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Chapter 2

Inhomogeneous percolation on
ladder graphs

In this chapter we define an inhomogeneous percolation model on “ladder graphs”
obtained as direct products of an arbitrary graph G = (V,E) and the set of
integers Z (vertices are thought of as having a “vertical” component indexed by an
integer). We make two natural choices for the set of edges, producing an unoriented
graph G and an oriented graph G. These graphs are endowed with percolation
configurations in which independently, edges inside a fixed infinite “column” are
open with probability ¢, and all other edges are open with probability p. For all
fixed g one can define the critical percolation threshold p.(q). We show that this
function is continuous in (0, 1).

2.1 Introduction

In this paper we examine how the critical parameter of percolation is affected by
inhomogeneities. More specifically, we address the following problem. Suppose G
is a graph with (oriented or unoriented) set of edges E, and that E is split into two
disjoint sets, E = E'UE”. Consider the percolation model in which edges of E’ are
open with probability p and edges of E” are open with probability ¢. For ¢ € [0, 1],
we can then define p.(q) as the supremum of values of p for which percolation does
not occur at p,q. What can be said about the function ¢ — p.(q)?

This is the framework for the problem of interest of the recent reference [9].
In that paper, the authors consider an oriented tree whose vertex set is that of
the d-regular, rooted tree, and containing “short edges” (with which each vertex
points to its d children) and “long edges” (with which each vertex points to its d*
descendants at distance k, for fixed k € N). Percolation is defined on this graph by
letting short edges be open with probability p and long edges with probability q.
It is proved that the curve ¢ — p.(q) is continuous and strictly decreasing in the
region where it is positive.
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14 CHAPTER 2. INHOM. PERCOLATION ON LADDER GRAPHS

In the present paper, we consider another natural setting for the problem
described in the first paragraph, namely that of a “ladder graph” in the spirit
of [5]. We start with an arbitrary (unoriented, connected) graph G = (V, E)
and construct G = (V,E) by placing layers of G one on top of the other and
adding extra edges to connect the consecutive layers. More precisely, V=V x Z
and E consists of the edges that make each individual layer a copy of G, as well
as edges linking each vertex to its copies in the layers above it and below it (see
Figure 2.1 for an example). With this choice (and other ones we will also consider),
one would expect the aforementioned function p.(¢q) to be constant in (0,1). Our
main result is that it is a continuous function. We also consider a similarly defined
oriented model @, and obtain the same result. See Section 2.1.1 for a more formal
description of the models we study and the results we obtain.

G

Figure 2.1: The construction of G from G and a possible choice for the edge set E”
(on which edges are open with probability ¢).

Our ladder graph percolation model is a generalization of the model of [12].
In that paper, Zhang considers an independent bond percolation model on Z?2
in which edges belonging to the vertical line through the origin are open with
probability ¢, while other edges are open with probability p. It then follows from
standard results in Percolation Theory that (0,1) 3 ¢ — p.(q) is constant, equal
to %, the critical value of (homogeneous) bond percolation on Z?. The main result
of [12] is that, when p is set to this critical value and for any ¢ € (0, 1), there is
almost surely no infinite percolation cluster. Since we are far from understanding
the critical behaviour of homogeneous percolation on the more general graphs G
and G we consider here, analogous results to that of Zhang are beyond the scope
of our work.

Let us briefly mention some other related works. Important references for
percolation phase transition beyond Z? are [3] and [8]; see also [4] for a recent
development. Concerning sensitivity of the percolation threshold to an extra pa-
rameter or inhomogeneity of the underlying model, see the theory of essential
enhancements developed in [1] and [2].
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2.1.1 Formal description of model and results

Let G = (V, E) be a connected graph with vertex set V and edge set E. Let
V =V x Z. We define the unoriented graph G = (V,E) and the oriented graph
G = (V,E), where

E ={{(u,n), (v,n)} : {u,v} € E,;n € Z} U {{(u,n), (u,n+1)} :u € V,n € Z},
E ={{(u,n), (v,n+1)) : {u,v} € E,n € Z};

above we denote unoriented edges by {-,-} and oriented edges by (-,-). See Fig-
ure 2.2 for an example. Note that G is not necessarily connected.

G

G

Figure 2.2: G and G for G = Z. Note that in this case, G consists of two disjoint
subgraphs; for clarity we will only display one of these subgraphs further on.

