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1. Introduction

The lateral line is a near-field mechanosensory organ 
found in fish and aquatic amphibians. By measuring 
water displacement, these animals can detect objects 
in their vicinity without having to rely on vision or 
sound (Dijkgraaf 1963). This allows them to perceive 
predators, peers and prey, even in murky or dark waters. 
This ability can be referred to as hydrodynamic imaging 
(Coombs and van Netten 2005, Yang et al 2006) and can 
be discerned into two modes: active and passive.

In active hydrodynamic imaging, a fish generates 
a small flow field around themselves through move-
ment. By detecting and measuring distortions in this 
self-generated flow field, they can detect stationary 
obstacles. Possible use cases include safe AUV navi-
gation and obstacle avoidance (Kruusmaa et al 2014, 
Vollmayr et al 2014). In contrast, passive hydrodynamic 
imaging relies on an external flow field or turbulences. 
These are generated by other objects that either move 
or are placed upstream in free stream flow, e.g. Cham-
bers et al (2014) and Zheng et al (2017). This type of 
sensing could have applications in harbour security or 

tracking marine life without relying on an active bea-
con or vision in dark or murky environments.

Most biomimetic implementations of the lateral 
line, coined artificial lateral lines (ALLs), adhere to 
passive sensing (Liu et al 2016, Jiang et al 2019); usually, 
an array of pressure or fluid flow sensors sample the 
hydrodynamic environment at discrete points which 
concatenate to spatio-temporal velocity profiles (Fra-
nosch et al 2005, Ćurić-Blake and van Netten 2006).

To determine the performance of the ALL and sig-
nal processing pipeline, the combined system is usually 
bench marked via localising a vibrating (dipole), or a 
moving object, or in one case a moving dipole (Abdul-
sadda and Tan 2013b).

Several signal processing methods have been put 
forth to use measured velocity profiles to recover the 
relative location of the object; thereby partly solving the 
inverse problem (Abdulsadda and Tan 2013a). These 
methods include Capon’s beamforming (Nguyen et al 
2008, Dagamseh et al 2011) and template matching 
(Ćurić-Blake and van Netten 2006, Pandya et al 2006).

Since the relation between a source location and the 
resulting sensor signals is quite complex,  Abdulsadda 

B J Wolf et al

Recurrent neural networks for hydrodynamic imaging using a 2D-sensitive artificial lateral line

055001

BBIICI

© 2019 IOP Publishing Ltd

14

Bioinspir. Biomim.

BB

1748-3190

10.1088/1748-3190/ab2cb3

5

1

10

Bioinspiration & Biomimetics

IOP

11

July

2019

Recurrent neural networks for hydrodynamic imaging using a 
2D-sensitive artificial lateral line

Ben J Wolf1 , Steven Warmelink and Sietse M van Netten
Faculty of Science and Engineering, Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University of 

Groningen, 9747 Groningen, The Netherlands
1 Author to whom correspondence should be addressed.

E-mail: b.j.wolf@rug.nl

Keywords: hydrodynamic imaging, artificial lateral line, neural network, inverse problem, sensor array

Abstract
The lateral line is a mechanosensory organ found in fish and amphibians that allows them to sense 
and act on their near-field hydrodynamic environment. We present a 2D-sensitive artificial lateral 
line (ALL) comprising eight all-optical flow sensors, which we use to measure hydrodynamic velocity 
profiles along the sensor array in response to a moving object in its vicinity. We then use the measured 
velocity profiles to reconstruct the object’s location, via two types of neural networks: feed-forward 
and recurrent. Several implementations of feed-forward neural networks for ALL source localisation 
exist, while recurrent neural networks may be more appropriate for this task. The performance of 
a recurrent neural network (the long short-term memory, LSTM) is compared to that of a feed-
forward neural network (the online-sequential extreme learning machine, OS-ELM) via localizing 
a 6 cm sphere moving at 13 cm s−1. Results show that, in a 62 cm × 9.5 cm area of interest, the LSTM 
outperforms the OS-ELM with an average localisation error of 0.72 cm compared to 4.27 cm, 
respectively. Furthermore, the recurrent network is relatively less affected by noise, indicating that 
recurrent connections can be beneficial for hydrodynamic object localisation.
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and Tan (2011) and Wolf and van Netten (2019) opted 
to use artificial feed-forward neural networks to per-
form this source localisation task. The resulting sys-
tems were able to accurately detect the location of an 
object within a region of interest near the sensor array. 
In a comparative study (Boulogne et al 2017), a recur-
rent neural network type (ESN) was shown to outper-
form feedforward neural networks in noisy conditions. 
This is likely due to the temporal correlation between 
subsequent object locations and resulting velocity pro-
files, i.e. temporal context.

