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In this contribution, we review recent developments and applications of

a dynamic clustering algorithm SWINGER tailored for the multiscale

molecular simulations of biomolecular systems. The algorithm on-the-fly

redistributes solvent molecules among supramolecular clusters. In particular,

we focus on its applications in combination with the adaptive resolution

scheme, which concurrently couples atomistic and coarse-grained molecular

representations. We showcase the versatility of our multiscale approach on

a few applications to biomolecular systems coupling atomistic and supramo-

lecular water models such as the well-established MARTINI and dissipative

particle dynamics models and provide an outlook for future work.
1. Introduction
All-atom molecular dynamics (MD) simulations in conjunction with modern

computers provide us with unprecedented information about the structural

and dynamic properties of biomolecular systems at the atomistic length scales.

Thus, they can be considered as a virtual microscope to study complex molecular

systems with atomistic resolution [1–5]. Owing to the complexity of biomolecular

systems, however, molecular simulations still have some limitations in reaching

experimentally required spatial and temporal scales. In particular, simulating

explicit solvent is computationally the most expensive part in all-atom biomol-

ecular simulations due to a huge number of related degrees of freedom. The

associated computational burden is drastically alleviated by implicit solvent

models but in many situations, e.g. simulations of dense DNA arrays [6], molecu-

lar details play a crucial role and the inclusion of explicit solvent is unavoidable.

One way of circumventing the problem is offered by coarse-graining tech-

niques, which reduce the number of degrees of freedom in the system [7–9].

This can be done either in a bottom-up manner [10–18], where one builds a

given coarse-grained (CG) solvent model based on an underlying atomistic

(AT) model or in a top-down way [19–25] as in the MARTINI force-field [26]

or dissipative particle dynamics (DPD) method [27–34]. Another issue is

concerned with the number of molecules that one chooses to be represented

by the CG bead [25], for instance, four water molecules in the MARTINI

model or an arbitrary number in DPD.1 In such supramolecular representations,

a special challenge is related to the problem of constructing bottom-up supra-

molecular coarse-grained (SCG) models and clustering algorithms such as the

K-means [35,36] or CUMULUS [37] have to be devised to distribute solvent

molecules among different SCG beads. This, in turn, leads to a problem of

continuous SCG trajectory [38].

In biomolecular simulations, however, one needs the AT resolution usually

only in the first few hydration layers around solvated biomolecules to properly

account for the interaction between water and macromolecules. The most

efficient way to tackle such situations is via multiscale modelling approaches.
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Figure 1. Schematic of the multiscale simulation set-up for the simulation of a protein in water where the resolution of the solvent is gradually changed from
atomistic to SCG. For supramolecular mappings, the clusters need to be assembled, disassembled and reassembled on-the-fly to accommodate the molecular diffu-
sion from the atomistic to SCG domains and vice versa. To this end, we developed the SWINGER algorithm that acts in the thin layer between the atomistic and
hybrid domains. (Online version in colour.)
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In this review, we focus on concurrent multiscale methods,

which couple fine-grained and CG resolutions at the same

time in the simulation box (e.g. [39–56]). Among the most

advanced of such multiscale methods is the adaptive resol-

ution scheme (AdResS) [57–59], in which the molecules can

change their resolution on-the-fly during the course of an

MD simulation. AdResS is hence suitable for systems where

the fine-grained AT resolution is required only in some sub-

domains with the CG level of detail sufficient for the

remainder of the system, a typical situation encountered in

many biomolecular systems as presented, for example, in

figure 1. So far, it has been successfully applied to many bio-

physical systems such as solvated proteins and DNA

molecules [6,60–63]. Because of the fast diffusion of water

molecules that takes place on a picosecond timescale the

supramolecular coupling represents a major challenge for

AdResS. Therefore, if one wishes to map a cluster or a

bundle of solvent molecules always to the same SCG

bead, the motion of those molecules must be restricted by

using additional (artificial) semi-harmonic bonds between

water molecules belonging to the same bundle (in the

case of MARTINI, four water molecules per bundle)

[64–68]. While such bundling of water molecules simplifies

the supramolecular coupling to a certain extent, it is also a

source of spurious artefacts in certain situations, such as

partial unfolding of biomolecules [69].

