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Abstract
A fundamental aspect of learning in biological neural networks (BNNs) is the plastic-
ity property which allows them to modify their configurations during their lifetime.
Hebbian learning is a biologically plausible mechanism for modeling the plasticity
property based on the local activation of neurons. In this work, we employ genetic
algorithms to evolve local learning rules, from Hebbian perspective, to produce au-
tonomous learning under changing environmental conditions. Our evolved synaptic
plasticity rules are capable of performing synaptic updates in distributed and self-
organized fashion, based only on the binary activation states of neurons, and a re-
inforcement signal received from the environment. We demonstrate the learning and
adaptation capabilities of the ANNs modified by the evolved plasticity rules on a for-
aging task in a continuous learning settings. Our results show that evolved plasticity
rules are highly efficient at adapting the ANNs to task under changing environmental
conditions.

Keywords
Synaptic plasticity, Continuous learning, evolving plastic networks, evolution of learn-
ing, Hebbian learning.

1 Introduction

The evolutionary, developmental and learning levels of organization observed in na-
ture have empowered the abilities of biological organisms to adapt, and stimulated a
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broad area of research in nature-inspired hardware and software design (De Castro,
2006; Sipper et al., 1997). In particular, artificial neural networks (ANNs) have proved
to be a successful formalization of computational information processing models, in-
spired by biological neural networks (BNNs) (Rumelhart et al., 1986).

Biologically inspired systems may vary in their levels of complexity. In particular,
the conventional models of ANNs are based on the foundation of connectionism (Rumel-
hart et al., 1987); however, their implementation details and learning approaches can
differ dramatically.

Inspired by the evolutionary process of biological systems, the research field
known as Neuroevolution (NE) employs evolutionary computing approaches to opti-
mize ANNs (Floreano et al., 2008; Yao, 1999). Adopting the terminology from biology,
a population of individuals are represented as individual genotypes consisting of a finite
number of genes to encode the parameters (i.e. topology, weights and/or the learning
approaches) of the ANNs. In other words, individual genotypes can be considered as
blueprints to construct different ANNs (i.e., corresponding phenotypes). Each individual
is evaluated on a task, and is assigned a fitness value that measures its performance. A
selection operator is then used to select better individual —based on their fitness values—
that will reproduce (i.e. generate new genotypes) by means of biologically inspired
crossover and mutation. These allow a partially inheritance of genetic material, from
parents to offspring, while also introducing variation (Goldberg, 1989). By iterating
this cycle over a certain number of generations, it is expected to find individuals that are
better adapted to the task at hand.

One of the key aspects in NE is the approach used for encoding the ANNs. This, in
turn, influences the so-called genotypes-phenotype mapping, i.e. the way a given geno-
type is used to build a certain phenotype. Broadly speaking, there are two main kinds
of encoding approaches: direct and indirect. In direct encoding, the parameters of the
networks (mainly weights and/or topology) are directly encoded into the genotype of
the individuals (Yaman et al., 2018; Mocanu et al., 2018); whereas, in indirect encoding,
some form of specifications for development and/or training procedures are encoded
into the genotype of the individuals (Mouret and Tonelli, 2014; Nolfi et al., 1994). Based
on biological evidence, indirect encoding approaches are biologically more plausible
in terms of genotype-phenotype mapping, especially considering the large number of
neurons and connections in BNNs and the relatively small number of genes in the geno-
type (Kowaliw et al., 2014). Moreover, BNNs exhibit the plasticity property which allows
them to change the network configurations during its lifetime and facilitate adaptation
under changing environmental conditions.

Among the indirect NE approaches, the evolving plastic artificial neural networks
(EPANNs) model the plasticity property of BNNs (Soltoggio et al., 2008; Kowaliw et al.,
2014). They encode plasticity rules in the genotype of individuals to specify how config-
uration of ANNs are adjusted while the network is interacting within an environment.
The plasticity property can be limited to the adjustments concerning synaptic efficien-
cies (weights), and/or can also include changes on the network’s structure/topology (i.e.
formation/elimination of new/existing connections) (Mouret and Tonelli, 2014; Nolfi
et al., 1994). Since most of the changes are observed during the lifetime of the networks,
the same genetic code can produce entirely distinct network configurations.

Hebb (1949) proposed a biologically plausible plasticity mechanism known as Heb-
bian learning, which performs synaptic adjustments based on the local activation of
neurons. According to Hebbian learning, the synaptic efficiencies between pre- and
post-synaptic neurons are strengthened/weakened if the neurons’ activation states are
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positively/negatively correlated. However, the basic formalization of Hebbian learn-
ing can suffer from instability as it introduces an indefinite increase/decrease of the
synaptic efficiencies (Vasilkoski et al., 2011). Several other modified variants have been
proposed to reduce this effect (Brown et al., 1990; Vasilkoski et al., 2011; Sejnowski and
Tesauro, 1989). Nevertheless, these plasticity rules may still require further optimiza-
tion to properly capture the dynamics needed for adjusting the network parameters.

A number of previous works proposed optimizing the parameters of some form
of Hebbian plasticity rules using evolutionary approaches (Floreano and Urzelai, 2000;
Niv et al., 2002; Soltoggio et al., 2008). However, these attempts may involve a high
degree of complexity that may not be able to deliver insights into the dynamics of the
plasticity property (Orchard and Wang, 2016; Risi and Stanley, 2010). For instance,
some of the existing works evolve the initial synaptic weights and/or the connectivity
of the networks in addition to the plasticity rule. However, evolving the initial synaptic
weights of the networks increases the number of parameters to evolve and, in principle,
can be decoupled from the evolution of plasticity rules (except for tasks where there is
a need to adapt to changing conditions); on the other hand, evolving the connectivity
of the networks may overfit the networks to a certain task, making it difficult to evolve
adaptive behavior.

In this work, we propose a novel approach to produce plasticity property in ANNs
for a continuous learning scenario with changing environmental conditions. We em-
ploy Genetic Algorithms to evolve discrete plasticity rules to determine how synaptic
weights are adjusted based on the activation states of the connected neurons, and a re-
inforcement signal received from the environment. One of the main advantages of our
approach is that the plasticity rules it evolves can provide interpretable results, as an
alternative to the other plasticity rules proposed in the literature.