We consider percolation configurations in which each edge in E and E can
be open or closed. Let © = {0,1}E and = {0,1}F be the sets of all possible
configurations on G and G, respectively. Then for any e € E or E, wle) =1
corresponds to the edge being open and w(e) = 0 to closed.

An open path on G is a set of distinct vertices (vo, ng), (v1,71), -+ (Vm, Tm)
such that for every i = 0,...,m — 1, {(v;,n;), (vix1,n:41)} € E and is open. We
say that (v,n) can be reached from (vg,ng) either if they are equal or if there is
an open path from (vg,ng) to (v,n). Denote this event by (vg,ng) <> (v,n). The
set of vertices that can be reached from (v,n) is called the cluster of (v,n).

An open path on G can be defined similarly, but since edges are oriented up-
wards, (v,n) can only be reached from (vg,n¢) if n > ng. Denote this event
by (vo,n9) — (v,n). Hence we will call the set of vertices that can be reached by
an open path from (v, n) the forward cluster of (v,n). Denote by Cue and Cs the
events that there is an infinite cluster on G and an infinite forward cluster on G
respectively.

We examine the following inhomogeneous percolation setting. First consider
the unoriented graph G. Fix finitely many edges and vertices

er ={ui,v1},...,ex ={ug,vx} € E, wy,...w, €V (2.1)
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and let

E' = {{(ui,n), (v;,n)} :n € Z} i=1,...,K; (2.2)
EXH .= {{(wj,n), (wj,n +1)} : n € Z} j=1,...,L; (2.3)

that is the set of “horizontal” edges on G between w; and v;, and the set of
“vertical” edges above and below vertex w; respectively (see Figure 2.3 for an
example). Further let q = (q1,...,qKx+r) with ¢; € (0,1) for all ¢ and let p € [0, 1].
Now let each edge of Ef be open with probability ¢;, and each edge in E\ Ufi '{LIEi
be open with probability p. Denote the law of the open edges by Pq ,. Whether or
not the event C, happens with positive probability depends on the parameters p
and g, so we can define the critical parameter as a function of q:

pc(Q) = SUP{p : Pq,p(COO) = O}-
We will show that this function is continuous:
Theorem 2.1.1. For fized K,L € N, the function q — p.(q) is continuous

in (0,1)K+E.

E! E? E!  E2?

e

0
G
Figure 2.3: The edge sets E! and E? on G with e; = {—1,0} and w; = 1; and
on G with ey = {—1,0} and ep = {1,2} (for G = Z).
We now turn to the oriented graph G. Fix finitely many edges

er1 ={u,v1},...,ex = {uk,vg} € F (2.4)

and let N
E" == {{(ui,n), (vi;n + 1)), ((vi,n), (us,n + 1)) : n € Z}; (2:5)

that is the set of oriented edges on G between u; and v; (see Figure 2.3 for an
example). Further let q = (¢1,...,qx) with ¢; € (0,1) for all ¢ and let p € [0,1].
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Now let each oriented edge of E! be open with probability ¢;, and each oriented
edge in E \ Ufilﬁi be open with probability p. Denote the law of the open edges
by @q7p. Similarly as in the unoriented case we can define the critical parameter
as a function of q:

Pe(a) = sup{p : Bqp(Csc) = 0}.

We will show that this function is continuous:
Theorem 2.1.2. For fized K € N, the function q — p.(q) is continuous in (0,1)%.

The proofs of both Theorem 2.1.1 and Theorem 2.1.2 rely on two coupling
results which allow us to compare percolation configurations with different pa-
rameters q,p. These coupling results are presented in Section 2.2. We prove
Theorem 2.1.1 in Section 2.3 and Theorem 2.1.2 in Section 2.4.