This review is devoted to a description of the development

and applications of the clustering algorithm SWINGER [70],

which redistributes molecules into clusters on-the-fly, thus

allowing for a seamless coupling between standard AT and

SCG water models (figure 1). Note that in the multiscale set-

up, there is no need for a continuous SCG trajectory as opposed

to the bottom-up SCG [38]. The algorithm was applied to link

the AT and the MARTINI SCG force field [70,71], paving the
way for efficient biomolecular MD simulations, and also to a

concurrent coupling of MD and DPD, thus bridging atomistic

and mesoscopic hydrodynamics [72].

The remainder of the review is organized as follows: in §2,

we discuss the AdResS scheme in the context of supramolecu-

lar coupling and present the main aspects of the SWINGER

algorithm. In §3, we revisit three applications of the introduced

methodology, namely the coupling of atomistic simple point-

charge (SPC) and MARTINI water models, the simulation of

the atomistic protein in multiscale SPC/MARTINI solvent,

and the coupling of MD and DPD methods for water, followed

by conclusions and outlook in §4.
2. Methods
We consider a multiscale simulation where a part of the simulation

domain is represented on the AT level and the rest on the SCG res-

olution level (figure 2). With an SCG model, we denote any model

where a cluster of molecules is represented as a single particle.

Furthermore, we consider on-the-fly coupling, meaning that the

resolution level is adaptively changed depending on the position

in the system. For supramolecular mapping, this implies requisi-

tion of a concurrent clustering mechanism. In the following,

we describe how such simulations can be performed with the

combination of AdResS and the clustering algorithm SWINGER.

2.1. Adaptive resolution scheme
According to AdResS [58], the total force acting on a cluster a is

Fa ¼ FAdResS
a þ FTD

a þ Fthermo
a , (2:1)

where FAdResS is the adaptive resolution force that accounts for

the AT/SCG resolution change, FTD is the thermodynamic

force and F thermo is the thermostat contribution. A force interp-

olation scheme is used to couple the AT and low-resolution
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Figure 2. Original (a) and ‘reverse’ (b) implementation of AdResS multiscale simulation where an atomistic (AT) model is coupled to an SCG model. The coupling is
shown for the special case where the resolution is changed only along one dimension. Only half of the simulation domain is displayed as the system is symmetric. In
the original AdResS version, the weighting function w take limiting values of w ¼ 1 and 0 in the AT and SCG domains, respectively. In the ‘reverse’ case, the
definition of w is inverted, which permits the exclusion of the intermediate atomistic with bundles (ATwB) region. In both cases, the SWINGER algorithm is applied
in a very small region at the edge of the AT domain. Different AdResS domains are shown disjoint only for clarity reasons. (Online version in colour.)
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SCG regimes, i.e.

FAdResS
a ¼

X
b=a

{l(Ra, Rb)FAT
ab þ [1� l(Ra, Rb)]FSCG

ab }: (2:2)

The FAT
ab and FSCG

ab are the forces between clusters a and b. For

MD, the forces are computed from the AT (UAT) and SCG

(USCG) potentials as

FAT
ab ¼ �

X
ia,jb

@UAT

@riajb
and FSCG

ab ¼ �
@USCG

@Rab

: (2:3)