We use relatively large networks consisting of one hidden layer, and introduce
local weight competition to allow self-organized adaptation of synaptic weights. We
demonstrate the lifetime learning and adaptation capabilities of plastic ANNs on a for-
aging task where an agent is required to learn to navigate within an enclosed environ-
ment, and collect/avoid specific types of items. Starting from the randomly initialized
values, weights are updated after each action step, based on the reinforcement signals
received from the environment. We test the adaptation capabilities of the networks
by switching the types of items to be collected/avoided after a certain number of ac-
tion steps. We show that the evolved plasticity rules are capable of producing stable
learning, and autonomous adaptation capabilities under changing environmental con-
ditions. This form of learning can be seen as a distributed, self-organized continuous
learning process that can be carried on without the need for global evaluation or vali-
dation.

The rest of the paper is organized as follows: in Section 2, we provide the back-
ground for Hebbian learning, and discuss the literature on the evolution of learning.
In Section 3, we introduce our approach to evolving plasticity rules and provide the
details of the genetic algorithm. In Section 4, we present the experimental setup. In
Section 5, we provide the results for the learning and adaptation capabilities of the net-
works modified by the evolved plasticity rules; finally, in Section 6 we conclude by
recapitulating our main results and highlighting possible future works.

2 Background

ANNs consist of a number of artificial neurons arranged within a certain connectivity
pattern, where a directed connection between two neurons is referred as a synapse, a
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neuron with an outgoing synapse is referred to as a pre-synaptic neuron, and a neu-
ron with an incoming synapse is referred to as a post-synaptic neuron. Various types
of ANNs have been designed by arranging neurons according to different topologies
(De Castro, 2006). For instance, an example of a fully connected Feed Forward ANN is
provided in Figured 4.

The activation of a post-synaptic neuron, ai, is typically calculated as:

ai = ψ

∑
j=0

wi,j · aj

 (1)

where aj is the activation of the j-th pre-synaptic neuron, wi,j is the synaptic efficiency
(weight) from from pre-synaptic neuron j to post-synaptic neuron i, a0 is the bias which
usually takes a constant value of 1, and ψ() is the activation function.

2.1 Hebbian learning

In its general form, Hebbian learning rule is formalized as:

wi,j(t+ 1) = wi,j(t) +m(t) ·∆wi,j (2)

where the synaptic efficiency wi,j at time t+ 1 is updated by the change ∆wi,j that is a
function of ai and aj :

∆wi,j = f(ai, aj) (3)

A modulatory signal, m(t), is used to determine the sign of the Hebbian learning. If
m(t) is positive and there is a positive correlation between the activations of neurons,
the synaptic efficiency between them is strengthened; whereas if their activations are
not correlated then the synaptic efficiency between them is weakened. The negative
sign of m(t) reverses to sign of the Hebbian learning (which in this case is also known
as anti-Hebbian learning), by strengthening the synaptic efficiencies between neurons
with uncorrelated activations, and weakening the synaptic efficiencies of neurons with
correlated activations. The modulatory signal is usually equivalent to the reward re-
ceived from the environment, unless other kinds of modulatory signaling mechanisms
are used, such as neuromodulation (Soltoggio et al., 2008).

A “plain” Hebbian rule formalizes ∆wi,j as a product of the activations of pre- and
post-synaptic activations, i.e.:

∆wi,j = η · ai · aj (4)

The plain Hebbian rule strengthens a synaptic efficiency when the signs of the pre-
and post-synaptic neuron activations are positively correlated, weakens the synaptic
efficiency when the signs are negatively correlated, and keeps the same efficiency when
one of the two activations is zero (Brown et al., 1990). A constant η is used as a learning
rate to scale the magnitude of the synaptic change.

As we stated in the previous section, one of the undesired effects of the plain Heb-
bian rule is that it may lead to an indefinite synaptic increase/decrease, since a synaptic
change in one direction encourages further synaptic change in the same direction. A
number of variants of the plain Hebbian rule have been proposed to stabilize the be-
havior (Vasilkoski et al., 2011; Brown et al., 1990). These rules can roughly be catego-
rized into two groups: activity and threshold based. The activity based rules perform
updates based on the activation correlations between pre- and post-synaptic neurons.
The threshold-based methods perform updates when the activation correlations are
above/below a given threshold, that can also be adaptive.
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Finally, it is worth mentioning a further generalization of the plain Hebbian rule
given by:

∆wi,j = η · [A · ai · aj +B · aj + C · ai +D] (5)

This rule, usually referred to as the ABCD rule (Niv et al., 2002; Soltoggio et al., 2008),
parameterizes the relationship between aj and ai by using four separate coefficients
A,B,C,D.

2.2 Evolution of learning

The back-propagation algorithm is one of the conventional methods to train ANNs;
however, it is considered as a biologically implausible method since it requires propa-
gating back the error through synapses (Kuriscak et al., 2015). The biological evidence
supports instead forms of Hebbian learning (Bienenstock et al., 1982; Brown et al., 1990;
Sejnowski and Tesauro, 1989). Thus, Hebbian learning is often used as a learning mech-
anism for self-adapting ANNs based on supervision, and/or reinforcement signals, or
in an unsupervised fashion (Soltoggio et al., 2018; Floreano and Urzelai, 2000; Hoerzer
et al., 2014; Niv et al., 2002).

A near-optimum Hebbian rule and optimal learning parameters can depend on
the task and the data. Furthermore, the parameters of the learning algorithm can
affect the stabilization of the Hebbian rule and, ultimately, the performance of the
ANN (Vasilkoski et al., 2011). Therefore, some previous works have proposed the use
evolutionary computing to optimize the parameters of Hebbian learning rules (Cole-
man and Blair, 2012). Floreano and Urzelai (2000) evolved Hebbian learning rules for
neural controllers in unsupervised settings by randomly initializing the parameters of
networks, and letting the learning algorithm perform synaptic changes with a certain
frequency during the network’s lifetime. Niv et al. (2002) optimized the parameters of
the Hebbian learning rules for an artificial bee foraging task in reinforcement learning
settings.

Some of the other existing works considered replacing the Hebbian rules with
evolving complex functions (i.e. ANNs) to perform synaptic changes. For instance,
Orchard and Wang (2016) compared plastic networks where synaptic updates were
performed using the ABCD rule against non-plastic networks; however, in their work
the initial weights of the networks were also evolved by representing them into the
genotype of the individuals. More recently, Risi and Stanley (2010) evolved a special
kind of network (known as the compositional pattern producing network, CPPN (Stanley,
2007)) to perform synaptic changes.

