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Article

In recent years, psychology has profited increasingly from 
the inclusion of temporal dynamics into its theories and 
assessment, for instance, with regard to the development of 
emotions and psychopathology over time and across places 
(Bos, Schoevers, & aan het Rot, 2015; Hamaker, Grasman, & 
Kamphuis, 2016; Jebb, Tay, Wang, & Huang, 2015; Koval, 
Kuppens, Allen, & Sheeber, 2012). This development and the 
emergence of ambulatory assessment (AA) techniques have 
propelled a focus on ideographic models. These models cen-
ter on the dynamics of a single individual to fully express 
individual characteristics (Molenaar, 2004). This provides 
rich insight into the dynamic variation within an individual. 
The ideographic approach contrasts to the traditional, nomo-
thetic approach, where general predictions about the popula-
tion are derived based on the variation between individuals. 
Despite their popularity ideographic approaches also have 
disadvantages, especially being ineffective when studying 
large samples and lacking generalizability. Fitting a new 
model for every individual is unwieldy in a large sample. 
Furthermore, ideographic models often describe the dynam-
ics of a single individual in great detail, but results cannot be 
generalized to other individuals. This is a severe limitation 
because psychological researchers typically strive to general-
ize or at least to assess how an individual compares with oth-
ers, as is done with nomothetic approaches.

To introduce ideographic approaches for psychological 
assessment practices, notions of reliability and validity have 
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Abstract
Studying emotion dynamics through time series models is becoming increasingly popular in the social sciences. Across 
individuals, dynamics can be rather heterogeneous. To enable comparisons and generalizations of dynamics across groups 
of individuals, one needs sophisticated tools that express the essential similarities and differences. A way to proceed is to 
identify subgroups of people who are characterized by qualitatively similar emotion dynamics through dynamic clustering. 
So far, these methods assume equal generating processes for individuals per cluster. To avoid this overly restrictive 
assumption, we outline a probabilistic clustering approach based on a mixture model that clusters on individuals’ vector 
autoregressive coefficients. We evaluate the performance of the method and compare it with a nonprobabilistic method 
in a simulation study. The usefulness of the methods is illustrated using 366 ecological momentary assessment time series 
with external measures of depression and anxiety.
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to be considered. Reliability and validity have been firmly 
established for nomothetic methods but their application to 
idiographic methods received comparatively little consider-
ation. Bridging ideographic and nomothetic approaches may 
enable the derivation of reliable, valid, and standardized 
assessment methods through normative and generalizable 
statistical models (Beltz, Wright, Sprague, & Molenaar, 
2016; Wright & Zimmermann, 2019). For instance, the 
interpretation of intraindividual dynamics might be facili-
tated by standardized tools and comparisons with normative 
group data. Thus, the recent shift toward ideographic meth-
ods propels the need for integrative efforts of the intraperson 
and interperson perspectives.

To generalize dynamic processes researchers must draw 
inferences across levels of analysis, such as from the within-
person level to the between-person level and vice versa. 
Often researchers assume that the between-person and 
within-person processes are equal, which would imply that 
studying the process at one level suffices to generalize to 
the other level. This so-called ergodicity assumption fails to 
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hold for most psychological processes, meaning the analy-
sis at one level will yield different results than the analysis 
at another level (Molenaar, 2004). Some researchers pre-
sume that ergodicity would be strictly required to generalize 
across levels and, in the ubiquitous presence of nonergodic-
ity for psychological processes, abandon generalizations 
altogether. This is a misconception (Adolf & Fried, 2019), 
because generalizing within-person dynamics to the 
between-person level is possible if one can achieve condi-
tional ergodicity (Molenaar, 2004). Conditional ergodicity 
is met if within-person and between-person structures are 
equivalent after controlling for the unique factors of both 
structures, such as autoregression, time trends, or the exis-
tence of distinct subgroups (Voelkle, Brose, Schmiedek, & 
Lindenberger, 2014).

Similar to the concept of ergodicity, researchers investi-
gating the items of multiple individuals over time would 
like to achieve measurement invariance (MI) across levels, 
with an absence of measurement differences (also called 
item bias) across individuals and time. Consequently, MI is 
a less restrictive condition than ergodicity. It requires only 
the measurement process to be equivalent and allows for 
heterogeneity with respect to the latent variables and their 
interrelations over individuals and time. The threat of unex-
plained heterogeneity, however, applies similarly to MI as it 
does to ergodicity; in a heterogeneous sample the intraper-
son and interperson differences may be too pronounced to 
achieve MI between levels (Adolf, Schuurman, Borkenau, 
Borsboom, & Dolan, 2014).

The quest into conditional inferences across levels of 
analysis requires researchers to identify the sources of het-
erogeneity at both levels of analysis. A possible reason for 
nonequivalence between levels could be the existence of 
subgroups at the between-individual level (Voelkle et  al., 
2014). Often empirical findings and the provided theoreti-
cal underpinnings thereof suggest the existence of sub-
groups of individuals that exhibit quantitative similarities in 
their dynamics. These subgroups are assumed to be charac-
terized by individuals that resemble one another in their 
dynamism, while the subgroups mutually differ in their 
dynamics. It has been theorized, for example, that different 
age groups exhibit distinct affective responses to stress 
(Scott, Sliwinski, & Fields, 2013). Similarly, the dynamic 
relationships between somatic symptoms and positive and 
negative affect have been shown to differ in magnitude as 
well as in direction across individuals (Schenk, Bos, Slaets, 
de Jonge, & Rosmalen, 2017). For instance, the mutual 
dynamic relationships of positive and negative affect has 
been found to differ markedly between patients with 
Parkinson’s disease (Shifren, Hooker, Wood, & Nesselroade, 
1997). Shifren et al. (1997) note, “Thus, despite selecting a 
sample that was homogeneous with regard to disease type, 
functional abilities, and cognitive impairment, the results 
show heterogeneity for the structure and variation of mood.” 

(p. 336). Such findings suggest that differences in emotion 
dynamics cannot simply be accounted for by static 
covariates.

Some statistical approaches that bridge the ideographic 
and nomothetic approaches, like multilevel analysis, assume 
similar patterns of effects across the whole sample. While 
ideographic models circumvent the problem by allowing for 
heterogeneity in the structures of the models, this property 
often leads to overfitting. For example, Van der Krieke et al. 
(2017) used multilevel analysis and ideographic time series 
models to describe within-person and between-person vari-
ability. Results revealed large differences in dynamics 
between individuals. Neither of the two approaches was able 
to integrate information of individual dynamics with infor-
mation on similar dynamics from other individuals, and to 
give an indication of why individuals’ dynamics differed 
markedly.

Another approach to bridge ideographic and nomothetic 
perspectives uses likelihood ratio tests to assess reasons for 
nonequivalence between structures in multisubject time 
series (Voelkle et al., 2014). While this procedure allows to 
test whether equivalence holds across possible sources of 
heterogeneity, the researcher has to specify the sources of 
variance a priori. In many cases, the factors that cause non-
equivalence between structures are not known. The quest to 
bridge ideographic and nomothetic approaches has thus 
motivated the search for meaningful subgroups to stratify 
the heterogeneous sample into homogenous subgroups.

To assess the dimensions of within-person and between-
person differences, we propose an exploratory procedure 
that identifies subgroups of individuals who differ qualita-
tively in their within-individual dynamics: a dynamic clus-
tering method. Clustering provides insight into the 
systematic patterns that cause nonequivalence and allows 
to draw inferences about both, commonalities and differ-
ences of the two levels. Identifying clusters in time series 
can enable us to distil the signature dynamics of different 
psychological processes from intensive longitudinal data. 
This will allow a more precise description of individual 
developments. Specifically, we propose a clustering 
method based on the most frequently employed time series 
model in the social sciences, the multivariate vector autore-
gressive (VAR) model of order p (cf. Lütkepohl, 2005). 
VAR parameters enable the description of multivariate 
dynamic relations in a format familiar to researchers in the 
field. In contrast to time series clustering procedures pro-
posed so far, we will allow for within-cluster variation by 
employing a Gaussian finite mixture model to cluster indi-
viduals’ VAR coefficients, thereby arriving at a probabilis-
tic clustering.

We investigate the properties of our probabilistic cluster-
ing model in a simulation study and illustrate its application 
on an empirical example; the method’s performance is con-
trasted to a nonprobabilistic alternating least squares VAR(1) 
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model (Bulteel, Tuerlinckx, Brose, & Ceulemans, 2016). R 
code for estimating the clustering methods is provided on 
the projects OSF page at (https://osf.io/sv2tg/?view_only=d
57284da4e5f413c8727e6f98a4291fa). Before we outline 
our dynamic clustering model, we begin with a short over-
view of clustering methods for longitudinal data.

