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ABSTRACT 

Microvascular changes are increasingly recognised not only as primary drivers of 

radiotherapy treatment response in brain tumours, but also as an important contributor to 

short- and long-term (cognitive) side effects arising from irradiation of otherwise healthy 

brain tissue. As overall survival of patients with brain tumours is increasing, monitoring long-

term sequels of radiotherapy-induced microvascular changes in the context of their potential 

predictive power for outcome, such as cognitive disability, has become increasingly relevant. 

Ideally, radiotherapy-induced significant microvascular changes in otherwise healthy brain 

tissue should be identified as early as possible to facilitate adaptive radiotherapy and to 

proactively start treatment to minimise the influence on these side-effects on the final 

outcome. 

Although MRI is already known to be able to detect significant long-term radiotherapy 

induced microvascular effects, more recently advanced MR imaging biomarkers reflecting 

microvascular integrity and function have been reported and might provide a more accurate 

and earlier detection of microvascular changes. However, the use and validation of both 

established and new techniques in the context of monitoring early and late radiotherapy-

induced microvascular changes in both target-tissue and healthy tissue currently are minimal 

at best. 

This review aims to summarise the performance and limitations of existing methods and 

future opportunities for detection and quantification of radiotherapy-induced microvascular 

changes, as well as the relation of these findings with key clinical parameters. 

KEYWORDS 

Radiotherapy-induced injury; Radiotherapy; Magnetic Resonance Imaging; Susceptibility-

Weighted Imaging; Quantitative Susceptibility Mapping; Cerebral microbleeds; 

Microvascular; White matter lesions; Brain tumours; Review. 
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ABBREVIATIONS 

MRI – Magnetic Resonance Imaging; T1 – T1-Weighted Imaging; T2 – T2-Weighted Imaging; FLAIR – Fluid attenuated Inversion 

Recovery; DWI – Diffusion-Weighted Imaging; DCE – Dynamic Contrast-Enhanced; T2* – T2*-Weighted Gradient Echo; SWI – 

Susceptibility-Weighted Imaging; CMBs – Cerebral Microbleeds; WML – White Matter Lesions; QSM – Quantitative Susceptibility 

Mapping; DSC – Dynamic Susceptibility Contrast-Enhanced VAI – Vessel Architectural Imaging; ASL – Arterial Spin Labelling; DTI – 

Diffusion Tensor Imaging; IVIM – Intravoxel Incoherent Motion; SRS – Stereotactic Radiosurgery; WBRT – Whole Brain Radiotherapy; IQ 

– Intelligence Quotient; PBRT – Proton Beam Radiation Therapy; IMRT – Intensity-Modulated Radiation Therapy; RBE – Relative 

Biological Effectiveness; ADC – Apparent Diffusion Coefficient; MRS – Magnetic Resonance Spectroscopy; SNR – Signal-To-Noise Ratio; 

CT – Computed Tomography; FA – Fractional Anisotropy; CTH – Capillary Transit Time Heterogeneity; 
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1. INTRODUCTION 

 Novel therapies combined with molecular and genetic tumour biomarkers have 

enabled personalised brain cancer treatment, aiming to improve survival [1–5]. However, in 

patients with low-grade brain tumours, with relatively long survival, initial positive treatment 

responses are often overshadowed by negative long-term side effects of the treatment [6,7]. In 

order to minimise these effects, the whole therapeutic approach has become more and more 

oriented towards optimising the quality of remaining life and not only on treating the brain 

tumour itself [1,8]. With radiotherapy being a key component of the therapeutic approach, 

monitoring early signs of radiotherapy-induced injury related to irreversible clinical 

outcomes, such as cognitive dysfunction, has therefore become increasingly relevant. 

 The adverse effects of radiotherapy are believed to be related to microvascular 

endothelial injury, glial cell destruction and inflammation, with the synergistic interaction of 

these processes contributing to an even larger overall effect [9–12]. The resulting effects of 

radiotherapy-induced microvascular injury can be monitored by clinical examination as well 

as by magnetic resonance imaging (MRI). To detect radiotherapy-induced changes, MRI is 

generally considered as the most sensitive non-invasive technique with good clinical 

availability. Routine MRI techniques, such as T1-weighted imaging (T1), T2-weighted 

imaging (T2), fluid attenuated inversion recovery (FLAIR), diffusion-weighted imaging 

(DWI), dynamic contrast-enhanced (DCE), T2*-weighted gradient echo (T2*) and 

susceptibility-weighted imaging (SWI) can show oedema, cerebral microbleeds (CMBs), 

telangiectasias, cavernomas, white matter lesions (WML), lacunar infarcts, cortical atrophy 

and necrosis [13–19]. In the last decades, advanced imaging biomarkers reflecting 

microvascular integrity and function, such as quantitative susceptibility mapping (QSM), 

DSC-based (Dynamic Susceptibility Contrast-Enhanced) vessel architectural imaging (VAI), 

arterial spin labelling (ASL), diffusion tensor imaging (DTI), intravoxel incoherent motion 
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(IVIM) have emerged [20–25]. It seems straightforward to assume that both routine and 

emerging MRI techniques, alone or in combination, have the potential to provide sensitive 

imaging biomarkers which - directly or indirectly - reflect radiotherapy induced microvascular 

injury. However, to the best of our knowledge no recent systematic overview of available 

techniques and comparison concerning sensitivity and specificity of the individual techniques 

exist. The current work aims to provide such an overview and comparison, including a 

summary of the evidence regarding the relation with key clinical parameters and the optimal 

post-radiotherapy time window for each technique, this in order to aid researchers in their 

choice of optimal (combinations of) MR techniques for their specific research aims. 

