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H I G H L I G H T S

• CO2 emissions of Xinjiang cities in China and their uncertainty are reported.

• CO2 emissions of Xinjiang cities are spatial autocorrelated.

• Population, urbanization, energy structure and industry structure influence emissions.

• Petroleum and power sectors contribute the largest CO2 emissions in Xinjiang cities.

• CO2 emissions in Urumqi rises during 2005–2015, mainly driven by the power sector.
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A B S T R A C T

City-level CO2 emission accounting is necessary to identify the different energy circumstances among all cities.
However, due to a lack of data, energy consumption and emission statistics are not well documented. Focusing
on the industrial production using fossil fuels, our work provides the first detailed city-level estimation of
production-based sectoral CO2 emissions in the Xinjiang Uygur Autonomous Region. In 2010, 15 cities in
Xinjiang emitted a total of 304.06 million tonnes CO2, and 97.7% of those emissions were related to fossil fuel
combustion (i.e. energy-related emissions), with the remaining 2.3% from industrial processes associated with
the production of cement (i.e. process-related emissions). The consumption of raw coal and crude oil were the
main sources of Xinjiang’s emissions (50.3% and 23.0%, respectively), whereas ‘petroleum processing and
coking’ and ‘power and heat production’ were the two sectors that contributed the largest emissions at 32.6%
and 27.9%, respectively. The cities in Xinjiang presented considerable variations in the total CO2 emissions and
emissions per capita. The emissions intensity and emissions per capita shared similar distributions, and the
emissions are significantly spatial autocorrelated. Cities whose economies relied on emission-intensive pillar
industries and/or energy mainly sourced from raw coal tended to have high emissions per capita and high
emissions intensities. Those cities included Altay, Changji, Hami and Shihezi. We also examined the time-series
emissions of Urumqi, the largest city, from 2005 to 2015. Urumqi presented a generally rising trend in CO2

emissions over the decade, with emissions increasing by 324.2%. The major driving sector was ‘power and heat’,
which showed increases in the total CO2 emissions and percentage of Xinjiang’s emissions. Based on the findings,
policy recommendations for emission reductions and low-carbon development for the cities in Xinjiang are
provided, including adjusting the energy structure and introducing multiple industries.

1. Introduction

Uneven energy resources and imbalanced energy consumption/CO2

emissions occur across China from the coastal regions to inland areas
[1]. Under increasing pressure to mitigate climate change, China must

allocate different emissions targets to its provinces, and specific atten-
tion should be focused on regions that play an important part in na-
tional, or even international, energy strategies. Given its vital location
and nature, the Xinjiang Uygur Autonomous Region (hereafter referred
to as Xinjiang) acts as an energy exporter in China and plays a vital role
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in the Belt and Road Initiative as “a window of westward opening-up to
deepen communication and cooperation with Central, South and West
Asian countries”, as well as a core area on the Silk Road Economic Belt
[2]. Serving as a gatekeeper of international trade (as advocated by the
initiative), Xinjiang and its CO2 emission performance might influence
the carbon emissions of other adjacent countries in Central Asia, for the
potential energy consumption in the incremental construction of in-
frastructure [3], and the trade and investment patterns afterwards.
Thus, the energy consumption and corresponding emissions in Xinjiang
should receive close attention considering the background of global
climate change [4].

Xinjiang is a provincial administrative unit located in north western
China, with 8 adjacent countries. It has the largest land area (1.66
million square kilometres) of all administrative units and accounts for
nearly one sixth of the entire country. Abundant natural resources are
located in this region, including fossil fuels, such as coal, oil, natural
gas, and mineral resources. In addition, based on its particular terrain
and latitude, Xinjiang possesses rich renewable resources that include
wind energy, solar energy, hybrid and hydrogen energy [5]. Con-
sidering its large land area, the population of Xinjiang is relatively small
at approximately 21.85 million in 2010 and 23.60 million in 2016, less
than 2% of the whole country. Xinjiang has presented a dramatically
rising economy, with gross domestic production (GDP) increasing from
543.7 billion yuan in 2010 to 559.6 billion yuan (at constant prices) in
2015, less than 1.5% of the whole country, with potential to boost that
in the future. The term “city” within this paper refers to city-level ad-
ministrative units, whose area includes both urban and rural regions.
Xinjiang includes 15 cities (briefly outlined in Table 1, with further
details in Support Information-1): Urumqi, Karamay, Tacheng, Altay,
Turpan, Hami, Aksu, Kashgar, Hotan, Chanji, Bortala, Bayangol, Ki-
zilsu, Ili and Shihezi.

Xinjiang is home to productive agriculture and animal husbandry
industries as well as large-scale industries based on mineral resources,
with the region possessing huge reserves of coal, oil and natural gas and
producing electric power and petroleum for local and outside con-
sumption. Thus, its industries discharge large amounts of CO2 emissions
from the energy production and processing. A large area of desert
(45.0% of the whole land area, in 2010) is found in this region, with
forest coverage at 4.02% in 2010, which was relatively low compared
with the national average level of 20.36% [6]. Therefore, the CO2 sink
capacity of Xinjiang’s natural environment is limited. Considering the
importance of Xinjiang’s energy status, measures for energy saving and
carbon reduction should be proposed and conducted.