2.1.2 Discussion on the contact process

Bond percolation on the oriented graph G defined from G = (V, E) is closely
related to the contact process on G: the latter can be thought of as a version of
the former in which the “vertical”, one-dimensional component is taken as R rather
than Z (see [7] for the definition of the contact process; some other modifications
have to be made on our G to account for the “recovery marks” of the contact
process, but this is unimportant for the present discussion). In fact, one of the
questions that originally motivated us was the following. Assume we take the
contact process on an arbitrary graph G, and declare that the infection rate is
equal to A > 0 in every edge except for a distinguished edge e*, in which the
infection rate is ¢ > 0. Let A.(o) be the supremum of values of A for which the
process with parameters A, o dies out (starting from finitely many infections). Is
it true that A.(o) is constant, or at least continuous, in (0, 00)? Bond percolation
on the oriented graph G defined from G = (V, E) is closely related to the contact
process on (G. The contact process is usually taken as a model of epidemics
on a graph: vertices are individuals, which can be healthy or infected. In the
continuous-time Markov dynamics infected individuals recover with rate 1 and
transmit the infection to each neighbor with rate A > 0 (“infection rate”). The
“all healthy” configuration is a trap state for the dynamics; the probability that
the contact process ever reaches this state is either equal to 1 or strictly less than 1
for any finite set of initially infected vertices. The process is said to die out in the
first case and to survive in the latter. Whether it survives or dies out will depend
on both the underlying graph G and A, so one defines the critical rate A\, as the
supremum of the infection parameter values for which the contact process dies out
on G. For a detailed introduction see [7].

The contact process admits a well-known graphical construction that is a
“space-time picture” G x [0,00) of the process. We assign to each vertex v € V
and ordered pair of vertices (u,v) satisfying {u,v} € E a Poisson point process D,
with rate 1 and Dy, ,) with rate A respectively (all processes are independent).
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For each event time ¢ of D,, we place a “recovery mark” at (v, ¢) and for each event
time of D, .,y an “infection arrow” from (u,t) to (v,t). An “infection path” is
a connected path that moves along the timeline in the increasing time direction,
without passing through a recovery mark and along infection arrows in the direc-
tion of the arrow. Starting from a set of initially infected vertices A C V, the set
of infected vertices at time ¢ is the set of vertices v such that (v, ) can be reached
by an infection path from some (u,0) with u € A.

This representation can be thought of as a version of our oriented percolation
model G in which the “vertical”, one-dimensional component is taken as R rather
than Z (some other modifications have to be made to account for the “recovery
marks” of the contact process, but this is unimportant for the present discussion).
In fact, one of the questions that originally motivated us was the following. Assume
we take the contact process on an arbitrary graph G, and declare that the infection
rate is equal to A > 0 in every edge except for a distinguished edge e*, in which
the infection rate is ¢ > 0. Let A.(0) be the supremum of values of A\ for which
the process with parameters A, o dies out (starting from finitely many infections).
Is it true that A.(o) is constant, or at least continuous, in (0, 00)?

In case G is a vertex-transitive connected graph, one can show that A.(o) is
constant in (0,00) by an argument similar to the one given in [6]. For general G,
even continuity of A\.(o) is unproved, and the techniques we use here do not seem
to be sufficient to handle that case (see Remark 2.4.4 below for an explanation
of what goes wrong). This is surprising, since results for oriented percolation
typically transfer automatically to the contact process (and vice-versa). A recent
result shows that the situation can be quite delicate: in [10], we exhibited a tree
in which the contact process (with same rate A > 0 everywhere) survives for any
value of A, but in which the removal of a single edge produces two subtrees in
which the process dies out for small .

2.2 Coupling lemmas

The proofs of both our theorems are based on couplings which allow us to carefully
compare percolation configurations sampled from measures with different param-
eter values. In the proof of Theorem 2.1.1 we use the following coupling lemma
(Lemma 3.1 from [9]). The proof is omitted since it is quite simple and can be
found in [9]; the idea of the coupling is reminiscent of Doeblin’s maximal coupling
lemma (see [11] Chapter 1.4).

Lemma 2.2.1. Let Py denote probability measures on a finite set S,
parametrized by 6 € (0,1)Y, such that 0 — Pg(x) is continuous for every x € S.
Assume that for some 61 and T € S we have Py, () > 0. Then, for any 0y close
enough to 01, there exists a coupling of two random elements X and Y of S such
that X ~Py,, Y ~ Py, and

P{X=Y}U{X=2}U{Y =3}) =1 (2.6)
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The following is a modified version of Lemma 2.2.1, to be used in the proof of
Theorem 2.1.2.

Lemma 2.2.2. Let Py denote probability measures on a finite set S,
parametrized by 6 € (0,1)N, such that 6 — Py(z) is continuous for every v € S.