 

2. HISTOPATHOPHYSIOLOGICAL PROCESSES UNDERLYING RADIATION-

INDUCED MICROVASCULAR DAMAGE 

 Preclinical studies have shown that brain vessel endothelial hyperplasia and vessel 

wall thickening occur as early as 3 hours after irradiation with a dose of 100 Gy (gamma 

knife) [10]. Furthermore, a decrease in endothelial cell numbers was observed in rat brain 

after 5 - 200 Gy of local irradiation within the first 24 hours and was not dependent on the 

applied dose [12]. Although the exact pathophysiological mechanism and timecourse of 

events has not been fully established, it is expected that in addition to endothelial damage, 

also a significant loss of oligodendrocytes occurs, which are the most radiation-damage prone 

glial cells [26]. Necrosis and apoptosis of oligodendrocytes results in myelin decrease around 

neurons, in turn resulting in impaired nerve conduction and reduced white matter integrity 

[26]. Astrocyte activation also changes upon irradiation, with astrocytes no longer being able 

to properly support neurons and the impulse transmission processes [26]. In addition, 

impaired and later hyalinized endothelium no longer properly delivers nutrients to glial and 

neuronal cells, which additionally exacerbates the dysfunction of those cells [26]. Finally, 
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ischaemia and impaired microvascular oxygen extraction eventually can lead to radiation 

necrosis [26]. 

 Radiotherapy-induced damage is classically divided into three timeframes [9,27,28], 

being acute, delayed and late-delayed injury. However, this classification is based primarily 

on clinical presentation and symptoms, and not on pathophysiological findings. Therefore, 

this classification is somewhat artificial with respect to the underlying pathophysiological 

processes. Acute injury presents from days to weeks following radiotherapy with headache, 

nausea, vomiting, fever, somnolence and more severe symptoms of brain herniation. Acute 

injury is believed to be caused especially by oedema and inflammation. The severity and 

commonness of this stage are usually less debilitating nowadays due to constant 

improvements in radiotherapy techniques. Early-delayed injury presents 1-6 months after 

radiotherapy and finds its roots in transient demyelination and neuroinflammation and 

clinically presents with mood fluctuations, cognitive deficits and somnolence in children, but 

also possibly in adults usually within the first 6 weeks following radiotherapy. Typically, 

symptoms related to this type of injury resolves within 1-3 months. Sometimes supplementary 

treatment with steroids is necessary. The most serious effect is late-delayed injury occurring > 

6 months after radiotherapy, which is often irreversible and caused by amassed vascular 

abnormalities, demyelination, loss of oligodendrocytes and neuronal precursors, gliosis, 

neuroinflammation and white matter necrosis, probably impelling each other [9,27,28]. 

Unfortunately, late-delayed changes so far cannot be reliably predicted based on the earlier 

clinical stages of brain injury [9,29]. Therefore, further research regarding the correlation of 

early events on the course and occurrence of late-delayed adverse effects is urgently required. 

Particularly imaging methods depicting the dynamics of microvascular changes over time 

after radiotherapy have the potential to bring us closer to a better understanding of 

radiotherapy-induced injury in general. 



 7 

 

3. QUANTIFICATION OF RADIOTHERAPY-INDUCED MICROVASCULAR 

CHANGES WITH ROUTINE MRI TECHNIQUES 

Oedema 

Vasogenic brain oedema is an early radiotherapy side-effect resulting from an 

increased blood-brain barrier permeability [30]. Currently available advanced radiotherapy 

techniques applying limited and fractionated doses have decreased the risk of symptomatic 

and debilitating brain oedema, as well as the need for treatment [31]. The risk of developing 

oedema is higher with stereotactic radiosurgery (SRS) than with fractionated radiation therapy 

[32,33]. Because vasogenic brain oedema can be challenging to detect on MRI, its prevalence 

is not well known. 

Conventional MRI often shows no oedema related changes but may demonstrate high 

T2/FLAIR signal and changes on diffusion weighted imaging [31]. With DCE-MRI the 

extravascular contrast leakage, representing oedema, was found to be the highest in the 6th 

week of radiotherapy and remained abnormal until 6 months after irradiation [34]. 