To optimize energy consumption and reduce CO2 emissions in
Xinjiang, a concrete emissions inventory is urgently needed. Cities are

the direct executives that make policies for mitigating climate change
and reducing CO2 emissions by regulating and planning energy uses
[7–9]. With the urbanization process, the urban population in the world
grew from 220 million to 3530 million from 1900 to 2011, and with
cities linked to more responsibility to cope with environmental chal-
lenges [10–12], a first complete dataset of CO2 emissions is a necessity.
Therefore, city-level CO2 emission accounting is necessary to identify
the different energy circumstances among all cities. However, due to a
lack of data, energy consumption and emission statistics are not well
documented. Focusing on the industrial production using fossil fuels,
our work provides the first detailed city-level estimation of production-
based sectoral CO2 emissions in Xinjiang. Further emission character-
istics of the cities are also discussed in the study.

2. Literature review

Studies of nationwide CO2 emissions in China have produced re-
gional estimates, and the CO2 emissions of Xinjiang are usually calcu-
lated according to the Intergovernmental Panel on Climate Change
[13]. Except for studies on consumption-based CO2 emissions in Xin-
jiang using input-output analysis [14,15], research on production-based
emissions is mainly conducted by aggregating emissions of various
energy types and industry sectors [8,16]. The Extended Energy Ac-
counting method was used to calculate the inclusion of energy and raw
material supplies and other external factors [17]. Currently, researchers
are also focusing on the CO2 emissions (often divided into several
sectors) of Xinjiang using similar methods and providing the energy-
related emissions [18] or total emissions for the whole region
[8,16,19]. Land-use-related CO2 emissions of agriculture [20] and other
different types [21] are also studied. In addition, several studies have
focused on the energy consumption and carbon emissions of certain
industrial sectors in Xinjiang. Sigmund et al. used the Publicly Available
Specifications-2050 (PAS, 2050) to quantify the carbon footprint of
cotton production in Xinjiang [22]. The spatial-temporal differences
and driving factors of agricultural carbon emissions in Xinjiang have
been analysed as well [20,21,23]. As an industry with high energy
consumption, the thermal power industry in Xinjiang is under scrutiny,
and the carbon emissions from that industry for the whole region have
been calculated [24–26]. Household carbon emissions in Northwest
China were estimated using residential electricity usage [27] by un-
dertaking surveys in certain cities in north western China, including
Xinjiang. To date, studies on energy consumption and carbon emissions
in Xinjiang have covered the regional level and several sectors but are
insufficient for more detailed estimations.

Recent studies on city-level CO2 emissions have provided feasible

Table 1
Brief background and data availability for Xinjiang cities (2010).

City Agricultural area (%) Construction area (%) GDP (108 CNY) Population (10 4) GDP Primary (%) GDP Secondary (%) GDP Tertiary (%) EBT ECIS

Aksu 41.3 1.0 396.1 237.1 34.8 30.9 34.3 No Yes
Altay 90.9 0.4 134.9 60.3 21.9 43.4 34.7 No No
Urumqi 79.7 3.9 1338.5 311.0 1.5 44.9 53.6 No Yes
Bayangol 20.6 0.2 640.1 127.9 16.9 64.5 18.6 No No
Bortala 77.2 0.9 131.5 44.4 37.6 19.6 42.8 No No
Changji 77.7 1.5 558.0 142.9 29.8 42 28.2 No Yes
Hami 31.2 1.3 167.4 57.2 14.4 44.8 40.8 No No
Ili 84.5 1.6 408.3 248.3 24.2 35.8 40 No No
Karamay 41.6 7.5 711.4 39.1 0.5 89.7 9.8 No No
Kash 21.7 1.3 360.0 397.9 42.2 18.1 39.7 No No
Khotan 16.2 0.4 103.5 201.4 35.1 16.9 48 No No
Kizilsu 44.8 0.2 38.9 52.6 20.1 23.4 56.5 No No
Shihezi 74.8 13.5 135.0 63.5 6.8 50.8 42.4 No No
Tacheng 80.8 1.0 341.9 121.9 37 34.5 28.5 No No
Turpan 12.5 0.4 182.8 62.3 13.4 63.5 23.1 No Yes

The percentage of agricultural and construction land use area, and the components of GDP (i.e. the percentage of GDP of the primary, secondary and tertiary
industry) in each city are listed. GDP, population and cement production data are available, while the energy balance tables (EBTs) and the final Energy Consumption
by Industrial Sector (ECIS) are deficient.
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estimation methods. Wang et al. used energy consumption data and
DMSP/OLS (Defence Meteorological Satellite Program’s Operational
Linescan System) night-time light imagery models to estimate the CO2

emissions at a city level during 1992 to 2013 [28]. Shan et al. proposed
a methodology for calculating production-based CO2 emission in-
ventories in a number of cities in China [29], and Mi et al. developed a
method using an input-output model to determine the consumption-
based emissions in 13 cities [30]. Regression and inductive analyses
have also been used to provide statistical estimates of city-level CO2

emissions [31]. Apart from studies on nationwide cities’ emissions,
research has primarily focused on several mega cities in China, in-
cluding Beijing [9], Shanghai [32,33], Tianjin [34], and Chongqing
[8,35], and more developed regions, such as the urban agglomeration
in the Yangtze River Delta [36]. Despite their importance, city-level
CO2 emissions in Xinjiang have rarely been accounted for.

