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a b s t r a c t

In this study, the hybrid of combination-mixed data sampling regression model and back propagation
neural network (combination-MIDAS-BP) is proposed to perform real-time forecasting of weekly carbon
prices in China's Shenzhen carbon market. In addition to daily energy, economy and weather conditions,
environmental factor is introduced into predictive indicators. The empirical results show that the carbon
price is more sensitive to coal, temperature and AQI (air quality index) than to other factors. It is also
shown that the forecast accuracy of the proposed model is approximately 30% and 40% higher than that
of combination-MIDAS models and benchmark models, respectively. Given these forecast results, China's
government and enterprises can effectively manage nonlinear, nonstationary, and irregular carbon pri-
ces, providing a better investing and managing tool from behavioural economics.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last few decades, climate change has been considered
the most serious environmental problem, raising common con-
cerns for all countries, along with continuous economic develop-
ment. China, as the largest carbon emitter, has played a major role
in global climate change [1], and it has been confronted with
increasing pressure to control carbon emissions [2]. In 2013 and
2014, seven national carbon markets were launched in five cities
(Beijing, Shanghai, Tianjin, Chongqing and Shenzhen) and two
provinces (Guangdong and Hubei) as part of China's commitment
to the Kyoto Protocol [3]. The introduction of this market-based
approach in China is seen as a major contribution to the achieve-
ment of the government's ambitious emissions reduction targets.

The forecasting of carbon prices plays a significant role in un-
derstanding China's carbon market dynamics and in making de-
cisions about carbon emissions reductions. Since carbon prices
reflect marginal abatement costs, they provide references for policy
makers to evaluate climate policies and to alter emissions caps [4].
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forecast accuracy of carbon prices presents a great challenge and
has become an urgent issue in China's carbon market.

The aim of this paper is to establish a new method to forecast
carbon price with higher accuracy in Shenzhen's carbon market to
help the Chinese government to formulate a carbon emissions
policy. The main contributions involve three points. First, we
construct a more comprehensive factor system, including energy,
the economy, weather, and environmental factor. An interesting
result is achieved such that the carbon price is more sensitive to
coal, temperature and air quality index (AQI). Second, the hybrid of
combination-mixed data sampling regression model and back
propagation neural network (combination-MIDAS-BP) is presented
to perform real-time forecasting of weekly carbon prices using the
latest available daily factors. The forecasting of weekly carbon pri-
ces is more meaningful for main traders (e.g., electricity generation
firms) in the carbonmarket to optimize their trading strategies over
long horizons. Third, compared with the benchmark models, i.e.,
autoregressive (AR), moving average (MA) and threshold auto
regressive conditional heteroskedasticity (TGARCH) models, our
proposed method overcomes the error accumulation in these
benchmark models and improves the accuracy by approximately
30% and 40% over that of combination-MIDAS models and bench-
mark models, respectively. The better performance of carbon price
forecasting is beneficial for all of the participants in the carbon
market.

The remainder of this paper is organized as follows. Section 2
contains a brief literature review. Section 3 introduces the
methods used in this paper. The data and empirical results are
displayed in Section 4. Section 5 reports the research conclusions.

2. Literature review

To forecast carbon prices with greater accuracy, some studies
have used the relative factors to forecast, in addition to the carbon
price itself. For example, an interesting conclusion is that weather
conditions can influence energy demand and have effects on car-
bon prices. Rickels et al. [5] used temperature as a proxy for
weather and identified that temperature has an effect on carbon
prices because higher temperature weather creates a great demand
of cooling, definitely increasing energy consumption. Alberola et al.
[7] concluded that only extreme temperatures influence EUA spot
prices, while Lutz et al. [8] indicated that the influence of extreme
weather conditions on EUA returns is statistically insignificant.

Energy factors are the most natural determinant of carbon pri-
ces because electricity production companies can change their fuel
inputs. The existing literature concerning the relationships be-
tween carbon price and energy factors has mainly focused on four
aspects: coal, oil, natural gas, and electricity. First, coal prices are
regarded as a central determinant of carbon prices because coal is a
primary source of carbon emissions. Hintermann [9] suggested that
coal prices have a negative impact on carbon allowance prices in
the EU emissions trading system (EU ETS) market. Zhao et al. [10]
demonstrated that carbon prices are significantly impacted by coal
prices, although carbon prices vary obviously in different carbon
markets in China. Second, oil prices are generally substantiated to
have played dominant roles in price change trends among energy
markets. Wang and Guo [11] found that the oil market transmits
stronger spillover effects on carbon markets than other energy
markets. Boersen and Scholtens [12] showed that a shock to oil
returns plays positive role in carbon prices. Third, the carbon
emissions yielded by gas are only half those produced by coal at the
same unit. Therefore, gas is expected to become an important fuel
for the power generation industry and plays a significant role in the
energy market. Hammoudeh et al. [13] demonstrated that an un-
expected increase in the natural gas price could reduce the
European Union Allowances (EUA) price. Fourth, electricity pro-
duction is a large source of carbon emissions. However, the rela-
tionship between the electricity price and the carbon price is not
clear. Aatola et al. [4] showed that there are no robust causalities
between the EUA price and the electricity price. An alternative
explanation is either that the electricity price impacts the carbon
price or that the carbon price impacts the electricity price.