Additionally, early vascular injury visible on DCE-MRI seemed to predict late neurocognitive 

changes [34]. A similar correlation was found for changes within the hippocampal vasculature 

[35]. However, taking into consideration all the other possible factors able to cause and 

modulate oedema formation, such as chemotherapy, surgery and the presence of a necrotising 

or a recurring tumour, oedema itself is not a reliable indicator of radiotherapy-induced injury 

[13]. Therefore, the related problem of radiological differentiation of peritumoral oedema and 

necrosis from true tumour progression is being intensively investigated [36–39]. 

In conclusion, the uncertainties around the underlying cause of brain oedema on 

radiological images indicate that so far oedema cannot be considered a reliable follow-up 

marker of radiotherapy-induced microvascular complications. 
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Cerebral microbleeds 

Cerebral microbleeds (CMBs) have important clinical implications. Associations have 

been found between the number of CMBs and increased risks of neurocognitive decline, 

stroke, intracranial haemorrhage and mortality [40]. Post-radiation CMBs seem to also affect 

neurocognition, including attention, executive functions, working memory and visual 

processing speed [41]. Notably, a higher number of CMBs in temporal lobes leads to a higher 

risk for cognitive decline [42]. 

Histopathologically, CMBs most typically represent perivascular hemosiderin-filled 

macrophages resulting from a minor bleeding [43,44]. 

On MRI CMBs present as round or ovoid, nonlinear black lesions with blooming 

effect on T2*-weighted MRI and SWI [14]. They are most readily detectable on SWI which is 

highly sensitive to susceptibility changes of hemosiderin, to a lesser extent on T2*-weighted 

MRI, and are even harder to visualise on T2-weighted MRI [45] (Figure 1). Lesions 

recognised as CMBs on MRI, histologically may represent other changes in up to 11-24% 

[46]. Lesions mimicking CMBs are small cavernomas, microaneurysms, microdissections, 

and microcalcifications [43,47–49]. Furthermore, using histology as the gold standard, up to 

half of the CMBs remain undetectable using 1.5 - 3T T2*-weighted MRI [43]. 

Radiotherapy-induced CMBs are common [7,41,50–52], but the prevalence depends 

on many factors including age of the study population, radiation doses and fields, types of 

MRI sequences and field strength used, and at which timepoint the follow-up took place. In a 

recent study deploying T2*-weighted and SWI sequences (1,5T or 3T), the prevalence was as 

high as 90% after a mean observational period of 13,5 years [52]. Using 7T MRI this number 

is much higher with CMBs being found in up to 100% of patients [53]. CMBs might be 

detected as soon as 3-4 months after radiotherapy onset, with a latency of up to 9 years (mean 
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33 months) [54], therefore representing both early-delayed and late-delayed injury. In the 

healthy general population the overall prevalence of CMBs increases with age; being 36% in 

the population >80 years, around 7% for 45-50 years and rare in children [55]. Although age 

at the time of receiving radiotherapy also seems to have an impact on the prevalence of 

CMBs, different studies provide conflicting information regarding the age dependency. This 

significantly complicates the use of CMBs as an imaging biomarker [41]. Furthermore, an 

apparent increase in the prevalence of CMBs is consistently seen in patients receiving higher 

radiation doses and/or volumes [41]. The prevalence of CMBs also increases each year 

following irradiation, expanding beyond the area of high-dose irradiation and crossing the 

hemisphere boundaries [50,56] (Figure 2). Furthermore, since the changes emerge with 

different speed and amount in different patients with comparable radiotherapy treatment, 

individual predisposition probably also plays a role [57]. 

Currently, there is not enough data on possible differences between CMBs occurrence after 

photon vs proton therapy. Based on two available studies, the pattern of CMBs occurrence on 

MRI seems to be similar for photon and proton radiation therapy for both whole brain 

radiotherapy (WBRT) and focal radiation fields [50,58]. The first CMBs appeared already 3 

months after proton therapy onset, with an increasing prevalence over time, especially within 

the first few years. Furthermore, the number of CMBs was related to risk factors, such as 

younger age and higher maximum radiation therapy dose [58]. In the case of proton therapy 

the highest amount of CMBs was found within the dose fields over 30 Gy [58]. 

In conclusion, regardless of certain limitations, so far CMBs seem to be the earliest 

radiological marker available on routine clinical imaging that both reflects microvascular 

radiotherapy-induced injury and correlates to delayed radiotherapy complications. 

 

Telangiectasias 
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Telangiectasias as solitary findings were described in up to 20% of patients who 

underwent radiotherapy and were more common in a younger population [59]. The number of 

telangiectasia increased with time, and no evident dose-dependency was found [59]. 

However, clinical implications of radiation-induced telangiectasias remain unclear. 

Telangiectasias are histologically dilated capillaries with thin endothelium 

interspersed with brain parenchyma [60]. They are free of calcifications, gliosis, external 

haemorrhage and hemosiderin-laden macrophages [60]. 