As reviewed above, past and current studies of energy consumption
in Xinjiang have mainly focused on the total emissions of the entire
autonomous region and its influencing factors and estimations of
emissions from a single, or several, sectors. However, detailed dis-
tributions of energy consumption or CO2 emissions in Xinjiang are
seldom mentioned, primarily because the energy consumption data in
Xinjiang provided by the yearbooks lack city-level statistics [37]. In
addition, the statistical yearbooks of most cities in Xinjiang do not offer
energy balance tables, and certain yearbooks do not even have sectoral
energy consumption statistics. Thus, there remains a vacant space for
an in-depth accounting of emissions from Xinjiang’s cities. This paper
supplies a calculation of CO2 emissions to fill that research gap and
provide more detailed sectoral estimates.

3. Emission calculations, spatial econometric model and data
collection

3.1. CO2 emission estimation

In this study, we focused on the CO2 emissions from the combustion
of fossil fuels and calculated the administrative territorial-based CO2

emissions, i.e. city-level CO2 emissions. Based on production, we in-
cluded both the energy-related emissions from the combustion of fossil
fuels and the process-related emissions from cement production that
discharge CO2 through chemical reactions. Those two parts account for
more than 99.9% of the overall human-induced CO2 emissions [38].

3.1.1. Energy-related emissions
According to the Intergovernmental Panel on Climate Change

(IPCC) guidelines, energy-related CO2 emissions (CEenergy) can be cal-
culated as the energy consumption multiplied by the emission factors
(Eq. (1)).

∑ ∑ ∑ ∑= = × × ×CE CE AD NCV CC Oenergy ij ij i i i (1)

where CEij presents the CO2 emissions from the combustion of fossil fuel
i in sector j, and ADij refers to the intensity of human activity, which is
herein measured by the amount of fossil fuel i combusted in sector j. In
this study, 46 sectors and 17 fossil energy types were considered (see
Support Information 2-3). NCVi, CCi, and Oi are the net caloric value,
carbon content, and oxygenation efficiency of fossil fuel i, respectively.
The parameters in use are from a previous survey of China’s fossil fuel
quality [35], which are supposed to be more accurate than former re-
ports, including IPCC values.

3.1.2. Process-related emissions from the cement industry
Manufactures, mainly cement producers, also discharge CO2 in

chemical reactions (in addition to the requirement of heat for reac-
tions), namely process-related emissions. In this paper we only in-
vestigated the cement production that accounts for 72.4% of the total
process-related CO2 emissions in China [38]. Cement is produced from

calcium carbonate by calcination at high temperatures, and this process
discharges CO2. The process can be expressed as follows:

→ + ↑CaCO CaO CO .3 2

CO2 emissions from the process of cement production can be cal-
culated by the product of a manufacturing activity and its emission
factor as in Eq. (2).

= ×CE AD EFcement cement cement (2)

where ADcement refers to cement production and EFcement is the emission
factor of the chemical process of cement production. The emission
factor was obtained from [35] and is approximately 0.2906 tonnes CO2

per tonne of cement production.

3.2. Activity data collection

The activity data in physical units for industrial sectors were col-
lected from statistical yearbooks (see Support Information-4). Therein,
the energy balance tables (EBTs) provide the amounts and compositions
of energy consumption and the changes or transformations of all energy
types. The final Energy Consumption by Industrial Sector (ECIS) con-
tains detailed energy consumptions and types in each industrial sector.
EBTs were used to calculate the total CO2 emissions, and the ECIS was
needed to allocate emissions into various sectors. Due to its complex
administrative divisions and the disparate developments among them,
Xinjiang has relatively incomplete statistics for city energy consump-
tion. For example, Bortala’s statistical yearbooks provided EBTs for the
years 2011–2013 but not for 2010, which was also the case for other
cities. Urumqi and Bayangol have a time series of energy consumption
statistics, whereas comprehensive data for other cities are rare. For
those cities in Xinjiang with missing energy data, GDP and population
were used to estimate their shares of energy usage. More than 80 ce-
ment plants were in operation in Xinjiang in 2010 [39].The production
of cement can be found in the cities’ statistical yearbooks and the
Xinjiang Statistical Yearbook. The data used are briefly described in
Table 1.

The Xinjiang Statistical Yearbook can provide a general allocation of
different types of energy to each sector. For cities with incomplete
energy data, sectoral energy consumption was estimated based on the
average level of the autonomous region. The EBT was then estimated
using energy production, transformation and consumption. Finally, the
energy-related CO2 emissions were measured using the table [40]. All
the emission inventories can be found in the support information or
freely downloaded from the China Emission Accounts and Datasets
(www.ceads.net) after registration.

3.3. Uncertainty and Monte Carlo simulation

The collected data contain possible uncertainty caused by various
reasons, e.g. the statistical calibre or human errors, therefore the esti-
mation of the uncertainty of an emission inventory is important for its
improvement [41]. As a method recommended by the IPCC [13], Monte
Carlo simulations are widely used in the analysis of uncertainty [42],
which is also employed in this study. As the CO2 emissions were cal-
culated using the activity data and emission factors, we evaluated the
uncertainty of the emission inventories considering the two uncertainty
sources. Assuming the activity data and emission factors are both dis-
tributed normally, the coefficients of variation (CV, i.e. the standard
deviation divided by the mean) of them are collected from previous
literature [29,43–45].