Macroeconomic shocks influence the relative demand for goods
through incomes and saving, then impacting the prices of goods.
When the economy is prosperous, industrials face increasing de-
mand and arrange more production. Then, carbon emissions and
the demand for carbon allowances increase as well. Chevallier [14]
suggested that carbon prices negatively respond to exogenous
shocks that decrease global economic indicators by one standard
deviation, using monetary aggregates, price indices, exchange rate,
and bond and stock indices. Furthermore, Creti et al. [15] used a
stock futures index to represent economic activities and found a
cointegrating connection between carbon prices and economic
indicators. Moreover, Chevallier [16] used industrial production as a
proxy for economic activities and showed that industrial produc-
tion has a positive impact on EUA prices during periods of economic
expansion, while it influence the EUA prices negatively during
periods of economic recession.

From the perspective of forecasting models, the artificial intel-
ligence models have been widely applied to forecast carbon prices
since they can effectively capture the nonlinear characteristics of
carbon prices. Fan et al. [17] used a multi-layer perception neural
network prediction model for carbon prices to explain their
nonlinearity. However, Anand and Suganthi [18] suggested that a
single prediction approach could not produce better performance
all the time because of sampling variation, structural changes, and
model uncertainty. Therefore, hybrid models have been proposed
to overcome the drawbacks of single models to improve the fore-
cast accuracy of carbon prices. Zhu and Wei [19] combined an
ARIMAmodel and least squares support vector machine (LSSVM) to
forecast carbon prices and demonstrated greater accuracy than that
of single ARIMA, LSSVM, and artificial neural network (ANN).
Atsalakis [20] used three computational intelligence techniques to
forecast carbon prices and revealed that the novel hybrid neuro-
fuzzy controller that forms closed-loop feedback mechanism
(PATSOS) performs best. Zhu et al. [21] established an empirical
mode decomposition-based evolutionary least squares support
vector regression multiscale ensemble forecasting model for car-
bon prices and showed more robust performance. Zhang et al. [22]
proposed a hybrid model combined with a complete ensemble
empirical mode decomposition (CEEMD), a co-integration model
(CIM), generalized autoregressive conditional heteroskedasticity
model (GARCH), and a grey neural network (GNN) optimized by ant
colony algorithm (ACA) to forecast carbon spot prices and showed
remarkably better performance.

However, the above forecasting models require that the relevant
drivers be predicted first when forecasting carbon prices. Hence,
inaccurate forecasting of the drivers will increase the forecast er-
rors for carbon prices. On the other hand, these forecasting models
require that all data be of the same frequency. For example, the
equal-weight type method is used to solve all indicators to be the
same frequency, which cannot capture the information available in
high-frequency variables. Hence, there are information loss and
biased forecasts. It is urgent to establish new approaches tomanage
the problem of mixed frequency to realize more accurate fore-
casting of carbon prices. To address the limitations shown above,
we introduce a MIDAS regression model to predict carbon prices,
which uses highly parsimonious lag polynomials to allow datawith
different frequencies in the model to fully use effective information
about the higher-frequency explanatory variables [23].
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Different from the traditional individual-MIDAS regression
models, this paper proposes combination-forecast pooling with
five types of weight schemes to establish a hybrid of a combination-
mixed data sampling regression model and a back propagation
neural network (combination-MIDAS-BP) to manage the uncer-
tainty. Specifically, we begin by investigating the out-of-sample
forecast accuracy of numbers of individual MIDAS regression
models by comparing the root mean squared errors (RMSE).
Furthermore, the forecast results of combination-MIDAS are ob-
tained based on the forecast results of the best individual MIDAS
models. Then, the BP neuron network is applied to correct the
forecast error of the combination-MIDASmodel to reflect nonlinear
patterns of carbon prices. Finally, based on the combination-
MIDAS-BP, we can forecast carbon prices with multiple influ-
encing factors. The results show that carbon prices are more sen-
sitive to coal, temperature and air quality index (AQI), indicating
the rationality of considering AQI a main driver of carbon prices.
This study is an attempt to build a bridge between carbon invest-
ment and behaviour economics.
3. Methodology

The MIDAS model has the following two advantages over the
traditional forecasting models. First, the MIDAS method can
enhance forecast accuracy because it can fully utilize high-
frequency data without substantial loss of sample information.
Second, MIDAS can realize real-time forecasts using the latest
published data. This method has been substantiated as useful for
various forecasting applications, such as forecasting of financial
markets [24,25] and macroeconomic problems, e.g., GDP [26] and
inflation [27,28].
3.1. Combination-MIDAS models

In recent years, combination-MIDASmodels have beenproposed
as a simple and effective method to manage the misspecification
issues of MIDAS models. This proposed model can obtain forecast
results with greater accuracy using forecasts of numbers of indi-
vidual MIDAS methods, rather than the best one [29]. For example,
the combination-MIDAS model has been used to forecast U.S. fed-
eral government current expenditures and receipts [30], energy
demand in China [31] and carbon price in the EU ETS [32].

There exist several different ways to form combination-MIDAS
models, given the forecast results of several individual MIDAS
models. Given N forecast results of individual MIDAS methods with
different indicators, the forecast result of a combination-MIDAS
regression model is defined as follows:

f
∧

N;TþsjT ¼
XN

j¼1
wj;T
∧

y
∧

j;TþsjT (1)

where wj;T
∧

is the combination weight of the forecast result of the
individual MIDAS approach with jth indicator, T refers to the last
observation of the estimation sample for the individual MIDAS

model, s ¼ 1;2;/; S, and y
∧

j;TþsjT suggests the sth forecast result
obtained by the trained individual MIDAS model with the greatest

forecast accuracy. This paper considers five types of wj;T
∧

, i.e., the
mean squared forecast error (MSFE) type, the discounted mean
squared forecast error (DMSFE) type, the Akaike information
criteria (AIC) type, the Bayesian information criteria (BIC) type and
equal-weighted type [29,31,32]. For the details of these five weight
types, please see Appendix A.1.