Others used neuromodulated learning where a number of special neurons within
the network are used for signaling synaptic updates to the other neurons in the net-
work (Runarsson and Jonsson, 2000). Soltoggio et al. (2008) evolved network topolo-
gies and connection weights involving neuromodulated neurons and using the ABCD
learning rule to perform synaptic updates. Tonelli and Mouret (2013) investigated the
relation between different kinds of genetic encoding and neuromodulated learning ca-
pabilities of the networks.

In some problem settings (i.e. maze), the reinforcement signals may not be avail-
able after each action of the networks; rather, they may arrive after a sequence of actions
of the networks over certain period of time. In this case, it may not be possible to as-
sociate the activations of neurons with the reinforcement signals. Yaman et al. (2019)
proposed evolving synaptic plasticity rules that take into account stored activations of
the neurons in each synapse to perform synaptic changes after certain period of time.
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3 Evolution of Plasticity Rules

To evolve plasticity rules, we employ an evolutionary approach similar to the one pro-
posed in (Yaman et al., 2019), which focuses on a case where the reinforcement signals
are not immediately available after each action of the network. However, in this work,
we focus on plasticity in a continuous learning scenario where the synaptic updates are
performed based on the activations of neurons and reinforcement signals received im-
mediately after each action of the networks. We represent the plasticity rules within the
genotype of the individuals, and use Genetic Algorithms for the evolutionary process.
The plasticity rules are evaluated based on their success in demonstrating robust learn-
ing capabilities on a foraging task with reinforcement learning settings under changing
environmental conditions.

We use Equation (1) to compute the activation of each post-synaptic neuron, and
an activation function given by:

ψ(x) =

{
1, if x > 0;
0, Otherwise. (6)

which reduces the possible activation states of each neuron into two possibilities: ac-
tive (1) and passive (0). As discussed below, this binary neuron model facilitates the
interpretability of the results.

As for the modulatory signal, we use reinforcement signals received directly from
the environment, in the following form:

m =

 +1, if desired output (reward);
−1, if undesired output (punishment);
0, otherwise (neutral).

(7)

According to this signal, if the network produces the “desired” outcome thenm is set to
+1; if the network produces an “undesired” outcome then m is set to −1; otherwise m
is set to 0. The desired and undesired outcomes are defined by a reward function which
depends on the task, according to the desired/undesired associations between sensory
inputs and behavioral outputs. The reward functions we used in our experiments are
discussed in Section 4.1.

The initial values of the synaptic efficiencies are randomly sampled from the range
of [−1, 1] with uniform probability. After each network computation at time t, the
synaptic efficiencies between post- and pre-synaptic neurons at time t+ 1 are updated
based on the following rule:

w′i,j(t+ 1) = wi,j(t) + η · f(ai, aj ,m) (8)

where f() is a “composed” Hebbian plasticity rule that determines how each synaptic
efficiency wi,j is updated depending on the activations of the pre- and post-synaptic
neurons, aj and ai, and the modulatory signal m. Differently from the existing ap-
proaches described in Section 2.2, here we evolve discrete rules to specify the synaptic
modifications corresponding to each possible combination of the pre- and post-synaptic
activations and the modulatory signal, as shown in the table illustrated in Figure 1. It
is important to note that it is possible to enumerate all the possible discrete rules as we
chose a binary neuron model, see Equation (6), and a discrete modulatory signal, see
Equation (7).

6



Evolving Plasticity under Changing Conditions

Finally, after each update provided by Equation (8), the weights are scaled as fol-
lows:

w′i,j =
w′i,j
||w′

i||2
(9)

where the row vector w′
i encodes all incoming weights to a post-synaptic neuron i.

This scaling allows to have a unit length using the Euclidean norm || · ||2. Furthermore,
this normalization process prevents indefinite synaptic growth, and helps connections’
specialization by introducing local synaptic competition, a concept recently observed
also in biological neural networks (El-Boustani et al., 2018).

𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4 𝑥𝑖5 𝑥𝑖6 𝑥𝑖7 𝑥𝑖8 𝑥𝑖9

Genotype Representation

Learning Rate (𝜂)

𝒇 𝒂𝒊, 𝒂𝒋,𝒎 = ∆𝒘𝒊,𝒋

𝒂𝒊 𝒂𝒋 𝒎 ∆𝒘𝒊,𝒋

0 0 -1 𝑥𝑖2

0 1 -1 𝑥𝑖3

… … … …

1 1 1 𝑥𝑖9

Sensory Input

.
Agent

(magnified)

Action

Reward (𝑚)

Synaptic update

Agent-environment Interaction

Foraging Environment

Figure 1: Genotype representation and agent-environment interaction. The genotypes
of the individuals encode the learning rate and synaptic update outcomes for 8 possible
states of ai, aj and m. The agent (color coded as red) is evaluated on a foraging task
where it is expected to learn to collect/avoid correct types of items (color coded as blue
and green). An artificial neural network is used to perform the actions of the agent. The
initial weights of the ANN are randomly initialized, and are updated after each action
step based on the evolved plasticity rules and a reinforcement signal received from the
environment.

3.1 Details of the Genetic Algorithm

We employ a Genetic Algorithm (GA) to optimize the plasticity rules (Goldberg, 1989).
The genotype of the individuals, illustrated in Figure 1, encodes the learning rate
η ∈ [0, 1), and one of three possible outcomes L = {−1, 0, 1} (corresponding to decrease,
stable, and increase, respectively) for each of the plasticity rules defined by f(ai, aj ,m).
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Since we use binary activations for neurons, there are 4 possible activation combina-
tions for ai and aj . Furthermore, we take into account only positive and negative mod-
ulatory signal states ignoring m = 0 because the synaptic update is performed only
when m = +1 or m = −1. Consequently, there are 8 possible input combinations, and
therefore 8 possible plasticity rules defined by f(ai, aj ,m). The size of the search space
of the plasticity rules is then 38, excluding the real-valued learning rate parameter.

(1) Initialization (2) Evaluation (4) Selection (5) Crossover (6) Mutation

Randomly initialize a 

population of individuals
(each encodes a plasticity rule)

For each individual for 5 trials:

(a) Initialize an agent with a random ANN

(b) Let agent interact within the environment for 

4 seasons (summer, winter, summer, winter)

in continuous learning settings

(c) Calculate the average agent score per season

Return the average of the agent score for 5 trials 

as the fitness value of the individual

(3) 

Stopping 

Criteria

Satisfied

Not

Satisfied

(7) Final Evaluation

Perform the same evaluation process 

outlined in step (2) for 10 best individuals 

for 100 trials.