The sum runs over all pair atom interactions between explicit

atoms i of the cluster a and explicit atoms j of the cluster b. The

vector Rab ¼ Ra 2 Rb is the relative position vector of the clusters

a and b centres-of-mass (CoM), while riajb¼ ria 2 rjb is the relative

position vector of atoms i and j. If, instead, we wish to employ a

DPD method in the SCG domain, the FSCG
ab is given by

FSCG
ab ¼ aab 1� Rab

Rc

� �
R̂ab, (2:4)

i.e. the conservative force of the DPD method. A smooth transition

from AT to SCG representations and vice versa is enabled with the

hybrid (HY) region (RAT , R , RSCG; figure 2). Two different

interpolations of forces were proposed: the original and the

‘reverse’ definition. The l is, respectively, given by
l(Ra, Rb) ¼

w(Ra)w(Rb); w(Ra,b) ¼
1,

cos2 p
h

0,

8><
>:

1� w(Ra)w(Rb); w(Ra,b) ¼
0,

cos2 p
h

1,

8><
>:

8>>>>>>>>><
>>>>>>>>>:
In both implementations, the weighting function w is a sigmoid

function with extreme values of 0 and 1. However, its definition

is turned around in the ‘reverse’ implementation. The two cases

are showcased in figure 2. The original implementation of

AdResS requires the use of an additional atomistic with bundles

(ATwB) domain, where the resolution is atomistic and the SCG

interaction sites are well defined. This necessity is due to the

non-zero interactions between the AT and HY clusters up to

one potential cutoff deep into the AT domain. In the ATwB

region, the water molecules in the clusters need to be constrained

to remain first neighbours as in, for example, the bundled-SPC

water model. From a computational point of view, such

implementation is not optimal as one would like to minimize

the computationally heavy AT region. Hence, in later appli-

cations the ‘reverse’ implementation was adopted, where the

ATwB region is omitted. In equation (2.5), R0 denotes the

centre of the AT region, which can be either a fixed point (usually

the centre of the simulation box) or a mobile point, as, for

example, in a simulation of a macromolecule where it coincides

with the macromolecule’s CoM. AdResS can accommodate var-

ious geometric boundaries between the resolution regions:

splitting in one dimension [70], cylindrical [60], spherical [71].

It also permits the use of flexible domains [73] where the atomis-

tic region is defined as a distance from the surface of the
AT and ATwB
(kRa,b�R0k�RAT)

2(RSCG�RAT)

i
, HY

SCG

9>=
>;; original

AT
(RSCG�kRa,b�R0k)

2(RSCG�RAT)

i
, HY

SCG

9>=
>;; ‘reverse0

(2:5)
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Figure 3. Flowchart of the SWINGER algorithm. (Online version in colour.)
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macromolecule which is beneficial for multiscale simulations of

macromolecules that change their shape during the simulation,

e.g. proteins that fold or unfold.

The thermodynamic force FTD accommodates the coupling of

rather loosely connected molecular representations, i.e. it maintains

two different models with, in general, different thermodynamic

properties like pressure and chemical potential in thermodynamic

equilibrium [74–76]. Typically, there is a preferential tendency of

the molecules to migrate into the low-resolution region and

change resolution in order to lower the free energy of the

system. This effect is manifested as density undulations across

the direction of the resolution change. The thermodynamic force

amends for these. It is calculated in an iterative manner as

FTD
kþ1(kR� R0k) ¼ FTD

k � Crrk(kR� R0k), (2:6)

where k denotes the iteration step. The prefactor C ¼ M=r2
0kT ,

where r0 and kT are the bulk density and isothermal compressibil-

ity, respectively, is in practice empirically adjusted along the

process to prevent under/over-correction. To speed up the iteration

procedure we simultaneously run at each iteration step several

simulations with different prefactors and select the best one for

the next iteration. The FTD
a depends on the cluster type, i.e. if the

solvent is monocomponent (as in the applications presented

below) the force is equal for all SCG particles.