After repeating the simulation procedure for 20,000 times in Monte
Carlo analysis, the average uncertainty of total CO2 emissions was
calculated with 95% Confidence Interval. This is−8.0% to 4.2% for the
total emissions of the inventories used in this paper, falling in the range
of 10–20% for non-OECD (Organisation for Economic Cooperation and
Development) countries [46], and illustrates the estimations are
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relatively accurate (city-level emissions inventories are probably more
uncertain than national emissions inventories, for the differences
among cities’ source data). For 15 cities’ emissions in 2010 and the
emissions of Urumqi in 2005–2015, the uncertainties are shown in
Table 2. The emission of Karamay has the smallest uncertainty of
−2.0% to 2.0%, while the largest uncertainty appears in the emission
of Changji as −10.1% to 10.6%, which are mainly from the uncertainty
in the ‘coal mining and dressing’ sector. Among all sectors of Xinjiang’s
cities, the non-metal minerals mining and dressing sector contains the
largest uncertainty (−13.9% to 25.9%), while the uncertainty of the
service sector is the lowest, which is −4.3% to 0.7%. Detailed

uncertainties by sectors can be found in Support Information-5.

3.4. Spatial econometric model with carbon emissions

3.4.1. Testing for spatial effects
The global Moran’s I spatial autocorrelation was used to assess the

correlation among neighbouring observations and to identify patterns
and levels of spatial clustering in neighbouring cities. The global
Moran’s I can be calculated as follows.

Table 2
Uncertainties of the cities’ emissions.

The deeper green colours show more negative uncertainties of the lower limits, and the deeper red show more positive uncertainties of the upper limits.
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In this equation, yi and yj represent the attributes of provinces or
municipalities i and j, respectively, n is the number of provinces or
municipalities, and Wij represents the spatial weighting matrix de-
scribing the spatial relations between regions, ranging from 0 (for
nonadjacent provinces or municipalities) to 1 (for adjacent provinces or
municipalities). The Moran’s I value range is [−1, 1]. The closer it is to
1, the greater is the clustering trend, and the closer it is to −1, the
greater is the dispersion effect. A value of 0 represents no spatial de-
pendence.

In addition, Local Indicators of Spatial Association (LISA) statistic
provides information related to the location of spatial clusters and
outliers and the type of correlation. Both the global and local auto-
correlation for the total emissions, the emission per capita and emission
intensity (defined as CO2 emissions per GDP) have been considered. In
this study, a geographic spatial weights matrix via the inverse distance
method is used.

3.4.2. The extended STIRPAT model
IPAT model which is an identity simply stating that environmental

impact (I) is the product of population (P), affluence (A), and tech-
nology (T) was first used to explain dynamics of environmental impact,
population and human wellbeing [47]. However, he IPAT equation is
not best-suited to test hypotheses because it constrains a priori the ef-
fects of each driver to be proportional. STIRPAT (The Stochastic Im-
pacts by Regression on Population, Affluence and Technology) model
was an interdisciplinary innovation inspired by the variables of IPAT,
an environmental accounting equation familiar to natural scientists,
and linked to social science theory and methods by [48–50].

The standard STIRPAT model is:

=I aP A T ei i
b

i
c

i
d

i (4)

where I represents total environmental impact, including carbon
emission, which is determined by a multiple combination of three
factors: population size (P), GDP per capita (A), and technology or the
impact per unit of economic activity (T), which can be disaggregated
into multiple variables other than A and P that influence I [50,51]. T
can be chosen according to types of environmental impact being in-
vestigated, such as the share of industry and service in GDP [52] and

urbanization [51,53,54], etc. [55,56].
After taking logarithms, the model becomes:

= + + + +I a b P c A d T eln (ln ) (ln ) (ln ) lnit it it it i (5)

where the subscript i denotes the observational units; t denotes year; b,
c, and d are respectively the coefficients of P, A, and T; e is the error
term, and a is the constant.

Thus, as literature suggests [52,54], this paper uses urbanization
rate to express T. Variables P, A, U, PP and TT respectively represent the
total population of the cities, the per capita GDP, the urbanization rate,
the share of service in GDP and the share of carbon emissions from coal
intensive industries in total carbon emission. Using v to represent the
virtual variables in the cities, representing some of the characteristics of
cities that do not change with time – such as geographical location,
weather conditions, historical culture and other factors that may in-
fluence carbon emissions – and using μ to represent the virtual variables
of the year, which is the same for all cities, but change over time, such
as the policy of national unification, the changes in these factors may
have an impact on carbon emission. The advantage of adding v and μ is
that, it can eliminate the problem of cross-section correlation. Using i
represents the city, t represents the year, and the STIRPAT static panel
data model is as follows:

= + + + + +

+ + +

I

α α P α A α U α PP α

TT v μ ε

ln

ln ln ln ln

ln

it

it it it it

it i t it

0 1 2 3 4 5

(6)

= + + + + +

+ + +

E

β β P β A β U β PP β

TT v μ ε

ln

ln ln ln ln

ln

it

it it it it

it i t it

0 1 2 3 4 5

(7)

Starting from the improved STIRPAT, we built a spatial econometric
model by taking into account the fact that carbon emissions are het-
erogeneous and spatially correlated among regions.