In this research, we demonstrate passive hydrody-
namic imaging, i.e. localizing a moving object in the 
vicinity of an artificial lateral line. We compare the per-
formance of two neural network types, feed-forward 
and recurrent. We hypothesize that recurrent connec-
tions may help in localising moving objects, since these 
networks can inherently make use of temporal context.

2. Background

In this section, we discuss the biological lateral line and 
our biomimetic implementation, as well as the neural 
network architectures that support our experiments.

2.1. Lateral line sensing
The lateral line allows fish to perceive a plethora of 
hydrodynamic phenomena, ranging from movements 
as small as the water disturbance generated by 
plankton, to movements as large as river streams 
(Coombs and van Netten 2005). This phenomenon 
has been called ‘touch at a distance’ (Dijkgraaf 1963), 
and has been associated with behaviours such as 
schooling, prey detection, rheotaxis, courtship, and 
station holding (Sutterlin and Waddy 1975, Partridge 
and Pitcher 1980, Hoekstra and Janssen 1985, Satou 
et al 1994, Montgomery et al 1997, Coombs and van 
Netten 2005). Since lateral line perception does not rely 
on light or sound, it is still effective in environments 
where these are absent, such as in low-light (e.g. in a 
dark cave or in blind species) or low-visibility (e.g. 
murky waters) environments. Fish are capable of 
detecting sources up to a distance of roughly one fish’s 
body length (Kalmijn 1988, Coombs and Conley 1997, 
Ćurić-Blake and van Netten 2006).

Lateral lines are comprised of distributed sensors 
called neuromasts. Two types of neuromasts exist: 
superficial neuromasts and canal neuromasts. Super-
ficial neuromasts are found on the skin surface all over 
the fish body, and their number present in one individ-
ual ranges from very few up to thousands, depending 
on the species (Coombs et al 1988). Canal neuromasts 
are found in fluid-filled canals under the outer skin. 
The canals themselves can usually be found along the 
trunk or near the head.

2.2. Sensor array and operation
Many different types of ALL sensors exist, although 
fluid flow is generally measured through deflection of 

a cantilever structure (Liu et al 2016). These sensors 
range from Microelectromechanical systems (MEMS) 
e.g. Asadnia et al (2016) and ionic polymer-metal 
composites (IMPC) (Abdulsadda and Tan 2013b) to 
optical guides (Herzog et al 2015) and, recently, all-
optical 2D-sensitive deflection sensors (Wolf et al 
2018).

The current all-optical sensor also senses fluid flow 
via a cantilever deflection. Each sensor contains four 
optical fibres with fibre Bragg grating (FBG) strain 
sensing elements. These FBGs reflect a specific wave-
length of light, depending on periodic variations in 
the fibre core. When an individual fibre is strained, the 
periodic variation stretches or contracts, resulting in 
a measurable wavelength shift (Flockhart et al 2003). 
The fluid forces acting on the sensor are thus encoded 
in the sensor deflection, which can be measured as a 
linear function of change in reflected wavelength peaks 
(Wolf et al 2018).

2.3. Neural networks for localization
We discern between two different types of artificial 
neural networks: feed-forward networks and recurrent 
networks. The main difference between the two types 
of networks is the direction of the information flow.

In feed-forward networks, the input strictly moves 
forward, sequentially going through all layers until it 
reaches the output layer, which predicts the location of 
the source.

Conversely, recurrent neural networks have con-
nections which allow the information to not only 
strictly go forward, but also allow connecting to the 
same layer, or even to a previous layer. Thanks to these 
recurrent connections, these networks can take history 
of the input into account, and are therefore often used 
when processing temporal data, such as time series.

2.3.1. State of the art
Artificial neural networks, such as the multilayer 
perceptron (MLP) used by Abdulsadda and Tan (2011) 
for locating a dipole source, are capable of learning 
complex, large, non-linear mappings from high-
dimensional data sets.

Using simulated data, Boulogne et al (2017) com-
pared the performance of an MLP, an echo state net-
work (ESN) and the extreme learning machine (ELM) 
(Huang et al 2004) on localizing a moving source 
under different levels of signal-to-noise ratio. While 
the ELM outperformed the other algorithms in low 
noise conditions, the added complexity of the MLP 
and the recurrency of the ESN allowed these networks 
to take past velocity profiles into account, which may 
have caused this type of network to perform better 
with higher noise levels. This indicates that, under 
more noisy conditions (such as when using measured 
data), recurrent networks may be more suitable com-
pared to feed-forward networks.