Clustering Methods for Time Series Designs

Contemporary clustering methods are most commonly 
divided into two groups: nonprobabilistic1 and probabilistic 
approaches. The former operates by minimization of a crite-
rion, for instance, the sum of squares of distances, resulting 
in a nonprobabilistic assignment of individuals into clus-
ters. The latter involves a statistical model, such as a mix-
ture model that assumes data to arise from a mixture of 
distributions where each component corresponds to a clus-
ter (McLachlan & Basford, 1988; McLachlan & Peel, 
2004). At the heart of time series clustering methods lays 
the challenge of accounting for the dependence structure 
that is characteristic to dynamic data. Time series clustering 
approaches in other fields focus mainly on classification 
and use feature-based distance measures or compare the 
individual time points directly (for an interdisciplinary 
review, see Liao, 2005). The present study is focused on 
approaches that account for the temporal dependence 
through a statistical time series model. These approaches 
hold most promise for psychological research, because they 
provide a description of the cluster-wise dynamics in terms 
of interpretable model parameters which allows for general-
izability of results. In these models, each cluster consists of 
time series described by similar model parameters.

Jacques and Preda (2014) contrast adaptive methods and 
filtering methods to cluster longitudinal data. Adaptive 
models combine the two crucial steps—accounting for 
dependency between time points and forming clusters—in a 
single estimation step, while filtering methods carry out 
both steps separately. Below, we review shortly the most 
prominent model-based time series clustering methods for 

psychological AA data. A classification of these methods is 
listed in Table 1.

Recently, McNicholas and Murphy (2010), Viroli (2011), 
and Anderlucci and Viroli (2015) proposed probabilistic, 
adaptive approaches to time series clustering, where each 
cluster is modelled by an identical generalized autoregres-
sive process. The covariance structure of these models 
depends on the length of the time series, rendering these 
models unsuited for time series with a high number of 
observations and/or unequal length. Recently, probabilistic, 
adaptive approaches have been proposed for long and 
unequal time series for the univariate (Michael & Melnykov, 
2016) and multivariate case (Ernst et al., 2019).

Adaptive clustering methods offer many advantages 
over filtering methods. For instance, some are able to 
describe different clusters through different time series 
models (for details, see Ernst et al., 2019). These models, 
however, are very complex and their iterative estimation 
procedure makes them slow when studying large data sets 
and scenarios where various numbers of potential clusters 
and/or potential time series models are considered. As a 
result, the number of potential models that will have to be 
compared increases exponentially with the number of time 
series models and the number of clusters that are considered 
in model estimation. The use of filtering circumvents scal-
ability problems. Most important, though these adaptive 
models lack random effects at the individual level. 
Therefore, these models give no indication of the within-
cluster deviation beyond a single white noise error term. So, 
while elegant holistic models exist to cluster psychological 
time series, these models assume identical VAR coefficients 
for individuals of the same cluster. Therefore, the represen-
tation does not give indication of the individual deviations 
from the autoregressive cluster parameters which are highly 
plausible to exist in psychological AA data.

Bulteel et  al. (2016) put a nonprobabilistic, adaptive 
clustering method forward that clusters multivariate, time 
series by representing clusters through identical VAR model 
parameters. That is, the method operates via an alternating 

Table 1.  Overview of Model-Based Time Series Clustering Methods for Psychological Data.

Paper Probabilistic Filtering method Adaptive method Variation within clusters

McNicholas and Murphy (2010) + − + −
Anderlucci and Viroli (2015) + − + −
Viroli (2011) + − + −
Michael and Melnykov (2016) + − + −
Ernst, Albers, Jeronimus, and Timmerman (2019) + − + −
Krone, Albers, Kuppens, and Timmerman (2018) − + − −
Bulteel et al. (2016) − + + −
Gates, Lane, Varangis, Giovanello, and 
Guskiewicz (2017)

− + − ±

Note. + Denotes a property is present, − a property is absent, and ± a property is present to a limited extent.

https://osf.io/sv2tg/?view_only=d57284da4e5f413c8727e6f98a4291fa
https://osf.io/sv2tg/?view_only=d57284da4e5f413c8727e6f98a4291fa


Ernst et al.	 1189

least squares method, minimizing the within-group sum of 
squares based on the VAR parameters of the cluster an indi-
vidual is assigned to. This results in a nonprobabilistic clus-
tering of individuals. This method does not account for 
individual variation within clusters.

S-GIMME, a nonprobabilistic, filtering approach, esti-
mates temporal and contemporaneous associations between 
variables at either the population-, subgroup- (i.e., cluster-), 
or individual-level (Gates et  al., 2017; Lane, Gates, Pike, 
Beltz, & Wright, 2019). Only effects that significantly 
improve the modification index at the respective level are 
estimated. S-GIMME is exceptional in that it accounts for 
individual differences by estimating individual-level 
effects. The estimation of associations at various levels dis-
tinguishes S-GIMME from the other time series clustering 
approaches discussed here that estimate the associations 
between all variables at the cluster-level. While providing a 
partitioning that takes individual differences into account, 
S-GIMME provides only limited indication of the within-
cluster variation, especially with regard to the associations 
that are estimated at the population- or subgroup-level.

Krone et  al. (2018) used a nonprobabilistic, filtering 
approach to cluster emotion time series. They employed the 
autoregressive Bayesian dynamic model as a filter and clus-
tered the resulting parameters with a k-means algorithm.

To relax the rather strict assumption of equal dynamic 
processes within clusters that has been made (for at least 
some associations) by the dynamic clustering methods so 
far, we propose a probabilistic, filtering method. Unlike the 
methods reviewed above, this will account for and give 
indication of within-cluster deviation for all estimated 
dynamic associations.

Proposing a Probabilistic Clustering Procedure 
Using Finite Mixture Models

The probabilistic clustering method proposed in this article 
accounts for the variation in both, the individual dynamics 
and the individual mean levels, by clustering on both VAR 
slopes and intercepts. The method proceeds in a two-step 
fashion: (a) summarizing individuals’ multivariate dynam-
ics by use of the VAR(p) model and (b) probabilistic clus-
tering of model parameters of Step 1, based on the Gaussian 
finite mixture model (McLachlan & Basford, 1988; 
McLachlan & Peel, 2004).

Summarize Individual Time Series.  The VAR model of order 
p, VAR(p), for an individual j (j = 1, . . . ,j) is given by the 
following equation:
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with y j t,  the m × 1 vector of observed variables for indi-
vidual j at time point t (t = 1, . . . ,Tj), cj the m × 1 vector of 
VAR intercepts, ΦΦj a, the m × m matrix of VAR slopes that 
describe the dynamic influence of the state of the m vari-
ables at time lag a on the state of the variables at time point 
t of individual j and u j t, the dynamic errors at time point t. 
The VAR model assumes equal distance between time 
points and relies on the assumption of stationary time series 
(Lütkepohl, 2005). For Gaussian time series, stationarity 
implies that the mean and variance–covariance of a series 
will stay constant.

For each individual’s time series, the most parsimonious 
lag order (pj) balanced with goodness of fit can be deter-
mined by model selection criteria such as the Bayesian 
information criterion (BIC; Schwarz, 1978). Based on this, 
the highest (plausible) lag to capture all the individual pro-
cess in the sample can be selected (i.e., p = max(pj)). We 
propose to subsequently estimate a VAR model of lag p for 
all individuals.2 Because mixture model approaches to clus-
tering are known to show disappointing performance in 
high-dimensional space (Bouveyron & Brunet-Saumard, 
2014), and to avoid overfitting, overparametrization through 
an unnecessarily high lag order should be avoided. Similarly, 
only a moderate number of variables, say between two and 
seven, should be clustered using the approach proposed 
here.