4. Results for emission calculation and spatial econometric model

4.1. Emissions in Xinjiang

In 2010, Xinjiang emitted a total of 304.06 million tonnes of CO2

from energy combustion and the process of cement production (for

Fig. 1. Emission composition for Xinjiang in 2010. (a) Shows the energy mix in emissions, whereas (b) shows the sector mix.
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emission inventory, see Support Information-6). The emissions re-
presented 3.8% of China’s total emissions [12]. Energy and industrial
structures have also affected the CO2 emissions [57]. Fig. 1a shows the
energy mix of Xinjiang’s emissions. Raw coal (50.3%) and crude oil
(23.0%) were the main energy resources that were the source of most
CO2 emissions, followed by natural gas (6.3%) and coke (5.7%). Ce-
ment production process accounted for 2.3% of the total emissions. The
energy mix of Xinjiang partially differed from that of the nation, for
which the composition included raw coal (55.8%), coke (13.6%), nat-
ural gas (2.3%), and industrial processes (6.9%) [57]. In comparison,
the energy mix of Xinjiang included crude oil and natural gas. Xinjiang
is rich in natural gas; thus, it can potentially reduce emissions by using
more natural gas in place of traditional fossil fuels.

From a sectoral view (as shown in Fig. 1b), petroleum processing
and coking (Petro. Proc.), electricity production (Power and Heat), and
ferrous metal smelting (Ferrous Metals Prod.) were the largest emission
contributors, with 32.6%, 27.9%, and 9.7%, respectively, and by
comparison, their corresponding shares were 1.6%, 40.4% and 18.5%
of the emissions of the whole nation, respectively [58]. As mentioned,
with affluent energy resources, Xinjiang is a great exporter of energy for
eastern China, including energy produced by oil, coal, natural gas and
electricity. In addition, the petroleum processing and coking industry
accounted for 72.1% of the industrial output in Xinjiang and supplied
12.6% of the country’s crude oil production (2010) [59]. The petroleum
processing and coking sector combusted a large amount of coal to
generate heat for production. Therefore, this sector had an enormous
influence on both the economy and emissions in Xinjiang. The thermal
power industry sector is another energy sector that relied on coal
combustion, thus becoming the second largest contributor of CO2

emissions. By contrast, the smelting of ferrous metal is the largest
consumer of coke, which is used to produce iron. Primary and tertiary
industries and households emitted 1.2%, 6.0% and 1.8% of the total
CO2, respectively, and these emissions were much smaller than those of
secondary industries. However, primary and tertiary industries and
households shared 19.8%, 10.4% and 22.1% of Xinjiang’s GDP, which
were higher than the national averages at 11.0%, 7.6% and 14.3%,
indicating a large potential for optimizing industry in Xinjiang.

4.2. Emission socioeconomics of Xinjiang’s cities

The total CO2 emissions for the year 2010 from each city in Xinjiang
were highly disparate. As Fig. 2a shows that Urumqi had the largest
CO2 emissions at 108.44 Mt, which represented 35.7% of the CO2

emissions for the whole autonomous region and was over 200 times
higher than that of Kizilsu. Karamay and Changji also contributed over
10% of the CO2 emissions in Xinjiang and were followed by Aksu,
Bayangol, Shihezi, Turpan, Ili and Hami, which were each responsible
for 2–7% of Xinjiang’s CO2 emissions. The other cities accounted for a
total percentage of 6.1%. The geographical distribution is shown in
Fig. 2a. The mid-northern part of Xinjiang had a higher CO2 emission
volume than the southern part. The mid-north cities, including Urumqi,
Changji, Karamay, Bayangol and Aksu, had most of the energy re-
sources, more developed economies and larger populations. The dis-
parity was possibly caused by energy utilization and industrial devel-
opment based on their geographical conditions, which will be discussed
in Section 4.4.

Considering the different socioeconomic stages of the cities, the CO2

emissions per capita and emission intensity were used as indicators to
measure the cities’ CO2 emission performances. Similar to the total CO2

emissions, the 15 Xinjiang cities had a large range of CO2 emissions per
capita, which ranged from 156.4 tonnes (in Karamay) to 0.8 tonnes (in
Khotan). The distribution of CO2 emissions per capita in Xinjiang was
similar to that of the total emissions. The cities of Karamay, Urumqi,
Shihezi and Changji, which are located in mid-northern Xinjiang, had
the highest CO2 emissions per capita (higher than 20 tonnes), located in
mid-northern Xinjiang. The western city of Aksu had lower emissions

per capita (7.8 tonnes), whereas the total emissions were respectable
(18.53 Mt). Hami emitted 7.27 Mt CO2 but had high emissions per
capita at 12.7 tonnes. Urumqi and Karamay had both high total emis-
sions and high per capita emissions, which should receive special at-
tention. However, Kizilsu and Khotan had the best performance on both
indicators.

The CO2 emission intensity and emissions per capita shared similar
distributions, which are shown in Fig. 2b as the deeper blue regions
accompanied by larger yellow circles. The highest emission intensity at
1.21 tonnes/thousand yuan was observed in Shihezi, which presented
high energy consumption with low efficiency. Karamay and Urumqi
followed with 0.86 tonnes/thousand yuan and 0.81 tonnes/thousand
yuan, respectively. However, Bayangol possessed relatively high emis-
sions of 17.95 Mt but a low emission intensity of 0.28 tonnes/thousand
yuan. Tacheng and Kizilsu had the best performances of 0.13 tonnes/
thousand yuan and 0.12 tonnes/thousand yuan, respectively.

Generally, developed areas have large total emissions and large
populations. Economic growth and population scale are two factors that
contribute to CO2 emissions [15,19]. As industries are intensified, en-
ergy use tends to become more efficient, which helps cut the emissions
per capita. Developed economies and large populations often co-exist
and are correlated with each other. Consequently, CO2 emissions per
capita and emission intensities share similar distributions. Mega cities
such as Urumqi, Karamay and Changji had more developed industries
and large populations, thus accounting for the advanced labour forces
and technology, and they shared relatively large emissions per capita
and intensity.