On T2*-weighted or SWI MRI telangiectasias demonstrate a hypointense signal due to 

the slow flow of blood rich in deoxyhaemoglobin [60,61], and can appear somewhat similar 

to CMBs. However, telangiectasias generally tend to be significantly bigger than CMBs and 

demonstrate homogeneous contrast enhancement [60,62]. 

In conclusion, the amount of studies and the number of patients participating in studies 

regarding the relation of telangiectasias with radiotherapy are not sufficient for a definite 

statement, but overall the evidence seems to support that telangiectasias are of minor 

relevance. 

 

Cavernous malformations 

Cavernous malformations resulting from radiotherapy are more at risk of symptomatic 

bleeding than cavernous malformations of other origins [15], resulting in a lifelong 

uncertainty for patients. 

The risk of bleeding can be histopathologically explained by the presence of  venous 

or capillary caverns lined with an endothelial layer but lacking muscle and elastic 

components, which makes them fragile [63]. Additionally, cavernous malformations are not 

interspersed with normal brain parenchyma [63], in contrast with telangiectasias. Radiation-

induced cavernous malformations are suggested to result from neoangiogenesis, following 
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vessel occlusion, with wall hyalinisation, necrosis and concomitant mutations by some 

[15,64]. However, some researchers have suggested that cavernous malformations evolve 

from organising haematomas rather than proliferate directly from destructed vasculature [65]. 

Telangiectasias and cavernous malformations have been suspected to be different 

developmental stages with the same origin and risk of microbleeds [60,66]. 

On T2-weighted, T2*-weighted and SWI MRI the early stage cavernous 

malformations present as punctate hypointensities [67]. When more advanced, they 

demonstrate irregular intensity, popcorn-like enhancement and an incomplete hemosiderin 

rim [65] (Figure 3). 

The cumulative prevalence of cavernomas following brain irradiation after 10 years 

was found to be up to 43% [68]. The mean time from irradiation to the formation of typical 

multiple cavernomas varies from 3-12 years and cannot be considered homogenous [15,69]. 

Another study with T2*-weighted imaging also showed that higher radiation dose and a larger 

radiation field size led to a higher amount of cavernomas [70]. However, some evidence exist 

that lower radiation doses lead to cell instability with a low level of apoptosis, resulting in a 

higher risk of cavernoma formation, while high-dose radiation results in intense cell apoptosis 

without a chance of cavernoma formation [69,71]. 

In conclusion, cavernous malformations visible on radiological imaging in their 

readily evolved form are considered a late-delayed complication and therefore are not useful 

as a timely predictive marker for future cognitive complications before the underlying 

processes become irreversible. 

 

White matter lesions 

Presence of white matter lesions (WML) and reduction in white matter volume 

clinically may lead to lower intelligence quotient (IQ) and deterioration of cognition [8,72–
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75]. The loss of white matter volume and deterioration of IQ, attention and academic 

performance increase with time passing from the radiotherapy onset [75]. Higher white matter 

volume loss is correlated with the radiation dose and younger age at the time of radiotherapy 

[75]. Neurocognitive decline after radiotherapy linked to white matter hyperintensities on T2-

weighted MRI sequences, so-called radiation-induced leukoencephalopathy, is mostly 

represented by executive functions and episodic memory decline (subcortical frontal mode 

with information recovery deficiency), without correlation with the type of radiotherapy 

(focal or WBRT) [17]. In one study comparing children with ependymoma treated with 

proton beam radiation therapy (PBRT) or photon-based intensity-modulated radiation therapy 

(IMRT), more changes were observed in the proton beam group and in younger patients, 

which seems to be an effect of differences in relative biological effectiveness (RBE) [76,77]. 

Furthermore, in the study with pencil beam scanning proton therapy the prevalence of 

symptomatic WML in treated patients was as low as 3% [78]. 

Histopathological findings of WML are heterogeneous [79,80], despite a similar 

appearance on MRI, which indicates the complexity of the underlying processes, mutual 

dependency and dynamic influences between all the entities forming WML. 

WML may represent degeneration and loss of myelin, axons, oligodendroglial cells 

and ependymal cells, as well as astrogliosis, activated macrophages, fibrohyalinotic vessel 

changes and cerebral ischemia with associated demyelination [79,80]. Those findings are all 

within the spectrum of WML, interpreted by some researchers as remains of ischemic 

microvascular processes, and in some cases resulting in accomplished lacunar infarcts [79]. 

Radiotherapy-induced WML are generally symmetrical in patients with total brain 

irradiation [81], similar to other neurological diseases evolving from microvascular 

impairment [82]. In other cases, the asymmetry of the WML reflects the asymmetry of the 

radiotherapy field in focal brain irradiation [83] (Figure 4). Radiotherapy-induced WML 
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typically spare the subcortical U-fibres [84,85] (Figure 5), which may be helpful in 

distinguishing radiotherapy-induced white matter hyperintensities from tumour infiltrations, 

as both lead to T2-weighted and FLAIR-weighted hyperintensities. On conventional MRI 

sequences, WML become visible from a few months to several years after radiotherapy 

[30,86,87]. The prevalence of WML is unclear and differs significantly between studies 

[73,87,88]. However, novel localized radiotherapy techniques, such as SRS can reduce the 

risk for the occurrence of WML on MRI [89]. 