Probabilistic Clustering.  Once VAR intercepts and slopes are 
obtained for every individual the distribution of VAR coef-
ficients can be estimated through a finite mixture model. 
Specifying probability distributions per cluster rather than 
using fixed values, we relax the assumption of identical 
parameters for individuals within a cluster as in the method 
by Bulteel et al. (2016). The probability density function of 
obtaining x j  from the population containing k component 
densities can be expressed through:

f fj

i

k

i i jx x; ;θ π θ( ) = ( )
=
∑
1

where x j  = vec(c j, ΦΦ j, 1, . . . , ΦΦ j, p), a m2 × p + m vector, 
θ represents the parameters of the k component densities, 
components have mixing proportions π = (π1, . . . , πk)

t 

where 
i

k

i

=
∑ =
1

1π and each component density, fi, is assumed 

multivariate Gaussian.3 Hence, the parameters in θ are the 
mean vectors µi (i = 1, . . . , k) and variance-covariance 
matricesΣΣ1, . . . , ΣΣk . The vector µi contains of cluster i the 
mean VAR intercepts and the mean VAR slopes. The (co)
variances of the individual parameters within cluster i 
around mean µi is indicated by covariance matrix ΣΣi . The 
parameters of the complete model can be collected in the 
vector,
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ΘΘ = ( )π ,θτ τ

The parameters are estimated via maximum likelihood. 
After Θ  has been obtained, a maximum likelihood estimate 
of Θ, estimates for the posterior probabilities of cluster 
membership can be formed for each participant, yielding a 
probabilistic clustering of the n individuals. The probability 
that participant j with VAR(p) coefficients x j  belongs to 
cluster i is estimated by,
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with component densities fi assumed to have the N(µi, ΣΣk) 
distribution. A crisp partitioning of every of the n individu-
als into exactly one of the k clusters is achieved by assign-
ing every participant to the cluster to which they have the 
highest posterior probability of belonging. The probabilistic 
clustering model proposed in this article will employ the 
expectation–maximization (EM) algorithm (Dempster, 
Laird, & Rubin, 1977) to achieve maximum likelihood esti-
mate Θ .

In the context of a finite mixture model, the selection of 
the number of clusters can be conceived of as a comparison 
between statistical models, where the different statistical 
models represent different choices for the number of clus-
ters. Similarly, models with different constraints about the 
structure of the ΣΣi’s can be specified. This may be useful as 
such constraints can facilitate model estimation (cf. Fraley 
& Raftery, 2002; McNicholas, 2016; Steinley & Brusco, 
2011). To this end, the number of clusters and the most par-
simonious parametrization of the covariance matrix can be 
determined with the same probability model that is used to 
estimate the cluster parameters. To select the best fitting 
model, we employ the BIC (Schwarz, 1978).4

Autoregressive Representation of Time Series as 
Filter

The clustering based on filtered VAR coefficients as we pro-
pose here offers the following advantages: (a) Condensing 
the observed time series into model parameters before clus-
tering reduces the high dimensionality that is characteristic 
for multivariate time series data. This problem, the curse of 
dimensionality (Bellman, 1957), can lead to highly biased 
estimates during the clustering process. VAR coefficients 
offer a reduction of dimensionality in which meaningful fea-
tures are extracted from the data by use of the VAR model; 
(b) Clustering on VAR coefficients allows for comparison of 
time series of differing length; (c) VAR coefficients enable 
the description of multivariate dynamic relations in a format 
familiar to researchers in the field. That is, VAR coefficients 

represent the dependence structure of a time series, and thus 
summarize the dynamics of individuals in a meaningful way.

For instance, emotional inertia, the propensity of affec-
tive states to resist to change, is often considered a key com-
ponent of psychological well-being. This temporal 
dependency gives insight into a crucial and often neglected 
component of emotional well-being (Koval & Kuppens, 
2012). High emotional inertia may be indicative of impaired 
emotion regulation, as a lack of emotion regulation may 
result in an inability to recover from negative emotions. It 
might also be indicative of a heightened preoccupation that 
results in emotional insensitivity and decreased involve-
ment with the environment (Brose, Schmiedek, Koval, & 
Kuppens, 2015). Emotional inertia is traditionally opera-
tionalized as the autoregressive coefficient of an emotion 
(Koval et al., 2012; Krone et al., 2018). Because VAR coef-
ficients are multivariate in nature, they provide insight into 
the dynamics of individual emotions, as well as the dynam-
ics between the various emotions.

Sequential procedures to clustering, as outlined here, 
can be jeopardized when the reduction technique of the 
first step selects a summary of the data that is not discrimi-
nant of the different groups (Bouveyron & Brunet-Saumard, 
2014). Our filtering method can be expected to be appro-
priate as long as VAR coefficients provide a proper indica-
tion of the underlying dynamics. An exception of this 
condition occurs, for instance, if the processes under study 
are not time-invariant, but meaningful changes in individu-
als’ dynamic development occur during the course of the 
study, for instance, due to an intervention (see, e.g., 
Bringmann et al., 2017).

Also in other fields has the distance between time series 
parameters been widely applied as filter in nonprobabilistic 
clustering algorithms, especially the Euclidean distance 
between autoregressive coefficients, for instance, in combi-
nation with k-means or fuzzy C-medoids (D’Urso, De 
Giovanni, & Massari, 2015; D’Urso, De Giovanni, Massari, 
& Di Lallo, 2013). These measures are popular because of 
the absolute convergence of the autoregressive sequences 
of processes belonging to the admissible ARIMA (autore-
gressive integrated moving average) class. Thus, the dis-
tance between vectors of autoregressive parameters is a 
measure of structural dissimilarity between two time series 
processes. The distance indicates the cluster to which the 
dynamical structure of a series is closest.

Employing a Gaussian mixture distribution, we assume 
the individual VAR coefficients to be normally distributed 
around the mean of their associated cluster. The within-
cluster covariance matrix can be freely estimated, which 
allows flexibility with regard to the orientation and distribu-
tion of the different clusters. The distance between maxi-
mum likelihood estimates of autoregressive parameters of 
two time series originating from a processes with the same 
dynamical structure will be asymptotically multivariate 
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normally distributed for stationary and nonstationary time 
series of any lag order (Corduas & Piccollo, 2008). Provided 
that time series within a cluster are generated by an identi-
cal dynamical process, VAR coefficients will thus asymp-
totically distribute normally around their cluster mean. This 
implies that model misspecification with regard to the num-
ber of clusters and/or a small sample size might thus cause 
the different cluster components to be nonnormally distrib-
uted. The Gaussian mixture model, however, has been 
shown largely robust to deviations (e.g., deviations caused 
by upper and lower limits or even uniform distribution 
within clusters (Steinley & Brusco, 2011). Because we 
assume the existence of clusters that are generated by at 
least structurally similar dynamic processes, we assume the 
within-cluster distribution of VAR coefficients will be well-
captured by a normal distribution.

In the following, we will investigate the performance of 
our model-based clustering method in a simulation study 
and show its usefulness on an empirical ecological momen-
tary assessment data set. The method shall be compared 
with an adaptive, nonprobabilistic clustering method 
(Bulteel et al., 2016).

Simulation

Simulation 1: Equal Intercepts Between Clusters

To assess the performance of the proposed probabilistic clus-
tering method, we will conduct the following simulation. The 
performance of the probabilistic and nonprobabilistic method 
(Bulteel et al., 2016) will be compared with regard to recov-
ery and optimization. Recovery is evaluated as the degrees to 
which the cluster membership and the cluster-specific VAR 
slopes can be retrieved; optimization is determined as sensi-
tivity to local minima. We will investigate to what extent 
these two performance aspects depend on six data character-
istics. Four of these factors pertain to the partition of indi-
viduals: (a) the number of clusters, (b) the relative cluster 
sizes, (c) the distance between clusters, and (d) the variation 
within clusters. Two factors reflect efficiency: (e) the number 
of individuals and (f) the number of time points (Tj). 
Regarding these factors, we have the following hypotheses: 
the performance of the clustering methods will decrease with 
(a) a higher number of clusters, (b) larger differences in rela-
tive size of the clusters, (c) lower distance between clusters, 
(d) higher variation within clusters, (e) fewer individuals, and 
(f) fewer time points. Also, we expect the probabilistic clus-
tering method proposed in this article to outperform the non-
probabilistic clustering method as soon as variation within 
clusters is introduced, and to show a smaller vulnerability to 
differences in relative cluster size. All simulation and analy-
sis were carried out in R (R Core Team, 2017). R code for 
estimating the clustering methods is provided in the supple-
mentary material (available online) and on the projects OSF 

page at https://osf.io/sv2tg/?view_only=d57284da4e5f413c8
727e6f98a4291fa.

Design and Procedure

For every individual, a time series was generated according 
to Equation (1). Herewith, the following factors were kept 
constant: the variance–covariance matrix of the white noise 
series ΣΣu j was set to the identity matrix and intercepts, c j , 
were equal to zero for all clusters. The latter implies that we 
simulate under a relatively difficult condition, because dif-
ferences between clusters are captured in the VAR coeffi-
cient matrix only. We restricted our simulation to VAR 
processes of order 1, VAR(1). The number of variables was 
set to m = 4. To generate data the six factors introduced 
above were varied in a completely crossed design.