An important point is that the force definition in equation (2.2)

satisfies Newton’s Third Law, i.e. Fab¼ 2Fba. However, since the

total pair force depends not only on their relative distances but

also on the absolute positions of the molecules, it is not conserva-

tive and the corresponding potential does not exist. For this

reason, the AdResS method requires a local thermostat, which
supplies or removes the latent heat caused by the switch of the res-

olution [57]. Here, we briefly present two local thermostats

typically employed in AdResS simulations, that is the Langevin

[77] and the DPD [78,79] thermostats, where the thermostat

force is decomposed into a random FR
a and a friction FD

a contri-

bution. In the case of the Langevin thermostat, they are given by

FD
a ¼ �g _Ra,

hFR
ai ¼ 0 and hFR

a (t)FR
a (t0)i ¼ 2gkBTd(t� t0),

(2:7)

where g is the friction coefficient, kB the Boltzmann constant and T
the temperature. The equations satisfy the fluctuation–dissipation

theorem and generate a canonical ensemble in equilibrium.

However, the linear momentum is not conserved. When hydrodyn-

amic interactions are important a linear momentum conserving

DPD thermostat [78] is more appropriate, i.e.

FD
a ¼

X
b=a

FD
ab FD

ab ¼ �gvD(Rab)(R̂abVab)R̂ab

and FR
a ¼

X
b=a

FR
ab FR

ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

p
vR(Rab)habR̂ab,

(2:8)

where Vab ¼ Va �Vb is the velocity between clusters a and b. The

noise hab must satisfy khabl ¼ 0 and khab(t)hkl(t0)l¼ 2(dikdjl þ
dildkj)d(t 2 t0) analogous to the Langevin forces. The wD(Rab) and

wR(Rab) are R-dependent weight functions that vanish at the pre-

defined cut-off radius. From the fluctuation–dissipation theorem,

it follows that (wR(Rab))2 ¼ wD(Rab). Equations (2.7) and (2.8) are

written only for the SCG domain, since the equations are analogous

for the AT domain.
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2.2. SWINGER
To facilitate supramolecular coupling, we need an algorithm that

will dynamically make, break and remake clusters of water

molecules that will form SCG particles. When designing such an

algorithm the following factors need to be taken into account

(i) the algorithm needs to be applied at the boundary between

the AT and HY domain, with pure AT domain containing

only the unconstrained molecules, whereas the HY

domain should contain only the clustered molecules;

(ii) the number of molecules in a cluster has to be exactly

equal to the AT-to-SCG mapping;

(iii) the clustering should be optimized in terms of minimal

distances of molecules within the clusters;

(iv) the frequency of the algorithm’s initialization should be

approximately on the order of timescales of waters’ tetra-

hedral clusters (�1 ps);

(v) the algorithm should leave the coordinates and velocities

of atoms intact.

The SWINGER algorithm, whose flowchart is shown in

figure 3, was developed with these considerations in mind. It is

invoked at every Verlet list update, which in turn is invoked

when the maximum displacement of any particle since the last

Verlet list update exceeds the value of Rskin. The clusters are

made and remade in a thin layer of thickness DRS � Rskin. For

the supramolecular mappings thus far considered, i.e. 4-to-1

and 8-to-1 the DRS was set to 0.2, 0.4 nm, respectively. A larger

DRS was chosen for the 8-to-1 mapping due to the larger size

of the clusters containing eight water molecules. The stages of

the algorithm are (i) all clusters in the SWINGER region are dis-

assembled; (ii) initial grouping is performed in an orderly

fashion, i.e. the water molecules further from the AT region are

grouped first which outputs more optimized clusters closer to

the HY region, where each cluster contains exactly the prescribed

number of water molecules; (iii) to obtain the optimal clustering

the simulated annealing Monte Carlo refinement is performed

until the maximum number of iterations is reached or the sum

of clusters’ energy (equation (2.9) with G ¼ 1) is sufficiently low.

The trial moves consist of selecting a random molecule in a

random cluster and swapping that molecule with the nearest

molecule in the nearest cluster; (iv) all clusters whose CoM resides

outside the AT domain are retained while the others are

disassembled. A more detailed description can be found in [70].

