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The paper by Antoine, Proulx, and Renault (2018) (APR) deals with the econometric defin-

ition, economic interpretation, and statistical estimation of the pseudo-true stochastic dis-

count factor (SDF) in misspecified conditional asset pricing models. The paper revolves

around fundamental issues like the role of conditioning information and omitted risk fac-

tors, and has non-trivial interactions with the current debate in the literature on the impact

of weak factors (weak identification) for assessing asset pricing models. Building on, and

substantially extending, previous contributions in the literature, the approach of the

authors to define a pseudo-true SDF relies on the minimizers of econometric criteria based

on a conditional version of the Hansen–Jagannathan (HJ) distance, that is, an average

across states of squared conditional pricing errors. The authors provide an insightful discus-

sion of the economic interpretation of pseudo-true SDFs. APR advocate the use of a fixed

bandwidth (i.e., independent of the sample size) when estimating the conditional pricing

errors by kernel regression methods to facilitate statistical analysis. This route leads to

bandwidth-dependent pseudo-true SDF parameters and estimators thereof.

In our discussion, we investigate the different definitions of pseudo-true SDFs and inter-

pret the fixed-bandwidth proposal as a model calibration which down-weights high-

frequency Fourier components of the conditional pricing errors (Section 1). We compare

the statistical properties of pseudo-true SDF parameters’ estimators relying on vanishing

versus fixed bandwidth, and provide a condition under which the former have a smaller

* We are very grateful to the Editors for the invitation to contribute to the discussion of Antoine,

Proulx and Renault (2018). We thank E. Renault and O. Scaillet for very useful discussions.

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved.

For permissions, please email: journals.permissions@oup.com

Journal of Financial Econometrics, 2020, Vol. 18, No. 4, 736–775

doi: 10.1093/jjfinec/nbz009

Advance Access Publication Date: 20 March 2019

Commentary

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/4/736/5416157 by U

niversity of G
roningen user on 14 January 2021

https://academic.oup.com/


asymptotic variance than the latter (or viceversa). We look at these topics through the lens

of misspecified conditional linear SDF models in which priced risk factors are omitted using

both simulated and real data (Section 3). We skip regularity conditions and relegate some

technical derivations in the Appendix of the paper.

1 Estimation of SDF Pseudo-True Parameter Values

Let mtþ1 hð Þ denote a parametric family of SDFs between dates t and tþ 1, and I(t) the condi-

tioning information set at date t. The SDF model is misspecified for pricing a set of n test assets

with gross returns vector Rtþ1 if there is no vector h in the parameter space H � R
p such that

the conditional pricing error e I tð Þ; h½ � ¼ E Wtþ1 hð ÞjI tð Þ
� �

vanishes almost surely, where

Wtþ1 hð Þ :¼ mtþ1 hð ÞRtþ1 � 1n

is the n-dimensional conditional moment vector function. To define the concept of pseudo-

true SDF parameter, the authors consider the conditional HJ distance introduced by

Gagliardini and Ronchetti (2016) (GR), that is

d :¼ min
h2H

d hð Þ; (1)

where

d hð Þ2 :¼ E e I tð Þ; h½ �0X�1 I tð Þ½ �e I tð Þ; h½ �
� �

for X I tð Þ½ � :¼ E Rtþ1R0tþ1jI tð Þ
� �

. One definition of pseudo-true SDF parameter considered

by APR is the argument that minimizes the criterion d hð Þ, namely1

h� :¼ arg min
h2H

d hð Þ: (2)

APR deploy the first-order condition of the minimization problem in Equation (2) to get

economic interpretations for the pseudo-true SDF parameter. For the sake of conciseness,

in our discussion we focus on an interpretation in terms of “optimal” instruments.

Specifically, the pseudo-true SDF mtþ1 h�ð Þ yields a set of exactly identified unconditional

moment restrictions for a set of managed portfolios

E zt h�ð ÞWtþ1 h�ð Þ
� �

¼ 0p;

for the p� nð Þ-dimensional instrument matrix

zt hð Þ :¼ E
@Wtþ1 hð Þ
@h0

jI tð Þ
� �0

X�1 I tð Þ½ �: (3)

Thus, under misspecification the focus moves from the GMM optimal instrument matrix

E
@Wtþ1 h0ð Þ

@h0

����I tð Þ
" #0

Var Wtþ1 h0ð ÞjI tð Þ
� ��1

to the “HJ-optimal” instrument matrix zt h�ð Þ.

1 APR also considers the minimizer ht of the state-dependent criterion d hð Þ I tð Þ½ � ¼ e I tð Þ; h
� �0

X�1 I tð Þ½ �e I tð Þ; h
� �

.
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At this stage, it is convenient for the measurement of misspecification to assume that the

conditioning information I(t) can be summarized by the m-dimensional state variables vec-

tor xt, so that e I tð Þ; h½ � ¼ e xt; hð Þ for all h 2 H and X I tð Þ½ � ¼ X xtð Þ.2 In this setting, APR

considers three variations of the pseudo-true SDF parameter and consistent estimators of

them.

1. The local GMM estimator ĥ. This estimator, which is studied by GR, is defined as

ĥ :¼ arg min
h2H

1

T

XT

t¼1

1 xtð ÞÊ Wtþ1 hð Þjxt

� �0
X̂
�1

xtð ÞÊ Wtþ1 hð Þjxt

� �
;

where 1 xtð Þ is a trimming factor, X̂ xtð Þ ¼ Ê Rtþ1R0tþ1jxt

� �
, and Ê �jxt½ � denotes the

Nadaraya–Watson kernel regression estimator. Vector ĥ is a consistent estimator for

the minimizer of criterion

Q1 hð Þ ¼ E 1 xtð Þe xt; hð Þ0X�1 xtð Þe xt; hð Þ
h i

(4)

in which the trimming factor is included in the expectation operator. By a slight abuse

of notation, we denote the minimizer of criterion Q1 also by h�.