A key problemwith the combination-MIDAS regressionmodel is
how to choose the individual MIDAS with the greatest forecast
accuracy. To achieve real-time forecasting with the latest available
data and to consider the autoregressive effect of Yt , theADL�
MIDASðm;k;hÞmodel with h-step-ahead is presented. This model is
defined as

Yt ¼ aþ
Xp

j¼1
gjYt�j þ bW

�
L1=m; q

�
xðmÞ
t�h=m þ εt (2)

where a,gj and bare unknown parameters, Yt is the weekly carbon

price, pis the maximum lag order for Yt, and xðmÞ
t is a daily factor

that can be observed m times from period t � 1 to t. This paper set
m ¼ 5,t ¼ 1;2; /; T . Here, h refers to the leads of daily factors.
When h ¼ 1, we can use the daily data before Thursday to forecast

carbon prices for this week. Set Lk=mxðmÞ
t ¼ xðmÞ

t�k=m where L1=m is a

lag operator. When k ¼ 0, xðmÞ
t�k=m refers to the fifth data fromweek

t; when k ¼ 1, xðmÞ
t�k=m refers to the fourth data fromweek t.WðL1=m;

qÞ is decided by L1=m and a parameter vector with limited dimen-
sion q. Then, WðL1=m; qÞ can be defined as WðL1=m; qÞ ¼PK

k¼0wðk; qÞLk=m, wherewðk; qÞ is a polynomial weight, and Kis the
maximum lag order of the high-frequency factor.

To reflect the effects of different high-frequency factors on car-
bon prices, this paper considers the beta polynomial, BetaNN
polynomial, exponential Almon lag polynomial, Almon lag poly-
nomial, step function and unrestricted MIDAS (UMIDAS) poly-
nomial [33], as detailed in Appendix A.2, and chooses the most
suitable polynomial specification for each factor.
3.2. BP neural network

To simulate the Shenzhen carbon market and to improve the
forecast accuracy of combination-MIDAS, the BP neural network is
used to correct the forecast error since it can capture the nonlinear
characteristics. The advantage of the BP neural network is that it
can capture the nonlinear characteristic without a specific model
form [34]. Therefore, the proposed combination-MIDAS-BP can
utilize the strengths of both combination-MIDAS and the BP neural
network.

The BP neural network, featured by back propagation error, is a
multi-layer feed forward network and can demonstrate the
nonlinear pattern of data. This paper establishes a three-layer BP
neural network since it has been theoretically proved that a neural
network with three layers can reflect any continuous relationship
with desired precision [33]. There are n neurons in the input layer,
pneurons in the hidden layer, and one neuron in the output layer.
The learning step is set to 1000 steps, and the learning rate is 0.01.
The target error is 0.001.

Denote XðtÞ ¼ ðx1; x2;/; xnÞ as the input vector of an input layer.
Each neuron in the hidden layer depends on all of the neurons
within the input layer. The output of hidden layer is displayed as

hoh ¼ f ðhihÞ ¼ f
�Xn

i¼1
wihxiðtÞ � bh

�
(3)

where hih (h ¼ 1;2;/;p) is the input of the hidden layer, wih is the
connection weight between the input layer and hidden layer, and
bh indicates the threshold value of the neurons in the hidden layer.

The output of the output layer is similarly defined as

yo ¼ f ðyiÞ ¼ f
�Xp

h¼1
whohoh � bo

�
(4)

where yi is the input of the output layer, who is the network weight
between the hidden layer and the output layer, and boindicates the
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threshold value of the neurons in the output layer.
The error between the actual output and the desired output is

given as

e ¼ 1
2
ðd� yoÞ2 (5)

where d represents the desired output, and yo is the actual output.
Therefore, the error of the neural network is the function of the
network weights among different layers.

3.3. Combination-MIDAS-BP regression models

In this paper, the proposed combination-MIDAS-BP regression
model consists of four steps, as shown in Fig. 1. Step 1 refers to
establishing an individual MIDAS regressionmodel and chooses the
model with the greatest accuracy for each predictor according to its
out-of-sample forecast accuracies. The forecast accuracy is repre-
sented by the root mean squared errors (RMSE), consistent with the
previous literature [35e37], because RMSE is a good indicator for
testing the performance of out-of-sample forecasts. Step 2 com-
bines the best individual MIDAS model for each predictor with five
weighting schemes and calculates the forecast error of the
combination-MIDAS model. Step 3 inputs the error of the
combination-MIDAS model into the BP neuron network to forecast
and correct the error. Step 4 adds the forecast results gained from
the combination-MIDAS and BP neuron network to compute the
final forecast of carbon prices.

4. Data description and empirical results

4.1. Data description

The dataset consists of weekly carbon prices and daily factors
selected from energy, economy, weather and environmental as-
pects. The sample covers the period from January 6, 2014, to June 9,
2017. The period from January 6, 2014, to February 24, 2017, is
chosen as the estimation sample to train the proposed models and
benchmark models. The period fromMarch 3, 2017, to June 9, 2017,
is utilized for the out-sample forecast. The number of out-of-
sample observations is determined according to the literature
[30,35].
Fig. 1. Flow chart of combination-MIDAS-BP model.
This paper chooses the carbon spot price in Shenzhen because of
its representativeness discussed above. The weekly carbon price is
defined as the average value of the daily prices in a given week,
which can be obtained in the Wind database. Moreover, this paper
selects coal and oil prices as proxies for energy factors, which are
available in theWind database. The coal price is defined as the daily
continuous coal futures settlement price. The oil price is the Daqing
oil price. To proxy economic factors, this paper selects the Shanghai
and Shenzhen 300 index (HS300), which is the leading stock index
in China and is available in the Wind database. Regarding the
weather condition, this paper selects the daily average temperature
(Temp) in Shenzhen city, which is available from the National
Oceanic and Atmospheric Administration (NOAA). For environ-
mental factors, this paper selects the air quality index (AQI) in
Shenzhen, which is available from the Environmental Protection
Agency of the People's Republic of China.

