
 

 

 University of Groningen

Robustness to noise of distributed averaging integral controllers in power networks
Weitenberg, Erik; De Persis, Claudio

Published in:
Systems & Control Letters

DOI:
10.1016/j.sysconle.2018.06.003

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Weitenberg, E., & De Persis, C. (2018). Robustness to noise of distributed averaging integral controllers in
power networks. Systems & Control Letters, 119, 1-7. https://doi.org/10.1016/j.sysconle.2018.06.003

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1016/j.sysconle.2018.06.003
https://research.rug.nl/en/publications/9ec0fc33-2103-4a1c-94ad-9bf6218e47e8
https://doi.org/10.1016/j.sysconle.2018.06.003


Systems & Control Letters 119 (2018) 1–7

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Robustness to noise of distributed averaging integral controllers in
power networks ✩

Erik Weitenberg *, Claudio De Persis
Engineering and Technology Institute Groningen and Jan Willems Center for Systems and Control, University of Groningen,
9747 AG Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 9 January 2018
Received in revised form 2 May 2018
Accepted 17 June 2018
Available online 10 July 2018

Keywords:
Lyapunov methods
Networked systems
Power networks
Robustness analysis
Cyber–physical systems

a b s t r a c t

We investigate the robustness of distributed averaging integral controllers for optimal frequency regu-
lation of power networks to noise in measurements, communication and actuation. Specifically, using
Lyapunov techniques, we show a property related to input-to-state stability of the closed loop system
with respect to this noise. Using this result, a tuning trade-off between controller performance and noise
rejection is highlighted.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The modern AC power system balances supply and demand in
real time despite faults and fluctuations in demand, supply and
transport. Adequate control techniques on the supply side ensure
all units on the network enjoy a stable voltage amplitude and fre-
quency, which is critical for safety and performance. Traditionally,
these challenges have been addressed using centralized control on
multiple time scales, exploiting the large inertia in generation units
to compensate for the relatively small effect of fluctuations and
faults.

Recently, increasing prevalence of renewable low-inertia gen-
eration units has increased volatility of supply on small and large
time scales. Additionally, the emergence of so-called microgrids
has introduced the compelling case of a small-scale network that
can operate independently of the larger power grid, relying on
small local generators. Inspired by this, an active research area has
emerged to deal with this volatility in a decentralized and flexible
way.

This work focuses on the secondary control layer. Various ap-
proaches for secondary control have been taken in recent years, for
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example primal–dual methods [1–3], internal-model control [4,5]
and distributed averaging integral (DAI) control [6–8,5]. We inves-
tigate the latter approach.

Previously the performance of the DAI controller has been ad-
dressed e.g. by Flamme et al. [9], who derived a H2-optimum
for the controller parameters under measurement noise. Simi-
larly, Wu et al. [10] useH2 techniques to find the optimal commu-
nication topology for the DAI controller. Additionally, Andreasson
et al. [11] performed an analysis of the linearized system. In the
present work however, we additionally consider frequency noise,
and provide a stability certificate for the non-linear system instead
of a linearized one. This has the additional advantage of making
the work applicable to other systems with similar strongly convex
dynamics.

1.1. Main contribution

To our knowledge, while the DAI controller offers stability [5]
and exponential convergence [12], its robustness to noise in fre-
quencymeasurements, actuation and communication has not been
formally established. Recently, it was shown that the so-called
leaky integral controller offers attractive robustness properties and
tuning opportunities, though it lacks exact frequency regulation
[13]. In this work, we show that the DAI controller in fact satisfies
an input-to-state stability with restrictions property and robust-
ness with respect to measurement noise, and for completeness
also to actuation and communication noise. The analysis builds on
results from Weitenberg et al. [12], but the ISS-with restrictions
result pursued in this paper, as opposed to the exponential stability

https://doi.org/10.1016/j.sysconle.2018.06.003
0167-6911/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysconle.2018.06.003
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2018.06.003&domain=pdf
mailto:e.r.a.weitenberg@rug.nl
mailto:c.de.persis@rug.nl
https://doi.org/10.1016/j.sysconle.2018.06.003