2. The GMM estimator with HJ-optimal instruments ~h. This estimator, which is similar to

the Nagel and Singleton (2011) estimator but uses the HJ-optimal instrument matrix

for the misspecified setting, solves the first-order condition

1

T

XT

t¼1

1 xtð Þẑt
~hð ÞWtþ1

~hð Þ ¼ 0p;

where

ẑt hð Þ :¼ Ê
@Wtþ1 hð Þ
@h0

jxt

� �0
X̂
�1

xtð Þ

is an estimator of the instrument matrix zt hð Þ defined in Equation (3) obtained by

Nadaraya–Watson kernel regression functions.

3. The smooth minimum distance (SMD) estimator with fixed kernel bandwidth ĥ hð Þ. In

motivating this estimator, APR build on the insight of Hall and Inoue (2003) who

highlighted that for a misspecified unconditional moment restriction setting the esti-

mation of the Jacobian and weighting matrices affects the distributional properties of

the GMM estimator even asymptotically. APR write on p. 30 of their paper that “. . .

this message is ominous regarding the impact of misspecification” in conditional mo-

ment restriction setting and might complicate the study of the estimators’ asymptotic

properties. To cope with this potential issue, they advocate the use of an estimator

with fixed bandwidth. To define the latter, APR write the criterion underlying the

square of the conditional HJ distance in Equation (1) as d2ðhÞ ¼ E½ðXðxtÞ�1=2eðxt; hÞÞ0

2 More precisely, either we assume that the model is such that the dependence of e I tð Þ; h
� �

and

X I tð Þ½ � on xt alone holds when the information set I(t) is the sigma-field I tð Þ ¼ r R t ; Y t ; xt
� �

,

where Y is the vector of risk factors in the SDF, and xt :¼ xt ; xt�1; . . .f g, or I tð Þ ¼ r xtf g is a

“reduced” conditioning information set with respect to (w.r.t.) which the econometrician measures

model misspecification.

738 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/4/736/5416157 by U

niversity of G
roningen user on 14 January 2021



ðXðxtÞ�1=2Wtþ1ðhÞÞ�. Moreover, they introduce a weighting of the argument within the

expectation operator equal to the state vector density f ðxtÞ to deal with boundary

effects. Then, to get a sample counterpart of the criterion, the outer expectation is

replaced by a sample average, and the quantity f ðxtÞX�1=2ðxtÞeðxt; hÞ for date t is

replaced by the jackknife kernel estimator for kernel function K and bandwidth h:

1

T � 1ð Þhm

XT

s¼1;s6¼t

X̂
�1=2

xsð ÞWsþ1 hð ÞK xs � xt

h

	 

: (5)

The SMD estimator is defined as

ĥ hð Þ :¼ arg min
h2H

1

T T�1ð Þhm

XT

t¼1

XT

s¼1;s 6¼t

X̂
�1=2

xsð ÞWsþ1 hð Þ
� �0

X̂
�1=2

xtð ÞWtþ1 hð Þ
� �

K
xs�xt

h

	 

:

The motivation of APR to consider the bandwidth as a fixed parameter (i.e., independ-

ent of T) is essentially a statistical one, related to establishing the large sample distribu-

tional properties of the estimator.

What is the parameter of interest implied by the SMD estimator? Under regularity condi-

tions for T !1 and h fixed, the estimator ĥ hð Þ converges to a pseudo-true SDF parameter

h� hð Þ which is the minimizer of the large sample limit criterion:

h� hð Þ ¼ arg min
h2H

Q1 h;hð Þ:

This pseudo-true parameter is bandwidth-dependent. APR refers to it as a “calibration

parameter” (APR, p. 24). It is an interesting question to explore the structural implications

of such dependency on the bandwidth parameter. APR investigate the large sample limit

criterion of the SMD estimator by leveraging on the analogy with the i.i.d. case, and intro-

ducing Assumptions A1, A2, and A3 reported in Section 6.2 including the strict exogeneity

and Markov property of process xtf g.
Here, we offer a different perspective to characterize the limit criterion Q1. We replace

f xtð ÞX�1=2 xtð Þe xt; hð Þ by the large sample equivalent of the kernel estimator with fixed

bandwidth h in Expression (5), namely C xt; h; hð Þ where

C x; h; hð Þ ¼ 1

hm
E X�1=2 xsð ÞWsþ1 hð ÞK xs � x

h

	 
� �
: (6)

Let us assume that the kernel function K is symmetric and in the class of positive definite

kernels (Andrews, 1991), and let K nð Þ :¼ 1
2pð Þm

Ð
R

m K xð Þexp �in0x½ �dx denote its Fourier

transform. Then, by the inverse Fourier representation of function K, we get

C xt; h;hð Þ ¼ 1

hm

ð
R

m
E X�1=2 xsð ÞWsþ1 hð Þexp

i

h
n0xs

� �� �
exp � i

h
n0xt

� �
K nð Þdn: (7)

Then, by plugging Equation (7) in the criterion underlying the squared density-weighted

conditional HJ distance, and rearranging terms we get:

Q1 h; hð Þ ¼ E C xt; h; hð Þ0X�1=2 xtð ÞWtþ1 hð Þ
h i

¼ 1

hm

ð
R

m

E X xtð Þ�1=2Wtþ1 hð Þexp � i

h
n0xt

� �� �2

K nð Þdn;
(8)
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where k � k is the standard norm for complex vectors. The property K nð Þ > 0 for all n 2 R
m of

a positive definite kernel K is key for Q1 h; hð Þ to be a suitable criterion function. APR recall

that a conditional moment restriction is equivalent to a continuum of unconditional moment

restrictions for instruments that are complex exponential transformations of the conditioning

variable (Bierens, 1982). In fact, Q1 h; hð Þ is the GMM limit criterion corresponding to a con-

tinuum of unconditional moment restrictions, with instrument matrix X xtð Þ�1=2 multiplied by

sinus and cosinus functions of n0xt=h and diagonal weighting operator. In other words, criter-

ion Q1 h; hð Þ involves the squared unconditional Fourier transforms of the scaled conditional

pricing error vector averaged across frequencies of the process xtf g.
It is instructive to consider the limits of criterion Q1 h; hð Þ and pseudo-true parameter h� hð Þ

when the bandwidth parameter either h vanishes or diverges to infinity. When h! 0, the criter-

ion Q1 h; hð Þ converges to criterion Q1 hð Þ in Equation (4), with 1 xtð Þ replaced by f xtð Þ, since

