards AGS. To this end, the efficacy of ABT-737,
an inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-XL and Bcl-w [35],
was evaluated in our cell line panel. ABT-737 treatment inhibited
proliferation and this effect was additive to the effect of AGS treatment
on proliferation of all cell lines, with ES2 being the exception (Fig. 5A).
The combination of AGS and ABT-737 significantly enhanced apoptosis
compared to both AGS and ABT-737 single treatment in HAC2, KOC7C,
and SMOV2 cells (Fig. 5B and C and Supplementary Fig. 3C). This
observation was supported by an increase in the apoptotic markers
active PARP or active Caspase-3 in KOC7C and SMOV2 cells. In OV-
MANA cells the combination effect was less clear reflecting the different
levels of sensitivity to the combination (Fig. 5D).

4. Discussion

New therapeutic strategies for the treatment of OCCC are urgently

needed because of the low efficacy of standard platinum-based che-
motherapy in advanced stage OCCC. Here, we demonstrate synergistic
effects of mTORC1/2 (AZD8055), PI3K (GDC0941) and MEK1/2 (se-
lumetinib) inhibitors combined at low-dose in a genetically diverse
panel of OCCC cell lines and OCCC PDX models. Our study signifies that
combining mTORC1/2, PI3K and MEK1/2 inhibitors at low-dose is an
effective treatment strategy that precludes low-dose single treatment
induced pathway rewiring and warrants further exploration in OCCC.

In our recent report, we demonstrated high susceptibility of OCCC
to mTORC1/2 inhibitors, however, we also observed PI3K/AKT/mTOR
pathway re-activation [4]. Therefore, we evaluated whether PI3K and
MEK1/2 inhibitors can add to the potency of mTORC1/2 inhibitors to
prevent pathway re-activation and cross-activation at suboptimal con-
centrations. Indeed, IC20 combinations of AZD8055, GDC0941 and se-
lumetinib (AGS) decreased single-inhibitor related re-activation of
PI3K/AKT/mTOR and MAPK pathways at the molecular level. Our in
vitro results of the AGS combination indicate that the efficacy of AGS
covers the mutational spectra found in PI3K/AKT/mTOR pathway and
MAPK pathway nodes in OCCC. Moreover, the well tolerated low-dose
AGS combination efficiently reduced tumor growth in two OCCC PDX

Fig. 3. Low-dose AZD8055, GDC0941 and selumetinib combination efficacy in OCCC PDX models. (A) Mutations and CNAs in PI3K/AKT/mTOR signaling
nodes in PDX.180 and PDX.247 [4]. PDX.180 (B) and PDX.247 (C) NSG mice treated with vehicle, AZD8055, GDC0941, selumetinib or the combination in F5
generation. Tumor volume is represented as percentage of initial tumor volume at start of treatment. In the PDX.180 vehicle arm three mice received oral gavage
vehicle treatment. Four mice received intraperitoneal vehicle treatment and are previously described by Caumanns et al. [4]. Error bars indicate SEM, * indicates
p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001 of combination treatment arm relative to vehicle treatment arm. PDX.180 (D) and PDX.247 (E) mouse
weight represented for the aforementioned treatment groups. Error bars indicate SD.
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Fig. 4. Ki67 and active Caspase-3 expression in OCCC PDX models. Representative expression and quantification of Ki67 and active (cleaved) Caspase-3 in the
vehicle, AZD8055, GDC0941, selumetinib or combination treatment groups in PDX.180 (A and B) and PDX.247 (C and D) as determined by IHC. Error bars indicate
SD. * indicates p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001.

J.J. Caumanns, et al. Cancer Letters 461 (2019) 102–111

108



Fig. 5. ABT-737 added to IC20 AZD8055, GDC0941 and selumetinib combination. (A) Sensitivity of ABT-737, ABT-737 with AGS (and normalized to AGS) as
determined by MTT assay. Error bars indicate SD and are derived from two experiments. Flow cytometry plots from DiIC1 (5)-PI flow cytometry analysis of SMOV2
(B) after 48 h treatment with AGS, 1 μM ABT-737 or the combination. (C) Quantification of the bottom two quadrants (DiIC1 (5)-/PI- and DiIC1 (5)-/PI+) from DiIC1

(5)-PI flow cytometry analysis after 48 h treatment with AGS, ABT-737 or the combination in the cell line panel. HAC2, SMOV2 and OVMANA were treated with 1 μM
ABT-737. ES2, JHOC5, KOC7C and RMG1 were treated with 10 μM ABT-737. Error bars indicate SD and are derived from three experiments. * indicates p < 0.05, **
indicates p < 0.01, *** indicates p < 0.001 and **** indicates p < 0.0001. (D) Expression of active (cleaved) PARP and active (cleaved) Caspase-3 after 48 h of
treatment with AGS, 1 μM ABT-737 or 1 μM ABT-737 added to AGS as determined by Western blot. Floating cells were included in lysate. β-Actin was used as loading
control. Results shown are representative of two experiments.
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models, which we have recently established and are more accurately
representing patient tumors than cell line based xenografts [4,26,36].

