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1 Introduction

Simulating the hydrodynamics of deformable, floating structures using a partitioned strategy poses a
major challenge when the physical coupling between the fluid and the structure is strong and the ratio
of the added mass to the structural mass is considerate. In numerical simulations of such systems with
two-way interaction numerical instabilities can occur, which do not occur in systems with inherently one-
way interaction. Existing computational procedures for fluid-structure interaction become less efficient
or even unstable. In these situations, it is advisable to modify the coupling to allow the fluid to respond
better to the body motions. A simultaneous solution of the equations governing fluid and (solid or elastic)
body would be a stable choice, but is often not feasible. Usually the numerical problems are taken care
of with sub-iterations between fluid and structure, but their convergence can be slow; e.g. [Causin et al.,
2005, Forster et al., 2006].

In this paper we present a more powerful, quasi-simultaneous approach, which tries to mimic a fully
simultaneous coupling in an affordable way as introduced by Veldman for aerodynamic viscous-inviscid
boundary-layer interaction [Veldman, 1981, Veldman, 2009]. In our application, the quasi-simultaneous
approach makes use of a simple approximation (termed interaction law) of the elastic-body dynamics,
based on the (6 DOF) solid-body modes and the main elastic modes of the structure.

The fluid solver in this study is the symmetry preserving finite-volume VOF method ComFLOW
[Kleefsman et al., 2005, Veldman et al., 2007, Wemmenhove et al., 2015]. A finite element method is
used to solve the elastic structure response based on a Euler-Bernoulli beam. Kinematic and dynamic
relations couple fluid dynamics to the structural dynamics.

2 Mathematical model

Flow model Incompressible, turbulent fluid flow can be modeled by means of the Navier–Stokes equa-
tions

Mu = 0,
∂u
∂t

+ C(u)u + Gp − Vu = f. (1)

Here M is the divergence operator, which describes conservation of mass. Conservation of momentum
is based on the convection operator C(u)v ≡ ∇(u ⊗ v), the pressure gradient operator G = ∇, the viscous
diffusion operator V(u) ≡ ∇ · ν∇u and a forcing term f. The kinematic viscosity is denoted by ν. The
flow equations are discretized on a staggered grid with a finite-volume method. The convective terms
are discretized in a skew-symmetric energy-preserving way [Verstappen and Veldman, 2003]. Also the
discrete pressure gradient G is the negative transpose of the discrete divergence operator M, such that
also the pressure does not influence the energy balance.

The free-surface location is indicated by a Volume-of-Fluid [Hirt and Nichols, 1981] function φ, and
reconstructed by means of Youngs’ PLIC method [Youngs, 1987, Düz, 2015].

In this exposition, for simplicity reasons the first-order forward Euler time integration will be used.
In the actual calculations, a second-order Adams–Bashforth method is being applied.

The solution of the discrete Navier–Stokes equations is split into two steps. Firstly, an auxiliary
variable ũ is introduced

Ω
ũ − un

δt
= −C(un) un + Vun + f, such that un+1 = ũ − δt Ω−1Gpn+1. (2)



Secondly, by imposing discrete mass conservation at the new time level, substitution of (2) results in a
discrete Poisson equation for the pressure:

δt M0Ω−1Gpn+1 = M0ũ + MΓun+1
Γ , (3)

where M0 and MΓ represent the discrete continuity operator in the interior and along the boundary, re-
spectively.

Structural model For simplicity, in this study the structure is selected to be a one dimensional Euler–
Bernoulli beam. Assuming a constant cross section A for the beam, its equation of motion is

ρsA
∂2d
∂t2 + EI

∂4d
∂s4 = f , (4)

with appropriate initial and boundary conditions. Here, s denotes a coordinate along the beam, d the
beam deformation, ρs the beam density, E Young’s modulus, I the second moment of inertia and f the
load per unit length of the beam.