In conclusion, white matter lesions are an indirect marker of partial microvascular 

injury. They appear after radiotherapy with a highly varying delay and are mostly useful as 

additional radiological proof for readily apparent clinical symptoms. 

 

Lacunar infarcts 

Lacunar infarcts are commonly defined as fluid-filled cavities smaller than 15mm in 

diameter of presumed vascular origin and therefore are considered one of the indicators for 

small vessel disease [90]. Capillary dysfunction may lead to impaired tissue oxygenation by 

diminished blood delivery, but also by means of a reduced oxygen extraction capacity over 

the capillary wall [91]. Although lacunar infarcts may be accompanied by clinical symptoms, 

in brain radiotherapy patients, lacunar infarcts were found to be predominantly silent without 

significant differences in observed IQ between groups with and without lacunar infarcts [92]. 

On MRI final lacunar infarcts present as small round or ovoid entities with CSF signal 

on all sequences and are surrounded by a thin rim of high T2 signal; this rim can only be 

appreciated on FLAIR images [93] (Figure 6). In this context, they can look similar to wide 

perivascular spaces, especially at shared typical locations such as the level of the anterior 

commissure and basal ganglia, although perivascular spaces typically lack a rim of high signal 
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intensity on FLAIR images [93]. Furthermore, newly appearing lesions favour a lacunar 

origin [90]. 

The incidence is higher for children younger than 5 years of age at the time of 

radiotherapy [92]. For the adult population, the incidence after receiving radiotherapy was 

found to be comparable to the incidence in the general population [16]. Lacunar infarcts seem 

to be late-delayed changes in most of the cases [92]. 

In conclusion, lacunar infarcts seem to only have a limited value in monitoring 

radiotherapy-induced microvascular damage, since they appear late, are infrequently present 

and are not correlated with cognitive decline. However, the topic of lacunar infarcts probably 

requires further research, as the current literature on lacunar infarcts after brain irradiation can 

be considered fairly limited [94]. 

 

Radiation necrosis 

Radiation necrosis is an extreme stage of radiation damage and is often a severe and 

irreversible process of cell death, involving both endothelium and white matter [19]. The 

reported prevalence of radiation necrosis varies between 3% and 64% [26]. Among novel 

radiotherapy techniques the occurrence of radiation necrosis is especially expected with SRS, 

due to delivery of high dose radiation with hypofractionation [95]. In the case of SRS up to 

half of the patients develop radiation necrosis, which is quite often symptomatic [95]. 

Although there have been only few studies considering radiation necrosis patterns following 

particle treatment in patients with brain tumours, there is a concern for higher rates of 

radiation necrosis after proton therapy because of a higher relative RBE of protons [77,96,97]. 

However, a study using pencil beam scanning proton therapy revealed a relatively low 

incidence of symptomatic radiation necrosis (7%) [78]. Additionally, chemotherapy, 

especially when combining multiple chemotherapeutical agents, seems to be related to higher 
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radiation necrosis rates in paediatric patients who underwent proton therapy [78,97]. 

Radiation necrosis may develop from weeks to even more than a decade after irradiation and 

can be life-threatening with mass effect, focal neurological symptoms and cognitive decline 

[98,99]. 

Histologically, radiation necrosis corresponds with haemorrhagic coagulative necrosis 

with vascular hyalinisation and reactive gliosis [98,100]. The clinical diagnosis of radiation 

necrosis is challenging regarding the lack of a clear definition, as it is currently described as 

the appearance of new neurological symptoms as well as radiological findings [100,101]. On 

conventional MRI radiation necrosis presents as a ring-enhancing lesion accompanied by 

oedema [102]. Since the radiological appearance of radiation necrosis is similar to that of 

tumour progression, these entities cannot be clearly distinguished on conventional MRI [102]. 

DWI derived ADC maps can be of help, but a more accurate differentiation has been shown 

using other MRI techniques like DSC imaging, DCE imaging, ASL and magnetic resonance 

spectroscopy (MRS), with MRS providing the highest sensitivity and specificity [102,103]. 

In conclusion, challenges related to distinguishing radiation necrosis from tumour 

progression, as well as the severity of brain tissue destruction in the area of radiation necrosis 

limits the value of radiation necrosis as a marker of radiotherapy-induced microvascular 

changes that are predictive of long-term complications. 