Return the final fitness value

Roulette Wheel 

Selection with 10 elites

Uniform Crossover 

with probability of 0.5

Custom mutation 

(Gaussian for real-valued 

gene, uniform resampling 

for discrete values)

Figure 2: Graphical illustration of the steps of the Genetic Algorithm used to evolve the
plasticity rules.

A graphical illustration of the GA is provided in Figure 2. In the initialization step
of the algorithm, we randomly initialize a population of 9-dimensional individual vec-
tors xi, where i = (1, . . . , N) (in our experiments, N was set to 30) to encode synaptic
update rules. Each dimension of the individuals are uniformly sampled within their
domain depending on their data type.

The evaluation process of an individual starts with the initialization of an agent
with a random ANN configuration. Here, we use fixed topology fully connected feed
forward neural networks, and sample the connection weights from a uniform distri-
bution in [-1,1]. The agent is allowed to interact with the environment by performing
actions based on the output of its controlling ANN. After each action step, the weights
of the ANN are updated based on the synaptic update table. This table is constructed
by converting the vector representation of the individual plasticity rules to specify how
synaptic weights are modified based on the pre-, post-synaptic, and modulatory sig-
nals (see Figure 1). After every agent’s action, a reinforcement signal is received from
the environment and used directly as the modulatory signal.

We define a certain number of actions to allow the agent to interact with the envi-
ronment. This process is divided into four periods of equal lengths, which we refer to as
“seasons”. We calculate the average of the agent’s performance score, per each season,
by subtracting the number of incorrectly collected items from the number of correctly
collected items. Due to the stochasticity of this process (because of the random net-
work initialization), we perform this process, starting from the same initial conditions,
for five independent trials. Thus, the fitness value of an individual plasticity rule is
given by:

fitness =
1

s · t

s∑
k=1

t∑
l=1

(ck,l − ik,l) (10)

where t and s are the number of trials and seasons, respectively, and ck,l and ik,l are the
number of correctly and incorrectly collected items in each season k of each trial l.

The evaluation process of the GA is based on a continuous learning setting, where
the weights of the ANNs are updated constantly. Thus, the algorithm does not involve
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any validation to store the best network configurations. However, in our experiments
we additionally tested the evolved plasticity rules with validation settings, in order to
show that validation improves the performance of the agents. On the other hand, this
additional step is computationally expensive since it requires the agents to be tested for
a certain number of further action steps.

We use an elitist roulette wheel selection operator to determine parents of the next
population. The top 10 elites (best individuals) are copied to the next generation with-
out any change. The rest of the offspring are generated using a uniform crossover opera-
tor with a probability of 0.5. As for the mutation operator, we perturb the real-valued
component by a small value sampled from a Gaussian distribution with 0 mean and 0.1
standard deviation, and re-sample the discrete components with a probability of 0.15.

The evolutionary process is executed until there is no more improvement in terms
of best fitness for a certain number of evaluations. At the end of the evolutionary pro-
cess, the top 10 elite individuals in the population are evaluated for 100 trials, and the
average statistics of this process is provided as the final result of the Genetic Algorithm.
We execute the GA for 30 independent runs.

4 Experimental Study

We test the learning and adaptation capabilities of the plastic ANNs with evolved plas-
ticity rules on an agent-based foraging task within a reinforcement learning setting
inspired by Soltoggio and Stanley (2012). In this task, an artificial agent, operated by
a plastic ANN, is required to learn to navigate within an enclosed environment and
collect/avoid correct types of items placed in the environment, based only on the rein-
forcement signals received in response to its actions.

The foraging environment contains two types of food items and is enclosed by
a wall. To test the adaptation abilities of the networks, we define two reward func-
tions that we refer to as two seasons: summer and winter. In both seasons, the agent
is expected to explore the environment and avoid collisions with the walls. During
the summer season, the agent is expected to learn to collect and avoid specific types
of objects, while the expectation for the types of objects is swapped during the winter
season. The details of the foraging task and environment are provided in the following
section.

4.1 Foraging task and environment

A visualization of the simulated environment used in the foraging task is provided in
Figure 3. We initialize a 100x100 grid enclosed by a wall. In the following, we refer
to the green and blue items, and the wall, as “G”, “B” and “W” respectively. In the
initialization phase of an experiment, an agent, 50 “G” and 50 “B” items are randomly
placed on the grid.

The architecture of the ANNs used to control the agent is shown in Figure 4.
The agent is located in a cell, and has a direction to indicate its orientation on the
grid. It is equipped with three sensors that can take inputs from the nearest cell on
the left, in front, and on the right. Since there are four possible states for each cell
(nothing, “W”, “G”, “B”), we represent the sensor reading of each cell with two bits,
as [(0, 0), (1, 1), (1, 0), (0, 1)]. The agent performs one of the three possible actions as
“Left”, “Straight”, and “Right” based on the output layer of its ANN. The output neu-
ron with the maximum activation value is selected to be the action of the agent. In
cases of “Left” and “Right” the agent’s direction is changed accordingly, and the agent
is moved one cell in the corresponding direction. In case of “Straight”, the direction of
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the agent is kept constant and the agent is moved one cell along its original direction.
We use fully connected feed forward networks with one hidden layer with 6 input,

20 hidden and 3 output neurons. We also perform additional experiments for networks
consisting of various numbers of hidden neurons (see next section for details). Addi-
tional bias neurons are added to the input and hidden layers.

Figure 3: Simulation environment used in the agent-based foraging task experiments.
The location of the agent, two types of items and the wall are color coded with red,
green, blue and black respectively.

The statistics of the agent while interacting with the environment are collected. If
the agent visits a cell occupied by a “G” or “B” item, the item is collected and recorded.
A collected item disappears from its original location and reappears in another location
selected at random. If the agent steps into a cell occupied by a wall, the action is ignored
and recorded as a hit on the wall. After each action, a reinforcement signal is received
from the environment, and used as a modulatory signal, see Equation (7).