4.3. Spatial relationships of emissions from Xinjiang cities

4.3.1. Testing for spatial effects
The emission maps give a hint that a possible spatial relationship is

supposed to be investigated. Global Moran’s I’s scatter plots of total
emissions, CO2 emissions per capita and emission intensity are de-
monstrated in Fig. 3. It can be observed that the X-axis shows the CO2

emission (CO2 emissions per capita or emission intensity) and the Y-axis
shows the lag- CO2 emission (CO2 emissions per capita or emission
intensity) defined by the weights matrix. All the values and associated
p-values of global Moran’s I mean that there is spatial autocorrelation
between geographic areas in terms of CO2 emission (CO2 emissions per
capita or emission intensity) at a city-level in Xinjiang province.

In order to further investigate the spatial distribution of the above
three variables, LISA maps are drawn. The LISA cluster maps, shown in
Fig. 4, confirm the significance of local spatial autocorrelation ac-
cording to the above three variables at city-level in Xinjiang province.
Generally, Karamay and Changji are the clustering centres of high
emissions while Kashgar is the clustering centre of low emissions.
Karamay, environed by Aksu, Bayangol, Changji, Shihezi and Urumqi,
of which the total emissions are of relatively high volume, thus the city
is of significant high-high type (with high emissions environed by areas
with high emissions). While for the emission per capita, which Karamay
performs poorly as well, but comparing with the total emissions, the
clustering centres of the emission per capita turned to Changji and
Urumqi (high-high type, surrounded by high-emission cities i.e.
Bayangol, Karamay, Hami, Shihezi and Turpan), whereas Karamay is
recognized as the high-emission area surrounded by lower-emission
area (high-low type). Changji is also the clustering centre of high
emission intensity, environed by Turpan, Bayangol, Shihezi and Kar-
amay. Kashgar, however, remains the clustering centre of low-low type
of all the three kinds of emissions, meaning that areas with relatively
low emissions cluster towards Kashgar. Thus, we take spatial auto-
correlation into account as we do regression analysis.

4.3.2. The extended STIRPAT model
This paper utilizes a spatial cross-sectional data econometric model,

which integrates spatial econometrics (spatial effects) and cross-section

C. Cui, et al. Applied Energy 252 (2019) 113473

6



effects. This makes spatial econometric analysis more efficient. Two
basic spatial econometric models – Spatial Lag Panel Data Model
(SLPDM) and Spatial Error Panel Data Model (SEPDM) – are employed
and compared with the traditional OLS regression model to choose the
best-fit model.

Compared with traditional OLS model, SLPDM and SEPDM fits the
data better as more coefficients are significant in the latter two models.
As Table 3 demonstrates, the coefficients on most of the independent

variables are significant and have the expected signs. The coefficients
for the spatially lagged dependent variables are positive and significant,
indicating that carbon emissions are spatially correlated. When com-
paring SLPDM and SEPDM models, we could look at the AICc value. A
lower AICc value means the model is a better fit for the data. Regarding
the log likelihood and Schwarz criterion, the higher the log likelihood,
the better the fit and the lower the Schwartz criterion, the better the fit
of the model. Thus, SEPDM best fits the data, indicating that an increase

Fig. 2. Emissions of Xinjiang cities in 2010.

Fig. 3. Moran’s I plots of the total CO2 emissions (a), the emission per capita (b), and the emission intensity (c) in Xinjiang cities (2010).
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of 1% of population would lead to about 1% increase of CO2 emission,
and an increase of 1% of urbanization rate would result in 3% increase
of CO2 emission.

4.4. Energy and sector mix in Xinjiang’s emissions

Cities, however, have a variety of energy uses and industrial sectors
and carbon reduction should focus on key energy types and major in-
dustrial sectors [60]. Therefore, more detailed investigations of the
energy and sector mixes responsible for each city’s emissions should be
undertaken.

Fig. 5 demonstrates the proportions of CO2 emissions from energy
types and sectors in the 15 Xinjiang cities. Primary energy, such as coal
and oil, and cement production process contributed most of the CO2

emissions in all the cities. In Urumqi, 54.3% of the CO2 was emitted
from the combustion of raw coal, which was followed by crude oil
combustion (15.3%). Karamay, which was ranked as the second largest
CO2 emitter, sourced energy mainly from crude oil (73.8%). Bortala,
whose CO2 emissions were relatively small, emitted CO2 mainly from
burning coke (39.6%). Nine other cities presented high percentages of
raw coal-related CO2 emissions (higher than 50%). The percentages for
Altay, Changji, Hami and Shihezi exceeded 70%. Industrial processes
(cement production) were responsible for a fair amount (more than
10%) of the emissions in industrial cities, such as Khotan, Kizilsu and
Tacheng. The different energy types varied in their emission factors. For
example, the emission factor for coke is 0.104 tonnes CO2/tonne, which
is larger than that for raw coal (0.087 tonnes CO2/tonne) and crude oil
(0.073 tonnes CO2/tonne) [34]. Therefore, the energy mix affected total
emissions. For example, in Karamay, which uses crude oil as the major
energy type, the emissions intensity was relatively low compared with
that of Urumqi, which depends more on raw coal. Natural gas has a low
emission factor of 0.056 tonnes/104m3 and is used more in Bayangol,
Karamay, Kizilsu and Turpan (discharging over 10% of the CO2 of each
city). Compared to the regional average of 6.3% and national average of
2.3%, those cities had better emission performances and provide good
examples for reducing emissions.