When the clusters are formed a half-harmonic spring

interaction, given by

UB(rij, R) ¼
1

2
k(rij � r0)2G(R), rij . r0

0, otherwise

8><
>: (2:9)

is added between the oxygen atoms i and j within a cluster. The

force-constant k is 1000 kJ mol21 nm22 and rij and r0 ¼ 0.3 nm are

the current and equilibrium distances between oxygen atoms,

respectively. The bundled interaction is introduced gradually to

avoid any large forces due to bundling and to accommodate

an easier reclustering. For this purpose, we introduce the func-

tion G, which has a similar form as the w function used in the

AdResS scheme, i.e.
G(R) ¼

cos p(RAT�kR�R0k)
2(RAT�RB)

� �
, RB , k

1, RAT ,

0, otherw

8><
>:

cos p(RSCG�kR�R0k)
2(RSCG�RB)

� �
, RB ,

0, other

(

8>>>>>>><
>>>>>>>:
If all water molecules in the cluster are first nearest neighbours,

the half-harmonic spring interaction acts between all oxygen

pairs. However, special care is needed for higher mappings

where the clusters also contain the second neighbours. For the

8-to-1 mapping, for example, we added the interaction between

its four nearest oxygens and additionally to oxygen atoms

within 0.35 nm thus ensuring that only nearest neighbours are

connected and that the cluster is well interconnected, i.e. it

does not form, for example, two separate clusters with four

water molecules.

The computational cost of the SWINGER algorithm depends

on the size of the clustering region. In particular, the algorithm’s

complexity scales linearly with the number of water molecules

considered in the clustering as the energy of the simulated anneal-

ing Monte Carlo involves only intracluster contributions. When

the algorithm is executed, the measured computational time of

the MD time step is increased by approximately 5%. However,

since the SWINGER scheme is not initiated at every MD step

but only at every Verlet list update, the overall increase in the

computational load due to SWINGER itself is negligible [70].
3. Applications
Now, we showcase three multiscale simulations using a

supramolecular coupling and employing the SWINGER

algorithm. We demonstrate the successful coupling of SPC

and MARTINI water models using a 4-to-1 mapping,

where we first consider the pure solvent system [70] and

later we immerse a protein into this multiscale solvation

[71]. Apart from MARTINI, the SPC water model is also

coupled to the DPD water model using 4- and 8-to-1 map-

pings, which unveils the basics of merging the MD and

DPD particle-based methods [72].

3.1. Coupling all-atom and MARTINI solvents
We have performed the multiscale simulation of the SPC/

MARTINI water model [70]. The set-up of the system is

shown in figure 2a, i.e. we used the original implementation

of AdResS and the resolution was changed along one dimen-

sion (x-coordinate). The mapping is 4-to-1 since in the

MARTINI force field four water molecules are represented as

a single particle. As reference systems, we have also performed

the pure all-atom simulations with the SPC and bundled-SPC 1

[64] water models. The latter is a modified version of the SPC

water model where half-harmonic bonds (equation (2.9)

using G ¼ 1) are added to oxygen atoms within clusters

formed by four water molecules. Additionally, the oxygen–

oxygen Lennard–Jones parameters are changed to reproduce

the same density as the original SPC model.

In figure 4a, we show the average bundling energy UB

profile (equation (2.9)) by discretizing the x-coordinate dis-

tances of the clusters to the centre of the AT domain (R0)

into bins and taking the average over clusters that fall into

a corresponding bin. Comparing the AdResS and all-atom
R� R0k , RAT

kR� R0k , RSCG

ise

9>=
>;; original

kR� R0k , RSCG

wise

)
; ‘reverse0:

(2:10)
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Figure 4. Average bundling energy of a bundle UB (a) and tetrahedral order parameter Q4 and Q�4 (b) with standard deviations along the direction of the resolution
change (r is the distance from R0 in direction of the x-coordinate). The AdResS profile is computed separately for G (equation (2.10)) and G* functions, where G* ¼ 1
for RB , kR 2 R0k, RSCG. The value of Q4 ¼ 1 corresponds to a perfect tetrahedral arrangement, whereas Q4 ¼ 0 describes an ideal gas. The results are plotted for
the AdResS simulation and reference all-atom SPC and bundled-SPC 1 [64] water models. Resolution region boundaries are denoted with the vertical dashed lines.
Adapted from [70]. (Online version in colour.)
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bundled-SPC results, we see that the clusters in the HY region

have energies of comparable magnitude as in the bundled-

SPC 1 water model. The results for AdResS are computed

using G given by equation (2.10) and without the use of

gradual bundling with G* ¼ 1. These plots rationalize our

choice of the smooth introduction of the bundling since UB

can be quite high when the clusters are formed and could

lead to large forces. The reason why the energies in the clus-

ter formation region are quite high even though the clustering

is optimized is that the internal structure promoted by the

bundling interaction is not inherent to the standard SPC

water. The bundling encourages an internal structure of the

bundles, where the water molecules are located at the four

vertexes of the tetrahedron and the angle between two

molecules and the bundle’s CoM is 109.58. This ordering

can be described with the order parameter Q�4 defined by

Q�4 ¼ 1� 3

8

X3

i¼1

X4

j¼iþ1

cosfij þ
1

3

� �2

, (3:1)

where i and j are the oxygen atoms of a distinct pair in a

bundle and fij the angle between the two oxygen atoms

and the bundle’s CoM. Figure 4b shows Q�4 for the AdResS

and reference all-atom bundled-SPC 1 simulations across

different resolution regions. As the strength of the bundling

is increased in the ATwB region, the promoted order also

increases and reaches the value inherent to the bundled-

SPC water model. In the HY region, the order parameter

declines as a result of the resolution change.

The degree of three-body correlations in water is regularly

measured with the tetrahedrality parameter Q4 as the short-

range structure in water is roughly tetrahedral due to the

hydrogen-bond network. Q4 is defined as [80]

Q4 ¼ 1� 3

8

X3

j¼1

X4

k¼iþ1

cos uijk þ
1

3

� �2

, (3:2)

where the sum runs over distinct pairs of the four closest

neighbours of the reference water molecule i and uijk is the

angle between vectors rij and rik with j and k being the nearest
neighbours molecules. The summation is normalized to give

the value of 0 for the random distribution, while the value of

1 is obtained for the ideal tetrahedral arrangement. Contrary

to the Q�4, which considers the arrangement of four water

molecules within a bundle, the Q4 considers five water mol-

ecules. For Q4 ¼ 1, the molecule i is in the centre of the

tetrahedron while the four neighbouring molecules are

located at the tetrahedron’s vertices. Thus, for bundled-SPC

water, the Q4 involves water molecules of the same cluster

and also water molecules of neighbouring clusters. In the

AT region, we reproduce the average value of Q4 of

the original all-atom SPC model. Owing to the presence of

half-harmonic bonds between oxygen atoms within bundles,

the local structure of water is, as expected, distorted in the

ATwB and HY regions. In particular, we observe a continu-

ous decrease of the Q4 parameter as we move away from

the AT region. At the boundary between the ATwB and HY

regions, the average value of Q4 is equal to the average tetra-

hedrality of the bundled-SPC water model (with changed

Lennard–Jones parameters according to [64]). Analogously

as in the case of Q�4, the Q4 in the HY region also declines

due to change of the resolution.