The complete list of sensory states, behaviors and reinforcement signal associa-
tions that we used in our experiments is provided in Table 1. In the table, the columns
labeled as “Sensor” and “Behavior” show the sensor states and actions of the network,
respectively. The reward functions corresponding to the two seasons, “Summer” and
“Winter”, are also shown. It should be noted that for some sensory states, multiple re-
ward function associations may be triggered. In these cases, the associations that con-
cern the behaviors to collect/avoid items are given priority. We should also note that
the reward functions described here do not specify the reinforcement signal outcomes
for all possible sensor-behavior combinations. Indeed, in total there are 192 possible
sensor-behavior associations (resulting from 3 possible behavior outcomes for each of
26 possible sensor states).

The first two reward associations are defined to encourage the agent to explore the
environment. Otherwise, the agent may get stuck in a small area, for example by per-
forming only actions such as going left or right when there is nothing present. Sensor
state labeled as “nothing” refers to an input to the network equal to [0, 0, 0, 0, 0, 0].
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1
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1
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Figure 4: Details of the agent-based foraging task experiments: (a) Agents’ posi-
tion/direction (red cell) and sensory inputs from left, front and right cells (in gray)
within a foraging environment containing two types of items (green and blue) items;
(b) The ANN controller, with a hidden layer, 6 inputs (2 per cell), and 3 outputs
(left/right/straight).

Reward associations 3 through 8 specify the reinforcement signals for the behav-
iors in relation to the wall, and are the same in both summer and winter seasons. It is
expected that the agent learns to avoid the wall. Therefore, we define positive reward
signals for the states where there is a wall, and the agent picks a behavior that avoids
a collision (IDs: 3, 5, 6). Conversely, we define punishment signals for the sensor-
behavior associations where the agent collides to the wall (IDs: 4, 6, 8). For instance,
the sensor state of the association given in ID. 3 refers to the input to the network as
[0, 0, 1, 1, 0, 0], and provides reward if the agent decides to go left or right (and, this
behavior is desired in both summer and winter seasons).

Reward associations 9 through 14 and 15 through 20 define sensor-behavior and
reinforcement signal associations regarding the “G” and “B” types of items respectively.
The reinforcement signals of the seasons are reversed for these two seasons. In summer,
the agent is expected to collect “G” items and avoid “B” items, whereas in winter the
agent is expected to collect “B” items and avoid “G” items.

We perform an experiment by first placing into the environment an agent, initial-
ized with a random ANN, and starting with the summer season. We then allow the
agent to interact in a continuous learning setting for 5000 action steps. At the end of
the summer season, we let the agent continue its interaction with the environment for
another 5000 action steps by keeping its network configuration and only changing the
season to winter. At the end of the given number of action steps, we perform two more
seasonal changes in the same fashion. The performance of the agent is the average of
the performances over the four seasons.

For all experiments, the agents are set to pick a random action with a probability of
0.02 regardless of the actual output of their ANNs. Random behaviors are introduced
to avoid getting stuck in a behavioral cycle. Such random behaviors, though, are not
taken into account in the synaptic update procedure.

11
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Table 1: Associations of the Sensor and Behavior states to the reinforcement signals for
Summer and Winter seasons.

ID. Sensor Behavior Summer Winter
1 nothing straight 1 1
2 nothing left or right -1 -1
3 W straight left or right 1 1
4 W straight straight -1 -1
5 W on left right 1 1
6 W on left left or straight -1 -1
7 W on right left 1 1
8 W on right right or straight -1 -1
9 G straight straight 1 -1
10 G straight left or right -1 0
11 G on left left 1 -1
12 G on left straight or right -1 0
13 G on right right 1 -1
14 G on right straight or left -1 0
15 B straight straight -1 1
16 B straight left or right 0 -1
17 B on left left -1 1
18 B on left straight or right 0 -1
19 B on right right -1 1
20 B on right straight or left 0 -1

5 Experimental Results

In this section, we discuss the results of the evolved plasticity rules evolved in our ex-
periments. We then show the learning and adaptation processes of the best performing
evolved plasticity rule during a foraging task in continuous learning settings, with and
without validation. Finally, we show additional experimental results reporting the best
performing evolved plasticity rules used with ANNs with various number of hidden
neurons.

For comparison, we provide the results of two algorithms: the results of agents
with ANNs controllers that are optimized by using the Hill Climbing (HC) algo-
rithm (De Castro, 2006), and the results of a rule-based agent that is controlled by
hand-coded rules without using an ANN.

In the case of the HC algorithm, we start with an ANN (the same architecture as
used in the plasticity experiments) where all of its weights are randomly initialized be-
tween [−1, 1], evaluated on our foraging task (using the same evaluation settings for
5000 action steps) for the first summer season to find its fitness, and assigned as the
best network. We then iteratively generate a candidate network by randomly perturb-
ing all the weights of the best network using Gaussian mutation with zero mean 0.1
standard deviation, evaluate on our foraging task for a given season, and replace the
best network with the candidate network if its fitness value is better than the fitness
of the best network. We repeat this process consecutively for summer, winter, summer
and winter seasons for 1000 iterations each, in total of 4000 iterations combined. When
a seasonal change happens, we keep the best network and continue the optimization
procedure as specified.

Figure 5 shows the average results of 100 runs (100× 4000 iterations) of the HC al-
gorithm for four seasons. The average values and standard deviations of fitness values,
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collected number of Green and Blue items, and Wall hits of the 10th, 500th and 1000th
iterations for each season are given in Table 2. The values for Summer1, Winter1, Sum-
mer2 and Winter2 presented in table corresponds to the iteration numbers in ranges
0-1000, 1001-2000, 2001-3000 and 3001-4000 on x-axis of Figure 5 respectively.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

-50

0

50

Fi
tn

es
s

Figure 5: The average fitness value during 100 runs of the offline optimization process
of the agents using the HC algorithm without the plasticity property. The process starts
with a randomly initialized ANN which is trained on our foraging task starting with
the summer season, and every 1000th iteration, the seasons is changed.

Table 2: The average and standard deviations of the performance statistics of 100 runs
of the offline optimization procedure of the agents using the Hill Climbing algorithm.