 

4. OPTIMAL CEREBRAL MICROBLEED DETECTION WITH ROUTINE IRON-

SPECIFIC MRI TECHNIQUES 

Because CMBs seem to be so far the most relevant clinically available potential early 

biomarker for radiotherapy-induced damage, having associations with delayed poorer 

cognitive function, we summarize below the rationale and approaches for optimal imaging of 

CMBs with conventional MRI. 
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T2*-weighted imaging and SWI are both susceptible to heme and non-heme iron, 

resulting in hypointensities on the SWI MRI image in area’s with increased iron 

concentrations [104,105]. More specifically, the iron-susceptibility effect results from 

deoxyhaemoglobin, ferritin and hemosiderin, which are blood elements carrying exposed iron 

[57,104]. Oxygen in haemoglobin decreases the iron exposure and therefore the susceptibility 

effect; as a result arteries and arterioles are not as negatively contrasted on SWI as venous 

structures [57,104]. In line with this, increasing hemosiderin concentrations over time 

increases the sensitivity of SWI for CMBs detection, especially in the chronic phase of 

bleeding [106]. 

For detection of iron-positive lesions, SWI is preferred over T2*-weighted imaging, 

because of the higher overall sensitivity of SWI [45,67,107–109]. SWI can detect microbleeds 

of approximately the size of a typical voxel (1 mm3) [106]. The superiority of SWI is based 

on combining both magnitude and phase information of the T2*-weighted gradient echo 

sequence [104]. SWI also provides a higher signal-to-noise ratio (SNR), and therefore can be 

acquired with higher spatial in-plane resolution and thinner sections compared to T2*-

weighted imaging [108,110]. Also, SWI performed at 3T field strength still outperforms T2*-

weighted imaging performed at a higher field strength of 7T [111]. In general, CMBs 

detection improves when using higher field strengths because of the increased sensitivity for 

detecting iron deposit induced susceptibility changes present in CMBs. This effect makes 

T2*-weighted and SWI at 3T and 7T MRI better tools for finding CMBs than similar 

sequences at 1.5T field strength [112,113]. However, the observed area with susceptibility 

changes overestimates the actual size of CMBs – the so-called blooming effect [111,112], 

which also scales with increasing field strength. 

In one study no difference in detection of CMBs was found between 3T and 7T SWI 

MRI for the whole study group, but for some patients, 7T MRI showed more CMBs deeper in 
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the brain [111]. SWI was also found to be more reliable and sensitive for detecting cavernous 

malformations, exposing twice the number of lesions compared to T2*-weighted imaging, and 

also far more sensitive than T2-weighted imaging, within multifocal and familial cases [67]. 

 In general, the presence of a suspected CMBs lesion detected with either T2*-

weighted MRI or SWI correlates quite well with histopathological findings [44,45]. When it 

comes to CMBs being mimicked by calcifications, these ambiguities might be resolved by 

using SWI-filtered phase images in combination with dual-energy CT scans [104,114]. SWI 

filtered-phase data distinguishes intensities of paramagnetic CMBs as hypointense and 

diamagnetic calcifications as hyperintense [104]. For excluding other deoxyhaemoglobin 

filled structures, QSM seems to be more sensitive. 

 

5. RECENT DEVELOPMENTS AND FUTURE PERSPECTIVES IN MRI 

Quantitative susceptibility mapping (QSM) 

QSM is a post-processing technique that utilizes T2*-weighted gradient echo phase 

data to reconstruct a susceptibility map [20,21]. Iron deposits, calcifications and venous 

oxygen saturation can be assessed in a quantitative fashion with such a susceptibility map 

[20], which is not possible using SWI. This difference not only makes QSM more reliable 

than SWI when it comes to quantifying the iron concentration in a voxel, but also allows for a 

more accurate definition of the lesion location. Furthermore, QSM allows for a better 

estimation of the actual size of an observed lesion, a limitation seen with SWI and T2*-

weighted MRI which overestimate lesion size because of the pronounced blooming effect in 

these sequences [20,115–117]. QSM seems to be the most reliable technique for iron 

quantification in longitudinal studies as well as in multicentre studies performed with 

different protocols, due to its higher intrinsic reproducibility [116]. 



 18 

QSM has the potential to better distinguish CMBs from veins, based on the stronger 

susceptibility effect resulting from different iron forms in a CMB [106]. In turn, this 

potentially allows for better differentiation between several histopathological entities of iron 

accumulation. Another benefit from QSM is allowing for differentiation between CMBs and 

calcifications, which is not always possible with SWI due to aliasing [21]. Applying iron 

oxide nanoparticles based contrast agents together with quantitative T1, T2 and T2* 

relaxation time measurements and QSM, even seems to enable the assessment of cerebral 

blood volume, mean vessel size and microvascular angiogenesis [116,118–121]. However, the 

downsides of QSM are lengthy imaging postprocessing times and the need for manual 

detection and evaluation of all visible lesions, making it time-consuming and potentially 

vulnerable for interobserver variability [122]. Those issues are probably going to be solved by 

automatic quantification in the future [122]. Currently QSM images can also be influenced by 

the artefacts from the regions neighbouring the skull [122], similarly to SWI. 