3.2. Biomolecule in a supramolecular solvent
AdResS-type multiscale simulations are particularly advan-

tageous for systems where AT resolution is required only

in spatially localized domains whereas a low-resolution

level is sufficient for the rest of the system. Typically, such

cases are biomolecules in a solvent. Here, we report on the

multiscale simulation of an atomistic protein Trp-Cage

solvated in a multiresolution water at ambient conditions

[71]. The system is schematically illustrated in figure 1. The

solvent’s level of representation depends on the distance

from the protein’s CoM. For short distances, we resort to

the SPC model to properly incorporate the specific hydro-

gen-bonding pattern. For the description of the water

further away, we use the mesoscopic MARTINI SCG

model. Water in that region exhibits bulk properties and

the high-resolution representation is, therefore, not required.
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Figure 5. Subplot (a) shows the NDP (with standard deviation denoted by the error bars) around the CoM of the protein for water oxygen atoms and MARTINI SCG
beads and the thermodynamic (TD) force that acts on CoM of supramolecular bundles in the HY region. In subplot (b), we show the radius of gyration Rg as a
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The total simulation domain is a cube with a 9.2 nm long

edge containing 25 400 water molecules while the atomistic

domain is a sphere with a radius of 2 nm.

The AdResS approach for the present protein–water

system has been tested by carrying out the analysis of the

structural and dynamic properties of the protein and the mul-

tiscale solvent (figure 5). First, we examine the normalized

density profile (NDP), i.e. the local density divided by the

bulk density, as a function of distance from the protein’s

CoM. The NDPs, shown in figure 5a(i), are computed for the

water oxygen atoms and MARTINI SCG beads. The AdResS

and all-atom SPC NDPs for the water oxygen atoms match

well and display similar standard deviations denoted by the

error bars. As already mentioned in §2.1, to obtain flat density

profile across the resolution region domains we deploy the

thermodynamic force. The one used in this work that acts

on clusters’ COMs in the HY region is shown in figure 5a(ii).

Next, we plot, in figure 5b, the radius of gyration Rg and

the root mean square fluctuations (RMSF) of the protein’s

backbone atoms with respect to the crystal initial structure.

We use these two properties to demonstrate that the

multiscale simulation does not affect the structural properties

of the protein. The obtained average values of AdResS simu-

lation match the reference all-atom simulation. The structure

of the protein is stable and the protein remains in the folded

conformation throughout the simulation. This is true also for

the all-atom simulations using the bundled-SPC 1 and 2 [64]

water models even though these models were shown to lead

to the partial unfolding for the coiled-coil dimer [69].
3.3. Coupling the MD and DPD methods: application
to water

Lastly, we turn our attention to the coupling of two particle-

based methods: the MD and DPD methods [72]. As a test

case, we chose water at ambient conditions. Here, we first

introduced the reverse implementation of AdResS and the

resolution was changed along one dimension (x-coordinate).
The set-up of the simulation is schematically shown in figure

2b. We used the SPC water model in the AT domain, and two

different DPD models [81,82] in the SCG domain. DPD

models deployed differ in their level of resolution. In the

first (denoted as AdResS 4-to-1), each DPD particle represents

four water molecules, while in the second (AdResS 8-to-1) it

represents eight water molecules. Apart from the multiscale

simulations, we performed additional pure all-atom MD

and DPD simulations (denoted with MD, DPD 4, and DPD

8, respectively).

To validate this coupling, we computed the Van Hove

function G(r, t), which gives information about the equili-

brium structural and dynamical organization of water. For

a homogeneous medium, the G(r, t) is given by

G(r, t) ¼ N�1
X

i,j

hd(r þ r j(0)� ri(t))i: (3:3)

The double sum is performed over all pairs of N particles in

the system, ri,j(t) is the position vector of the i, jth particle at

time t, and the brackets k . . . l denote an average over time ori-

gins. By differentiating between the cases i ¼ j and i = j the

G(r, t) can be separated into two terms, usually referred to

as the self and distinct parts, respectively. Both parts are

plotted in figure 6. The distinct part Gd gives the probability

to find a different particle at position r at time t, given that

there was a particle at the origin at time t ¼ 0. For isotropic

fluids, the Gd depends only on the scalar quantity r and can

thus be simplified as

Gd(r, t) ¼ (4pr2N)�1
X
i=j

hd(r� jri(t)� r j(0)j)i: (3:4)