C x; h;hð Þ converges to f xð ÞX�1=2 xð Þe x; hð Þ. Under uniform convergence, this implies that

lim
h!0

h� hð Þ ¼ h�:

When h!1, for n�p and under a global identification condition, vector h� hð Þ converges

to the “unconditional” pseudo-true SDF parameter

h�u :¼ arg min
h2H

E X�1=2 xtð ÞWtþ1 hð Þ
h i0

E X�1=2 xtð ÞWtþ1 hð Þ
h i

; (9)

which minimizes a quadratic form of the unconditional moments of the scaled pricing

errors. Note that when the second moments of the gross returns are time invariant, h�u is the

minimizer of the unconditional HJ distance. Hence, by considering a fixed bandwidth, we

are introducing a one-parameter family of pseudo-true SDF parameters that interpolate be-

tween the conditional and unconditional solutions.

The bottom line of this analysis is that, keeping the bandwidth parameter h fixed in the

asymptotics, we can interpret an asymptotically biased estimator for the pseudo-true par-

ameter h� as a consistent estimator of the pseudo-true parameter h� hð Þ. When h increases,

the criterion Q1 h; hð Þ gives less weight to the unconditional Fourier transforms of the pric-

ing errors for large frequencies of the process xtf g. It is an open question to understand

whether the pseudo-true SDF mtþ1 h� hð Þð Þ for some h> 0 can be preferable to SDF mtþ1 h�ð Þ
for a specific economic modeling purpose.

2 Large Sample Distributions of the Estimators

APR compare the different estimators of the pseudo-true SDFs in terms of their asymptotic

distributions for T !1. Here, we complete their study in Sections 5–7 by providing the

large sample distributional properties of the local GMM estimator and of the GMM esti-

mator with HJ-optimal instruments.

1. The asymptotic distribution of the local GMM estimator is provided by GR, Lemma

C.2. Under regularity conditions—including restrictions on the convergence rate of the

bandwidth h to 0—we have the asymptotic expansion

ffiffiffiffi
T
p

ĥ � h�ð Þ ¼ � H�ð Þ�1 1ffiffiffiffi
T
p

XT

t¼1

utþ1 h�ð Þ þ op 1ð Þ; (10)
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where

H� :¼ 1

2

@2Q1 h�ð Þ
@h@h0

(11)

for the criterion Q1 defined in Equation (4) and the function

utþ1 h�ð Þ :¼ 1 xtð ÞJ xt; h
�ð Þ0X�1 xtð ÞWtþ1 h�ð Þ þ 1 xtð Þ

@Wtþ1 h�ð Þ
@h0

	 
0
X�1 xtð Þe xt; h

�ð Þ

� 1 xtð ÞJ xt; h
�ð Þ0X�1 xtð ÞRtþ1R0tþ1X

�1 xtð Þe xt; h
�ð Þ;

(12)

with

J xt; hð Þ :¼ E
@Wtþ1 hð Þ
@h0

jxt

� �
: (13)

Then, under a CLT for dependent data,
ffiffiffiffi
T
p

ĥ � h�ð Þ is asymptotically Gaussian with

zero mean and variance AsVar½ĥ� ¼ H�ð Þ�1
R� H�ð Þ�1

, where

R� 	 LRVar½ut h�ð Þ� :¼
X1

j¼�1
Cov ut h�ð Þ;utþj h�ð Þ

h i

is the long-run variance of the process ut h�ð Þ
� �

. No additional martingale difference as-

sumption is necessary to derive this asymptotic distribution (see APR page 23). The non-

parametric estimation of the Jacobian and weighting matrices does have an effect

asymptotically—by means of the second and third terms in the right-hand side (r.h.s.) of

Equation (12)—but this does not prevent a root-T asymptotically Gaussian distribution

for the local GMM estimator. The reason is that the kernel factors in the estimation cri-

terion are averaged across the sample, thus recovering a parametric convergence rate.3

2. Under regularity conditions, the GMM estimator ~h implementing the optimal HJ instru-

ments is asymptotically equivalent to the local GMM, that is, ~h ¼ ĥ þ op 1=
ffiffiffiffi
T
p� �

(see

Appendix A.1 for a sketch of the proof).

3. APR in Section 7.5 provide the asymptotic distribution of the SMD estimator when the

weighting matrix X xtð Þ is assumed known and has not to be estimated. The asymptotic

expansion is

ffiffiffiffi
T
p

ĥ hð Þ � h� hð Þ
� �

¼ �H� hð Þ�1 1ffiffiffiffi
T
p

XT

t¼1

utþ1 h� hð Þ; h
� �

þ op 1ð Þ; (14)

where with another slight abuse of notation, we have

H� hð Þ :¼ 1

2

@2Q1 h� hð Þ; h
� �
@h@h0

3 See in particular Lemma 6 in GR, which uses similar arguments as in Kitamura, Tripathi, and Ahn

(2004, p. 1696–1698) and Gospodinov and Otsu (2012, p. 487). The zero conditional mean of the mo-

ment function is restored by recentering Wtþ1 h�ð Þ � e xt ; h
�ð Þ, and similarly for the gradient term

and for the term arising from the estimation of the weighting matrix.
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and

utþ1 h� hð Þ; h
� �

:¼ A xt; h
� hð Þ;h

� �0
X�1=2 xtð ÞWtþ1 h� hð Þð Þ

þ @Wtþ1 h� hð Þð Þ
@h0

	 
0
X�1=2 xtð ÞC xt; h

� hð Þ; h
� �

;
(15)