Let {S‘, 5'} be a non-trivial partition of S, and assume that for some 6y, T € S

and & € S we have Py, (2) > 0 and Py, (&) > 0. Then, for any 05 close enough

to 01, there exists a coupling of two random elements X and Y of S such that
X ~Pg,, Y ~ Py, and

]P({X:Y}U{Xzfc}U{XeSU{%},Y:fc}U{Y::E}):1, (2.7)

specifically
P(Y =2 or 2| X = 2)1. (2.8)
Proof. We write S = {wy,wa, ..., w,, &} and S = {z1,22,...,2m, 2} and for all y €
Sand k=1,2let
p(y) = IP>01 (y) A ]P92 (y)a ~
Do, (y) = [ 1(y) z(y)]+7 Doy (‘5:) = Zyeé\{i} Doy, (y)v
po,(y) = [Po,(y) — Po,(y)]", Po.(S) = 3 cq\ sy Po(¥)-

Let U be a uniform random variable on [0, 1]. The values of X and Y will be
given as functions of U. Clearly

n m

D op(wi) + Y p(z) +Po (&) + po, (9) + Po, (&) + pa, (5) =

i=1 j=1

so we can cover the line segment [0, 1] with disjoint intervals with lengths equal to

the summands of the left-hand side of the above equality with either £ = 1 or 2

(see Figure 2.4). For any value of u we choose X and Y to be the element of S that

corresponds to the interval u falls into in the first and second cover respectively.
To guarantee that (2.7) is satisfied we arrange these intervals in a way that

e the interval corresponding to Py, (%) in the first cover is entirely contained
in the intervals corresponding to Py, (#) and Py, (Z) in the second cover;

e the interval corresponding to pgl(g) in the first cover is contained in the
interval corresponding to Py, (%) in the second cover;

e the interval corresponding to pg, (S) in the first cover is contained in the
intervals corresponding to Py, (#) and Py, (Z) in the second cover.
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Do, (wl )391 (w2) .. .Doy (’U)n)

L Il Il Il J

p(w2) p(z1) pe, (5) //p/el(S)
p(w1) ooplwa) | op(z2) L p(am) Po(R) | Pe(2)
1 ] ] 1 ] ] ] ] 1 N L 1 ]
I 1 1 1 1 1 1 1 T T T |
0 & . ay 1
po.(S)] L Po,(2)  Po,(2)
o, (5)
wy  wy ... Wy
L | | | J
X= w w . Wy, 21 2 . 2 PNow A %
| | | | | | | | | N Il |
| | | | | | T T T T T 1
Y= w wy o Wy 21 22 . Zp W;i%j Z Z

Figure 2.4: The partitioning of the line segment [0, 1], and the sampling of (X,Y).

The above is possible since by continuity, as 5 — 61 : Py, (&) — Py, (Z) > 0,

Pp, (Z) — Py, (Z) > 0 as well as pyp, (5), pe, (S) — 0. Therefore, if Oy is sufficiently
close to 61, we have

2»

pe, (S) < Po, (&),
P, (S) + P, (&) + po, () < Po, (2) + Py, (2).

2.3 Proof of Theorem 2.1.1

We start showing that if the statement of Theorem 2.1.1 is proved for a given
set of edges and vertices as in (2.1), then the same continuity statement au-
tomatically follows for smaller sets of edges and vertices. To prove this, let
€1,...,€K, Wi,...,wr be edges and vertices as in (2.1), and let w11 be an addi-
tional vertex (we could alternatively take an additional edge with no change to the
argument that follows). We now compare two percolation models on G: the first
one with parameter values q = (q1,...,qx+r) for EY, ..., EX*E and p for all other
edges, and the second one with parameter values (q, qxr41) for E!, ... EX+E+L
and p for all other edges.
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Claim 2.3.1. If the function (q,qx+r+1) — Pe(Q,qr+rn+1) 8 continuous in
(0, 1)E+LHL then q v~ p.(q) is continuous in (0,1)K+E.

Proof. Since (0,1) 2 qx+r+1 = Pe(q, g+ 1+1) is non-increasing and by assump-
tion continuous, there exists a unique t* € (0,1) such that t* = p.(q,t*). We
claim that t* = p.(q). Indeed, by the definition of p.(q,t*),

vt > t*, 0< P(q,t*),t(coo) < P(q,t),t(coo) = HJ)q,t(c'oo)v and
Vit <t*, 0=Pg)t(Coo) = Pg)t(Coo) = Pqt(Co),
which implies p.(q) = t*.