Specific to the all-optical sensors used in the cur-
rent study (figure 1), only the ELM architecture has 
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been applied. In Wolf and van Netten (2019), data from 
an ALL consisting of four sensors was processed by an 
ELM with 1500 hidden units. The ELM used a time win-
dow of 481 ms as the input, which was down sampled to  
27 Hz. The combined system was able to predict the 
location of a 6 cm diameter sphere moving at 7 cm s−1 
with an average error of 3.3 cm in an area of 36 × 11 cm.

2.3.2. ELM
For our feed-forward neural network architecture, 
we make use of a variant of the efficient single layer 
ELM network. This type of neural network has a single 
tuneable hyper parameter, the size of the hidden layer, 
which allows for fast optimization while preventing 
over fitting. The ELM’s input-to-hidden weights α 
are randomized and fixed (figure 2(a)). This provides 
a hidden representation H and leaves only the hidden-
to-output weights β to be learned (Huang et al 2006):

β̂ = H†T, (2.1)

where T denotes the desired (teacher) outputs.
Using the Moore–Penrose generalized inverse H†, 

the network is able to find optimal weights in a single 

learning step. An added benefit to the Moore–Pen-
rose generalized inverse is that it produces the small-
est norm solution, which also aids avoiding over fit-
ting. This smallest norm, similar to L2-regularization 
(Goodfellow et al 2016), penalizes large weights and 
thus penalizes (over-)dependence on single input 
nodes.

2.3.3. OS-ELM
One consequence of the single learning step, 
calculating the pseudo-inverse, is that this step 
becomes computationally intensive with larger 
data sets. Eventually, it is no longer computationally 
viable to perform the pseudo-inverse in one step due 
to hardware, i.e. working memory, constraints. The 
online sequential ELM (OS-ELM), which functions 
similarly to the ELM, can deal with larger data sets by 
implementing a sequential version of the least squares 
solution algorithm for the inverse operation.

Liang et al (2006) employ a sequential implemen-
tation by first calculating output weights based on an 
initial, sufficiently large, input batch. This initial batch 
produces a hidden activation or representation H0; 

(a) (b)

Figure 1. Schematic side view (a) and picture (b) of the 2D-sensitive artificial lateral line (sensor array) situated in the water tank. 
Eight sensors are placed equidistantly on a 45 cm guiding rail, with perforated protective tubing.

(a) (b) (c)

Figure 2. Overview of both neural network structures. (a) OS-ELM network. (b) LSTM network. (c) LSTM memory block. 
Subfigures (a) and (b) show how the sensor output is propagated to the hidden layer via a set of input weights α. For the OS-ELM, each 
hidden node sums their input to a hidden value; all hidden values combine to vector H. For the LSTM (b), recurrent connections (red) 
make H dependent on time. Subfigure (c) further describes the inner mechanics of the memory block. The three gates (F, I, O) receive 
the past block output and current block inputs. Via multiple operations, the cell state is updated and produces an output.

Bioinspir. Biomim. 14 (2019) 055001
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consequently, its optimal output weights are calculated 
using the left pseudo-inverse via:

β̂0 = (HT
0 H0)

−1HT
0 T0. (2.2)

This produces an initial weights estimate β0, optim-
ized for this initial subset. Subsequently, the network is 
given new input samples in small batches, and the out-
put weight vector is updated based on the discrepancy 
between the target values of the next subset T1 and the 
estimate based on the previously found weights H1β0:

β1 = β0 + (HT
0 H0 + HT

1 H1)
−1HT

1 (T1 − H1β0).
 (2.3)

This second step repeats until all training samples 
have been processed. In the special case where the ini-
tial batch size equals the number of training examples, 
the OS-ELM implements the original ELM (Liang et al 
2006).

2.3.4. LSTM
The long short-term memory (LSTM) network is a 
recurrent neural network (RNN) capable of learning 
long-term dependencies. Invented by Hochreiter and 
Schmidhuber (1997), the LSTM has changed very little 
since its conception in Hochreiter and Schmidhuber 
(1997).

Recurrent neural networks are networks in which 
nodes may have a connection to themselves. This recur-
rent connection allows them to take earlier inputs into 
account, giving these networks a temporal dimension. 
RNNs can therefore detect relations between events 
which are separated in time (Pascanu et al 2013).

LSTM networks can learn dependencies between 
samples with a time lag of over 1000 samples (Hochre-
iter and Schmidhuber 1997). This property has made 
LSTM networks a popular choice for problems in 
which long-term memory is needed, such as protein 
structure prediction (Sønderby et al 2015) and speech 
recognition (Graves et al 2013).