1.	 The number of clusters k: 2 or 4.
2.	 The relative size of the clusters: Equal distribu-

tion of participants across clusters; minority con-
dition, with one cluster containing 10% of 
participants and the rest evenly distributed across 
the remaining clusters; majority condition, with 
one cluster containing 60% of individuals and the 
remaining individuals evenly distributed over the 
other cluster(s).5

3.	 The distance between the different clusters as 
expressed through distance between VAR(1) regres-
sion coefficients matrices of the different clusters. 
For every cluster in every condition, we simulated a 
matrix that contained the mean VAR(1) regression 
coefficients of the cluster. For each variable, all 
autoregressive and cross-regressive effects were 
generated with autoregressive coefficients on the 
diagonal and cross-regressive associations on the 
off-diagonal. In all conditions, autoregressive 
weights in the VAR coefficient matrix ΦΦi  were 
drawn from a uniform distribution on the interval 
[.7, .9]. Cross-regressive weights in the VAR coef-
ficient matrix were generated as follows: small dif-
ferences, where for every cluster-level VAR 
coefficient matrix half the cross-regressive weights 
were sampled from a uniform distribution on the 
interval [.3, .5] and the remaining half from the 
interval [0, −.2]; medium differences, where for 
every cluster-level VAR coefficient matrix all cross-
regressive elements of the coefficient matrix were 
sampled from a uniform distribution from the inter-
val [.3, .5] and half these coefficients were randomly 
selected to be multiplied by −1; large differences, 
where for every cluster-level VAR coefficient matrix 
all cross-regressive elements of the coefficient 
matrix were sampled from a uniform distribution 
from the interval [.2, .7] and half these coefficients 

https://osf.io/sv2tg/?view_only=d57284da4e5f413c8727e6f98a4291fa
https://osf.io/sv2tg/?view_only=d57284da4e5f413c8727e6f98a4291fa
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were randomly selected to be multiplied by −1. To 
ensure that generated time series were stationary 
with eigenvalues of the regression coefficient matri-
ces less than 1 in modulus, the VAR(1) slopes were 
multiplied with .99/max(|λi|) in all three conditions; 
here |λi| represents the vector of absolute values of 
the eigenvalues of the regression coefficient matrix 
ΦΦi  of the respective cluster i. Rescaling took place 
before the assignment of negative weights in the 
medium and large difference conditions. To offer an 
idea of the resulting distance between clusters for 
different conditions, the average misclassification 
probability of an individual within each simulated 
data set is provided in Figure 1. Misclassification 
probabilities were calculated based on overlap 
between components of the mixture distribution of 
individuals’ true VAR(1) slopes according to Maitra 
and Melnykov (2010) using the MixSim R package 
(version 1.1.3; Melnykov, Chen, & Maitra, 2012). 
Overlap between components was only determined 
for the similar underlying VAR(1) coefficients con-
ditions because only in these conditions true VAR(1) 
slopes were sampled from a mixture distribution. 
Naturally, a slight deviation will occur between 
individuals’ estimated VAR(1) and true VAR(1) 
slopes due to sampling variation.

4.	 The variation between individuals of the same clus-
ter (within-cluster distance):6 Identical underlying 

VAR(1) regression coefficients for individuals of the 
same cluster, where for each individual j in cluster i 
ΦΦj = ΦΦi, with ΦΦi the matrix of regression slopes for 
cluster i. This data type is consistent with the implicit 
assumption of the nonprobabilistic clustering 
method proposed by Bulteel et al. (2016): exhibiting 
no variation between true parameters of individuals 
of the same cluster; With similar underlying VAR(1) 
regression coefficients for individuals of the same 
cluster. The matrix of regression slopes for individ-
ual j in cluster i, ΦΦj, was taken from a multivariate 
normal distribution with mean vector vec(ΦΦi) and 
variance–covariance matrix ΣΣi, where ΣΣ1  = . . . = 
ΣΣk = Im × .025. Before selecting the resulting 
matrix of individual regression slopes, it was 
checked whether it was conform the assumption of 
stationary time series with all absolute values and 
all moduli of eigenvalues smaller than 1. The distri-
bution of ΦΦj s within cluster i resembled thus a trun-
cated multivariate normal distribution. Once a 
matrix ΦΦj was selected for individual j, a time series 
of appropriate length was simulated with true VAR 
slopes equal to ΦΦj according to equation (1).

5.	 The total number of individuals: 30, 60, or 120.
6.	 The number of time points per person: 51, 101, or 

501.

For each of the resulting 324 conditions, we simulated 
10 data sets. Subsequently, a probabilistic and a nonproba-
bilistic clustering analysis with the true number of clusters 
and correct lag order of p = 1 was performed on each data 
set with 1 rational start and 100 random starts. The non-
probabilistic clustering method had a rational initialization 
where the VAR(1) regression slopes were partitioned by 
use of hierarchical agglomerative clustering via Ward’s cri-
terion (Ward, 1963). The rational initialization of the EM 
algorithm used a partition reached by model-based hierar-
chical agglomerative clustering of individuals’ regression 
slopes and intercepts. This method begins with clusters 
containing one individual each and merges the two clusters 
that are associated with the lowest decrease in classifica-
tion likelihood for the mixture model (Banfield & Raftery, 
1993).

The nonprobabilistic clustering method was estimated 
through an alternating least squares approach as proposed 
by Bulteel et al. (2016), using R. The code for estimating 
the method is provided in the supplementary material avail-
able online. The probabilistic clustering method was esti-
mated by first determining VAR(1) coefficients using least 
squares estimation, subsequently clustering was carried out 
by use of the EM algorithm (Dempster et al., 1977) included 
in the mclust R package (version 5.3, Fraley & Raftery, 
2002; Fraley, Raftery, Murphy, & Scrucca, 2012). The clus-
ter parameters, ΘΘ, and the posterior probabilities of cluster 

Figure 1.  Distribution of average misclassification probability 
in the similar-true-parameters conditions across the three 
between-cluster distance conditions.
Note. Squares indicate the average misclassification probability within a 
data set, lines indicate the mean, bands the interquartile range. Average 
misclassification probability is based on overlap between components of 
the mixture distribution of individuals’ true VAR(1) slopes.
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membership, were estimated for different parametrizations 
of the covariance matrices via the EM algorithm. Because 
no constraints for the parametrization of the covariance 
matrices were imposed a priori the estimation procedure, 
the ideal parametrization was determined through model 
selection (cf. Fraley & Raftery, 2002; McNicholas, 2016) 
employing the BIC. Estimation of the probabilistic method 
relied on default values for determining convergence and 
terminating the EM algorithm (Fraley et  al., 2012). 
Tolerance for relative convergence of the estimated log 
likelihood equaled thus 1 × 10 − 5, the relative parameter 
convergence tolerance in case of iterative M-steps equaled 
1.490116 × 10 − 8. Because the EM algorithm for multi-
variate normal mixtures breaks down for singular covari-
ance matrices (e.g., Bishop, 2006, Chapter 9), estimation 
was terminated when the covariance of a component den-
sity appeared to be singular by a threshold value of 2.220446 
× 10 − 16. The best fitting probabilistic clustering solution 
was indicated by the BIC.7 For each estimated model, the 
crisp cluster membership and cluster VAR(1) slopes, ΦΦi , 
were considered.

Simulation 2: Unequal Intercepts Between 
Clusters

To evaluate how much the performance would improve for 
between-cluster differences in intercepts, we conducted a 
second simulation. This simulation deviated from the simu-
lation above in two ways. First, instead of fixing the mean 
of all variables to zero in every cluster, the mean of the time 
series varied between clusters. Means of variables were 
assigned values in such a way that the difference between 
any two clusters was equal to the difference in means 

Table 2.  Mean (SD) ARI Values of the Two Clustering Methods Across Conditions.

Factor Levels Nonprobabilistic method Probabilistic method

Distance between clusters Small distance .574 (.427) .575 (.381)
Medium distance .895 (.205) .939 (.147)
Large distance .927 (.168) .965 (.102)

Distance within clusters Identical data .988 (.059) .935 (.192)
Similar data .609 (.379) .718 (.348)

Number of persons 30 .790 (.335) .789 (.338)
60 .800 (.331) .828 (.299)
120 .806 (.326) .861 (.257)

Number of observations 51 .769 (.336) .736 (.352)
101 .808 (.327) .855 (.271)
501 .820 (.327) .887 (.250)

Cluster size Equal proportion .832 (.309) .844 (.277)
Majority cluster .804 (.320) .842 (.284)
Minority cluster .760 (.357) .793 (.336)

Number of clusters 2 .802 (.354) .843 (.314)
4 .796 (.306) .809 (.286)

Note. ARI = adjusted Rand index. The largest ARIs in each condition are highlighted in bold.

between any other two clusters, with a Euclidean distance 
of 4.24. Second, in this simulation, we kept the factor of 
between cluster differences in VAR(1) coefficients fixed to 
the small differences condition. We selected this condition 
because in the first simulation this condition proved most 
difficult for the two clustering algorithms; Performance 
improvements due to between cluster differences in inter-
cepts will thus be most visible in this condition.