Assume that p.(q,t) = ¢ for some q and t. By continuity, for all ¢ > 0,
if § € (0,1)K+L is close enough to zero we have

pe(q+0,t) € (t—et+e).
As p. is non-increasing in ¢, this yields
pe(q+0,t—¢)>t—¢ and pq+d,t+¢) <t-+e
Hence there exists t' € (t — €,t + €) such that p.(q + 8,¢) = #. This implies

that q — p.(q) is continuous. |

For our base graph G = (V,E), u,v € V and V' C V, let distg(u,v) be
the graph distance between u and v, and let distg(u, V') be the smallest graph
distance between u and a point of V'. Fix r € N, ug € V and let

U := By(up), (2.9)

that is the ball of radius  around ug with respect to the graph distance.
From now on, we will assume that the edges ey,...,ex of (2.1) are all the
edges with both extremities belonging to U, and that the vertices w,...,wr of

(2.1) are all the vertices of U. We are allowed to restrict ourselves to this case by
Claim 2.3.1.
The proof of Theorem 2.1.1 will be a consequence of the following claim.

Claim 2.3.2. Forallp € (0,1), qo € (0,1)5+L and e € (0,1—p) there exists a § >
0 such that for any q,q’ € (0,1)5+L satisfying ||qo —qllec < 6 and [|ao —q'|lee < &
we have

Pq, p(COO) < Pq’,ere(COO)-

Note that Claim 2.3.2 is trivial if @' — q has non-negative coordinates.
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Proof of Theorem 2.1.1. Fix qo € (0,1)%X*% and € > 0. By Claim 2.3.2, if ||qo —
4|l is close enough to zero, then

Py, Pu(QO)+e(COO) 2 Pq, Pe(do)+5 (Cos), (2.10)

Pq, pc(qo)—e(coo) < qu,pc(qo)—g(coo)~ (2.11)

By the definition of p.(qo), the right-hand side of (2.10) is positive and the right-
hand side of (2.11) is zero; hence, the two inequalities respectively yield

pe(q) < pe(ao) +€ and  pe(q) = pe(qo) — e
This implies that q — p.(q) is continuous at qo. |

Proof of Claim 2.3.2. We start with several definitions. Recall the definition of U
n (2.9) and for n € Z let

V,={(v,m)eV:ve Bryi(ug), CL+2)n<m < (2L+2)(n+ 1)}
and

E, = {e € E: e has both extremities in V,}
\{e€eE:e={(u,(2L+2)(n+ 1)), (v, 2L +2)(n+ 1))} for some {u,v} € E}.

We think of V,, as a “box” of vertices and of E,, as all the edges in the subgraph
induced by this box, except for the “ceiling”. Note that the E,, are disjoint (though
the V,, are not). Next, recall the definition of E? for 1 < i < K + L from (2.2) and
(2.3). Observe that U;E* C U,E,, and define, forn € Z and 1 <i < K + L,

E! =E, NE, E2 =E,\ (UIPEL), Eo = E\ (UnezE,) .

The “edge boundary” E? consists of edges of the form {(u,m), (v, m+ 1)}, with u
such that dist(u,ug) = r + 1, and edges of the form {(u,m), (v,m)}, with v € U
and dist(u, up) = r + 1. Next, let

QL= {0,135, 02 ={0,1}%, Q,={0,1}%, Qo ={0,1}F°;
note that

K+L
Q:Q@xHQn:Q@xH<ng Hﬂn>
i=1

nez nez

For each n, define the inner vertex boundary, consisting of the “floor”, “walls”
and “ceiling” of the vertex box V,,,
oV, ={(v,n) € V, : dist(v,up) =r+ 1}
UU x{2L+2)n})U(U x {(2L+2)(n+ 1)}).
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Given any @ # A C 9V,, and w,, € €, define
Cn(A,wy) = {(v,n) € OV, : (vo,n0) <= (v,7n) for some (vo,ng) € A},

where the notation (vg, ng) <+ (v,n) means that (vo, ng) and (v,n) are connected
by an wy,-open path of edges of E,,. Note that A C C),(4,wy).

Now, fix p, qo and ¢, and for ¢ close enough to zero let q = (q1,...,qKx+1)
and q' = (qi, ..., ¢k ) be as in the statement of the claim. Note that [[q—q'[|ec <
26. We will define coupling measures po on (Q0)? and ju, on (,)? satisfying the
following properties. First,

(wo,wp) ~po = wo @ Pypleo, wo &) Pq preleo
(2.12)
and wo < wp a.s.