To eliminate heteroscedasticity, the factors’ growth rates
denoted by growthit are considered in the empirical analysis. They
are expressed as

growthit ¼ lnðvalueit=valueit�1Þ � 100 (6)

where i is the factor, e.g., carbon price, coal and oil price, HS300
index, temperature (Temp) or AQI. The growth rates of these in-
dicators are plotted in Fig. 2.

4.2. Selection of best individual MIDAS models

The individualMIDASmodels apply a single predictor to perform
theweekly carbon price forecast using themodels shown in Section
3.1. As the first step to construct the combination-MIDAS-BP model
for weekly carbon forecasts, the selection of the best individual
MIDASmodel is a key step because it directly influences the accuracy
of the final forecast. The best individual MIDAS models are selected
by comparing the RMSEs of different MIDAS regressionmodels. The
most sensitive predictor of carbon price can also be chosen ac-
cording to the RMSEs of individual MIDAS regression models.

The optimal lag order and parameters of the daily indicators and
weekly carbon price are also determined by comparing the RMSEs
of individual MIDASmodels with a fixedwindowmethod (equation
(2) in section 3.1 and equations (11)e(15) in Appendix A.2). To
reflect the change trend in the RMSEs, this paper sets themaximum
lag orders of daily coal, oil, HS300, Temp, and AQI as 35 and sets the
maximum lag orders for weekly carbon price as 5 when considering
the 0, 1, 2, and 3 step ahead conditions. This paper considers indi-
vidual MIDAS regression models without leads based on coal prices
as an example to explain the mechanism determining the optimal
lag order and parameters. Table 1 shows the RMSEs of individual
MIDAS models based on coal prices. When no lag order for carbon
price is considered, the best polynomial weight is BetaNN, and the
best lag order for coal is 15. When the lag order for carbon price is 1,
the best polynomial weight is BetaNN, and the best lag order for
coal is 28. When the lag order for carbon price is 2, the best poly-
nomial weight is BetaNN, and the lag order for coal is 15. When the
lag order for carbon price is 3, the best polynomial weight is BetaNN
and lag order for coal is 28. When the lag order for carbon price is 4,
the best polynomial weight is still BetaNN, and lag order for coal is
15. The empirical results show that, with the variation in the lag
order for carbon price, the influence of coal on it lasts from 15 to 28
days. At the same time, the BetaNN polynomial weight performs
better for all conditions of different lag orders for carbon prices,
indicating that this type of weight can better capture the rela-
tionship between coal and carbon prices. Furthermore, when the
lag orders for carbon prices and coal are 3 and 28, respectively, with
BetaNN polynomial weights, namely AR(3)-BetaNN-MIDAS(5,28)



Fig. 2. Growth rates of carbon price, coal price, oil price, HS300 index, Temp, and AQI.
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has the highest out-of-sample forecast accuracy.
Considering the different relationships between carbon prices

and coal, oil, HS300, Temp, or AQI, this paper applies different
polynomial weight types and lag orders for both carbon prices and
their factors to decide on the best individual MIDAS model. Using
the mechanism shown above, the best individual MIDAS models
under all of the conditions are selected. The coefficients in the
models are significant. As shown in Table 2, the best individual
MIDAS model based on coal for all conditions is still AR(3)-BetaNN-
MIDAS(5,28) when the h-step is 0, which has the smallest RMSE.
For oil, the individual MIDAS regression model with the greatest
accuracy is the one for which the lag orders for carbon price and oil
price are 4 and 31, respectively, with BetaNN polynomial weight
when considering 1 step ahead. For HS300, the individual MIDAS
regression model with the greatest accuracy is the one that lag
orders for carbon prices and HS300 at 4 and 9 with UMIDAS
polynomial weights when the h-step is 0. For Temp, the individual
MIDAS regression model with the greatest accuracy is the one with
lag orders for carbon prices and Temp of 4 and 35 with Step poly-
nomial weights when the h-step is 2. For AQI, the individual MIDAS
regression model with the greatest accuracy is the one with lag
orders for carbon price and AQI of 4 and 35 with Step polynomial
weights when the h-step is 3. At the same time, the effects of coal,
oil, Temp, and AQI on carbon prices last longer than the effect of
HS300, consistent with the findings of Zhao et al. [32] for carbon
prices in EU ETS. However, the best polynomial weight for energy
and economic factors are different from the findings of Zhao et al.
[32], indicating that the influential processes among carbon prices,
energy and economic factors in the Shenzhen market, China, are
different from those in the EU ETS. Moreover, in contrast with Zhao
et al. [32], carbon prices are significantly auto-correlated in the
Shenzhen market of China, lasting for 3 or 4 weeks. Furthermore,
when considering 0 or 3 steps ahead, the carbon price is most
sensitive to AQI, which indicates the reasonability of including AQI
in the indicator set for carbon price. When considering 1 step
ahead, carbon price is most sensitive to coal because coal con-
sumption is the largest source of carbon emissions, determining the
demand for carbon allowances. When considering 2 steps ahead,
carbon price is most sensitive to temperature because it has a sig-
nificant impact on energy consumption. In general, carbon price is
more sensitive to coal, temperature and AQI than to other factors.