LSTM networks consist of complex nodes called 
memory blocks, see figures 2(a) and (c). Each memory 
block contains a memory cell, whose state is affected 
by three gates: forget, input, and output. These gates 

roughly correspond to resetting, writing, and reading 
operations on this memory cell (Graves 2012).

During the training phase of the network, the gates 
within the LSTM block are optimized via back propa-
gating the prediction error through time. The steps for 
updating the input, recurrent, and bias weights as well 
as the update steps of each type of gate are omitted here 
and thoroughly described for several variations of the 
LSTM by Greff et al (2017).

3. Methods

Here, we first describe the setup including the stimulus 
and sensor array. Then, we discuss the preprocessing 
steps and how we determine optimal parameters for the 
neural network implementations and preprocessing 
methods.

3.1. Setup
Data is gathered in a 1200 × 800 × 260 mm (w × l × h)  
water tank. A sphere with a diameter of 6 cm is moved 
horizontally in this tank by an adapted XY plotter 
(Makeblock) at a velocity of 13 cm s−1 to create 
hydrodynamic stimuli. The plotter is controlled with 
an Arduino-compatible mainboard, which reports its 
location on set intervals.

The sensor array consists of eight sensors with an 
inter-sensor distance of 64 mm. One of the eight sen-
sors malfunctioned (see figure 3(a)), and its data is 
therefore excluded from further analysis, functionally 
making it a seven-sensor ALL.

Each sensor is protected by a perforated 32 mm 
plastic tube (figure 1) as a failsafe to avoid impacts with 
the object. The perforation pattern is chosen to be uni-
form with a ring of eight equidistant 9 mm diameter 
holes, sandwiched between two rings of eight equidis-
tant 3 mm holes. This allows the bulk of the flow field 
to enact the sensor, while still providing structural 
integrity for protection. These perforated tubes may 
slightly affect the sensor sensitivity (Wolf et al 2018) 
and introduce a dampening effect; lowering the reso-
nance peak magnitude and frequency, and reducing 
overall sensitivity.

(a) (b)

Figure 3. Top view depiction of the setup. Subfigure (a) schematically shows the area of interest, the object, motion paths, and the 
sensor array. The red cross indicates the excluded sensor. Blue arrows show examples of individual runs. The two red dashes on 
the y -axis indicate the two distances for the second type of experiments (see section 3.4). Subfigure (b) shows the 2D plotter (blue 
aluminium beams) with respect to the sensor array. The horizontal blank aluminium bar above the ALL additionally protects the 
sensors from impact with the object.

Bioinspir. Biomim. 14 (2019) 055001
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The measured sensor deflections are obtained via 
an optical sensing interrogator (Micron Optics si255, 
Atlanta, USA) at a sampling frequency of 250 Hz. 
Each sensor is calibrated via a calibration procedure 
described by Wolf et al (2018). Given that the sensors 
were calibrated for fluid flow speed outside of their 
protective tubes, we opt to use the measured deflec-
tions as inputs for the neural networks. The expected 
measured velocity profiles are low frequency (<1 Hz) 
stimuli, we may therefore assume that the relation 
between the deflections and fluid velocity is close to 
linear (Wolf et al 2018).

Both the XY plotter mainbord and the optical sens-
ing interrogator are controlled via a Matlab R2016a 
script. This allows synchronizing the sensor data with 
the stimulus location, providing accurate teacher 
labels for the neural networks.

3.2. Data generation
Object movement is constrained to the (2D) xy-plane; 
its depth is kept constant during all experiments. The 
sphere is moved along 256 unique linear paths in a 
region of interest in front of the array, see figure 3(b). 
For each path, the sphere is moved back and forth 6 
times between the left and right bound, creating a total 
of 3072 runs.

In addition to the recorded sensor signal, the plot-
ter also provides timestamps for movement initiation, 
ramp-up, ramp-down, and movement end. These 
timestamps are used to synchronize and extract the 
parts of the signal where the velocity is constant; i.e. in 
between ramp-up and ramp-down. We combine the 
timestamps with the coordinates given to the plotter 
to automatically generate location labels for these seg-
ments with a constant velocity.

After each plotter movement, the plotter pauses 
for 20 s in order to minimize the effect of the previ-
ous movement on the hydrodynamic situation during 
subsequent movements.

3.2.1. Preprocessing
For preprocessing, we centre the sensor x- and 
y -deflections around zero by subtracting their median 
from the signal. We also investigate the effect of 
down sampling the signal, which can greatly decrease 
training time and serves as an additional form of noise 
reduction. Furthermore, it scales down the temporal 
dimension, making temporal correlation less distant 
and easier to learn.