2 E. Weitenberg, C. De Persis / Systems & Control Letters 119 (2018) 1–7

result from Weitenberg et al. [12], requires to extend these results
to the presence of disturbances and eventually show that the
Lyapunov function proposed in Weitenberg et al. [12] is indeed
an ISS-Lyapunov function. The result obtained is analogous to the
result obtained in Weitenberg et al. [13] for the leaky integral
controller, but the use of the distributed averaging controllers
considered in this paper calls for a Lyapunov function different
from Weitenberg et al. [13], which requires some adjustments in
the analysis. Moreover, we show how this result can be exploited
in the choice of tuning parameters for the controllers, highlighting
a trade-off between robustness to noise and speedy response to
fluctuations in demand. This makes the DAI controller a well-
performing and comparably robust alternative to the leaky integral
controller, if a communication network is available.

The remainder of this paper is organized as follows. In Sec-
tion 2, the power network model is introduced, as well as the
control objectives and the DAI controller. The energy function
used to analyze the closed-loop system is introduced, along with
its various properties, in Section 3. In Section 4, we exploit this
energy function to derive a robustness property of the closed-loop
system. This leads to an interesting trade-off between robustness
and performance, which is highlighted in Section 5.

2. Setting

The power network is viewed as a graph G = (V, E). The
systems at the nodes are partitioned into a set of nG generators
and a set of nL loads, with n = nG + nL. As such, V = VG ∪ VL.
The graph’s edges represent the m physical power lines between
the various power systems.

We denote the n × m incidence matrix of G by B. Without loss
of generality, we assume the first nG rows of B correspond to the
generator nodes and the others to the loads. Accordingly, we write
B⊤

= [B⊤

G ,B⊤

L ].
We model the power network using the Bergen–Hill equations

[14,15].

θ̇G = ωG (1a)

MGω̇G = −DGωG − BGΓ sin(B⊤θ ) + u (1b)

DLθ̇ L = −BLΓ sin(B⊤θ ) − P . (1c)

Here, θ ∈ Rn denotes the vector of voltage angles of the
synchronous machines and loads at the nodes, relative to a frame
of reference rotating at a nominal frequency ω∗, usually 50 or
60Hz. Likewise, ω ∈ Rn denotes a machine’s frequency deviation
from ω∗. D and M are diagonal n × n matrices encoding the droop
gain and inertia at each node respectively, with the understanding
that inertia at the load nodes is zero. As with B, the subscript
G and L denote partition of vectors and (diagonal) matrices into
source and load nodes, i.e. θ = [θ⊤

G , θ⊤

L ]
⊤, ω = [ω⊤

G , ω⊤

L ]
⊤,

M = block diag(MG,ML) et cetera. Γ is a diagonal m × m matrix
encoding the susceptance Bk of the power lines and the voltage
amplitudes Vi and Vj at each edge as Γkk = BkViVj, for each edge
k = (i, j) ∈ E . Finally, u ∈ RnG is the control input and P ∈ RnL is
the demand at the load nodes. In the Bergen–Hill model, these load
nodes are assumed to be dynamic as opposed to static impedance
loads, which are subsequently absorbed into the line susceptances
in a reduced network [14].

For ease of analysis, we will use the following equivalent form
of (1), in which we introduce the potential function U(θ ) =

−1⊤Γ cos(B⊤θ ):

θ̇ = ω (2a)
MGω̇G = −DGωG − ∇U(θ )G + u (2b)

0 = −DLωL − ∇U(θ )L − P . (2c)

Remark 1. The analysis in this paper of the behavior of the DAI
controller is not limited to the swing equations seen in power
networks, but to a large class of nonlinear passive networks [16]. In
fact, as long as the potential function U is strongly convex and the
diagonal matricesMG and D are positive definite, the results hold.

The generator nodes are controlled by distributed averaging in-
tegral controllers [17,5,18]. These controllers are equipped with a
communication network Gu = (VG, Eu), consisting of all generator
nodes and an edge set possibly different from that of G. Under
mild assumptions (detailed later) and noise-free circumstances,
these controllers minimize a quadratic cost function C(u) =
1
2

∑
i∈VG

Qiu2
i while ensuring that

∑
i∈G ui =

∑
i∈L Pi [18]. This

allows the user to guarantee economically optimal operation, in
addition to frequency regulation.