Results Simulation 1

Recovery Performance.  In this section, we contrast the recov-
ery performance of the clustering methods regarding (a) 
cluster membership and (b) cluster-wise VAR(1) slopes. In 
the next section, clustering methods will be compared on 
their computational efficacy.

Recovery of cluster membership.  To assess the recovery 
of cluster membership, we calculated the adjusted Rand 
index (ARI; Hubert & Arabie, 1985) between the estimated 
classification of individuals into clusters and the true par-
titioning. The ARI is a measure of agreement between 
classifications, taking on a value of 1 in case of perfect 
agreement and 0 when the agreement between partitions 
could have been expected by chance. Mean ARIs for dif-
ferent conditions are displayed in Table 2.8 Overall, the 
probabilistic clustering method outperformed the nonprob-
abilistic method with mean ARIs of .83 (SD = .30) and .80 
(SD = .33), respectively. This occurred in more complex 
situations, for instance, when the proportion between clus-
ters was unequal or when participants of a cluster differed 
in their underlying VAR(1) coefficients. However, due to 
the increased complexity of the probabilistic method its 



1194	 Assessment 28(4)

performance decreased more strongly when the sample 
size or the number of observations was low.

To gain an insight into effect size, we performed a 
repeated-measures analysis of variance (RM-ANOVA) on 
ARI values including all possible two-way interactions. 
Results are shown in Table 3. Between-method effects give 
an indication of the general influence of the manipulated 
factors on membership recovery, while within-data effects 
illustrate the differential effects of these factors on the two 
different clustering methods. Effect sizes suggest that low 
distance between (η

p

2
 = .63) and large distance within clus-

ters (η
p

2
 = .57) are most detrimental for classification 

recovery with a large interaction between the two factors 
(η

p

2
 = .47). Thus, the cluster separation was found to influ-

ence cluster recovery most severely. A high number of 
observations appears the third largest factor for increasing 
classification recovery (η

p

2
 = .10). Within-data effects sug-

gest that the performance of especially the nonprobabilistic 
clustering method suffers under increased within-cluster 
variation (η

p

2
 = .18).9

Recovery of true cluster-specific VAR(1) slopes.  Recovery 
of coefficients was assessed through the mean10 Euclidean 
distance between the estimated ΦΦis, ΦΦ i, and true ΦΦi s used 
to generate the data:11
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Table 4 shows average mean Euclidean distances across 
conditions. Again, the probabilistic method shows overall 
superior recovery over the nonprobabilistic method with 
mean values of .20 (SD = .15) and .24 (SD = .19), respec-
tively. Table 5 displays the result of a RM-ANOVA on 
mean Euclidean distances. Effect sizes suggest that the 
largest influence on parameter recovery is shown for large 
distance within clusters (η

p

2
= .85), a small distance 

between clusters (η p
2

= .48), a low number of observations 
(η

p

2
= .41) and small sample size (η p

2
= .28). There was a 

large interaction between between-cluster and within-clus-
ter variance (η p

2
= .37).12 Within-data effects suggest that 

the performance of especially the nonprobabilistic method 
decreases when there is more variation within clusters (η

p

2

= .47) while the probabilistic clustering method suffers 
more heavily under fewer observations (η p

2
= .22). Type of 

clustering method employed accounted for 14% of the 
overall variance.

Sensitivity to Local Minima.  We also compared clustering 
methods on attraction rates, the percentage of runs out of 
the 101 that resulted in the model that was retained as 
solution. The average attraction rates across simulation 
conditions are displayed in Table 6 and the RM-ANOVA 

results in Table 7. Both tables suggest that regardless of 
the data analyzed, the probabilistic clustering method had 
much lower attraction rates with a high percentage of runs 
resulting in a suboptimal solution (η p

2
= .82). Attraction 

rates of both methods were lower in scenarios where  
variation exists between the true parameters of individu-
als of the same cluster (η p

2
= .54) or when the number of 

clusters was high (η
p

2
 = .38).

Results Simulation 2

The results of the second simulation are compared with the 
results of the first simulation’s small differences condition 
in Table 8. By introducing small differences in intercepts, 
the performance improved with regard to all three aspects 
evaluated here, with exception of the attraction rates of the 
probabilistic clustering method. The improvement is a little 
smaller than the improvement of increasing the distance in 
VAR(1) coefficients from small differences to medium dif-
ferences (cf. the medium distance rows in Tables 2, 4, and 
6). Larger distances between the cluster-level intercepts 
have the potential to improve the performance of the clus-
tering algorithms to an even larger extent.

Discussion of Results

Based on the results of the simulation study, we draw the 
following conclusions. When true parameters of individu-
als within a cluster are not identical, the probabilistic clus-
tering method demonstrates better recovery of both cluster 
membership and VAR(1) slopes than the nonprobabilistic 
approach. Under the conditions of our simulation, both 
methods performed well, but the retrieval of cluster 
parameters and classifications depended crucially on clus-
ters being well-separated. Thus, the distance between 
clusters is an important predictor for the success of clus-
tering methods, particularly with increasing variation 
within clusters. It is apparent that clustering methods 
should be employed only if visible differences between 
groups can be expected.

Compared with the simpler nonprobabilistic method, the 
probabilistic clustering method estimates additional param-
eters, such as the variation within clusters and the cluster 
proportions. Consequently, a high number of observations 
and a high sample size are required when this method is 
employed. While more complex, the estimation of addi-
tional parameters by the probabilistic clustering method can 
offer advantages by providing more information about the 
data structure. Employing a finite mixture model, the 
within-cluster variation in dynamics can be estimated. 
Furthermore, taking estimated proportions into account 
during the determination of probabilistic cluster member-
ship allowed for improved inferences with regard to cluster 
classification when proportions were unequal.
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Table 3.  Results of a RM-ANOVA Evaluating the ARI Values of Both Clustering Methods.

df F p η
p

2

Between-method effects
  Distance within clusters 1 4252.000 .000 .572
  Number of persons 2 31.200 .000 .019
  Number of observations 2 179.000 .000 .101
  Cluster size 2 65.400 .000 .039
  Number of clusters 1 19.600 .000 .006
  Distance between clusters 2 2729.000 .000 .631
  Distance within clusters × Number of persons 2 10.500 .000 .007
  Distance within clusters × Number of observations 2 0.855 .425 .001
  Distance within clusters × Cluster size 2 18.400 .000 .011
  Distance within clusters × Number of clusters 1 3.350 .067 .001
  Distance within clusters × Distance between clusters 2 1413.000 .000 .470
  Number of persons × Number of observations 4 2.070 .082 .003
  Number of persons × Cluster size 4 2.540 .038 .003
  Number of persons × Number of clusters 2 0.254 .776 .000
  Number of persons × Distance between clusters 4 2.540 .038 .003
  Number of observations × Cluster size 4 4.010 .003 .005
  Number of observations × Number of clusters 2 2.420 .090 .002
  Number of observations × Distance between clusters 4 42.600 .000 .051
  Cluster size × Number of clusters 2 97.600 .000 .058
  Cluster size × Distance between clusters 4 1.770 .132 .002
  Number of clusters ×Distance between clusters 2 0.550 .577 .000
  Residuals 3188  
Within-data effects
  Clustering method 1 79.400 .000 .024
  Distance within clusters × Method 1 698.000 .000 .180
  Number of persons × Method 2 26.900 .000 .017
  Number of observations × Method 2 98.900 .000 .058
  Cluster size × Method 2 6.660 .001 .004
  Number of clusters × Method 1 20.800 .000 .006
  Distance between clusters × Method 2 19.800 .000 .012
  Distance within clusters × Number of persons × Method 2 12.400 .000 .008
  Distance within clusters × Number of observations × Method 2 5.610 .004 .004
  Distance within clusters × Cluster size × Method 2 31.900 .000 .020
  Distance within Clusters × Number of Clusters × Method 1 5.150 .023 .002
  Distance within Clusters × Distance between Clusters × Method 2 157.000 .000 .090
  Number of persons × Number of observations × Method 4 0.679 .606 .001
  Number of persons × Cluster size × Method 4 0.438 .782 .001
  Number of persons × Number of clusters × Method 2 0.082 .922 .000
  Number of persons × Distance between clusters × Method 4 15.700 .000 .019
  Number of observations × Cluster size × Method 4 1.000 .406 .001
  Number of observations × Number of clusters × Method 2 0.051 .950 .000
  Number of observations × Distance between clusters × Method 4 108.000 .000 .120
  Cluster size × Number of clusters × Method 2 9.970 .000 .006
  Cluster size × Distance between clusters × Method 4 20.400 .000 .025
  Number of clusters × Distance between clusters × Method 2 9.010 .000 .006

Note. RM-ANOVA = repeated-measures analysis of variance; ARI = adjusted Rand index; df = degrees of freedom.