Our parameter sweep for preprocessing includes 
three different down sampling ratios: 4×, 8×, and 16×.

The down sampled data set is subsequently nor-
malized before feeding it to the neural networks. We 
test the performance using the original data and four 
variants of normalization techniques, all of which are 
applied on a per-recording basis:

 1.  none; no further normalization was applied.
 2.  normalize per sensor; for each sensor, scale 

its time-series so that its maximum amplitude 
is 1.

 3.  normalize per time step; for each time step, 
linearly scale the values of all sensors such 
that the sensor with the largest amplitude has 
value 1.

 4.  z-score per sensor; for each sensor, transform its 
time-series to its z-score, giving it mean µ = 0 
and standard deviation σ = 1.

 5.  z-score per time step; for each time step, 
transform all sensor values with the z-score.

3.3. Neural network optimization
In order to determine the optimal network 
hyperparameters and preprocessing methods, 
we perform a parameter sweep for both. We first 
determine a baseline parameter set which gives a 
reasonable performance, through trial and error. 
Then, optimal values for all parameters were found by 
modifying one variable at a time while keeping others 
constant, which identifies the effect of that single 
variable on the performance of the complete pipeline. 
No grid-wise search is performed due to the excessive 
time it would take to test each combination.

We further limit the preprocessing parameter 
sweep to exclude effective time windows that exceed 
one second, for which we have several reasons. First, 
longer time windows effectively reduce the amount of 
training examples, making it harder for generalization 
to occur. Secondly, longer window sizes may include 
past data that contains less information and might also 
be irrelevant for the current location, making it harder 
to learn temporal patterns from the data. Finally, for 
time-sensitive tasks, having a smaller window enables 
a faster response from the neural networks.

3.3.1. LSTM
The LSTM network was implemented in Python 
using Keras (Chollet et al 2015), a deep learning 
framework running on top of Tensorflow (Abadi et al 
2015). Our LSTM implementation used the Adagrad 
optimizer with a clipnorm of 1 (Goodfellow et al 
2016), which limits calculated gradients such that they 
cannot exceed a maximum norm of 1, which helps in 
combatting overfitting.

Data is fed to the LSTM network in batches of win-
dows. Each complete motion in the data set is split up 
into windows; the default size of the windows is 30 
samples, but this value is varied during the parameter 
sweep. The default window thus has a size of 30 × 14, 
for the x- and y - deflections of each of the 7 function-
ing sensors. Each window is accompanied by a single 
teacher label corresponding to the ground truth loca-

Bioinspir. Biomim. 14 (2019) 055001
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tion of the source at the end of that window, creating a 
many-to-one mapping.

During the parameter sweep, we evaluate the 
LSTM performance through k-fold cross-validation, 
with k  =  5; this results in a train/test/validation split of 
80/10/10%. The order of the 3072 recorded motions is 
shuffled and each complete motion is assigned to one 
of the sets.

Based on the parameter sweep (table 1), the opti-
mal LSTM network architecture has 100 hidden 
nodes, a learning rate (α) of 0.05, a learning rate decay 
of 1 × 10−9, no dropout, and uses the hyperbolic tan-
gent activation function (act. fun.). The signal pro-
cessing pipeline for the LSTM is described by a win-
dow size (win sz.) of 15 samples, a stride of 2, a down 
sampling rate (ds. rate) of 16 (giving the a sampling 
frequency of 15.625 Hz) and uses, z-score per sensor 

normalization (norm.).

3.3.2. OS-ELM
For the OS-ELM, we similarly divide complete 
motions from the data set into separate windows, 
but we also flatten this window to a 1D vector. For the 
initial training phase, we create a batch of 1.5 × N  
windows, where N is the number of hidden units. For 
the sequential training steps, the batch size was set to 
64 windows.

Since there is no validation set needed for the OS-
ELM training phase, we apply an 80/20% train/test 
split. Again, with five-fold cross validation, we shuffled 
the order of the data set and assigned each fold to their 
respective train or test set.

Table 2 shows the results for the OS-ELM param-
eter sweep. Based on the parameter sweep, our final 
ELM network architecture had 30 000 hidden nodes, 
and uses the ReLU() activation function. The processing 
pipeline includes a window size of 15 samples, a stride of 
1, a down sampling factor of 16 (giving a sampling fre-

quency of 15.625 Hz), and uses z-score normalization.

The constant speed section of each motion 
lasts between 4.3 s for horizontal and 4.5 s for 
diagonal motion. This results in a data set of 
4.4 × 15.625 × 3072 � 2.1 × 105 input examples 
for the OS-ELM. For the LSTM framework, given the 
stride of 2 rather than 1, the data set is roughly half that 
size.