4.3. Forecast results of Combination-MIDAS models

The drivers of carbon price considered in this paper have
different information sets, which can affect the individual forecasts
discussed in Section 4.2. Instead of only utilizing one combination
method to determine the weights for each forecast result of the
best individual MIDAS models [30], this paper proposes a
combination-MIDAS model with five different weight schemes (as
shown in equation (1) in Section 3.1 and equations (7)e(10) in
Appendix A.1) to address the misspecification biases because it can
maintain better performance under structural breaks.

Table 3 shows the out-of-sample forecast accuracy of the
combination-MIDAS model. The empirical results suggest that the
five weight schemes perform better when considering no steps
ahead. Specifically, when considering no steps ahead, AIC and BIC
weight schemes have greater forecast accuracy, followed by MSFE
weight type. When considering 1 step ahead, MSFE and Equal
Weights have greater forecast accuracy, followed by DMSFE weight
type. When considering 2 steps ahead, the DMSFE, MSFE, and BIC
weight types have greater forecast accuracy than AIC and Equal
Weights. When considering 3 steps ahead, MSFE has greater fore-
cast accuracy, followed by DMSFE and Equal Weights. Therefore,
MSFE is more robust than the other weight types when forecasting
weekly carbon prices.

4.4. Forecast comparison: combination-MIDAS-BP models vs. AR,
MA and TGARCH

In this section, the combination-MIDAS-BP model is compared
with benchmark models, e.g., AR, MA and TGARCH models. All of
the benchmark models are significant at the 1% level. Table 4 rep-
resents the forecast accuracy of the combination-MIDAS-BP model.
The empirical results demonstrate that the BP neuron network has
good performance when correcting forecast errors, similar to the
findings of Zhao et al. [33]. The forecast accuracy of combination-



Table 1
RMSEs of individual MIDAS models without leads based on coal price.

Weights Lag order for coal price Lag order for coal price

6 15 24 28 35 6 15 24 28 35

0 lag orders for carbon price 1 lag order for carbon price

Beta 8.60 8.60 8.60 8.60 8.60 8.02 8.02 8.02 8.02 8.02
BetaNN 8.80 8.23 8.35 8.66 8.60 8.22 7.75 7.85 7.64 8.05
ExpAlmon 8.60 8.60 8.60 8.60 8.60 8.02 8.02 8.02 8.02 8.02
Almon 8.78 8.40 8.70 8.84 9.33 8.38 8.01 8.16 8.51 8.71
Step 8.59 8.93 9.37 9.94 12.10 7.99 8.31 8.66 8.69 11.38
UMIDAS 8.55 10.62 11.40 11.32 11.03 8.26 10.51 11.77 11.09 11.30

2 lag orders for carbon price 3 lag orders for carbon price

Beta 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
BetaNN 7.65 7.23 7.34 7.94 7.68 7.64 7.30 7.34 6.96 7.52
ExpAlmon 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
Almon 7.85 7.57 7.58 8.12 8.11 7.86 7.61 7.59 8.16 8.12
Step 7.43 7.73 8.03 7.96 10.54 7.43 7.73 8.06 7.94 10.61
UMIDAS 7.58 10.02 11.19 10.45 10.64 7.57 10.24 11.25 10.51 10.69

4 lag orders for carbon price 5 lag orders for carbon price

Beta 7.44 7.44 7.44 7.44 7.44 7.49 7.49 7.49 7.49 7.49
BetaNN 7.60 7.17 7.30 7.17 7.44 7.69 7.16 7.30 7.66 7.48
ExpAlmon 7.44 7.44 7.44 7.44 7.44 7.49 7.49 7.49 7.49 7.49
Almon 7.78 7.54 7.53 8.11 8.05 7.92 7.62 7.54 8.14 8.06
Step 7.33 7.72 8.08 8.14 10.98 7.40 7.77 8.13 8.24 11.09
UMIDAS 7.54 10.57 11.42 10.91 11.55 7.71 10.59 11.41 10.88 11.42

Notes: The bold values represent the smallest RMSE under the condition of different lag orders for carbon prices.

Table 2
Best individual MIDAS models under all conditions.

H Model RMSE

Panel A: Coal
0 AR(3)-BetaNN-MIDAS(5,28) 6.96
1 AR(4)-BetaNN-MIDAS(5,27) 7.07
2 AR(4)-BetaNN-MIDAS(5,26) 7.04
3 AR(4)-BetaNN-MIDAS(5,25) 7.04
Panel B: Oil
0 AR(4)- BetaNN-MIDAS(5,19) 7.25
1 AR(4)-BetaNN-MIDAS(5,31) 7.24
2 AR(4)-BetaNN-MIDAS(5,17) 7.26
3 AR(4)-BetaNN-MIDAS(5,29) 7.27
Panel C: HS300
0 AR(4)-U-MIDAS(5,9) 7.24
1 AR(4)-U-MIDAS(5,8) 7.25
2 AR(4)-U-MIDAS(5,7) 7.26
3 AR(4)-U-MIDAS(5,6) 7.34
Panel D: Temp
0 AR(4)- ExpAlmon-MIDAS(5,28) 7.11
1 AR(4)- BetaNN-MIDAS(5,27) 7.24
2 AR(4)- Step-MIDAS(5,35) 7.03
3 AR(4)- BetaNN-MIDAS(5,25) 7.23
Panel E: AQI
0 AR(5)- BetaNN-MIDAS(5,22) 6.89
1 AR(5)-Step-MIDAS(5,34) 7.10
2 AR(5)- BetaNN-MIDAS(5,19) 7.08
3 AR(4)-Step-MIDAS(5,35) 6.86

Notes: The bold values represent the smallest RMSE under the condition of different
lag order for carbon price.