An Empirical Example

Data and Modelling Procedure

We applied both clustering methods to the data of the 
HowNutsAreTheDutch diary study (for details, see Van der 

Krieke et  al., 2016). The data comprises 973 participants 
who were assessed three times daily (morning/midday/
night) over 30 or 31 days. We focus here on participants who 
completed at least 68 measurements (N = 366). We selected 
Positive Affect Activation, Positive Affect Deactivation, 
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Negative Affect Activation, and Negative Affect Deactivation 
(PAA, PAD, NAA, and NAD) as endogenous variables for 
our analysis. On every measurement, each variable was 
assessed as the sum score of three items, each item was 
scored on a continuous scale from 0 to 100. Missing data and 
values for night measurements were imputed to fulfil the 
VAR assumption of equidistant time-points. Data were 
imputed using Amelia II (Honaker, King, & Blackwell, 
2011) taking lags of previous and leads of following mea-
surements into account. During the imputation process par-
ticipants were treated as different cross-sections to account 
for interindividual differences. To account for possible 
effects of time of day, each individual time series was cen-
tered across the observed mean score of time of day of that 
individual.

During the first estimation step of the probabilistic clus-
tering method, it was determined that of all 366 participants 
the time series of 345 were best summarized by a VAR(1), 
19 were best described by a VAR(2) and 2 by a VAR(3) 
model. We decided to apply the probabilistic clustering 
method for both VAR(1) and VAR(2) models, to keep the 
dimensionality of parameter vectors, x j, within manage-
able size. Models were fitted for a number of clusters 
between 2 and 5. The BIC indicated the two cluster solution 
as ideal for both the VAR(1) and the VAR(2) probabilistic 
method. The solutions with higher cluster numbers showed 
clusters of few individuals with quite distinct dynamic pat-
terns, because we are interested especially in these patterns 
which deviate markedly from the other clusters, we selected 
the five cluster solutions of the probabilistic clustering 
methods.

For the nonprobabilistic method the ideal number of 
clusters balancing goodness of fit and model complexity 

was determined with the CHull procedure (Bulteel, 
Wilderjans, Tuerlinckx, & Ceulemans, 2013; Wilderjans, 
Ceulemans, & Meers, 2013). The CHull procedure favored 
the three cluster solution, but the final VAR(1) patterns of 
different clusters looked similar for other number of cluster 
solutions.

Cluster solutions were contrasted using relevant cross-
sectional individual characteristics that had not been 
included in the clustering process to find whether the meth-
ods were able to differentiate clusters that would correspond 
to different personality characteristics. Clusters are 
described in terms of gender proportion, age, positive and 
negative affect schedule (Peeters, Ponds, & Vermeeren, 
1996), anxiety and panic, depression (Quick Inventory of 
Depressive Symptomatology sum; Rush et al., 2003), self-
reported proportion of time spent with others, neuroticism, 
extraversion, and openness (de Fruyt & Hoekstra, 2008); 
for details, see Van der Krieke et al. (2016).

Empirical Results

Mean VAR coefficients of the clusters probabilistic VAR(1) 
and VAR(2) clusters are shown in Figure 2. A comparison 
of Figures 2 (a) and 2 (b) shows that lag 2 coefficients fade 
once they are averaged across people with similar dynam-
ics. Furthermore, clustering methods based on VAR(1) 
coefficients appear better able than the VAR(2) clustering 
solution at distinguishing groups of individuals with differ-
ent personality characteristics relating to positive and nega-
tive affect. Table 9 and Figure 3 give the cluster-wise mean 
scores on cross-sectional measures for the probabilistic 
VAR(1) solution. To illustrate the potential of the probabi-
listic clustering method, we focus on the probabilistic 

Table 4.  Mean (SD) Euclidean Distances Between True and Estimated VAR(1) Slopes for the Two Clustering Methods Across 
Conditions.

Factor Levels Nonprobabilistic method Probabilistic method

Distance between clusters Small distance .300 (.232) .274 (.180)
Medium distance .209 (.155) .173 (.114)
Large distance .203 (.149) .163 (.101)

Distance within clusters Identical data .083 (.050) .127 (.091)
Similar data .392 (.143) .280 (.148)

Number of persons 30 .265 (.182) .254 (.161)
60 .232 (.185) .199 (.139)
120 .215 (.193) .157 (.115)

Number of observations 51 .261 (.171) .285 (.148)
101 .237 (.181) .193 (.121)
501 .214 (.207) .132 (.122)

Cluster size Equal proportion .215 (.173) .181 (.129)
Majority cluster .241 (.193) .202 (.151)
Minority cluster .256 (.194) .226 (.151)

Number of clusters 2 .224 (.190) .176 (.128)
4 .251 (.185) .231 (.156)

Note. The lowest Euclidean distances in each condition are highlighted in bold.
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VAR(1) 5 cluster solution in Table 9 (and Figure 2 (a)). 
Detailed results for the nonprobabilistic clustering model 
and the probabilistic VAR(2) model are shown in the sup-
plementary material available online, so is the estimated 

within-cluster variance for the probabilistic VAR(1) 
method.

The estimation of within-cluster variance with regard to 
the parameters distinguishes the proposed method from the 

Table 5.  Results of a RM-ANOVA Evaluating the Mean Euclidean Distances of Both Clustering Methods.

df F p η
p

2

Between-method effects
  Distance within clusters 1 17672.000 .000 .847
  Number of persons 2 608.000 .000 .276
  Number of observations 2 1111.000 .000 .411
  Cluster size 2 207.000 .000 .115
  Number of clusters 1 551.000 .000 .147
  Distance between clusters 2 1472.000 .000 .480
  Distance within clusters × Number of persons 2 40.100 .000 .025
  Distance within clusters × Number of observations 2 114.000 .000 .066
  Distance within clusters × Cluster size 2 44.300 .000 .027
  Distance within clusters × Number of clusters 1 80.900 .000 .025
  Distance within clusters × Distance between clusters 2 930.000 .000 .368
  Number of persons × Number of observations 4 19.900 .000 .024
  Number of persons × Cluster size 4 8.970 .000 .011
  Number of persons × Number of clusters 2 32.600 .000 .020
  Number of persons × Distance between clusters 4 10.200 .000 .013
  Number of observations × Cluster size 4 5.590 .000 .007
  Number of observations × Number of clusters 2 28.100 .000 .017
  Number of observations × Distance between clusters 4 13.700 .000 .017
  Cluster size × Number of clusters 2 232.000 .000 .127
  Cluster size × Distance between clusters 4 1.140 .335 .001
  Number of clusters × Distance between clusters 2 0.543 .581 .000
  Residuals 3188  
Within-data effects
  Clustering method 1 527.000 .000 .142
  Distance within clusters × Method 1 2786.000 .000 .466
  Number of persons × Method 2 86.100 .000 .051
  Number of observations × Method 2 446.000 .000 .219
  Cluster size × Method 2 2.690 .068 .002
  Number of clusters × Method 1 88.700 .000 .027
  Distance between clusters × Method 2 8.010 .000 .005
  Distance within clusters × Number of persons × Method 2 106.000 .000 .062
  Distance within clusters × Number of observations × Method 2 10.300 .000 .006
  Distance within clusters × Cluster Size × Method 2 2.230 .107 .001
  Distance within clusters × Number of clusters × Method 1 71.200 .000 .022
  Distance within clusters × Distance between clusters × Method 2 75.800 .000 .045
  Number of persons × Number of observations × Method 4 4.180 .002 .005
  Number of persons × Cluster size × Method 4 0.910 .457 .001
  Number of persons × Number of clusters × Method 2 0.251 .778 .000
  Number of persons × Distance between clusters × Method 4 13.300 .000 .016
  Number of observations × Cluster size × Method 4 0.452 .771 .001
  Number of observations × Number of clusters × Method 2 0.938 .392 .001
  Number of observations × Distance between clusters × Method 4 94.000 .000 .105
  Cluster size × Number of clusters × Method 2 0.947 .388 .001
  Cluster size × Distance between clusters × Method 4 14.600 .000 .018
  Number of clusters × Distance between clusters × Method 2 28.400 .000 .018

Note. RM-ANOVA = repeated-measures analysis of variance; df = degrees of freedom.
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other time series clustering methods discussed in the intro-
duction. These estimates allow to evaluate which variables 
differ most markedly between clusters relative to their 
within-cluster variance. This provides insight into the 
between-cluster differences that drive our cluster solution. 
With regard to VAR coefficients the lagged effect of NAA 
on PAA had the highest within-cluster variance with a SD of 
0.173; the lagged effect of NAD on NAA had the smallest 
within-cluster variance with a SD of 0.118 (see Table 15 in 
the supplementary material available online). For the inter-
cepts, the within-cluster SD varied from 53.123 (PAA) to 
39.506 (NAA). Thus, a deviation of one SD from a cluster 
mean coefficient would require a difference between 0.173 
and 0.118 in VAR coefficients or a difference between 
53.123 and 39.506 in intercepts.