Although the number of hidden nodes for the OS-
ELM may seem high, the number of input examples 
(windows) is roughly 7 times higher. This makes it 
unlikely for overfitting to occur.

3.4. Influence of noise
We create a separate data set in order to systematically 
determine the influence of noise. In particular, we are 
interested in the localization robustness of the two 
types of neural networks with respect to different 
noise levels. This data set consists of 60 repetitions 
of both backwards and forward motion along two 
unique paths parallel to the array, at 6.15 cm and 
8.15 cm distance, respectively, producing 240 recorded 
motions. These distances are indicated via red dashes 
in figure 3(a).

For augmenting this data set, we employ a con-
trolled method of adding noise to our data; we want 
to stay as close to the real environment as possible, 
while still being able to quantify how much noise is 
added. We therefore first record a large data set with-
out any stimulus or plotter activity, from which we 
sample noise specific to each sensor. We augment the 
data set by combining recordings with the following 
nine noise augmentation amplification levels: {0, 
0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4}, producing a final aug-
mented set of 2160 motions. This range is selected 
on a pseudo-logarithmic scale to allow testing a large 
range of noise levels.

We keep the previously determined optimal hyper 
parameters for both type of neural networks and thus 
do not re-optimize for this augmented data set. For 
determining the performance of each network, we 
employ five-fold proportional stratified sampling; 
each of the five folds has an equal amount of randomly 
picked complete motions from each of the nine aug-
mented sets. The training data is shuffled before using 
these folds for training the networks.

Table 1. Parameter sweep for the LSTM and signal processing. 
Indicated here are the default parameters and the variation options 
for each parameter. From these options, the optimal choices are 
highlighted in bold.

Parameter Default Options

Nodes 50 10, 20, 50, 100, 200

α 0.05 0.1, 0.05, 1 × 10−2, 

1 × 10−3, 1 × 10−4

Decay 1 × 10−6 0, 1 × 10−12, 

1 × 10−9, 1 × 10−6, 

1 × 10−3

Dropout 0.20 0, 0.1, 0.2, 0.35, 0.5

Act. fun. ReLU ReLU, sigmoid, tanh

win sz. 30 1, 2, 4, 8, 15, 30

Stride 1 1, 2, 4, 8, 15, 30

ds. rate 8 4, 8, 16

Norm. 4 (z-score) 1, 2, 3, 4, 5

Table 2. Parameter sweep for the OS-ELM and and signal 
processing. Indicated here are the default parameters and the 
variation options for each parameter. From these options, the 
optimal choices are highlighted in bold.

Parameter Default Options

Nodes 5000 {1, 2, 5, 10, 20, 30} ×1000

act. fun. sigmoid ReLU, sigmoid, tanh

win sz. 30 1, 2, 4, 8, 15, 30

Stride 1 1, 2, 4, 8, 15, 30

ds. rate 8 4, 8, 16

Norm. 4 (z-score) 1, 2, 3, 4, 5

Bioinspir. Biomim. 14 (2019) 055001
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4. Results

4.1. Localisation performance
In the first series of experiments, we compared the 
performance of a feed-forward neural network 
(OS-ELM) to the performance of a recurrent neural 
network (LSTM) on the task of localizing a source 
using measured artificial lateral line (ALL) data.

Both networks were optimized with respect to their 
hyper parameters and preprocessing methods using 

five-fold cross validation, as described in the Methods 
section.

Figure 4 shows an example of a single run, where 
both networks predict the location of an object mov-
ing parallel to the array. This figure shows that the 
LSTM network output is less erratic and closer to the 
target path compared to the ELM prediction.

When we combine and interpolate between all 
locations in the region of interest, we can show a spatial 
mapping of the localisation error. Figure 5 shows the 

(a) (b)

Figure 4. Predicted and true labels for one example run. Subfigure (a) shows the true coordinates over time (black lines) as well as 
the prediction of the OS-ELM and LSTM for the x-coordinate (blue) and y -coordinate (red). Subfigure (b) shows the true path of 
motion (black lines) and the reconstructed path (blue to red over time) for both networks.

Figure 5. Spatial distribution of localisation errors (cm) for both type of networks. Note that the colour bars are scaled per network, 
up to 15 cm error for the OS-ELM and only up to 2 cm error for the better performing LSTM. The small dots on the x-axis indicate 
the x-coordinates of each sensor.

(a) (b)

Figure 6. Subfigure (a) shows the error distribution for the first set of experiments, which has a significant different shape for both 
networks. Subfigure (b) shows the median error (bold line) and confidence intervals for different noise augmentation levels for the 
second set of experiments. Here, we show 10, 25, 50, 75, and 90% confidence levels.