QSM has already been shown to be superior to SWI concerning detection of CMBs 

and diffuse axonal injury in traumatic brain injury patients [106], as well as superior in 

revealing CMBs from underlying unstable aneurysms [122,123] and cerebral cavernous 

malformations [124–126]. Those findings underscore the potential benefit of QSM for the 

detection of radiotherapy-induced microvascular complications, leading to an earlier and more 

exact assessment of risk for delayed complications in brain tumour patients. 

In summary the major potential advantages of QSM are the ability to quantitatively 

assess CMBs over time and its robustness due to insensitivity to technical differences between 

different scanners [127]. However, to what extent these advantages hold true in clinical use 

should be further validated before routine clinical implementation can be considered. 

 

Diffusion tensor imaging (DTI) 
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DTI derived fractional anisotropy (FA) is so far the best imaging biomarker for 

tracking early white matter disruptions [128], which as mentioned before, seem to indirectly 

reflect microvascular pathology. Although DTI shows no significant differences between 

regions with different radiation dose within the first month following radiochemotherapy 

treatment, the images become abnormal after 4-6 months [24]. Interestingly, FA was also 

reduced in the normal-appearing areas on T2-weighted MRI [128], as early as 3 months after 

irradiation and partially returned to normal within 14 months from irradiation in adults treated 

with adjuvant radiotherapy only [86]. Furthermore, it has been suggested that DTI changes 

also correlate with neurocognitive deterioration [128–134]. Dose-dependence and prevalence 

of white matter changes as assessed by DTI differ between studies, but they seem to occur 

even after low doses of radiotherapy (5-10 Gy) [24,135,136]. White matter disruptions seem 

to be mainly due to progressive dose-dependent demyelination, and within the first months 

occur mainly in high dose areas [136]. After 32 weeks from radiotherapy onset, the process 

becomes diffuse and is also concomitant with mild axonal fibre injury [136]. Another DTI 

based study found remarkable extracellular changes, suggesting that changed vascular 

permeability and neuroinflammation are both contributors to the white matter disruption [24].  

A recent study employing DTI and resting state functional MRI demonstrated the existence of 

a dynamic multifocal process of overlapping vasculopathy and demyelination, in which 

vasculopathy dominates the early stages, followed by demyelination [137], in turn suggesting 

that the above described heterogeneous changes may resolve or progress, depending on the 

processes of neuroprotection and compensation. 

That also implies that it will be essential to simultaneously assess both microvascular 

changes using MR microvascular perfusion techniques as well as white matter changes with 

diffusion sensitive MRI approaches in the context of radiotherapy monitoring, because of 
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observed delays in the onset of demyelination after radiotherapy induced microvascular 

changes [137]. 

 

Novel dynamic susceptibility-weighted contrast-enhanced imaging techniques 

 Single (gradient) echo dynamic susceptibility-weighted (DSC)-based acquisitions can 

be post-processed to generate a novel imaging biomarker reflecting microvascular flow 

heterogeneity, called capillary transit time heterogeneity (CTH) [138]. In a wide variety of 

pathological conditions CTH has been shown to increase significantly and with greater 

general sensitivity than other functional MR-derived imaging biomarkers [91,139–141]. Use 

of CTH in radiotherapy planning and response evaluation has been highly limited, but it holds 

great promise due to its expected sensitivity to early changes. 

 Dual echo (spin-echo/gradient-echo) variants of the DSC technique can be used to 

derive a similar, yet slightly different, imaging biomarker, reflecting more microvascular 

architectural changes than capillary flow heterogeneity alone, using the ratio of gradient echo 

versus spin echo relaxation rates over time [22]. This recently developed technique coined 

vessel architectural imaging (VAI) enables the visualisation of susceptibility effects induced 

by microvessels even <10µm radius, including capillaries [22]. VAI was primarily used for 

assessing glioblastoma vessels response to anti-angiogenic therapy by evaluating changes in 

tissue microvascular architecture and oxygenation in the tumour before and after treatment. 

Observed stabilisation of microvascular architecture and oxygen levels after treatment, 

meaning a decrease of microvessel leakage and hypoxia, local shunting or closed 

microvessels, indicates that this method can outperform all other commonly used MR 

sequences regarding prediction of overall survival [142]. Similar techniques based on spin-

echo and gradient-echo imaging of vessel size, oxygen metabolism and neovascularisation, 

were also found useful in glioma grading [143,144]. Due to its high sensitivity to change, VAI 
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could potentially be used to assess early post-radiation dynamic changes in brain 

microvasculature before later changes emerge. 

 

Arterial spin labelling (ASL) 

ASL is a non-invasive flow imaging technique without the need for intravenous 

contrast medium administration, with the potential for estimating cerebral perfusion changes 

in capillaries after radiotherapy [145]. A study with ASL after focal brain radiation showed an 

early decrease in grey matter cerebral blood flow in primary brain tumour patients, more 

prominent in the areas receiving a higher radiation dose [146]. It is believed to be caused by 

early endothelial cell number depletion, in turn leading to capillary wall instability and 

occlusion [34,146,147]. ASL was also found to be useful for the differentiation between low 

and high-grade gliomas [148,149]. ASL-based brain tumour vascular density estimation 

seems to correlate with corresponding histopathological findings [150]. However, to the best 

of our knowledge, currently no clear evidence exists that ASL can provide detailed 

microvascular information beyond mean density, such as microvascular architecture which 

can be provided by DSC-MRI. 