The industrial structures of the 15 cities’ emissions are depicted in
Fig. 5b. Industries provided the major contribution to CO2 emissions in
Xinjiang (91.21%), of which the power and heating sector, petroleum
processing and coking, and ferrous metal production were the largest
contributors. The regional disparity was large. Generally, however, the
production and supply of electric power, smelting of ferrous metals,
petroleum processing and coking, and non-metal mineral products were
the four main sectors contributing to industrial emissions. In Urumqi,
the first three aforementioned sectors were the largest sectors for CO2

emissions, which were mainly from raw coal, consequently strength-
ening the role of raw coal in that city. The petroleum processing and

Fig. 4. LISA cluster map and the LISA significance of the total CO2 emissions, the emission per capita and the emission intensity in Xinjiang cities (2010).

Table 3
Regression results for OLS, SLPDM and SEPDM.

Variables OLS SLPDM SEPDM

Constant −2.4536
(3.3568)

−4.2939*

(2.4879)
−3.8710 *(2.2015)

Log(P) 0.6887 (0.6456) 0.9156* (0.4742) 1.0120** (0.3861)
Log(A) −0.0144

(0.1486)
−0.0448
(0.1110)

−0.0082 (0.0997)

U 3.4856 (1.9277) 3.4526* (1.4161) 3.0813* (1.2278)
W*Log(Total) 0.4783* (0.2030) –
LAMBDA – 0.5685**(0.1834)
R2 0.2410 0.4423 0.5096
Adjusted R2 0.0340 – –
Log-likelihood −23.6728 −22.0435 −21.4212
AICc value 55.3456 54.0870 50.8425
Schwarz criterion 58.1778 57.6272 53.6747

Note: St. Errors are in the parentheses. * represents significance at 10% and **
5% respectively.
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coking sector was the major consumer of crude oil at 92%, which
contributed over 70% of the CO2 emissions in Karamay. However, the
petroleum processing and coking sector accounted for only 58.3% of
the industrial output in Karamay and 62.3% of the output of Xinjiang’s
petroleum processing and coking sector [6]. The production of elec-
tricity played an important role in other cities. Altay, Bayangol and
Hami emitted CO2 mainly from the production of electricity, whereas
Changji and Shihezi had large emissions from electricity production,
petroleum processing and ferrous metal production. In Ili, Kashgar,
Khotan and Tacheng, the major sectoral sources of CO2 emissions were
electric power production, petroleum processing and coking, non-metal
mineral products, residential use and transportation. In contrast,
Turpan presents a different industry structure consisting of the manu-
facture of chemical products and non-metal products with a low
emissions intensity. Thus, energy-intensive sectors, e.g. electricity
production, iron smelting and petroleum processing, led to high CO2

emissions per capita and intensity (for detailed emission intensity of
each sector, see Support Information-7). In addition, one city’s economy
relied on those sectors, significantly influencing its emission perfor-
mance.

Primary industries, tertiary industries and households contributed
small percentages of CO2 emissions in Xinjiang at 1.2%, 6.0% and 1.8%,
respectively. The service sector should be encouraged to expand against
the background of the Belt and Road Initiative because of its high po-
tential for improving energy efficiency. In Kizilsu, Bortala, Kashgar,
Tacheng, Hami and Khotan, the CO2 emissions from the service sector
were only ∼10% of the emissions and presented relatively low emis-
sion intensities. For example, the service sector (including transporta-
tion, storage, post and telecommunication services, wholesale, retail
trade and catering services and other services) accounted 42.8% of
Bortala’s GDP, which was higher than the region’s average of 32.5%
and closely related to the performance of Bortala’s emission intensity,

suggesting the importance of tertiary industries in energy savings and
CO2 reduction.

4.5. Time series of emissions in Urumqi, 2005–2015

Urumqi is the capital and the largest city in Xinjiang, and as such is
the largest contributor to CO2 emissions in Xinjiang with an emission
performance that is a representative facet of the province. Thus, its
historical emissions were inspected for the period 2005–2015.
Generally, a rising trend was observed in the studied period except in
2006. An apparent decrease in crude oil consumption (Fig. 6a) and drop
in the production from the petroleum processing and coking sector
(Fig. 6b) in 2006 might have caused the lower emissions in that year.
Special attention should be paid to the data showing that the crude oil
consumption of the petroleum processing and coking sector was zero in
2006, which is significantly different from that in other years. However,
CO2 from other energy types rose in the decade from 2006 to 2015. The
raw coal-related CO2 emissions increased at a rate of 21.6% per year,
and the percentage of total emissions increased from 38.4% in 2005 to
64.1% in 2015. However, crude oil presented a gently decreasing per-
centage of 19.9% in 2005 to 12.4% in 2015 (3.2% in 2006). Other
sectors discharged increasing amounts of CO2, with mild fluctuations
from 2008 to 2010, which might be related to the economic crisis that
affected all sectors. After 2010, a dramatic increase in total CO2 emis-
sions could be observed in Urumqi, where the power and heat sector
served as the main driving factor. The growth rate of this sector was
28.0% per year, whereas the total emissions in Urumqi were approxi-
mately 15.6%. Consequently, the percentage of that sector’s emissions
rose from 20.3% in 2005 to 56.4% in 2015. The sectors smelting and
processing of ferrous metals, petroleum processing, coking, and services
presented mild increases and steady annual growth rates of 9.7%, 7.4%
and 9.8% respectively, which is consistent with the growth of the