At t ¼ 0, the Gd reduces to the well-known radial distribution

function Gd(r, 0) ¼ rg(r). The Gs(r, t), given by

Gs(r, t) ¼ (4pr2N)�1
X

i

hd(r� jri(t)� ri(0)j)i, (3:5)

probes the equilibrium dynamics of a single particle in terms

of its displacement from an initial position.
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The distinct part of Van Hove function was computed

for all particle types at two different times: 0 and 0.5 ps

(figure 6a(i) and (ii) plots, respectively), while the self-part

of the Van Hove function Gs(r, t) is evaluated for the water

oxygen atoms and DPD particles at times ranging from 0.5

to 5 ps (figure 6b). To make a relevant comparison with the

reference simulations, the Gd(r, t) and Gs(r, t) are computed

locally for the multiscale simulations, i.e. we only consider

the molecules either in the AT or SCG domain. We then com-

pare the Van Hove functions from the MD domain of the

AdResS set-up with the corresponding functions from fully

MD simulations. Likewise, the Van Hove functions from the

SCG domain of the AdResS set-up are compared with the cor-

responding ones from fully DPD simulations. We find that for

both AdResS simulations, all Van Hove functions match the

reference results very well, thus demonstrating that, in equili-

brium, not only the structural part but also the dynamical part

of the water organization is fully preserved in both domains.

Note that AdResS force interpolation scheme (equation (2.2))

preserves the local linear momentum by construction. The

overall scheme with the included thermodynamic force also

conserves the linear momentum, however, on the fluctuating

hydrodynamics level.
4. Conclusion and outlook
This contribution presents a review of recent adaptive resol-

ution approaches employing supramolecular coupling. The

focus is on the applications employing the SWINGER algor-

ithm that performs an on-the-fly clustering and thus allows

for a direct coupling of AT and SCG models. In the presented

examples, we coupled the SPC water model with two types

of broadly used mesoscopic models: MARTINI and DPD.

We discussed two supramolecular mappings, i.e. the 4-to-1

and 8-to-1 molecular mappings. From the methodological

point of view, the difference between the two is in clustering

only first neighbour molecules versus first and second neigh-

bour molecules. The developed approaches were showcased

for pure water systems and a protein–water system. In all

cases, we demonstrate that our multiscale approach can
faithfully reproduce and thus replace the all-atom simu-

lations. Here, we would like to emphasize that our region

of interest is the AT region and the main objective of the

AdResS approach is to reproduce the full-blown atomistic

simulation properties in the AT region. On the other hand,

the agreement with the experimental observations critically

depends on the appropriateness of the deployed AT model,

which is beyond the scope of this paper.

The presented methodology could be applied to other

mappings with a different number of solvent molecules per

bundle provided that the mapping is low enough for the

legitimacy of the particle-based description, e.g. models

employed in [25]. It could also be extended to multi-site

supramolecular models such as the PW and BMW models

[67]. The all-atom bundled-SPC water model was already

coupled with those models, therefore the extension to uncon-

strained water models should be fairly straightforward. On

the other hand, the coupling of MD and DPD methods

opens up a range of possible future directions that exploit

the DPD method’s capabilities in encompassing the meso-

scopic hydrodynamics. Our future efforts will be aimed

towards this path and involve testing and applying here pre-

sented techniques for non-equilibrium fluid flow simulations.

The computational advantages of AdResS methodology

compared to the all-atom simulations were studied in a

recent paper by Junghans et al. [83]. In general, the speed-up

mostly depends on the AT-to-CG mapping and the volume

ratio between the AT and CG domain sizes where the upper

bound of the speed-up is given by the fully coarse-grained

simulation. Further computational enhancements can be

achieved with load-balancing schemes such as heterogeneous

domain decomposition approach, which can additionally

increase the speed-up by a factor of 1.5 [84] and with multiple

time-stepping algorithms [5]. For more detailed discussion on

the computational gains, we refer the reader to [61,83].
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