The structural response of the elastic body (eb) is modeled with a finite element method. Omitting
the technical details, the resulting discrete set of equations can be written in the form

Mebd̈ + Kebd = f, (5)

where Meb is the discrete mass operator and Keb the discrete stiffness operator. These matrices can be
simultaneously diagonalized as QT MebQ = I and QT KebQ = Λ, where Q contains the normalized elastic
body eigenvectors (modes) with eigenvaluesΛ. In this way, the elastic body dynamics (5) can be rewritten
as

Q−1d̈ + ΛQ−1d = QT f. (6)

The temporal integration of the structure equations is performed by means of the generalized-α
method [Chung and Hulbert, 1992].

Fluid-solid interface The coupling relations along the fluid-solid interface ΓFS consist of two rela-
tions: the kinematic and the dynamic conditions. The kinematic condition states that the motion of the
interface on both sides matches. The dynamic condition expresses equilibrium of stresses at the fluid-
solid interface.

3 Numerical coupling

Time marching with sub-iterations Information has to be exchanged between the two subsystems: the
fluid solver provides the loads to the structural solver, whereas in return the latter provides the structural
motion to the flow solver. In an explicit, weak coupling this exchange only happens once per time step,
but this process is unstable for larger mass ratios. Therefore often per time step sub-iterations with severe
under-relaxation (e.g. Aitken [Forster et al., 2006]) are introduced to achieve a strong coupling between
the subsystems; Fig. 1(left). The convergence of this process can be rather slow, and each iteration a
solid-fluid solve has to be performed. This makes this coupling method inefficient. In the next section
we will present a method that shares the strong coupling with the above sub-iterations, but at a limited
additional computational effort.

Quasi-simultaneous coupling For two-way coupled problems, a monolithic or simultaneous approach
is not always possible, as the sub-domain solvers have to be coupled at a deep iterative level. In this sec-
tion we will describe an approach that tries to combine the simplicity of a hierarchical coupling approach
with the iterative power of a monolithic approach. In the quasi-simultaneous method, an approximation
of the body dynamics is solved simultaneously with the fluid. This interaction law anticipates the body
response in advance of the actual solid dynamics computation. As such, the interaction law (Fig. 1(right)).



Fig. 1: (Left) Sub-iterative loop of FSI with relaxation within one time step; (right) adding an approxi-
mate interaction law. Force f, displacement d, whereas k is iteration level.

To understand the coupling stability, it is useful to formulate the coupling problem in terms of in-
terface variables only: the velocity along the interface uΓ (related to the displacement d, and the load
exerted by the fluid to the structure fΓ (for an elastic body found from the local stresses, for a solid body
found from their integration along the interface).

Elastic body coupling
Because the structural equation (6) contains both d̈ and d, first a discrete time integration is carried
out. Thereafter, the discrete version of the hierarchically coupled problem at the new time level can be
denoted as

Elastic body Q−T
(

I
δt2 + Λ

)
Q−1dk+1

Γ = fk
Γ, Fluid fk+1

Γ = −
Mad

δt2 dk+1
Γ . (7)

The contribution from the previous time steps is omitted in view of clarity; it is just an inhomogeneous
term in the right-hand side, which is not relevant for the convergence of the sub-iterations per time step.

The displacement dk+1 can be eliminated from the system of equations (7), after which the iterative
process can be written as

fk+1 = −MadQ(I + δt2Λ)−1QT fk. (8)

For small enough δt, the amplification factor simplifies to −MadQQT , where QQT has the dimension of
1/kg. Thus we recognize again an added-mass ratio, leading to divergence when the added mass of the
fluid is too large.

In the quasi-simultaneous treatment we approximate the behavior of the elastic body by a simple
reduced-order model consisting of a limited number of modes, including the solid-body modes. Let
these be collected in the matrix Q̃. Thus, the proposed interaction law reads

dk+1 − Q̃
(

1
δt2 + Λ̃

)−1

Q̃T fk+1 =

Q
(

1
δt2 + Λ

)−1

QT − Q̃
(

1
δt2 + Λ̃

)−1

Q̃T

 fk. (9)

Letting δt → 0, i.e. studying zero-stability, and combining with the fluid-flow model (7), the quasi-
simultaneous iterative process reduces to

fk+1 = −(M−1
ad + Q̃Q̃T )−1(QQT − Q̃Q̃T )fk. (10)

Clearly, if all of the modes are incorporated into the interaction law, the spectral radius will become zero
and the method simultaneously solves the fluid with the ‘exact’ body.