for

A x; h; hð Þ :¼ 1

hm
E X�1=2 xsð Þ

@Wsþ1 hð Þ
@h0

K
xs � x

h

	 
" #
;

and vector C x; h; hð Þ is defined in Equation (6). Then, the asymptotic variance of estima-

tor ĥ hð Þ is AsVar ĥ hð Þ
� �

¼ H� hð Þ�1
R� hð ÞH� hð Þ�1

, where R� hð Þ is the long-run variance

of process ut h� hð Þ; h
� �� �

. APR obtain the asymptotic expansion in Equation (14) by an

elegant argument based on the theory of U-statistics. In Appendix A.2, we show that we

can derive Equation (14) also by deploying the interpretation of ĥ hð Þ as GMM estima-

tor for a continuum of unconditional moments minimizing the sample analog of the cri-

terion in Equation (8).

Let us now compare the asymptotic variances of the local GMM estimator (or equivalently,

of the GMM estimator with optimal HJ instruments) and that of the SMD estimator for a

small bandwidth parameter. This is interesting since, as found in APR and confirmed in our

numerical experiments in Section 3, there are empirically relevant frameworks in which

some of the components of vector h� hð Þ vary slowly over relatively small values of the par-

ameter h. We focus on the case in which the weighting matrix is not estimated and density

weighting is used, since APR provide the asymptotic distribution of the SMD estimator in

this case. Then, the third term in the r.h.s. of Equation (12) has to be replaced by its condi-

tional expectation, and the score of the local GMM estimator becomes

utþ1 h�ð Þ ¼ 1 xtð ÞJ xt; h
�ð Þ0X�1 xtð ÞWtþ1 h�ð Þ

þ 1 xtð Þ
@Wtþ1 h�ð Þ

@h0

	 
0
X�1 xtð Þe xt; h

�ð Þ � 1 xtð ÞJ xt; h
�ð Þ0X�1 xtð Þe xt; h

�ð Þ;
(16)

with 1 xtð Þ ¼ f xtð Þ. We do not find that utþ1 h�ð Þ is the limit of utþ1 h� hð Þ; h
� �

as h! 0 be-

cause of the third term in the r.h.s. of Equation (16). Therefore, in general the asymptotic

variances of the local GMM estimator and SMD estimator differ, even when we select a

small bandwidth parameter for the latter estimator.

To investigate further the asymptotic variances of the estimators, we deploy the next

assumption.

Assumption S: The n� ðpþ 1Þ-dimensional vector Ztþ1ðhÞ :¼ vec½Wtþ1ðhÞ : @Wtþ1ðhÞ
@h0
� is

such that

E Ztþ1 hð ÞjI tð Þ; stþj
� �

¼ E Ztþ1 hð Þjst

� �
; (17)

for any parameter value h 2 H and any integer j�0, where the information I tð Þ ¼
r Rt;Yt; stf g includes the history up to time t of the gross returns Rt, the risk factors Yt in

the SDF, and a (possibly latent) state variables vector st, and st :¼ st; st�1; . . .f g. The

observed variable xt is such that xt ¼ p stð Þ for a continuous function p.

742 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/4/736/5416157 by U

niversity of G
roningen user on 14 January 2021



APR consider a similar assumption (see their Assumptions A1, A2, and A3 in Section

6.2) and their arguments show that Equation (17) holds if process stf g is strictly exogenous,

Markov, and such that Rtþ1;Ytþ1ð Þ is independent of stþ1 conditional on st. Assumption S

is more general than Assumptions A1, A2, A3 in APR because it accommodates for the fact

that the conditioning variable xt used by the econometrician can be a sub-component of the

state vector st. Therefore, Assumption S allows us to study the effect of reducing the condi-

tioning information when measuring the amount of misspecification.

Under Assumption S, for the local GMM estimator we can write the score in Equation

(16) as

utþ1 h�ð Þ ¼ ntþ1 þ d stð Þ þ g xtð Þ; (18)

where

ntþ1 :¼ utþ1 h�ð Þ � E utþ1 h�ð ÞjI tð Þ
� �

¼ 1 xtð ÞJ xt; h
�ð Þ0X�1 xtð Þ Wtþ1 h�ð Þ � l st; h

�ð Þ
� �

þ 1 xtð Þ
@Wtþ1 h�ð Þ

@h0
�G st; h

�ð Þ
� �0

X�1 xtð Þe xt; h
�ð Þ;

d stð Þ :¼ E utþ1 h�ð ÞjI tð Þ
� �

� E utþ1 h�ð Þjxt

� �
¼ 1 xtð ÞJ xt; h

�ð Þ0X�1 xtð Þ l st; h
�ð Þ � e xt; h

�ð Þ½ �
þ 1 xtð Þ G st; h

�ð Þ � J xt; h
�ð Þ

� �0
X�1 xtð Þe xt; h

�ð Þ;
g xtð Þ :¼ E utþ1 h�ð Þjxt

� �
¼ 1 xtð ÞJ xt; h

�ð Þ0X�1 xtð Þe xt; h
�ð Þ;

with lðst; hÞ :¼ E½Wtþ1ðhÞjst� and Gðst; hÞ :¼ E
h
@Wtþ1ðhÞ

@h0

���st

i
, for any h 2 H. Equation (18)

yields a decomposition of the score in three mutually orthogonal components: the innov-

ation ntþ1 w.r.t. the information I(t), the difference dðstÞ between the score’s conditional ex-

pectation given I(t) and its projection on xt and the score’s conditional expectation given xt

denoted g xtð Þ.
In a similar vein, for the score of the SMD estimator in Equation (15) we have

utþ1 h� hð Þ;h
� �

¼ ntþ1 hð Þ þ d st;hð Þ þ 2g xt; hð Þ; (19)