Result Iteration Summer1 Winter1 Summer2 Winter2

Fitness
10th 9.20± 10.12 9.79± 11.83 8.74± 10.24 10.41± 12.04
500th 48.34± 24.82 47.42± 19.15 49.59± 18.02 49.94± 17.04
1000th 55.81± 23.04 55.08± 20.00 58.21± 17.08 56.95± 18.35

G
10th 11.61± 12.37 5.02± 7.63 13.32± 12.22 4.48± 6.46
500th 49.36± 24.48 1.58± 4.87 51.71± 17.43 1.59± 4.62
1000th 56.56± 22.88 0.85± 3.29 59.65± 16.89 1.38± 4.09

B
10th 2.41± 5.59 14.81± 14.40 4.58± 6.66 14.89± 14.05
500th 1.02± 3.23 49.00± 19.06 2.12± 4.73 51.53± 16.33
1000th 0.75± 1.43 55.93± 19.88 1.44± 3.47 58.33± 17.48

W
10th 614.09± 919.95 693.78± 854.64 770.47± 1101.77 702.46± 862.67
500th 170.26± 463.02 157.15± 446.59 146.47± 417.37 183.05± 485.90
1000th 114.92± 375.96 88.30± 351.09 115.72± 398.26 140.97± 439.384

We observe that it takes about 1000 iteration for the networks to reach 56.51 fitness
value on average at the end of each season. Since the networks are well optimized
for the task, a sudden decrease in their performance at the beginning of each seasonal
change is observed. In about 10 generations, the fitness values are increased around 9
in each season. We see clear increasing and decreasing trends in number of collected
items depending on the season while the number of iterations increase. Moreover, the
number of wall hits are also reduced although it is relatively high even at the end of the
iterations for each season.

This agent that is controlled by hand-coded rules without ANNs has a “perfect
knowledge” of which items to collect/avoid in each season throughout its evaluation
process. Also, it moves straight if there is nothing around, and makes a turn when it
encounters a wall (this behavior is expected to improve the exploration of the environ-
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ment). The mean and standard deviation of the rule-based agent for 100 trials are given
in Table 3. Since, there is no learning or optimization process involved in this case, we
only show its results at the end of a Summer and Winter seasons.

Table 3: The statistics of the hand-coded rule-based agent with perfect knowledge of
the task in each season.

Summer Winter
Fitness G B W Fitness G B W

Mean 67.2 67.2 0 0 67.8 0 67.8 0
Std. D. 8.6 8.6 0 0 7.9 0 7.9 0

5.1 Evolved versus defined plasticity rules

We collected a total of 300 evolved plasticity rules by performing 30 independent GA
runs. The max, min, median, mean and standard deviation of the average fitness values
of all evolved plasticity rules are 49.96, 7.97, 47.37, 37.89 and 13.98 respectively.
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We identified in total of 15 distinct rules, distinguished only by their discrete part
(i.e., without considering the specific value of the learning rate). A complete list of
these rules is provided Table 4. The first and second column show the distinct rule
identifier (ID) and the number of rules found for each distinct rule, respectively. The
columns labeled as “Median”, “Std.D.”, “Max”, “Min”, “η Mean”, and “η Std.D.” show
the median, standard deviation, max and min values of the fitness, and the average
and standard deviations of the learning rates per each distinct rule respectively. In the
remaining columns, we report the activation states of pre- and post-synaptic neurons
aj and ai (encoded as 2-bits) when m = −1 and m = 1. The most successful rules,
shown in the first three rows, constitute 63% of all collected rules, and achieve a fitness
values greater than 40. They perform synaptic updates only when m = −1. The rest of
the rules perform synaptic updates also when m = 1. However, their performance is
significantly worse in terms of their fitness values. For instance, the rules given in the
fourth row achieve the best fitness value of 29.05 which is 20 points lower than the best
rule.

The overall best performing evolved plasticity rule (the best of 164 rules with ID.
1 shown in Table 4) achieved a fitness value of 49.96 with a standard deviation of 9.97,
corresponding to an average of 53.39 correctly collected and 3.43 incorrectly collected
items, with standard deviations of 9.31 and 2.04 items respectively, and on average
incurred 4.27 wall hits, with a standard deviation of 4.46 hits. The learning rate of this
rule is η = 0.039. This rule performs synaptic updates in two cases only, i.e. when the
network produces undesired behavior (m = −1). In the first case, the plasticity rule
increases the synaptic weights between aj and ai when aj is active but ai is not. This
may facilitate finding new connections. The second case implements an anti-Hebbian
learning where the plasticity rule decreases the synaptic weights when both aj and ai
are active.

For comparison, Table 5 provides the statistics of some plasticity rules that we
defined by hand. The columns “Fitness”, “Std Fit.”, “Correct”, “Incor.”, “Std Cor.”
and “Std Inc.” show the fitness, standard deviation of the fitness, average number of
correctly and incorrectly collected items, and their standard deviations, respectively.
The remaining columns show the details of the plasticity rule.

The rule with ID. 16 was defined by taking the best performing evolved rule (ID.
1) and replacing the part corresponding to m = −1, activations=10 with 0. After this
change, the rule performs synaptic updates only when pre- and post-synaptic neurons
are active and the network produces an undesired outcome (m = −1). When this rule is
used, the performance of the networks are significantly better than other rules defined
by hand. However, the performance is worse than the rule without this replacement.
Surprisingly though, the GA did not find this rule, as shown in the distinct rule list
given in Table 4, even though it performs better than most of all the other rules. This
may be due to the convergence of the evolutionary process to the rules that perform
better, specifically the rules given in the first three rows.

The rules given in row IDs. 17 and 18 were also defined by hand, but showed the
worst performances. In particular, the rule given in row ID. 18 performs Hebbian/anti-
Hebbian learning as it increases/decreases the synaptic weights between neurons
when they are both active and the network produces a desired/undesired outcome.
Instead, the rule given in row ID. 17 performs synaptic updates on two additional ac-
tivation combinations w.r.t. rule with ID. 18, in order to facilitate the creation of new
connections. Even though this latter rule performs better than the rule ID. 18, its per-
formance is not better than the evolved plasticity rule with the worst performance.
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Figure 6: The statistics of three selected plasticity rules during a single run of a foraging
task over four seasons. Each row of the figures provides the results of the best plasticity
rules from the rule types with IDs. 1, 2, and 6 respectively. Figures in the first column
show cumulative results of the number of items collected, whereas figures in the second
column show the number of items collected when the agent is tested independently for
5000 action steps using the configurations of its ANN at the time of the measurement.

The reason why the performance of the plasticity rules that perform synaptic up-
dates also when m = 1 is worse than the ones that perform synaptic update only when
m = −1 is likely due to the design of the task and the reward function. Since the reward
function keeps providing rewards while a network is achieving the desired outcomes,
the accumulation of these rewards can “overcharge” the synaptic weights and may
cause forgetting after a certain number of synaptic updates. The issue of forgetting
already known knowledge/skills due to the acquisition of new knowledge/skills in
ANNs is usually referred as “catastrophic forgetting” (Parisi et al., 2019).