Bioinspir. Biomim. 14 (2019) 055001
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interpolated error magnitude at each location. From 
these spatial plots, we observe that the localisation 
error further away from the array increases for both 
neural networks.

The actual distribution of localisation errors, regard-
less of relative location, is shown in figure 6(a). Here, 
we binned the localisation error for both types of net-
works, with a limit of 15 cm. The average and standard 
deviation of the localisation errors are 0.72 ± 1.04 cm  
and 4.27 ± 3.33 cm for the LSTM and OS-ELM, respec-
tively. While the LSTM errors are concentrated around 
the average, the OS-ELM has a large tail in the distri-
bution (figure 6(a)), with 4.2% of the errors exceeding 
15 cm (not shown).

These results show that the LSTM network signifi-
cantly outperforms the OS-ELM network on this 2D 
source localisation task using measured velocity pro-
files from a 2D-sensitive array.

4.2. Noise robustness
To further determine the suitability of both neural 
networks for other circumstances or other types of 
artificial lateral lines, we also investigated the effect of 
noise with respect to localisation.

In our performance analysis, we differentiate 
between noise augmentation levels within the test set. 
Figure 6(b) and table 3 both provide an insight in the 
effect of added noise to the overall performance. As the 
noise level increases, so do the LSTM and OS-ELM net-
work’s average localization errors, although the LSTM 

seems relatively less affected by higher noise levels.
Figure 6(b) shows box plots of OS-ELM and LSTM 

performance, separated per noise level. For all noise 
levels considered, the median LSTM error is signifi-
cantly lower than the OS-ELM error.

Table 3 shows the overall and per-noise-level 
error for both networks. On the lowest noise level (no 
noise), the LSTM achieved an average error of 0.55 cm, 
whereas the ELM had an average error of 1.75 cm. For 
the highest noise level (4×), these errors increase to 
1.10 cm and 5.64 cm for the LSTM and ELM networks, 

respectively. Again, the error distribution of the OS-
ELM shows a long tail towards higher errors, making it 
less reliable than the LSTM in this comparison.

5. Discussion

The aim of our research was to determine how well 
recurrent neural networks performed compared to 
feed-forward neural networks, which are the current 
state of the art, on the task of processing measured 
artificial lateral line data.

Based on the results from our first series of experi-
ments, we can safely conclude that the recurrent neural 
network (LSTM) is able to accurately estimate moving 
underwater source locations. Furthermore, the LSTM 
network outperformed the OS-ELM network, with 
an average localization error of 0.72 cm for the LSTM 
compared to average error of 4.27 cm for the OS-ELM. 
While this result may not generalize to all feed-forward 
and recurrent networks, it does indicate that recurrent 
networks may be more suited to processing ALL data 
than some feed-forward networks.

Overall, the spatial mapping of localisation errors 
indicate that objects moving at distances further away 
from the array are harder to localize. This is in agree-
ment with other research and with theory; i.e. the sig-
nal to noise ratio of measured and expected velocity 
profiles negatively correlate with distance.

The omitted malfunctioning sensor does not sig-
nificantly affect the (local) spatial localisation errors 
as indicated in figure 5. On average, the left half of the 
region of interest (with the omitted sensor) has slightly 
higher errors. It is unclear why this effect is limited, 
although it might be a result of the unbiased optim-
ization nature of neural networks; all locations are 
treated with equal importance. In the case of object 
detection or obstacle avoidance, nearby locations may 
be considered more relevant. A more advanced locali-
sation algorithm may consider a weighted optim-
ization error metric, depending on the distance of 
a target location to each (functioning) sensor in the 
array, as an approx imation to Fisher information or 
the Cramer–Rao bound (Abdulsadda and Tan 2013a).

The signal-to-noise ratio of the measured velocity 
profile of an object highly depends on its size, speed, 
and distance with respect to the array. The specific 
sensor array sensitivity also influences this ratio. The 
second, augmented data set with varying noise levels 
allowed us to assess the performance of both network 
types under influence of sensor noise, independent 
of object distance. By changing and varying the input 
noise, we can effectively emulate different (lower) sen-
sor array sensitivities, which makes the findings more 
applicable to situations with a lower signal to noise 
ratio. The average localization errors are 0.69 cm and 
3.16 cm for the LSTM and OS-ELM networks, respec-
tively. Furthermore, while both networks decrease 
in performance with higher noise levels, the LSTM 
is clearly less affected, suggesting that recurrent con-

Table 3. Error per noise level for LSTM and OS-ELM networks 
after stratified five-fold cross-validation. Shown here are the mean 
Euclidean error and standard deviation. Finally, the average error 
over all noise levels is shown.