(we denote by Pq ,|r the projection of Pg , to E' C E). Second,

d d
@nrich) ~pn = wn D Pagle, wh D Py,
and Cy, (A, wy) C Cp(A,w),) for all A C 9V, a.s.
(2.13)

We then define the coupling measure ; on Q2 by

B=po (®n€Z.un) .

It is clear from (2.12) and (2.13) that, if (w,w’) ~ g, then w ~ Pq p, W' ~ Pq/ pie,
and almost surely if Cy, holds for w, then it holds for w’. Consequently

Pq,p(coo) < Pqﬂp-&-e (Coo)-

The definition of pe is standard. We take in some probability space a pair
of random elements Z = (Z1,Z5) € Q?D such that Z; and Z, are independent on
all edges of E» and they assign each edge to be open with probability p and lip
respectively. We then let wp = Z; and wy, = Z1 V Zs, and pe be the distribution
of (wo,wp), so that (2.12) is clearly satisfied.

The measures pu, will be defined as translations of each other, so we only
define pg. The construction relies on Lemma 2.2.1, with the finite set S of that

lemma being here the set

1 K+L o d
Qp x -+ x Qg7 x Q5 x Q.

The two factors of QF ensure the extra randomness needed for the coupling. We
now define the deterministic element & of the above set that appears in the state-
ment of Lemma 2.2.1. The definition is simple, but the notation is clumsy; a quick
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glimpse at Figure 2.5 should clarify what is involved. We start assuming, without
loss of generality, that the elements w1, ..., wy of U are enumerated so that

distg(w;, V' \ U) < distg(w;+1,V \U) Vi=1,...,L—1.

Let T'; be the set of edges along a shortest path from w; to U \ B,_1(uo).
Further for m < m/ let

[(ws, m), (w, m)] = UM (wi, ), (ws, j + 1)},

Jj=m

Now, z is defined in the following way:

Kl

o 7= (zY,29",19?) with 2V € Qf x --- x QF ™ and 791,792 € QF;

e zY(e) = 1if and only if for some j =1,...L,
e € [(wy, 0),(w;, ) U [(wy, (2L + 2) = ), (wj, (2L + 2))]
U (@), 0, )} u{(u, 2L +2) = j), (v, 2L +2) = )}),

{u,v}€T;

or
ee |J {wL+1),(w,L+1)k
u,velU

¢ 7Pl =0and 792 =1.

By Lemma 2.2.1, if § is close enough to zero, then there exists a coupling
of (K + L + 2)-tuples of configurations

X = (XY, XEHE 01 x02) vy = (Y, . YKL yol yo2)

€O x - xQFTL % QF x QF

such that
o the values of X', ... XK+l X901 X92 are independent on all edges;
o the values of Y, ... YE+L Y01 Y92 are independent on all edges;

e X' assigns each edge to be open with probability ¢;;

e Y assigns each edge to be open with probability ¢};

o X% and Y9! assign each edge to be open with probability p;

o X%2 and Y22 assign each edge to be open with probability ﬁ;
o (X,Y) satisfies

P{X =Y}U{X=2}U{Y =3}) =L (2.14)
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70,1 70,2

Figure 2.5: The deterministic configuration for G = Z, U = {-3,-2,-1,0,1,2,3}.
In thiscase L =7, K =6 and wy = —3,ws = 3, w3 = =2, w4 = 2, w5 = —1,wg =
1, wr = 0.

Now let wp = (X!,..., XE+L X% and wf = (Y!,...,YEHL Y1y yo2)
Thus w(, assigns each edge in an to be open with probability p+ €. See Figure 2.6
for wy and w{ if X or Y equals Z.

To check that the last property stated in (2.13) is satisfied, let us inspect
Co(A,wp) and Cp(A,wy) in all possible cases listed inside the probability in (2.14):

e if X =Y, then wy(e) < wj(e) for every e € By, thus Cy(A,wy) C Co(A,w])
for all A;

o if X =7, then Cy(A,wp) = A C Co(A,w]) for all A;
o if Y =7, then Cy(A,w()) = 0V D Cy(4,wp) for all A.
Hence in all cases Cy(A,wp) C Co(A4,wy) for every A C 0Vy. We then let po be

the distribution of (wp,w(), completing the proof.
[ |
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- -

wif X =% Whif Y =7

Figure 2.6: wy and w() on the fixed configurations for G = Z, U =
{-3,-2,-1,0,1,2,3}.