where

ntþ1 hð Þ :¼ A xt; h
� hð Þ; h

� �0
X�1=2 xtð Þ Wtþ1 h� hð Þð Þ � l st; h

� hð Þ
� �� �

þ @Wtþ1 h� hð Þð Þ
@h0

�G st; h
� hð Þ

� �� �0
X�1=2 xtð ÞC xt; h

� hð Þ;h
� �

;

d st; hð Þ :¼ A xt; h
� hð Þ; h

� �0
X�1=2 xtð Þ l st; h

� hð Þ
� �

� e xt; h
� hð Þ

� �� �
þ G st; h

� hð Þ
� �

� J xt; h
� hð Þ

� �� �0
X�1=2 xtð ÞC xt; h

� hð Þ; h
� �

;

g xt; hð Þ :¼ 1

2
A xt; h

� hð Þ; h
� �0

X�1=2 xtð Þe x; h� hð Þ
� �

þ J xt; h
� hð Þ

� �0
X�1=2 xtð ÞC xt; h

� hð Þ; h
� �h i

:

Under regularity conditions, as h! 0, the processes g xt; hð Þ
� �

; d st; hð Þ
� �

, and ntþ1 hð Þ
� �

tend to the processes g xtð Þ
� �

; d stð Þ
� �

, and ntþ1f g. Hence, in that limit the difference in the

asymptotic expansions of the local GMM and SMD estimators is the factor 2 in front of

term g xt; hð Þ appearing in the score utþ1 h� hð Þ; h
� �

of the SMD estimator.

Under Assumption S, process ntþ1f g is not autocorrelated, and it is uncorrelated

with processes d stð Þ
� �

and g xtð Þ
� �

at all leads and lags. Similar properties hold for the
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components of the score of the SMD estimator. Thus, from Equations (18) and (19), the

asymptotic variances of the scores for the local GMM and SMD estimators are

R� ¼ Var½ntþ1� þ LRVar½d stð Þ þ g xtð Þ�; (20)

R� hð Þ ¼ Var½ntþ1 hð Þ� þ LRVar½d st; hð Þ þ 2g xt;hð Þ�; (21)

respectively. In the limit h! 0, we have AsVar½ĥ�
AsVar½ĥ hð Þ� if, and only if, R�
R� hð Þ,
where 
 is the standard ordering for symmetric matrices. This condition holds if, and

only if,

X1
j¼�1;j6¼0

Cov½d stð Þ; g xtþjð Þ� þ Cov½g xtð Þ; d stþjð Þ�
� �

þ 3LRVar½g xtð Þ��0p�p: (22)

Loosely speaking, the latter inequality is satisfied if the prediction error d stð Þ is not too

large, or is not too negatively correlated with leads and lags of the prediction g xtð Þ itself. In

particular, this holds true when xt¼ st. A more detailed investigation of the inequality (22)

would be worthwhile.

3 A Numerical and Empirical Study with Conditionally Linear SDFs

We investigate the patterns of the pseudo-true SDF parameters h� and h� hð Þ, and the asymp-

totic variances of estimators ĥ and ĥ hð Þ, in a conditionally linear factor model with omitted

factors. We rely on numerical experiments and Monte-Carlo simulations calibrated on a

real dataset which we also use for estimation. This data set consists of the monthly cum-

dividend returns of the n¼ 6 size- and value-based Fama–French (FF-) research portfolios

of U.S. publicly traded equities deflated by the Consumer Price Index for All Urban

Consumers rate from July 1963 to October 2012, which yields T¼592 monthly observa-

tions. The five factors mimick the market, size, value, investment, and profitability factors,

that we denote as Ft ¼ Fmkt;t;Fsmb;t; Fhml;t;Frmw;t; Fcma;t

� �0
. We consider m¼ 2 variables in

the state vector xt ¼ cayt;YCtð Þ0, and we identify them with demeaned consumption to

wealth ratio cayt (Lettau and Ludvigson, 2001) and demeaned labor income to consump-

tion ratio YCt (Santos and Veronesi, 2006).

3.1 Numerical Experiments and Monte-Carlo Simulations

In our numerical experiments and Monte-Carlo simulations, the assumed Data Generating

Process (DGP) for the assets returns and the SDF is

Rtþ1 ¼ Rf ;t1n þ ~l þ B Ftþ1 � Cxtð Þ þ etþ1;

Ftþ1 ¼ Cxt þ utþ1;

xt ¼ Rxt�1 þ vt;

mtþ1 ¼ �0 þ d0xt þ �0Ftþ1 þ x0tDFtþ1;

(23)

for scalar �0 > 0. The risk-free gross return Rf ;t is such that R�1
f ;t ¼ E mtþ1jxt½ � ¼ �0 þ d0xtþ

�0Cxt þ x0tDCxt. The processes etf g; utf g, and vtf g are mutually independent Gaussian

white noise processes with covariance matrices Re, Ru, and Rv. The conditional mean of the

nF-dimensional factor Ft is driven by an exogenous Markov state vector xt with Gaussian

autoregressive dynamic. The state is exogenous and strictly stationary if the eigenvalues of
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matrix R are inside the unit circle. The SDF mtþ1 is linear in the factors conditionally on

the state vector, for example as in the SDF specifications considered by Nagel and Singleton

(2011). Assumption S is met in this model with st 	 xt.

Let I tð Þ ¼ r Rt; Ft; xtf g be the conditioning information. In Appendix A.3.1, we show

that the conditional restriction E mtþ1Rtþ1 � 1njI tð Þ
� �

¼ 0n is met if, and only if, the vector

of excess returns ~l in Equations (23) is such that

~l ¼ � 1

�0
BRu�; (24)

and the SDF parameters are such that either C0� ¼ 0 and D ¼ 1
�0

d�0, or

d ¼ �C0� and D ¼ 0m�nF
: (25)

We focus on the case described by Equations (24) and (25), as it simplifies the numerical

computation of the pseudo-true parameter values, which are given in closed form (see

below). In this case, the risk-free gross return is constant Rf ¼ ��1
0 , and the test assets’

expected gross returns vector l ¼ ��1
0 1n þ ~l and their second moments matrix X ¼

ll0 þ BRuB0 þ Re are time-invariant as well. We calibrate the DGP parameters �0, �, B, C,

R, Re, Ru, and Rv to mimic the monthly dataset described at the beginning of the section.