Table 3
RMSEs of combination-MIDAS regression models.

Weight h¼ 0 h¼ 1 h¼ 2 h¼ 3

MSFE 6.98 7.01 7.00 7.01
DMSFE 6.98 7.02 7.00 7.02
AIC 6.96 7.15 7.24 7.28
BIC 6.96 7.07 7.00 7.04
Equal Weights 6.99 7.01 7.01 7.02

Notes: The bold values represent the smallest RMSE under the condition of different
lag orders for carbon prices.

Table 4
RMSEs of combination-MIDAS-BP regression models.

Weight h¼ 0 h¼ 1 h¼ 2 h¼ 3

MSFE 4.74 4.71 4.84 4.77
DMSFE 4.79 4.71 4.35 4.82
AIC 4.75 4.85 4.80 4.99
BIC 4.80 4.76 4.81 4.69
Equal Weights 4.71 4.69 4.80 4.75
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MIDAS-BP is approximately 30% greater than that of combination-
MIDAS models using the BP neuron network to correct the forecast
error.

Table 5 demonstrates the RMSE ratios of the combination-
MIDAS-BP model to benchmark models and compares their pre-
dictive abilities. If the RMSE ratio is smaller than 1, the
combination-MIDAS-BP model has greater forecast accuracy than
Table 5
Comparison of the combination-MIDAS-BP models with AR, MA and TGARCH
models.

Weight h¼ 0 h¼ 1 h¼ 2 h¼ 3

Panel A: AR model
MSFE 0.58 0.58 0.59 0.59
DMSFE 0.58 0.58 0.53 0.59
AIC 0.58 0.60 0.59 0.61
BIC 0.59 0.58 0.59 0.58
Equal Weights 0.58 0.58 0.59 0.58
Panel B: MA model
MSFE 0.61 0.61 0.62 0.61
DMSFE 0.61 0.61 0.56 0.62
AIC 0.61 0.62 0.62 0.64
BIC 0.62 0.61 0.62 0.60
Equal Weights 0.61 0.60 0.62 0.61
Panel C: TGARCH model
MSFE 0.58 0.58 0.59 0.58
DMSFE 0.58 0.58 0.53 0.59
AIC 0.58 0.59 0.59 0.61
BIC 0.59 0.58 0.59 0.57
Equal Weights 0.58 0.57 0.59 0.58
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the benchmarkmodels. The results show that combination-MIDAS-
BP increases the forecast accuracy by approximately 40% compared
with benchmark models, proving that using daily drivers can
enhance the forecast accuracy for forecasting weekly carbon prices.
These results suggest that the proposed combination-MIDAS-BP
model can better take advantage of the strengths of single
models, in line with the previous studies [30e33].

5. Conclusions

In this paper, we aim to render the method for carbon price
forecasting more efficient and effective in the Shenzhen carbon
market. Therefore, we propose the combination-MIDAS-BP
regression model to overcome the weaknesses of carbon price
forecasting. First, individual MIDAS models based on coal, oil,
HS300, Temp, and AQI are analysed, and the best individual MIDAS
models are selected according to the RMSE index. Second, the best
individual MIDAS models are combined with five weight schemes
to manage the misspecification biases because they can maintain
better performance under structural breaks. Third, this paper uses
the BP neuron network to address the uncertainties faced by the
combination-MIDAS regression model.

In general, we can draw some conclusions from the empirical
analysis results. (1) The effects of coal, oil, Temp, and AQI on carbon
prices last longer than the effect of HS300. (2) The carbon price in
the Shenzhen market has a significant auto-correlation. (3) Carbon
prices are more sensitive to coal, temperature and AQI than to oil
and HS300. (4) The MSFE weighting type is more robust as a
reference for deciding the weights for the forecast results of the
best individual MIDAS models when we establish combination-
MIDAS models. (5) The forecast accuracy of the combination-
MIDAS-BP model is approximately 30% and 40% greater than that
of combination-MIDAS models and benchmark models, respec-
tively. Therefore, the proposed model could provide significant
improvements for carbon price prediction and is competitive at
predicting nonlinear and irregular carbon prices.

In further research, we aim to choose another forecast model to
correct the error of the combination-MIDAS regression model.
Furthermore, establishing amore comprehensive factor systems for
carbon price forecasting is another challenge because there are
other indicators that can influence carbon prices, such as the
behaviour of participants in the carbon market.
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Appendix A

A.1 Combination weights

(i) MSFE-weighted type

The mean squared forecast error (MSFE) is used to combine
individual approach. The weight is given as

wj;T ¼ m�1
j;T

,Xn
j¼1

m�1
j;T (7)
where mj;T ¼ Pt
i¼T0 ðd

i�T0 ðyj;Tþs � y
∧

j;TþsjT ÞÞ
2
=ðt� T0 þ 1Þ. When

d ¼ 1,mj;T is defined as the MSFE of individual MIDAS model with
jth factor. T0 � t þ 1 is the number of the out-of-sample, yj;Tþs refers
to the real observation.

(ii) DMSFE-weighted type

When d ¼ 0:9in MSFE-weighted scheme discussed above, it
refers to the discounted mean squared forecast error (DMSFE)-
weighted type.