2.4 Proof of Theorem 2.1.2

We start with a similar reduction to a particular case as the one in the beginning
of the previous section. As the proof of Claim 2.3.1 did not rely on any special
properties of G (that G does not have), we can repeat the same argument in the
oriented case. We fix r € N, ug € V and define U as in the unoriented case. From
now on, we assume that the edges eq,...,ex of (2.4) are all the edges with both
extremities belonging to U.

We again obtain the desired statement of Theorem 2.1.2 as a consequence of
the following claim.

Claim 2.4.1. For allp € (0,1), qo € (0,1)%X and e € (0,1—p), there exists a § > 0
such that for any q,q’ € (0, )X satisfying |qo — allec < & and ||qo — q'||ee < § we
have

— —

Pap(Cos) < Py pie(Coo)-

Theorem 2.1.2 follows from this claim by the same argument as in the unori-
ented case, so we omit the details.
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Remark 2.4.2. The proof of Claim 2.4.1 is similar to that of Claim 2.3.2 but
slightly more involved. In the proof of the unoriented case we used Lemma 2.2.1
with a single determinisitic configuration z = (zV,z9%!,292). This was possible

because our choice of  was such that, for every wy € Q¢ and A C 9V we have
Co(A, (2Y,791) = A C Cy(A, wo),
CQ(A, (EU,jﬁa’l vV i‘a’2)) =0Vy D Co(A,wO).

However, we cannot find a configuration with similar properties in the oriented
case (see Remark 2.4.3 at the end of the proof).

Proof of Claim 2.4.1. Let
Vo ={(v,m) €V:ve Byi(ug), 2K +2)n <m < 2K +2)(n+ 1)}

and . .
E, = {e € E : e has both extremities in V,,}.

Note that E,, are disjoint. Next, recall the definition of Ef from (2.5) and define,
formeZand 1 <i< K,

— . —

B, =B.nE, B2=E\(USE), Bo=E\(Unb.).

The “edge boundary” E2 consists of edges of the form ((u,m), (v,m + 1)), with
u,v € V,, and at least one of u and v at distance r+1 from wug. Define corresponding
sets of configurations Of , 32 and Q.

For each n, define the boundary sets

AV, = {(v,n) € V,, : dist(v,up) =7+ 1} U (V, N (V x {(2K + 2)n})),
OV, ={(v,n) €V, :dist(v,up) =7 + 1} U (V,, N (V x {(2K + 2)(n+1)})),

so that dV,, consists of “walls and floor” and 9V, gonsists of “walls and ceiling”
of the box V,,. Given any @ # A C 9V,, and w,, € (), define

C_"n(A,wn) = {(v,n) € aV,, : (vy,no) Ly (v,n) for some (vg,ng) € A},

where the notation (vg,n0) ~—% (v, n) means that (vg,ng) and (v, n) are connected
by an wy-open path of edges of E,.

Fix p, qo and €, and for § close enough to zero let q = (q1,...,qx) and q' =
(¢},---.q%) be as in the statement of the claim. We will define coupling mea-
sures fio on (Qp)? and fi, on (€,)? that satisfy similar properties as in the
unoriented case. First,

N (d) = d
(wo,wo) ~flo = wo = Paplz,. wo = Papreli,

—

—
=

(2.15)
and wo < wp a.s.
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Second,

/ - D) / i
(Wnywp) ~ fin = wn = Paplg , wn = Py pie o

and 6n(A,wn) C én(A,w ) for all A C 9V, a.s.

(2.16)

/
n

We then define the coupling measure [ on 02 by
/_1: = /jO ® (®n€Zﬁn) .

It is clear from (2.15) and (2.16) that, if (w,w’) ~ [, then w ~ ]ﬁq,p, W'~ ﬁq/,p+6,
and almost surely if C', holds for w, then it holds for w’. Consequently

The measure ji» is defined using the same standard coupling as the corre-
sponding measure in the proof of Claim 2.3.2. The measures ji,, will again be
taken as translations of each other, so we only define jiy. The construction re-
lies on Lemma 2.2.2. The finite set S and the decomposition S = S U S of the
statement of that lemma are given by

—

S=00x - xGE x 0% (9 §=Alx- x AE x (9 x (9, §=5\5,

where A is the set of configurations in €% in which edges from height K to
height K + 1 are closed. The definition of & and Z is as follows (see Figure 2.7 for
a specific example):

o &=(z',..., 2% 291 192?) with &° € A} and 291,292 € QF;
o =(2t..., 2% 291 19?) with ¢ € Q) \ A} and 2%!,292 € QF;
o 91 =0, 292 = 1 and for each i, 2'(e) = 0 if and only if e goes from

9,2
height K to K + 1,;
o 791=0, 292 =1 and for each i, ' = 1.