5.2 Performance of the networks during a foraging task

Figure 6 shows the statistics of some selected plasticity rules during a single run of a
foraging task over four seasons. The overall process lasts 20000 action steps in total,
consisting of four seasons of 5000 action steps each. The foraging task starts with the
summer season and switches to the other season every 5000 action steps. Measure-
ments were sub-sampled at every 20th action step to allow better visualization. The
figures given in the first column show the cumulative number of items of both types
collected throughout the process, whereas each measurement given in the figures in
the second column shows the number of items collected when the agent is tested in-
dependently for 5000 action steps using its ANN configuration at the time of the mea-
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surement.
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Figure 7: The distribution of fitness values of the best evolved rule from ID.1 in Table 4
over four seasons. The x- and y-axes of each subfigure show the fitness value and
number of evaluations, respectively.

Figures 6a and 6b show the results of the best rule from ID. 1, Figures 6c and 6d
show the results of the best rule from ID. 2, and Figures 6e and 6f show the results of the
best rule from ID. 6. In the case of the rules from IDs. 1 and 2, the agent learns quickly to
collect the correct type of items in each season. The number of correctly collected items
from the previous season stabilizes, and the number of incorrectly collected items from
the previous season increases in the next season after a seasonal change occurs. We
observe in Figures 6b and 6d that there are distinct and stable seasonal trends for each
season. The noise in the measurements is due to the sub-sampling and stochasticity of
the evaluation process.

In the case of rule from ID. 6, the agent keeps collecting both kinds of items; how-
ever, the number of correctly collected type of items is larger than incorrectly collected
items in each season. We can observe in Figure 6f that the testing performance is not
stable throughout the process. The fluctuations show that the configuration of the ANN
seems to be frequently shifting the states between learning and forgetting.

Table 6 and Figure 7 show, respectively, the average statistics and the distribution
of the fitness of the best performing evolved plasticity rule in each season over 100
trials. The agent achieves an average fitness value of about 50 in all the seasons except
the first winter season where it achieves a fitness value of 48.

Table 7 shows the average results of the best ANN configuration found through
validation. During a foraging task process, the agent is tested independently at every
20th action step, and the configuration of the ANN that achieved the highest fitness
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Table 7: The statistics of the best performing evolved rule with validation.

Summer Winter
Fitness G B W Fitness G B W

Mean 61.0 61.0 0 0 63.0 0 63.0 0
Std. D. 8.62 8.62 0 0 8.19 0 8.19 0

value was stored as the best ANN configuration.
To assess the statistical significance of the difference of the results produced by

different agents, we use the Wilcoxon rank-sum test (Wilcoxon, 1945). The null-
hypothesis, i.e. that the mean of the results produced by two agents (thus, their behav-
ior) are the same, is rejected if the p-value is smaller than α = 0.05. We perform pairwise
comparisons of three sets of results of fitness values for summer and winter seasons ob-
tained from three agents evaluated over 100 evaluations. More specifically, we compare
the results of the hand-coded rule-based agent, with those of the agents that use the
best performing evolved plasticity rule in continuous learning settings, with and with-
out validation. Based on the pairwise comparison results, the hand-coded rule-based
agent is significantly better than the other two agents with and without validation, with
significance levels of 1.9 · 10−28 and 8.2 · 10−05 respectively. Furthermore, the results of
the agent with validation are significantly better than those without validation, with a
significance level of 9.9 · 10−14.

To gain further insight into these results, we have recorded the behavior of the
agent during a foraging tasks with four seasons each consisting of 3000 action steps1.
The demonstration shows that the agent is capable of efficiently adapting to the envi-
ronmental conditions imposed by each season. Even though the desired behavior with
respect to the wall should be constant across the different seasons, the agent makes a
few mistakes at the beginning of each season by hitting the wall. This may be due to
the change of the synaptic weights that affect the behavior of the agent with respect
to the wall. Furthermore, we provide the actual weights and their change after each
seasonal change in A.

5.3 Sensitivity analysis on the number of hidden neurons

Finally, we performed a sensitivity analysis of our results with respect to the number of
hidden neurons. In Figure 8, we show the average results of 100 trials each performed
using the best performing evolved plasticity rule on the ANNs, with various number
of hidden neurons. We test networks with 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 hid-
den neurons. The results show that there is a 13 point increase on the average fitness
value when the number of hidden neurons is increased from 5 to 20. There is also a
slight upward trend when larger than 20 hidden neurons are used, which results in a
3 point average fitness gain when the number of hidden neurons is increased from 20
to 50. Moreover, the standard deviations are also slightly reduced while the number of
hidden neurons increases, showing that the use of more hidden neurons tends to make
the agent’s behavior more consistent across different trials.

1An online video demonstration of the behavior of an agent for four seasons each consisting of 3000 action
steps: https://youtu.be/9jy6yTFKgT4.
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Figure 8: The average fitness values of the ANNs with various number of hidden neu-
rons.

6 Conclusions

The plasticity property of biological and artificial neural networks enables learning by
modifying the networks’ configurations. These modifications take place at individual
synapse/neuron level, based on the local interactions between neurons.

In this work, we have proposed an evolutionary approach to produce autonomous
learning in ANNs in a task with changing environmental conditions. We devised plas-
ticity rules to conduct synaptic adjustments inspired by the local plasticity property of
the BNNs. The plasticity rules operate at individual synapse level, based on the inter-
actions between artificial neurons. We employed Genetic Algorithms (GA) to explore
the search space of the possible plasticity rules for all possible states of the post- and
pre-synaptic neuron activations and reinforcement signals.

We evaluated the evolved plasticity rules on an agent-based foraging task, focus-
ing specifically on the adaptation capabilities of the ANNs under changing environ-
mental conditions. In our test scenario, an agent starts with a randomly initialized
ANN configuration, and is required to learn collecting/avoiding correct types of items
while interacting with the environment. After a certain number of action steps, the
types of items to collect/avoid are switched, and the agent is expected to adapt to the
new conditions.

The results of the multiple runs of the GA produced in total 300 rules, that we
have grouped in 15 distinct plasticity rules (based only on the discrete parts of the
rule), among all 38 = 6561 possible rules. Interestingly, more than half of all plasticity
rules (164 of 300) converged on a single type of rule that showed the best performance.