(iii) AIC-weighted type

AIC refers to the Akaike information criteria (AICs) and is
defined as follows:

wj;T ¼ exp
�� AICj

�,XN
j¼1

exp
�� AICj

�
(8)

(iv) BIC-weighted type

BIC refers to Bayesian information criteria, which is generally
applied to combine probability forecasts. BIC-weight scheme is
given as follows:

wj;T ¼ exp
�� BICj

�,XN
j¼1

exp
�� BICj

�
(9)

(v) Equal-weighted type

This kind of weight type plays a special role in the forecast
combination literature. The weight is given as

wj;T ¼ 1=N (10)

A.2 Polynomial weights

The beta density function is given as

wðk; qÞ ¼ wðk; q1; q2; q3Þ
¼ f ðk=K; q1; q2Þ

.XK

k¼1
f ðk=K; q1; q2Þ þ q3 (11)

wheref ðxi; q1; q2Þ ¼ xq1�1
i ð1� xiÞ

q2�1
Gðq1 þ q2Þ=Gðq1ÞGðq2Þ and

GðqÞ ¼ R∞
0 e�xxq�1dx. The beta polynomial and BetaNN polynomial

are derived from the beta density function according to the values
of q1; q2; q3. When q3 ¼ 0, wðk; qÞ ¼ wðk; q1; q2Þ ¼ f ðk=K; q1;
q2Þ=

PK
k¼1f ðk=K; q1; q2Þ. Here, wðk; qÞ refers to the beta polynomial.

Whenq1 ¼ 1, wðk; qÞ ¼ wðk;1; q2; q3Þ ¼ f ðk=K;1; q2Þ=
PK

k¼1f ðk=K;1;
q2Þþ q3. wðk; qÞ refers to the Beta� Non� Zero(BetaNN)
polynomial.

The exponential Almon lag polynomial is defined as

wðk; qÞ ¼ eðq1kþq2k2þ/þqpkpÞ.XK

k¼1
eðq1kþq2k2þ/þqpkpÞ (12)

The Almon lag polynomial is displayed as

bwðk; q0; q1; q2; q3Þ ¼
X3

p¼0
qpkp (13)

The polynomial specification of step function is demonstrated as
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bwðk; qÞ ¼ q1Ii2½a0;a1� þ
XP

p¼2
qpIi2½ap�1 ;ap�; Ii2½ap�1;ap�

¼
�
1; ap�1 � i � ap
0; otherwise

(14)

wherea0 ¼ 1< a1 </< aP ¼ K .
UMIDAS generalizes to:

YT ¼ aþ B
�
b; L1=m

�
xðmÞ
t þ εt (15)

where Bðb;L1=mÞ ¼ PK
k¼0bkL

k=m.

References

[1] Zhou K, Li Y. An empirical analysis of carbon emission price in China. Energy
Procedia 2018;152:823e8.

[2] Fan JH, Todorova N. Dynamics of China's carbon prices in the pilot trading
phase. Appl Energy 2017;208:1452e67.

[3] Liu L, Chen C, Zhao Y, Zhao E. China׳ s carbon-emissions trading: overview,
challenges and future. Renew Sustain Energy Rev 2015;49:254e66.

[4] Aatola P, Ollikainen M, Toppinen A. Price determination in the EU ETS market:
theory and econometric analysis with market fundamentals. Energy Econ
2013;36:380e95.

[5] Rickels W, Duscha V, Keller A, Peterson S. The determinants of allowance
prices in the European emissions trading scheme: can we expect an efficient
allowance market 2008? : Kiel Working Paper. 2007.

[6] Zhu B, Ye S, Wang P, He K, Zhang T, Wei Y-M. A novel multiscale nonlinear
ensemble leaning paradigm for carbon price forecasting. Energy Econ
2018;70:143e57.

[7] Alberola E, Chevallier J, Ch�eze Bt. Price drivers and structural breaks in Eu-
ropean carbon prices 2005e2007. Energy Policy 2008;36(2):787e97.

[8] Lutz BJ, Pigorsch U, Rotfuß W. Nonlinearity in cap-and-trade systems: the EUA
price and its fundamentals. Energy Econ 2013;40:222e32.

[9] Hintermann B. Allowance price drivers in the first phase of the EU ETS.
J Environ Econ Manag 2010;59(1):43e56.

[10] Zhao X, Zou Y, Yin J, Fan X. Cointegration relationship between carbon price
and its factors: evidence from structural breaks analysis. Energy Procedia
2017;142:2503e10.

[11] Wang Y, Guo Z. The dynamic spillover between carbon and energy markets:
new evidence. Energy 2018;149:24e33.

[12] Boersen A, Scholtens B. The relationship between European electricity mar-
kets and emission allowance futures prices in phase II of the EU (European
Union) emission trading scheme. Energy 2014;74:585e94.

[13] Hammoudeh S, Nguyen DK, Sousa RM. What explain the short-term dynamics
of the prices of CO2 emissions? Energy Econ 2014;46:122e35.

[14] Chevallier J. Macroeconomics, finance, commodities: interactions with carbon
markets in a data-rich model. Econ Modell 2011;28(1e2):557e67.

[15] Creti A, Jouvet P-A, Mignon V. Carbon price drivers: phase I versus Phase II
equilibrium? Energy Econ 2012;34(1):327e34.

[16] Chevallier J. A model of carbon price interactions with macroeconomic and
energy dynamics. Energy Econ 2011;33(6):1295e312.
[17] Fan X, Li S, Tian L. Chaotic characteristic identification for carbon price and an

multi-layer perceptron network prediction model. Expert Syst Appl
2015;42(8):3945e52.

[18] Anand A, Suganthi L. Forecasting of electricity demand by hybrid ANN-PSO
models. Int J Energy Optim Eng 2017;6(4):66e83.

[19] Zhu B, Wei Y. Carbon price forecasting with a novel hybrid ARIMA and least
squares support vector machines methodology. Omega 2013;41(3):517e24.