The probabilistic cluster memberships give direct indi-
cation of the classification uncertainty of every person. The 
classification uncertainty, the probability that an individual 
has been misclassified (i.e., 1 − max(π i j i k) , = …1 ), is visu-
alized across individuals in Figure 4 for the probabilistic 
VAR(1) method. For most of our 366 participants, the clas-
sification is conclusive; 323 participants are associated with 
a classification uncertainty below .2 and 299 participants 
with a classification uncertainty below .1.

Emotions are intensive and transient subjective states 
that emerge in response to specific stimuli and are typically 
described in terms of an affective valance dimension (posi-
tive to negative affect or PA/NA) and an arousal dimension 
(low-to-high bodily activation; Russell, 1980). Both dimen-
sions are combined in our operationalization of activated or 
high arousal PA (energetic/enthusiastic/cheerful), deacti-
vated or low arousal PA (relaxed/content/calm), activated 
NA (anxiety/nervous/gloomy), and deactivated NA 

(gloomy/dull/tired). Below we will interpret the five 
clusters.

The Majority Cluster 2.  The majority of our participants were 
in Cluster 2 (63%), which can therefore be used as a point 
of reference for the interpretation of the other clusters. 
Cluster 2 shows comparatively average PA and NA levels 
(see Table 9) with relatively high autocorrelations (see Fig-
ure 2) for activated and deactivated PA (.19/.17) and NA 
(.24/.25); thus relatively persistent and stable emotions over 
time and situations. External criteria (in Figure 3) are con-
sistent with these observations and show comparatively 
high extraversion scores (closely aligned to PA), also 
reflected in the proportion of time spend with other people, 
and average neuroticism levels (closely aligned with NA; 
John, Robins, & Pervin, 2008). Temporal cross-valence 
correlations between PA and NA were rather weak (.04 to 
−.07, see Table 10), which might suggest two relatively 
independent within-person affect dimensions rather than a 
bipolar (PA ↔ NA) dimension, in line with previous work 
(Rush & Hofer, 2014; Russell & Carroll, 1999). However, it 
is salient that most cross-regressive associations were close 
to zero. This might be indicative of individual differences in 
cross-regressive effects that are cancelled out once effects 
are aggregated across individuals with similar dynamics. 
Alternatively, this could be seen as support for the notion 
that cross-regressive effects found through ideographic 
methods are often the result of overfitting (Bulteel, Mest-
dagh, Tuerlinckx, & Ceulemans, 2018).

Positive Affect Cluster 1.  When we shift focus to the Cluster 1 
participants (15%) they combine high average PA and rela-
tively low NA, which is indicative of high emotional 

Table 6.  Average Attraction Rates (SD) of the Two Clustering Methods Across Simulation Conditions.

Factor Levels Nonprobabilistic method Probabilistic method

Distance between clusters Small distance .578 (.373) .077 (.220)
Medium distance .742 (.316) .165 (.314)
Large distance .778 (.296) .190 (.333)

Distance within cluster Identical data .859 (.214) .272 (.375)
Similar data .540 (.369) .016 (.056)

Number of persons 30 .703 (.324) .172 (.326)
60 .704 (.343) .146 (.298)
120 .691 (.355) .113 (.261)

Number of observations 51 .679 (.354) .020 (.070)
101 .701 (.341) .128 (.280)
501 .718 (.326) .283 (.383)

Cluster size Equal proportion .787 (.302) .148 (.305)
Majority cluster .643 (.357) .125 (.274)
Minority cluster .667 (.345) .159 (.311)

Number of clusters 2 .847 (.287) .205 (.369)
4 .552 (.327) .082 (.182)

Note. Highest attraction rates in each condition are highlighted in bold.
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well-being (Diener, Scollon, & Lucas, 2009). These high 
PA scores align with comparatively high extraversion scores 
(see Figure 3), whereas low NA concedes with low neuroti-
cism (also called emotional stability). In terms of emotion 
dynamics (see Table 10), Cluster 1 people experienced 

shorter lived activated NA than people in Cluster 2 (such as 
anxiety, .10 vs. .24), while their deactivated NA (such as 
weariness) and PA stabilities were comparable. Also, the 
temporal link between PA and NA was comparable to Clus-
ter 2 (.10 to −.06, see Table 10).

Table 7.  Results of a RM-ANOVA Evaluating the Attraction Rates of Both Clustering Methods.

df F p η
p

2

Between-method effects
  Distance within clusters 1 3698.000 .000 .537
  Number of persons 2 18.800 .000 .012
  Number of observations 2 342.000 .000 .177
  Cluster size 2 108.000 .000 .064
  Number of clusters 1 1962.000 .000 .381
  Distance between clusters 2 411.000 .000 .205
  Distance within clusters × Number of persons 2 1.870 .155 .001
  Distance within clusters × Number of observations 2 241.000 .000 .131
  Distance within clusters × Cluster size 2 60.000 .000 .036
  Distance within clusters × Number of clusters 1 62.200 .000 .019
  Distance within clusters × Distance between clusters 2 21.900 .000 .014
  Number of persons × Number of observations 4 6.300 .000 .008
  Number of persons × Cluster size 4 0.744 .562 .001
  Number of persons × Number of clusters 2 0.150 .860 .000
  Number of persons × Distance between clusters 4 1.020 .393 .001
  Number of observations × Cluster size 4 1.140 .335 .001
  Number of observations × Number of clusters 2 22.000 .000 .014
  Number of observations × Distance between clusters 4 13.400 .000 .017
  Cluster size × Number of clusters 2 146.000 .000 .084
  Cluster size × Distance between clusters 4 15.400 .000 .019
  Number of clusters × Distance between clusters 2 15.100 .000 .009
  Residuals 3188  
Within-data effects
  Clustering method 1 14150.000 .000 .816
  Distance within clusters × Method 1 46.200 .000 .014
  Number of persons × Method 2 8.450 .000 .005
  Number of observations × Method 2 195.000 .000 .109
  Cluster size × Method 2 80.800 .000 .048
  Number of clusters × Method 1 339.000 .000 .096
  Distance between clusters × Method 2 34.100 .000 .021
  Distance within clusters × Number of persons × Method 2 23.300 .000 .014
  Distance within clusters × Number of observations × Method 2 312.000 .000 .164
  Distance within clusters × Cluster size × Method 2 27.100 .000 .017
  Distance within clusters × Number of clusters × Method 1 256.000 .000 .074
  Distance within clusters × Distance between clusters × Method 2 398.000 .000 .200
  Number of persons × Number of observations × Method 4 2.680 .030 .003
  Number of persons × Cluster size × Method 4 0.919 .452 .001
  Number of persons × Number of clusters × Method 2 7.920 .000 .005
  Number of persons × Distance between clusters × Method 4 4.730 .001 .006
  Number of observations × Cluster size × Method 4 4.100 .003 .005
  Number of observations × Number of clusters × Method 2 45.200 .000 .028
  Number of observations × Distance between clusters × Method 4 16.000 .000 .020
  Cluster size × Number of clusters × Method 2 128.000 .000 .074
  Cluster size × Distance between clusters × Method 4 24.100 .000 .029
  Number of clusters × Distance between clusters × Method 2 37.100 .000 .023

Note. RM-ANOVA = repeated-measures analysis of variance; df = degrees of freedom.
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Well-Adjusted Cluster 3.  Cluster 3 captures the 5% of the par-
ticipants who were emotionally most stable and well-
adjusted, as reflected in their comparatively low symptom 
levels of anxiety and depression (Table 9). The relatively 
high PA and low NA scores indicate high emotional well-
being, and are in keeping with low neuroticism 

(i.e., emotional stability) and intermediate extraversion (see 
Figure 3). In terms of emotion dynamics Cluster 3 partici-
pants showed comparatively short-lived NA stability (acti-
vated .13, deactivated .11), compared with Cluster 2, but 
comparable PA stabilities (.16 and .19) and temporal cross-
valence correlations (.06 to −.08).

Table 8.  Differences Between the Simulations With Equal and Unequal Intercepts Between Clusters.