Fig. 5. Contributions of various energy types (a) and sectors (b) to the CO2 emissions in Xinjiang cities (2010).
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economy. The other sectors had stable and smaller percentages.
The energy structure and industrial structure of Urumqi were re-

presentative of Xinjiang. Because of the abundant resources, the in-
dustries of Urumqi were mainly dependent on the mining, processing
and exporting of various mineral or fossil energies to serve other re-
gions of the country. A high reliance on industries related to resources
leads to unbalanced industrial structures and limits the development of
tertiary industries to some degree. As Fig. 6 shows, the CO2 emissions of
Urumqi are still climbing, and the key emission-producing industries
appear to be more dominant. To better control energy consumption and
achieve effective carbon reductions, the energy and industrial struc-
tures in this region should be adjusted. As the capital of Xinjiang and
the largest CO2 emitter, Urumqi should lead policy making and take
action, which would also contribute to considerable carbon reductions
throughout the region.

5. Conclusions and policy recommendations

Detailed city-level and sectoral level energy consumption statistics
for Xinjiang are incomplete under the current statistical system.
Previous studies on Xinjiang’s energy consumption and CO2 emissions
have mainly focused on the total emissions of the autonomous region or
emissions from a single sector or several sectors. For the first time, this
study estimated the energy consumption of cities in Xinjiang and cal-
culated the energy-related and process-related CO2 emissions from 46
sectors. The following results were obtained over the course of this
study.

In 2010, 15 cities in Xinjiang emitted a total of 304.06 million
tonnes of CO2, 97.7% of which was related to fossil fuel combustion.
Industry process emissions were mainly generated from the production
of cement. Raw coal and crude oil are the main energy types for
Xinjiang’s emissions. Two sectors, petroleum processing and coking and
electric power, steam and hot water production and supply, produce the
largest emissions. LISA results show that Karamay and Changji are the
clusters of high emissions, while Kashgar is the clusters of low emis-
sions. The CO2 emissions from cities in Xinjiang vary. Urumqi and

Karamay contribute more than half of the region’s CO2 emissions. The
total CO2 emissions and emissions per capita have similar distribution
patterns among the cities. However, the emissions intensity and emis-
sions per capita distributions are similar. Altay has the largest emissions
per capita and the highest emissions intensity, whereas Turpan has the
best performance on both indicators due to low-carbon industry
structure.

The major energy types and key sectors determine the CO2 emis-
sions per capita and per GDP. Cities with energy-intensive sectors as
pillar industries and cities that source raw coal as major fuel tend to
have worse emissions performances. As an example, Urumqi had a
general rising trend in CO2 emissions from 2005 to 2015, which was
driven in large part by the production and supply of power and heat.

Accordingly, the following policy recommendations are proposed:

(1) To reduce CO2 emissions, dirty fossil fuels – especially raw coal and
crude oil – should be regulated. Alongside that, advanced energy
conservation methods, such as encouraging the use of highly effi-
cient combustion equipment, should be employed. In addition, over
the long run, fossil fuels must be replaced with low-carbon energy
types, such as renewable wind power and solar energy, to allow for
greater control over the total CO2 emissions of Xinjiang.

(2) City-level policies that suit local conditions should be encouraged to
improve energy and industry structures. Rather than depending on
a single energy type or single industrial sector, diversified industrial
and energy structures should be developed for Xinjiang cities and
industrializing cities elsewhere. With the introduction of cleaner
industries and low-emission energy types, carbon reductions could
be gradually realized. For example, Karamay could promote less
emission-intensive industries (e.g. by importing services) to balance
the industrial structure, reduce the use of crude oil and encourage
the development of renewable energy. For Altay, however, priority
should be given to cleaner industries with high energy efficiencies
and investment invitations and energy-intensive technologies
should be reduced.

(3) There are spatial clustering patterns among cities in Xinjiang, with

Fig. 6. CO2 emissions from Urumqi in 2005–2015 (millions of tonnes).
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Karamay and Changji as the high-emission centres, and Kashgar as
the low-emission centre. A better planning of industrial distribution
is needed, by which the enterprises share infrastructure, reuse the
materials and thus save costs and reduce excessive CO2 emissions.
Cross-city industrial parks may be beneficial for total emission re-
duction.

(4) By introducing an environmental protection tax and carbon price,
Xinjiang might obtain a better regulation of upstream and down-
stream industries [61] via mitigating the market demand for power
and heat, for instance. Xinjiang could also consider how to influ-
ence the market for carbon emissions to control the major in-
dustries, e.g. the power and heat production sector, which should
be encouraged to regulate excessive emissions from the enterprises.

(5) For Urumqi, the electric power, steam and hot water production
and supply sector should receive a large amount of attention be-
cause of its continuous increase. By adjusting the energy strategy,
Urumqi can relieve the imbalance of energy supply and demand. In
addition, a more diverse industrial structure must be established.

Our study has limitations due to data availability. The estimates of
city-level CO2 emissions were based on the statistical yearbooks of the
cities and autonomous region. Regional averages were used for those
cities lacking data, which could cause significant uncertainty. Using
more detailed statistics to optimize the accuracies of the calculations
could be a focus of future work. In addition, the time series of CO2

emissions for other cities also needs closer attention and further work to
provide more practical advice for policy making.
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