To define the misspecification, let us suppose that the econometrician overlooks the im-

portance of the profitability factor mimicked by Fcma;t. Moreover, she considers the possi-

bility that the risk premium of the market factor is driven by the state variables.

Specifically, she considers the following three misspecified parametric SDF models:

M1 : mtþ1 hð Þ ¼ h0 þ h
0
F1;tþ1; (26)

M2 : mtþ1 hð Þ ¼ h0 þ h
0
F1;tþ1 þ h5caytF3;tþ1; (27)

M3 : mtþ1 hð Þ ¼ h0 þ h
0
F1;tþ1 þ h5cayt þ h6YCtð ÞF3;tþ1; (28)

where F1;t ¼ Fmkt;t; Fsmb;t;Fhml;t; Frmw;t

� �0
and F3;t ¼ Fmkt;t, the omitted factor is F2;t ¼ Fcma;t,

and h ¼ h1; . . . ; h4ð Þ0.
In Appendix A.3.2, we derive the pseudo-true parameter vector h� computed with uni-

form weight 1 xtð Þ ¼ 1 in the three models. The one for modelM3 is

h� ¼g1þ
~C
0
1X
�1 ~C1þj ~C1Rx

~C0 1 ~C
0
1X
�1l

� �
C3Rxþ ~C1Rx l0X�1C3

� �
RxC03 l0X�1 ~C1

� �
þ C03X

�1l
� �

Rx
~C
0
1 Rx C03X

�1C3

� �
þj 2RxC03C3RxþC3RxC03Rx

� �
2
64

3
75
�1

�
~C
0
1X
�1C2þj ~C1RxC02 j ~C1Rx

C3X
�1l

� �
RxC02þRxC03 l0X�1C2

� �
C03X

�1l
� �

Rx

2
64

3
75g2;

(29)

where g1¼ ~� 01;0
0
m

� �0
is the true parameter vector augmented by zeros, g2¼ �02;d

0� �0
, with

~�1¼ �0;�
0
1

� �0
, �1 and �2 are the subvectors in � corresponding to sub-components F1;t and

F2;t of Ft, ~C1¼ 0m : C01
� �0

; ~C1¼ l : C1½ �, and j¼l0X�1l. The discrepancy between the

true SDF parameters in g1 and the pseudo-true SDF parameters in h� involves the matrices

Ci and Ci, for i¼1, 2, 3, which are the blocks of matrices C and C¼BRu corresponding to

factors Fi;t, and the matrix Rx, which is the stationary variance of the state variables vector.
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If density weighting is applied, we should consider 1 xtð Þ¼ f xtð Þ, and in this Gaussian

framework the same formulas hold but with Rx replaced by Rx=2.

To compute the pseudo-true parameter vector with fixed bandwidth, we choose the m-

dimensional standard Gaussian pdf as kernel function K and hR1=2
x as bandwidth matrix.

The kernel factor is then KððhR1=2
x Þ

�1ðxt � xsÞÞ with scalar h>0. Then we have (see

Appendix A.3.4 for the proof):

h� hð Þ¼g1þ

~C
0
1X
�1 ~C1þa hð Þj ~C1Rx

~C
0
1 1�a hð Þð Þ ~C

0
1X
�1l

� �
C3Rxþa hð Þ l0X�1C3

� �
~C1Rx

1�a hð Þð ÞRxC03 l0X�1 ~C
0
1

� �
þa hð Þ C03X

�1l
� �

Rx
~C
0
1

8><
>:

9>=
>;

a hð Þ C03X
�1C3

� �
Rxþj 1�2a hð Þþ2a hð Þ2

� ��
�RxC03C3Rxþa hð Þ2 C3RxC03

� �
Rx

�
8><
>:

9>=
>;

2
666664

3
777775

�1

�
~C
0
1X
�1C2þa hð Þ l0X�1l

� �
~C1RxC02 a hð Þ l0X�1l

� �
~C1Rx

a hð Þ C03X
�1l

� �
RxC02þ 1�a hð Þð ÞRxC03 l0X�1C2

� �
a hð Þ C03X

�1l
� �

Rx

2
4

3
5g2;

where a hð Þ¼ 1
2þh2. The magnitude of h affects the terms which involve the variance Rx,

reflecting the changing relevance of the conditioning information as h varies. Some of these

terms disappear when h!1 and h� hð Þ converges to the unconditional pseudo-true param-

eter vector h�u. For h!0, vector h� hð Þ converges to h� in Equation (29), with matrix Rx

replaced by Rx=2 because of density weighting.

We plot in Figures 1 and 2 the patterns of the pseudo-true SDF parameter values for

misspecified modelM1 as functions of h, for h in the intervals 0; 1½ � and 0; 50½ �, respective-

ly. As remarked by APR in their empirical and numerical illustrations, also in our experi-

ments the pseudo-true parameter vector h� hð Þ is not very sensitive w.r.t. bandwidth h and is

close to the conditional pseudo-true parameter vector h�, for small values of h.4 When ana-

lyzed over a broader range of values of h, the components h�k hð Þ are decreasing functions of

h for k ¼ 1; :::; 4, that is, the SDF coefficients associated to the four factors become more

negative and larger in absolute value as h increases. For large values of h, the pseudo-true

value h�0 hð Þ is above 1, which is not compatible with its interpretation as expected non-

defaultable bond price, and implies negative time preferences. For h!1 vector h� hð Þ con-

verges to the unconditional pseudo-true parameter vector h�u. The difference between the

conditional and unconditional pseudo-true parameter values is numerically large for the in-

vestment factor (k¼ 4). The patterns of the components of h� hð Þ are similar in the other

two misspecified models M2 and M3, see Figures 3 and 4. The pseudo-true parameter

value h�5 hð Þ, which corresponds to the interaction of cay with the market factor and is ab-

sent in the DGP, is increasing w.r.t. h. For modelM3, the unconditional pseudo-true par-

ameter h�u is not well-defined, because the unconditional moment restrictions are

underidentified (n ¼ 6 < p ¼ 7). Hence, the pseudo-true parameter is identifiable from the

conditional moment restrictions but not from the unconditional ones.