By Lemma 2.2.2, if § is close enough to zero, there exists a coupling of (K +2)-
tuples of configurations

X = (X', . XK X0 X0%) y =(y!,... YK Yol yo?
€ x- x GF x Qf x 49
such that

e the values of X',..., X%, X%1 X92 are independent on all edges;
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Figure 2.7: The deterministic configurations for G = Z and U = {-1,0,1,2}. In
this case K = 3. Note that only one of the two disjoint subgraphs of G is displayed.

the values of Y, ..., Y Y91 Y92 are independent on all edges;

e X' assigns each edge to be open with probability ¢;;

e Y assigns each edge to be open with probability ¢/;

o X% and Y9! assign each edge to be open with probability p;

o X%2 and Y92 assign each edge to be open with probability 1%17;

e (X,Y) satisfies

P({X:Y}u{xzf}u{xeéu{f}y:@}u{yzé}) =1. (2.17)
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Now let wp = (X1, ..., X% X% andw) = (Y1,...,YE YI1vY92) Thusw)
assigns each edge in Eg to be open with probability p 4+ €. See Figure 2.8 for wy
and wy, if X or Y equals 7 or 7.

woifY =2

Figure 2.8: wp and w(, on the fixed configurations for G = Z, U = {-1,0,1,2}.

To check that the last property in (2.16) is satisfied, we need to show that in
any of the situations listed inside the probability in (2.17), we have Co (A, wo) C
Co(A,w}) for any @ # A C dV,,. {X = &} entails Cy(A4,wy) = ANV, and {X =
Y} {X €8, Y =i} as well as {Y = 2} lead to wy(e) < wj(e) for every e € E.
The remaining case is when X = 2 and Y = 2. In this case, (vo,no) =2 (v1,n1)
can only happen if vg,v1 € U,ng = 0 and n; = (2K + 2). But then we also

“o
have (vg,no) — (v1,n1).
Finally, we let fip be the distribution of (wp,w}), completing the proof.
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Remark 2.4.3. In the oriented case we cannot find a configuration with similar
properties as the one in Remark 2.4.2. If & = (2Y,2%' 292) is such that 2V
contains at least one closed edge, depending on the topolgy of G|y, the induced
subgraph of G on U, we can find a configuration wy € ﬁo and a set A C 9V such
that

Co(4, (@7, v 272)) 2 Co(A,wo).
In case z = (2Y,2%',2%2) is such that every edge in 2V is open, then we can

always find a configuration w} € Qo and a set B C 9V; such that

U

Co(B, (2Y,2%1)) ¢ Co(B, wh).

(See Figure 2.9 for examples).

Figure 2.9: Examples of why we need two configurations in the oriented case. e de-
notes the vertices of Cy(o,-)\{o} in each configuration (G = Z, U = {-1,0, 1,2}).
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This is the reason why we needed to apply Lemma 2.2.2, involving two deter-
ministic configurations, to make the coupling work. The trick was to choose &
and 2 in a way that for every A C 9V,

Co(4, (#Y,37Y)) € Co(A, (¥, 3% v #%2)).

Remark 2.4.4. As mentioned in Section 2.1.2, the approach we used to prove
Theorem 2.1.2 is not readily applicable when the oriented model is replaced by a
“continuous-time” version such as the contact process. The essential difficulty is
that our approach involves finding a configuration that is better than any other in
connecting points of any possible boundary set A to other boundary points. In a
continuous-time setting, the set of configurations inside a finite box is infinite, so
such an optimal configuration cannot exist (in a standard construction involving
Poisson processes, one can always introduce extra arrivals between those of a fixed
configuration). As a potential strategy, one could attempt to sophisticate our
method by partitioning the configuration space not in two, but in infinitely many
parts, proving a corresponding version of Lemma 2.2.2, and finding a sequence of
finer and finer configurations which could produce an effective coupling.
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