 

Intravoxel incoherent motion (IVIM) 

IVIM quantifies microvascular perfusion information based on local voxel readouts, 

independent on arterial input function [25,151,152]. This method was found to be sensitive 

for perfusion changes of vasoconstriction and vasodilatation due to blood oxygenation level 

changes [25]. In comparison with DSC, IVIM possibly presents images with a higher 

resolution not being dependent on the contrast leakage as no i.v. contrast administration is 

needed for IVIM [152]. The difference should be especially prominent within area’s with 

pathological changes and impaired blood-brain barrier [152]. IVIM seems to be based on 
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chaotic blood flow in small vessels and capillaries, without signal contamination from large 

vessels as is the case in DSC [25,152]. 

IVIM has been applied with promising results for perfusion imaging in several organs 

and diseases [152], as well as in glioma grading [153] and tumour progression [37], as an 

addition to other techniques. However, it is not as attractive for the brain due to small cerebral 

perfusion fraction (5%) [154] and resulting low signal-to-noise ratio [25]. However, a study 

on cerebral small vessel disease aiming to assess the brain microvasculature and parenchymal 

microstructure with IVIM unexpectedly revealed increased perfusion volume fraction in 

relation to disease severity [155]. The latest study combining ASL and IVIM imaging has 

brought more insight into the complexity of IVIM measurements [154], showing the 

advantages of combining different methods. 

 

6. FUTURE DIRECTIONS 

 Novel promising MRI techniques available for research are yet to be implemented for 

the purpose of (early) detection of radiotherapy complications. Studies using DTI not only 

have changed our perception of the timecourse of white matter integrity disturbances, with 

great advantages over traditional FLAIR and T2-weighted imaging for WML, but also gave 

more insight into the relation of WML to cognitive changes. The cerebral changes detected 

with conventional MRI all seem to be a result of a complex process, in which endothelium 

plays a key role. Radiologically detectable dynamics of microvascular changes under the 

influence of brain radiotherapy is still a missing piece of the puzzle, and this part is yet to be 

properly investigated. Following microvascular changes during radiotherapy treatment over 

time could not only improve decision-making regarding further radiation treatment planning 

(adaptive radiotherapy) but could also facilitate research on drugs reversing the early 

pathological process. Furthermore, comparing early microvascular damage in patients treated 
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with photon and proton therapy could accelerate the understanding of why proton therapy 

treatment for low-grade gliomas in adults may be advantageous regarding cognitive changes 

within the 5 year follow-up period after radiotherapy [156]. 

The outlined research should preferably be performed in low-grade brain tumour 

patient populations, for obtaining a better assessment of the correlations between early 

microvascular changes and delayed cognitive outcomes, as this group of mostly young adult 

patients is generally neurologically and neuro-cognitively intact at the time of diagnosis and 

has a relatively high survival and long lifespan. 

 Another highly interesting approach is to combine different MRI techniques and 

derived imaging biomarkers within the same patient, as this can lead to a better understanding 

of all facets of the radiation damage. Combining advanced perfusion techniques with DTI, 

QSM or IVIM have the potential to provide quantitative results that better reflect the 

multifactorial nature of the underlying processes. 

 

7. CONCLUSIONS 

The body of knowledge regarding the consequences of brain radiotherapy is 

expanding, as well as the range of emerging novel MRI techniques with a high potential to 

provide novel insights. However, using MR-derived imaging biomarkers for prediction and 

prevention of early and long-term radiotherapy side effects, such as microvascular-injury-

related changes, remain highly challenging. Because of the advent of new oncological 

therapies, the overall survival of patients with brain tumours continues to increase, making 

early detection and prediction of side-effects also increasingly relevant and urgent. MRI 

techniques routinely available to clinicians often lack sensitivity and specificity for the 

detection of early changes, making the choice of the correct technique for specific research 

questions ever more important. The current situation poses a need for early MRI biomarkers 



 24 

to predict long-term outcome after radiotherapy. That would allow early prevention of 

cognitive problems and could open the door for MRI-guided adaptive radiotherapy, using an 

optimized approach to minimise long-term effects of radiotherapy on healthy brain tissue and 

simultaneously pave the way for validation of potentially protective pharmaceutical 

interventions. 

Finally, we conclude that a single current or future MRI technique will probably not 

be able to provide all answers needed, whereas integration of multi-technique/sequence 

derived imaging biomarkers could provide a workable path forward, overcoming several of 

the current limitations of individual biomarkers for the assessment of radiotherapy-induced 

microvascular injury. 
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