Noise level

LSTM error 

(µ± σ cm)

OS-ELM error 

(µ± σ cm)

0.00 0.55 ± 1.42 1.75 ± 1.52

0.10 0.57 ± 1.60 1.74 ± 1.44

0.25 0.58 ± 1.66 1.92 ± 1.63

0.50 0.57 ± 1.51 2.34 ± 1.90

1.00 0.61 ± 1.48 3.00 ± 2.40

1.50 0.66 ± 1.75 3.46 ± 2.65

2.00 0.71 ± 1.75 3.89 ± 3.04

3.00 0.82 ± 1.83 4.70 ± 3.68

4.00 1.10 ± 2.45 5.64 ± 4.37

Average 0.69 ± 1.72 3.16 ± 2.51
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nections may help in alleviating the effects of random, 
uncorrelated input noise.

Our current sensor array of 45 cm with 7 func-
tional 2D-sensitive all-optical sensors in combina-
tion with our LSTM implementation leads to an 
average localisation error of 0.72 cm in a region of 
interest of 62 × 9.5 cm. This result cannot be eas-
ily directly compared to the state of the art, because 
other works use other type of sensors and other rela-
tive dimensions for their sensor array and region of 
interest (Jiang et al 2019). Furthermore, most studies 
only consider stationary vibrating (see Abdulsadda 
and Tan (2011)) or moving vibrating objects (Abdul-
sadda and Tan 2013b); the stimulation frequency can 
be used to filter the signal and thus produces higher 
signal-to-noise data than possible for non-vibrating 
moving objects.

In one similar study, Wolf and van Netten (2019) 
show an 3.3 cm localisation error for a moving sphere 
with a four-sensor array of 12 cm in an area of 36 × 11 cm  
using an ELM. The maximal distance of the cur rent 
study is similar, while both the region of interest and 
sensor array array are considerably wider. We therefore 
conclude that the OS-ELM performance is on par while 
the LSTM implementation outperforms the state of the 
art for unidirectionally moving objects with constant 
velocity.

There are two main considerations for future work 
and expansions to our experiments. First, although 
our stimulus is more complex than the standard dipole 
bench mark, the motion was still restricted at one 
depth-level and in a straight line with constant speed. 
This type of motion naturally favours taking longer 
time windows and using memory (i.e. recurrent con-
nections), since the path of the object is predictable.

For future demonstrations of versatile artificial lat-
eral line hydrodynamic imaging, one could consider 
more complex object propulsion and object shapes. 
These bench mark stimuli are limited in the sense that 
they do not emulate fish motion (Zheng et al 2017) 
or aquatic propulsion, but rather they provide a con-
trolled, fair comparison method. By using a moving, 
rather than vibrating, source, we increased the com-
plexity of the hydrodynamic environment by allowing 
wakes and vortices to be measured by the sensor array. 
This is however no substitution for detecting an object 
in freestream flow or in a hydrodynamic environ-
ment with multiple objects or alternative flow sources. 
Future research could explore localizing self-propel-
ling objects using a stationary artificial lateral line.

Secondly, while the LSTM is quite an advanced 
network, the OS-ELM is limited in its complexity. 
Future research could compare more complex feed-
forward neural networks or simpler recurrent neural 
networks, to further investigate the effect of recurrence 
versus network complexity. In one simulation study 
(Boulogne et al 2017), the ELM and echo state network 
(ESN) are compared where they have similar levels of 
performance. In this regard, the ESN is an interesting 

comparison candidate: it has recurrent connections 
although the network structure closely resembles the 
ELM.

6. Conclusion

In conclusion, a system with recurrent neural networks 
is capable of hydrodynamic imaging; i.e. localizing 
a moving underwater source in a 2D plane based on 
measurements with a 2D-sensitive artificial lateral 
line of all-optical sensors. This type of passive object 
sensing does not rely on vision or an active beacon and 
can therefore work in dark or murky environments. It 
may therefore, despite its limited range, be favoured 
over traditional detection technologies when 
considering ecology or covert sensing.

The recurrent network (LSTM) significantly out-
performs the feed-forward network (OS-ELM) for 
localizing a moving object in quiescent water. This 
may be due to the temporal correlation between sub-
sequent object locations and the resulting subsequent 
measured velocity patterns. In addition, the recurrent 
network is relatively less affected by sensing noise, and 
performs more consistently throughout the area of 
interest. This indicates that recurrent neural networks 
may be especially suited for hydrodynamic imaging.
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