Let us compute the asymptotic variances of the local GMM estimator ĥ, and of the

APR estimator with very small bandwidth [i.e., for h! 0 in Equation (21)] denoted

ĥ 0ð Þ, for model M1.5 From the results in Section 2, the asymptotic variances are

4 Note that the Scott’s rule would imply h ¼ T�1=6. For T¼ 592 as in our analysis this yields

h ’ 0:345.

5 The formulas for modelsM2 andM3 can be derived similarly, but are a bit more cumbersome.
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AsVar½ĥ� ¼ H�ð Þ�1
Var ntþ1½ � þ LRVar g xtð Þ½ �
� �

H�ð Þ�1
and AsVar½ĥ 0ð Þ� ¼ H�ð Þ�1

Var ntþ1½ �þ
�

4LRVar g xtð Þ½ �g H�ð Þ�1
, since d stð Þ ¼ 0. It turns out that Var ntþ1jxt½ � and g xtð Þ are quadratic

functions of the Gaussian state vector xt, which leads to closed-form expressions. We have

(see Appendix A.4 for the derivation):

H� ¼ ~C
0
1X
�1 ~C1 þ j ~C1Rx

~C
0
1;

LRVar g xtð Þ½ � ¼ A~RxA0 þ A ~C1 R Im � Rð Þ�1Rx þ Rx Im � R0ð Þ�1
R0

� �
~C
0
1A0

þ j2 ~Rxh
�h�0~Rx þ ~Rx h�0~Rxh

�� �� �
þ j2 ~C1 S1Rx þ RxS01 þ S2Rx þ RxS02

� �
~C
0
1;

where A :¼ l0X�1 ~C1h
� � 1n

� �
Ip þ ~C

0
1X
�1lh�0 and ~Rx :¼ ~C1Rx

~C0 1, the m�mð Þ-dimensional

matrix S1 is such that vec S1½ � ¼ Im2 � R� R½ ��1vec½RRxaa0R�; S2 :¼
Pm

i¼1 aibiki

Figure 1 True and pseudo-true SDF parameter values as functions of h for misspecified model M1.

The SDF is mtþ1ðhÞ ¼ h0 þ h
0
F1;tþ1, where F1;t ¼ ðFmkt;t ; Fsmb;t ; Fhml;t ; Frmw;t Þ0 and h ¼ ðh1; . . . ; h4Þ0. The

DGP parameters are calibrated to mimic the inflation- and dividends-adjusted gross returns of the

n¼ 6 size- and value-based FF research portfolios of U.S. publicly traded equities, as well as FF factors

and the demeaned consumption to wealth ratio and the demeaned labor income to consumption ratio

from July 1963 to October 2012. In each panel, the solid curve is the pseudo-true parameter value

h�k ðhÞ as a function of h in the interval ½0; 1� for k ¼ 0; 1; . . . ; 4. The dashed line represents the corre-

sponding true SDF parameter value.

Gagliardini & Ronchetti j Estimators of Pseudo-True SDFs 747

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/4/736/5416157 by U

niversity of G
roningen user on 14 January 2021



R Im � kiRð Þ�1
with a :¼ U0 ~C

0
1h
� and b :¼ U�1Rx

~C
0
1h
�, matrix U diagonalizes R, that is,

K ¼ U�1RU is the diagonal matrix of the eigenvalues ki, and:

Var ntþ1½ � ¼ a00 Ip�X�1
� �

V0 Ip�X�1
� �

a0þ h�0~Rxh
�� �

~C
0
1X
�1VRX�1 ~C1

þ ~Rx
~C1h

� �1n

� �0
X�1VRX�1 ~C1h

� �1n

� �
þ8j 1�jð Þ~Rxh

�h�0~Rx

þ4j 1�jð Þ~Rx h�0~Rxh
�

� �
þ
�

h�0~Rx

� �
� ~C

0
1X
�1VRX�1 ~C1h

� �1n

� �
þ2 h�0 � ~C

0
1X
�1

� �
WX�1l h�0~Rx

� �
þ2 Ip� ~C1h

� �1n

� �0
X�1

� �
WX�1l h�0~Rx

� �
þ h�0~Rx

� �
� ~C

0
1X
�1W 0 h� �X�1l

� �h i
þ ~Rx

~C1h
� �1n

� �0
X�1W 0 h� �X�1l

� �h i
þ h�0~Rxh

�
� �

~C
0
1X
�1W 0 Ip�X�1l

� �h i
þ ~Rxh

�
� �

� ~C1h
� �1n

� �0
X�1W 0 Ip�X�1l

� �h i�
s

;

Figure 2 Pseudo-true SDF parameter values and their limits for h tending to zero or to infinity for misspeci-

fied modelM1. The SDF specification and the model calibration are as described in the caption of Figure 1.

In each panel, the solid curve is the pseudo-true parameter value h�k ðhÞ as a function of h for k ¼ 0; 1; . . . ; 4.

The dashed lines represent the conditional and unconditional pseudo-true parameter values h�k and h�u;k .

In each panel except the first, the highest line indicates the conditional pseudo-true value.
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where a0 :¼ h� � ~C1þ Ip� ~C1h
� �1n

� �
;V0¼

VR C1�l0

C01�l Ru;11�XþKp�1;n C1�C01
� �� �

;VR :¼

X�ll0;Kp�1;n is the commutator matrix such that Kp�1;n C1�C01
� �

¼ C01�C1

� �
Kn;p�1

(see e.g., Magnus and Neudecker, 2007), Ru;11 denotes the block of matrix Ru corre-

sponding to the shocks on F1;t, W¼ VR

Ip�1�l
� �

C01

� �
, and Af gs :¼AþA0.