[20] Atsalakis GS. Using computational intelligence to forecast carbon prices. Appl
Soft Comput 2016;43:107e16.

[21] Zhu B, Han D, Wang P, Wu Z, Zhang T, Wei Y-M. Forecasting carbon price
using empirical mode decomposition and evolutionary least squares support
vector regression. Appl Energy 2017;191:521e30.

[22] Zhang J, Li D, Hao Y, Tan Z. A hybrid model using signal processing technology,
econometric models and neural network for carbon spot price forecasting.
J Clean Prod 2018;204:958e64.

[23] Ghysels E, Santa-Clara P, Valkanov R. The MIDAS touch: mixed data sampling
regression models. 2004.

[24] Chen X, Ghysels E. Newsdgood or baddand its impact on volatility pre-
dictions over multiple horizons. Rev Financ Stud 2010;24(1):46e81.

[25] Yang C, Zhang R. Does mixed-frequency investor sentiment impact stock
returns? Based on the empirical study of MIDAS regression model. Appl Econ
2014;46(9):966e72.

[26] Armesto MT, Engemann KM, Owyang MT. Forecasting with mixed fre-
quencies. Fed Reserve Bank St Louis Rev 2010;92(6):521e36.

[27] Andrade P, Fourel V, Ghysels E, Idier J. The financial content of inflation risks
in the euro area. Int J Forecast 2014;30(3):648e59.

[28] Li X, Shang W, Wang S, Ma J. A MIDAS modelling framework for Chinese
inflation index forecast incorporating Google search data. Electron Commer
Res Appl 2015;14(2):112e25.

[29] Kuzin V, Marcellino M, Schumacher C. Pooling versus model selection for
nowcasting GDP with many predictors: empirical evidence for six industri-
alized countries. J Appl Econom 2013;28(3):392e411.

[30] Ghysels E, Ozkan N. Real-time forecasting of the US federal government
budget: a simple mixed frequency data regression approach. Int J Forecast
2015;31(4):1009e20.

[31] He Y, Lin B. Forecasting China's total energy demand and its structure using
ADL-MIDAS model. Energy 2018;151:420e9.

[32] Zhao X, Han M, Ding L, Kang W. Usefulness of economic and energy data at
different frequencies for carbon price forecasting in the EU ETS. Appl Energy
2018;216:132e41.

[33] Zhao X, Han M, Ding L, Calin AC. Forecasting carbon dioxide emissions based
on a hybrid of mixed data sampling regression model and back propagation
neural network in the USA. Environ Sci Pollut Control Ser 2018;25(3):
2899e910.

[34] Yildiz N. Layered feedforward neural network is relevant to empirical physical
formula construction: a theoretical analysis and some simulation results. Phys
Lett 2005;345(1e3):69e87.

[35] Turhan IM, Sensoy A, Hacihasanoglu E. Shaping the manufacturing industry
performance: MIDAS approach. Chaos, Solit Fractals 2015;77:286e90.

[36] Andreou E, Ghysels E, Kourtellos A. Regression models with mixed sampling
frequencies. J Econom 2010;158(2):246e61.

[37] Bai J, Ghysels E, Wright JH. State space models and MIDAS regressions.
Econom Rev 2013;32(7):779e813.

http://refhub.elsevier.com/S0360-5442(19)30011-8/sref1
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref1
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref1
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref2
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref2
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref2
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref3
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref3
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref3
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref3
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref3
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref4
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref4
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref4
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref4
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref5
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref5
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref5
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref6
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref6
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref6
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref6
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref7
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref7
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref7
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref7
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref7
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref8
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref8
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref8
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref8
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref9
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref9
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref9
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref10
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref10
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref10
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref10
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref11
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref11
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref11
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref12
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref12
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref12
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref12
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref13
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref13
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref13
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref14
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref14
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref14
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref14
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref15
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref15
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref15
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref16
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref16
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref16
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref17
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref17
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref17
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref17
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref18
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref18
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref18
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref19
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref19
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref19
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref20
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref20
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref20
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref21
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref21
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref21
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref21
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref22
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref22
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref22
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref22
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref23
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref23
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref24
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref24
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref24
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref24
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref24
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref25
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref25
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref25
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref25
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref26
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref26
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref26
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref27
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref27
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref27
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref28
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref28
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref28
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref28
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref29
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref29
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref29
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref29
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref30
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref30
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref30
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref30
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref31
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref31
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref31
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref32
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref32
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref32
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref32
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref33
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref33
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref33
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref33
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref33
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref34
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref34
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref34
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref34
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref34
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref35
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref35
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref35
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref36
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref36
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref36
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref37
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref37
http://refhub.elsevier.com/S0360-5442(19)30011-8/sref37

	Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors
	1. Introduction
	2. Literature review
	3. Methodology
	3.1. Combination-MIDAS models
	3.2. BP neural network
	3.3. Combination-MIDAS-BP regression models

	4. Data description and empirical results
	4.1. Data description
	4.2. Selection of best individual MIDAS models
	4.3. Forecast results of Combination-MIDAS models
	4.4. Forecast comparison: combination-MIDAS-BP models vs. AR, MA and TGARCH

	5. Conclusions
	Acknowledgements
	Appendix A
	A.1 Combination weights
	A.2 Polynomial weights

	References