To set an upper and a lower bound for the performance of the ANNs with evolved
plasticity rules, we performed a set of separate experiments with hand-coded rule-
based agents with perfect knowledge and agents with ANN controllers that are opti-
mized using the HC algorithm respectively. We also observe that (not reported in the
paper) the fitness of an agent that takes decisions randomly at each action step is zero,
as expected, since in this case the agent does not have any intelligent mechanism to
distinguish between items to collect; thus, we did not report the performance results of
this experimental configuration.
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Comparison with a hand-coded rule-based agent with a perfect knowledge of the
task showed instead that the performance of the best evolved rule produced agents that
can perform the task very well (as good as about 74% of the performance of the hand-
coded agent), considering a continuous learning setting where there are no separate
resources for training and testing. In addition, we showed the efficiency of the evolved
plasticity rules in searching the configuration space of the networks by performing val-
idation during the learning process. With validation, the best networks could achieve
94% of the performance of the hand-coded rule-based agent (this performance differ-
ence may be due to the specific design of the reward function).

The results of the agents with ANNs that are trained using the HC algorithm shows
that the average fitness value at 1000th iteration is better than the results of the agents
with ANNs trained with the plasticity rules in continuous learning settings without
validation. However, the results of the HC has a higher standard deviation. This is
reasonable since in continuous learning settings, the learning process (thus the mistakes
the agents make) are also involved into the evaluation process. On the other hand, the
agents that are trained with plasticity rules with validation performed better than the
agents that are trained using the HC.

Surprisingly, the best evolved rule performed synaptic updates only when the
network produced undesired output (negative reinforcement signal). This may be
due to the specific reward functions we used in the experimentation, which were
designed to provide constant reward/punishment while the networks produced de-
sired/undesired outcomes. Intuitively, after the networks learn to perform the task
successfully, keep performing synaptic updates may cause degradation in the synaptic
weights and result in forgetting.
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Floreano, D., Dürr, P., and Mattiussi, C. (2008). Neuroevolution: from architectures to
learning. Evolutionary Intelligence, 1(1):47–62.

22



Evolving Plasticity under Changing Conditions

Floreano, D. and Urzelai, J. (2000). Evolutionary robots with on-line self-organization
and behavioral fitness. Neural Networks, 13(4-5):431–443.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory.

Hoerzer, G. M., Legenstein, R., and Maass, W. (2014). Emergence of Complex Com-
putational Structures From Chaotic Neural Networks Through Reward-Modulated
Hebbian Learning. Cerebral Cortex, 24(3):677–690.

Kowaliw, T., Bredeche, N., Chevallier, S., and Doursat, R. (2014). Artificial neurogene-
sis: An introduction and selective review. In Growing Adaptive Machines, pages 1–60.
Springer.

Kuriscak, E., Marsalek, P., Stroffek, J., and Toth, P. G. (2015). Biological context of Hebb
learning in artificial neural networks, a review. Neurocomputing, 152:27–35.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., and Liotta, A. (2018).
Scalable training of artificial neural networks with adaptive sparse connectivity in-
spired by network science. Nature Communications, 9(1):2383.

Mouret, J.-B. and Tonelli, P. (2014). Artificial evolution of plastic neural networks: a few
key concepts. In Growing Adaptive Machines, pages 251–261. Springer.

Niv, Y., Joel, D., Meilijson, I., and Ruppin, E. (2002). Evolution of Reinforcement Learn-
ing in Uncertain Environments: A Simple Explanation for Complex Foraging Behav-
iors. Adaptive Behavior, 10(1):5–24.

Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic plasticity in evolving neural
networks. In From Perception to Action Conference, 1994., Proceedings, pages 146–157.
IEEE.

Orchard, J. and Wang, L. (2016). The evolution of a generalized neural learning rule.
In Neural Networks (IJCNN), 2016 International Joint Conference on, pages 4688–4694.
IEEE.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual lifelong
learning with neural networks: A review. Neural Networks.

Risi, S. and Stanley, K. O. (2010). Indirectly encoding neural plasticity as a pattern of
local rules. In International Conference on Simulation of Adaptive Behavior, pages 533–
543. Springer.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323(6088):533.

Rumelhart, D. E., McClelland, J. L., Group, P. R., et al. (1987). Parallel distributed process-
ing, volume 1. MIT press Cambridge, MA.

Runarsson, T. P. and Jonsson, M. T. (2000). Evolution and design of distributed learning
rules. In Combinations of Evolutionary Computation and Neural Networks, 2000 IEEE
Symposium on, pages 59–63. IEEE.

23



A. Yaman et al.

Sejnowski, T. J. and Tesauro, G. (1989). The Hebb rule for synaptic plasticity: algorithms
and implementations. In Neural models of plasticity, pages 94–103. Elsevier.

Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Pérez-Uribe, A., and Stauffer, A.
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A Change of the synaptic weights

Figures 9 and 10 show the actual values of the connection weights between input and
hidden, and between hidden and output layers, in a matrix form. Each column and
row in the figures correspond to a neuron in the input, hidden and output layers. In
particular, Figures 9a and 10a show the initial connection weights between input and
hidden, and between hidden and output layers, sampled randomly. We performed
three seasonal changes in the following order: summer, winter, summer. We used the
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best performing evolved plasticity rule to perform synaptic updates during the seasons.
We provide the rest of the figures to show the connection weights after each consecutive
season.

The connection weights between input and hidden layers appear to be distributed
in the range [-1,1]; on the other hand, the connection weights between hidden and out-
put layers tend to be distributed within the range [0,1] at the end of each season. This
may be due to the activation function of the output neurons, where only the neuron
with the maximum activation value is allowed to fire.
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(a) Randomly sampled initial connection weights.
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(b) Connection weights after the first summer season.
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(c) Connection weights after the first winter season.
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(d) Connection weights after the second summer sea-
son.

Figure 9: Heat map of the intensities of the connection weights between the input and
hidden neurons during a single run using the best evolved plasticity rule. The x and
y-axes show the input and hidden neuron indices respectively (7th column shows the
biases). Each connection on the heat map is color coded based on its intensity from
−1 to 1. Figure 9a shows the initial state of the connection weights that are assigned
randomly. Figures 9b, 9c and 9d show the weights after summer, winter and summer
seasons.
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