Implementation
The interaction law is a relation between the pressure and the local velocity of the body surface. This
relation can be substituted in the right-hand side of the discrete Poisson equation (3) and thus can be con-
sidered as a boundary condition. It can be shown that the latter retains its favorable numerical properties
(symmetric, negative definite), such that its iterative solution can proceed as before.



Fig. 2: Schematic of the first test case; the domain with free-surface flow on top and flexible beam at the
bottom

4 Examples

Elastic body: tank with membrane bottom
In order to assess the performance of the quasi-simultaneous approach for different mass ratios, a test
case has been designed in which this ratio can be varied.

At the bottom of a rectangular container (1.0 × 0.1 × 0.5 m3) filled with 50 kg of water, a flexible
beam is placed as illustrated in Fig.2. The mass of the beam is varied between 1 kg and 50 kg; its module
of elasticity is 1 MPa. The interaction law is made out of truncated structural modes; the number of
modes dictates its accuracy. The relaxation parameter is adjusted by Aitken’s method. Five cases with
different mass ratios are solved with and without the interaction law. Also, the effect of the accuracy of
the interaction law on the performance is studied.

First, the effect of the added mass ratio is studied. The interaction law is constructed out of the first
10 modes, while the symmetry of the problem cancels out the effect of odd modes. For all the cases
the initial relaxation parameter is set to 1, while from the third FSI iteration this value is adjusted by
Aitken’s method. Fig. 3 shows the convergence of the FSI iterations during the first time step. As shown
in Fig. 3(left), higher mass ratios require more computational effort. Plugging in the interaction law,
Fig. 3(right) reproduces the same solution while the computational effort is less. It can be observed that
the difficult cases with higher mass ratios speed-up a lot more from the quasi-simultaneous approach
than the easier cases with modest mass ratios. The difference in convergence rates is clearly visible, with
the quasi-simultaneous method hardly needing any under-relaxation.

Fig. 3: Convergence history for the first time step for different added mass ratios: (left) without interaction
law, (right) with interaction law.

Next, the effect of the number of modes in the interaction law is shown in Fig. 4. Obviously, employ-
ing more modes improves the structure response estimation in the interaction law. But there is a trade
off, as the gain goes down while making the interaction law itself more expensive. When the mass ratio
is low, the number of effective modes is lower than the case when mass ratio is 50.

Rubber gate
The validation test case is an elastic rubber gate placed in front of a bulk of water. This experiment
has been performed by Antoci [Antoci et al., 2007]. The gate separating the fluid from the air is partly
rigid, but the lower part is elastic. The rubber gate is clamped on the top side and free on the other
side. The density of the beam is ρs = 1100 kg/m3 and the Young modulus for elasticity is E = 10



Fig. 4: Convergence history for the first time step for varying accuracy (number of included modes) of
the interaction law: (left) mass ratio 1; (right) mass ratio 50.

MPa. According to [Antoci et al., 2007], the problem is mostly two dimensional, so in the current study
numerical simulations are performed in 2D. A grid of 250 × 2 × 50 is used. The initial time step is set to
be 1 × 10−4; this value is automatically adjusted during the simulation based on the Courant condition.

Fig. 5: Snapshots of the simulation past a rubber gate, compared with the experiment of [Antoci et al.,
2007]

The results after 0.12 s, with the snapshots from experiment and simulation at time intervals of 0.4 s,
are compared in Fig. 5.

5 Conclusion

It has been demonstrated that the ratio of the fluid added mass versus the solid-body mass is an impor-
tant parameter controlling the (in)stability of a fluid-structure system. Whereas traditional (sub-)iteration
methods require severe under-relaxation, a quasi-simultaneous method can handle large added mass ra-
tios more efficiently. An interaction law approximating the structural dynamics is its key ingredient. It
is shown that only a couple of dominant modes are needed to achieve a stable method. The stability
and resulting efficiency has been demonstrated by comparing the computational effort with and without
interaction law on a number of offshore-related applications.
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