Performance 
aspect

Intercepts equal Intercepts unequal

Nonprobabilistic method Probabilistic method Nonprobabilistic method Probabilistic method

ARI .574 (.427) .575 (.381) .849 (.242) .870 (.234)
Euclidean distance .300 (.232) .274 (.180) .282 (.217) .212 (.126)
Attraction rate .578 (.373) .077 (.220) .677 (.342) .046 (.152)

Note. ARI = adjusted Rand index. Comparisons between the simulations are made with the distance between clusters fixed to small distance. The 
simulations are compared on mean (SD) ARI values, Euclidean distances between true and estimated VAR(1) slopes and attraction rates. The best 
performance aspects are highlighted in bold.

Figure 2.  Clusters are based on the multivariate associations between the following variables: Negative Affect Deactivation (NAD), 
Positive Affect Activation (PAA), Positive Affect Deactivation (PAD), and Negative Affect Activation (NAA). (a) Mean VAR(1) 
coefficients per cluster, reached through the probabilistic VAR(1) clustering method. (b) Mean VAR(2) coefficients per cluster, 
reached through the probabilistic VAR(2) clustering method.
Note. The postfix l1 indicates columns hold the lag-1 coefficients that give the influence the variable will have on an emotion (listed in the rows) at 
the next measurement 6 hours later. The postfix l2 indicates columns which hold lag-2 coefficients that give the influence the variable will have on an 
emotion (listed in the rows) at the measurement 12 hours later.

Table 9.  Mean (SD) Scores on Static Variables for the Clusters Reached by the Probabilistic Clustering VAR(1) Method.

% Male Age PANAS PA PANAS NA Anxiety/panic QIDS sum Proportion

Cluster 1 0.21 (0.41) 47.00 (16.21) 35.65 (5.26) 15.82 (5.14) 0.40 (0.53) 4.00 (3.07) .15
Cluster 2 0.17 (0.37) 45.05 (13.39) 32.71 (6.83) 20.11 (6.15) 0.73 (0.74) 6.16 (4.01) .63
Cluster 3 0.33 (0.49) 50.78 (12.74) 34.67 (5.67) 15.11 (2.97) 0.28 (0.46) 3.67 (3.45) .05
Cluster 4 0.00 (0.00) 51.50 (7.78) 28.50 (14.85) 26.00 (1.41) 1.50 (0.71) 15.00 (2.83) .01
Cluster 5 0.19 (0.40) 42.25 (11.86) 27.77 (6.67) 28.07 (7.78) 1.44 (0.98) 10.12 (5.02) .16

Note. PANAS = positive and negative affect schedule; QIDS = Quick Inventory of Depressive Symptomatology.



Ernst et al.	 1201

Depressed Cluster 4.  Cluster 4 was rather small (1%) and 
captured two participants with comparatively high symp-
tom levels of depression and anxiety, high NA and low PA 
(i.e., low emotional well-being). Unsurprisingly, Cluster 4 
participants reported highest neuroticism and lowest extra-
version levels (Figure 3), and spend most time alone. In 
terms of emotion dynamics their activated NA (.33) showed 
higher autocorrelation compared with the other clusters, 
whereas the stability of their activated PA was remarkably 

low (.02), which is in line with having a depressed mood 
(Watson, Clark, & Tellegen, 1988). Another unusual pattern 
was the strong temporal link between activated NA and PA 
(.30) and deactivated NA and PA (.37); When these partici-
pants felt relaxed/content (deactivated PA), they were more 
likely to be tired or gloomy (deactivated NA) 6 hours later. 
Overall, the results suggest that Cluster 4 people showed 
affective experiences with a stronger temporal relationship 
and a more bipolar nature.

Figure 3.  Distribution of scores on personality measurements of the whole sample.
Note. Vertical lines show mean values of clusters reached through the probabilistic VAR(1) clustering method.

Figure 4.  Classification uncertainty for all 366 participants in the solution reached by the probabilistic VAR(1) clustering method.
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High Arousal Positive Affect Cluster 5.  Cluster 5 captured 
16% of the participants who reported relatively high 
depressive and anxious symptom levels and high NA, but 
also high PA, in contrast to Cluster 4 (Table 9). Cluster 5 
participants were relatively high on neuroticism, although 
somewhat less than Cluster 4 people, and reported rela-
tively low extraversion, but high openness (Figure 3). In 
terms of emotion dynamics the autocorrelations for acti-
vated and deactivated NA (.21/.19) were somewhat weaker 
but comparable to Cluster 2. However, the stabilities for 
activated PA was somewhat stronger (.24 vs. .19) but the 
stability of deactivated PA somewhat weaker (.11 vs. .17) 
than for Cluster 2. Cluster 5 participants reported relatively 
persistent high arousal positive experiences, in line with 
their younger age, but not with their comparatively low 
extraversion. The temporal cross-valence correlations (.06 
to −.09) were not unusual, and supported relatively inde-
pendent (or bivariate) affect dimensions.

Overall, relatively distinct affect dimensions were 
observed, except in Cluster 4. This is in line with previous 
research (Rush & Hofer, 2014) reporting on inversely 
correlated PA and NA factors at the within-person level 
and two independent PA and NA factors at the between-
person level. As can be seen in Table 9 and Figure 3, pro-
vided that the SD of correlations is typically about four 
times larger within individuals than for groups (Fisher, 
Medaglia, & Jeronimus, 2018), these results stress the 
importance of accounting for both measurement levels 
and using within-person dynamics when clustering on 
between-person differences.

Conclusion

Dynamic clustering procedures might fill the method-
ological gap in time series analysis by allowing drawing 
accurate generalizations from intensive longitudinal data 
while accounting for qualitatively different processes 
between individuals. Employing probability distributions 
to model within-cluster variation appears a promising 
avenue for psychological research where most investi-
gated constructs are assumed to be represented on a con-
tinuum with individuals displaying similar, but hardly 
ever equal dynamics. The probabilistic clustering method 
addresses two issues of concern inherent to the dynamic 
clustering of human data: (a) human data is likely to be 
characterized by variation within clusters and (b) most 
individual properties investigated in the social sciences 
cannot be assumed to occur in balanced proportion across 
the population.
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Notes

  1.	 Prominent examples include k-means and k-median 
clustering.

  2.	 Alternatively, a zero padding approach could be used where 
each time series is summarized by the most parsimonious 
model and nonestimated parameters of higher lag order are 
set to zero. We do not employ this approach to keep param-
eters at identical lags comparable and to not violate the nor-
mality assumption of VAR coefficients.

  3.	 A distribution of stationary VAR coefficients is bounded 
above and below by 1 and −1, respectively. Even in extreme 
cases, however, their distribution within a large enough 
sample will approximate a truncated normal distribution. 
Gaussian mixture models have been shown robust to these 
deviations from normality (see, e.g., the triangular distribu-
tion condition in Steinley & Brusco, 2011).

  4.	 While the regularity conditions of the BIC are not met in the 
context of a finite mixture model, an abundance of analytical 
and applied results demonstrates the appropriateness of the 
BIC for mixture model selection (see Fraley & Raftery, 2002, 
for a detailed review).

  5.	 Consequently, in one condition (30 participants evenly dis-
tributed over four clusters) the sample size per cluster would 
be determined by a noninteger value. In this condition, two 
clusters were randomly selected that included eight individu-
als with the remaining two clusters containing seven individ-
uals each.

  6.	 Within-cluster distance is relative to the between-cluster dis-
tance. The simulation contains six different cluster distance 
conditions with within-cluster distance being manipulated at 
two levels, between-cluster distance at three levels.

  7.	 See footnote 4.
  8.	 Steinley (2004) provides guidelines for interpreting ARIs: 

values exceeding .9 are regarded as excellent, values over .8 
indicate good recovery, values above .65 are moderate and 
everything below this threshold is taken as a sign of poor 
cluster recovery. However, a caveat in interpreting coef-
ficients of membership recovery is that the concept of true 
cluster membership is only sensible as long as clusters are 
well-separated.

  9.	 High interaction effects between cluster size and the number 
of clusters can be explained by the proportional differences 
between clusters being most extreme in the minority condi-
tion when the number of clusters equals two and in the major-
ity condition when the number of clusters equals four.

https://orcid.org/0000-0003-4398-7231
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10.	 To account for differences in number of clusters across condi-
tions, we use mean Euclidean distances of every condition.

11.	 Before true and estimated cluster coefficients could be com-
pared the two partitions had to be permuted so that corre-
sponding clusters would be compared with one another. 
Clusters were thus arranged in such a way that overall over-
lap in classification between corresponding clusters of the 
two partitions was highest.

12.	 See footnote 9.
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