Considering that single-targeted kinase inhibition results in kinome
rewiring and resistance in various tumor models, more cancers are
expected to benefit from combined inhibition of mTORC1/2, PI3K and
MEK1/2 [37,38]. Synergistic combinations of PI3K-mTORC1/2 inhibi-
tion and MEK1/2 inhibition have indeed been successfully used pre-
clinically in multiple cancer types (serous and mucinous ovarian
cancer, endometrial cancer and melanoma) with PI3K/AKT/mTOR
pathway and MAPK pathway alterations [39–42]. Moreover, single
long-dose treatment might result in more resistant clonal tumor cells
[43,44], which can be prevented by combination treatment. Notably,
autophagy was shown to play an important role in cisplatin resistance
in OCCC cells [45]. In addition, single-targeted inhibition by AZD8055
in colon cells antagonized chemotherapy initiated cell death through
autophagy induction [46]. These findings might explain why cisplatin
added to AGS was not effective in our study. Taken together, these
results suggest that OCCC patients potentially benefit from a combi-
nation of mTORC1/2, PI3K and MEK1/2 inhibitors using low-doses and
that this strategy could be extrapolated to other cancer types.

The in vitro and in vivo results demonstrated growth inhibition for
all models that often not coincided with apoptosis induction, suggesting
additional treatment options are needed. We observed that exposure of
OCCC cell lines to the apoptosis inducing agent ABT-737 increased
responsiveness towards AGS. These results are in line with previous
work in serous ovarian cancer cell lines and PDX models combining
dual PI3K-mTORC1/2 or MEK1/2 inhibitors with ABT-737 or navito-
clax (ABT-263) [47–49]. Interestingly, the low-dose AGS combination
induced apoptosis in our most sensitive OCCC PDX model, suggesting
that apoptosis enhancers may not always be necessary for apoptosis
induction. Recently, we found that BET-bromodomain inhibitors have
synthetic lethal effects in ARID1Amutant OCCC [6]. BET-bromodomain
inhibitors have been shown to reduce kinase inhibition related pathway
rewiring and re-activation in multiple cancer models, including ARID1A
mutant ovarian cancer cells [37,38]. Therefore, the combination of AGS
with BET-bromodomain inhibitors may be especially of interest in the
context of ARID1A mutant OCCC. Alternatively, given the high altera-
tion frequency in DNA repair pathway genes in OCCC [4,9], combining
DNA damaging agents or DNA repair pathway inhibitors with either
AGS or mTORC1/2, PI3K, and MEK1/2 inhibitors individually could be
an attractive approach for future studies. This will require careful ti-
tration of drug combinations to increase treatment efficacy by mod-
ulating autophagy and apoptosis induction in OCCC.

PI3K-mTORC1/2 dual inhibitor and MEK1/2 inhibitor combinations
have been explored clinically. The PI3K-mTORC1/2 dual inhibitor ge-
datolisib showed preliminary antitumor efficacy in a subset of KRAS
mutant ovarian cancer patients when combined with PD-0325901.
Unfortunately, adverse event related treatment interruptions (mainly
gastrointestinal complications) and dose-limiting toxicity occurred in
over half of the patients. Notably, the treatment arm combining the
other PI3K-mTORC1/2 inhibitor PF-04691502 with PD-0325901 was
prematurely closed due to low tolerability [50]. Dose-limiting toxicity
or treatment discontinuation occurred in other combination trials with
PI3K-mTORC1/2 dual inhibitors and MEK inhibitors as well, which
included ovarian cancer (NCT01936363 and NCT01248858) [51–53].
Importantly, stable disease or partial responses were observed in some
patients from distinct cancer types, indicating that combined inhibition
of mTORC1/2, PI3K and MEK1/2 may have therapeutic benefit. These
clinical results advocate the use of separate inhibitors of mTORC1/2
and PI3K to prevent target related toxicity as observed with PI3K-
mTORC1/2 dual inhibitors. Moreover, to safely add a MEK1/2 inhibitor
to mTORC1/2 and PI3K inhibitor combinations careful titration of such
a putative low-dose triple combination will be crucial. Titrated low-
dose combinations of targeted drugs have already been used in cancer
patients and efficacy was observed with minimal dose-limiting toxicity
[54–56]. For this low-dose strategy, multiple inhibitors of mTORC1/2,

PI3K or MEK1/2, currently in phase II trials (NCT01737450,
NCT02101788, NCT02465060, NCT02725268, NCT03128619 and
NCT03264066), are available.

Collectively, the effectiveness of low-dose mTORC1/2, PI3K and
MEK1/2 inhibitor combinations in OCCC cell lines and PDX models
signifies exploration of this low-dose treatment strategy in future clin-
ical trials in OCCC and other cancer types with PI3K/AKT/mTOR and
MAPK pathway alterations.
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