Figure 3 Pseudo-true SDF parameter values and their limits for h tending to zero or to infinity for mis-

specified model M2. The SDF is mtþ1ðhÞ ¼ h0 þ h
0
F1;tþ1 þ h5x1;t F3;tþ1, where F1;t ¼ ðFmkt;t ; Fsmb;t ;

Fhml;t ; Frmw;t Þ0; F3;t ¼ Fmkt;t ; x1;t ¼ cayt ; h ¼ ðh1; . . . ; h4Þ0. The DGP parameters are calibrated to mimic

the inflation- and dividends-adjusted gross returns of the n¼ 6 size- and value-based FF research

portfolios of U.S. publicly traded equities, as well as FF factors and the demeaned consumption

to wealth ratio and the demeaned labor income to consumption ratio from July 1963 to October

2012. In each panel, the solid curve is the pseudo-true parameter value h�k ðhÞ as a function of h

for k ¼ 0; 1; . . . ; 5. The dashed lines represent the conditional and unconditional pseudo-true param-

eter values h�k and h�u;k . In each panel except the first and the last, the highest line indicates the condi-

tional pseudo-true value. In the first and last panel, the line corresponding to the unconditional

pseudo-true parameter value is not displayed, because the near singularity of a matrix to be inverted

implies numerical instabilities, which affect the computation of h�u;0 and h�u;5.
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Figure 4 Pseudo-true SDF parameter values and their limits for h tending to zero or to infinity for

misspecified model M3. The SDF is mtþ1ðhÞ ¼ h0 þ h
0
F1;tþ1 þ h5x1;t F3;tþ1 þ h6x2;t F3;tþ1, where

F1;t ¼ ðFmkt;t ; Fsmb;t ; Fhml;t ; Frmw;t Þ0; F3;t ¼ Fmkt;t ; x1;t ¼ cayt ; x2;t ¼ YCt ; h ¼ ðh1; . . . ; h4Þ0. The DGP param-

eters are calibrated to mimic the inflation- and dividends-adjusted gross returns of the n¼ 6 size- and

value-based FF research portfolios of U.S. publicly traded equities, as well as FF factors and the de-

meaned consumption to wealth ratio and the demeaned labor income to consumption ratio from

July 1963 to October 2012. In each panel, the solid curve is the pseudo-true parameter value h�k ðhÞ as a

function of h for k ¼ 0; 1; . . . ; 6. The dashed lines represent the conditional pseudo-true parameter val-

ues h�k . The unconditional pseudo-true parameter vector h�u is not well-defined for modelM3 because

the model parameters are unidentifiable by the unconditional moment restrictions.
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Under the calibrated DGP, we get:

1

T
H�ð Þ�1

LRVar g xtð Þ½ � H�ð Þ�1 ¼

0:001 �0:04 �0:01 �0:01 �0:09
26:04 7:22 8:72 57:05

2:00 2:42 15:83
2:92 19:11

124:98

2
66664

3
77775 (30)

and

1

T
H�ð Þ�1

Var ntþ1½ � H�ð Þ�1 ¼

0:001 �0:16 �0:06 �0:06 �0:37
106:39 25:63 36:93 213:95

12:83 8:96 63:75
16:31 73:33

470:78

2
66664

3
77775; (31)

with T¼592. We get 90% asymptotic confidence intervals for the parameters h�k for k ¼
0; :::; 4 estimated with local GMM:

0:92 : 1:08½ �; �25:26 : 12:49½ �; �17:96 :�5:32½ �; �13:66 : 0:72½ �; �75:94 : 4:12½ �: (32)

The 90% asymptotic confidence intervals for the APR estimator with very small bandwidth

are

0:87 : 1:13½ �; �30:18 : 17:41½ �; �19:13 : �4:15½ �; �15:15 : 2:21½ �; �87:01 : 15:18½ �: (33)

The asymptotic confidence intervals for sample size T¼ 592 are rather large, especially for

k¼ 4 (investment factor). The confidence intervals do not contain zero for k¼0 and k¼ 2

(the size factor) for both estimators. The diagonal elements of the asymptotic variance part

originated by the long-run variance of process g xtð Þ
� �

in Equation (30) are smaller than the

diagonal elements for the component associated with the variance of ntþ1f g in Equation

(31). This explains why the confidence intervals for the two estimators are similar, with the

ones for the local GMM estimator being narrower. Note that the limited accuracy of these

GMM estimators has to be understood in a setting that differs from the standard one of

weak instruments, because of the conditional nature of the moment restrictions and the

misspecification.

Let us now consider the finite-sample distributions of the estimators. We report in

Table 1 the median, 5-percentile, and 95-percentile of the estimates ĥ; ĥ hð Þ for

h ¼ 0:1; 0:4; 0:7;1; 10; 50, and ĥu obtained in 105 Monte-Carlo repetitions with sample size

T¼592 for the three model misspecifications. For components k ¼ 1; :::; 4 the median val-

ues of ĥk and ĥk hð Þ are generally close to the pseudo-true parameters computed in popula-

tion, across the three misspecified models (Figures 2–4). The difference is more pronounced

for the coefficient of the investment factor (k¼4) when h is large. The finite-sample 5–

95% interquantile ranges for estimators ĥk and ĥk 0:1ð Þ in modelM1 (first and second lines

in the upper panel of Table 1) are comparable with the 90% asymptotic confidence inter-

vals in (32) and (33), respectively. The 5–95% interquantile ranges get wider when h

increases. This range is large for k¼4 when large values of h are considered for the APR es-

timator, and for the unconditional estimator ĥu;4. The patterns of the medians of the esti-

mators for parameters h5 and h6 associated with the interactions of the market factor with
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