We apply the DAI controller with measurement noise ν1. Ad-
ditionally, we allow for communication noise ν2 to occur before
transmission.

u̇i = −

∑
j∈N i

Qiui − Qj(uj + ν2,j)

−Q−1
i (ωi + ν1,i). (3)

We define the noise νω so that both the measurement noise and
the communication noise are encapsulated in it. That is, νω,i :=

ν1,i −
∑

j∈N i QiQjν2,j. As a result, we write the controller in vector
form as

u̇ = −LuQu − Q−1(ωG + νω). (4)

The noise νω = νω(t) is assumed to be an infinity-norm-
bounded function of time. Likewise, and for the sake of complete-
ness, we assume the control input contains noise, replacing (2b)
by

MGω̇G = −DGωG − ∇U(θ )G + u + νu, (5)

where again, νu = νu(t) is an infinity-norm-bounded function of
time.

For ease of analysis, we now apply a coordinate transformation
on the rotor angles θ . Following [12,13], instead of these, we use
the offset from the average of the angles, setting δ := Πθ :=

(I −
1
n11⊤)θ . Note that B⊤Π = B⊤, as B⊤1 = 0. We will commit a

slight abuse of notation by using the symbol U to also refer to the
potential as a function of δ.

2.1. Steady state analysis

The system (2) in closed loop with distributed averaging inte-
gral controllers is well studied [8,18,12]. In the noise-free case, the
system converges exponentially to a synchronous solution δ̄, ω̄ =

0, ū satisfying

0 = −∇U(δ̄) + col(ū, −P) (6)

ū = Q−11G
1⊤

L P
1⊤

G Q−11G
, (7)

provided the following assumption holds:

Assumption 1 (Feasibility). There exists a vector δ̄ ∈ ImΠ such
that (6)–(7) is satisfied. Moreover, there exists a ρ ∈

(
0, π

2

)
such

that B⊤δ̄ is in the interior of Θ := [ρ −
π
2 , π

2 − ρ]
n.

It will be convenient for later analysis to write the closed-loop
system in incremental form [see e.g. 5], recalling that the notation
vG, vL is used to partition a vector v into subvectors for the sources
and loads:

δ̇ = Πω (8a)
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MGω̇G = − DGωG − (∇U(δ) − ∇U(δ̄))G

+ u − ū + νu
(8b)

0 = − DLωL − (∇U(δ) − ∇U(δ̄))L (8c)

u̇ = − LuQ (u − ū) − Q−1(ωG + νω). (8d)

3. Lyapunov function

We use for this system the Lyapunov function

W = W0 + ϵ1W1 + ϵ2W2

:= U(δ) − U(δ̄) − ∇U(δ̄)⊤(δ − δ̄)

+
1
2
ω⊤Mω +

1
2
(u − ū)Q (u − ū)

(9a)

+ ϵ1ω
⊤M(∇U(δ) − ∇U(δ̄))

− ϵ2ω
⊤M1n1⊤

nG (u − ū)
(9b)

from Weitenberg et al. [12]. This Lyapunov function includes
an energy-based component (9a) and two cross-terms (9b) that
will make sure the Lyapunov function is strictly decreasing along
solutions, as we will show in Lemma 2.

Lemma 1 (Positivity of W [12]). Suppose Assumption 1 holds. There
exist sufficiently small ϵ1, ϵ2 and positive constants c, c such that for
all δ with B⊤δ ∈ Θ , we have

c∥xG(δ, ωG, u)∥2
≤ W (δ, ω, u) ≤ c∥xG(δ, ωG, u)∥2 (10)

where xG(δ, ωG, u) := col(δ − δ̄, ωG, u − ū).

In fact,

c =
1
2 min

(
λmin(MG) − (ϵ1 + ϵ2)λmax(MG)2,

λmin(Q ) − ϵ2n2, 2β1 − ϵ1α2
)
, (11a)

c =
1
2 max

(
λmax(MG) + (ϵ1 + ϵ2)λmax(MG)2,

λmax(Q ) + ϵ2n2, 2β2 + ϵ1α2
)
, (11b)

where α1, α2, β1 and β2 are positive constants emerging from the
proof of [12, Lemma 1 and Lemma 4].

3.1. Derivative of the Lyapunov function

We aim to show that W is strictly decreasing along solutions
of (8). To this end, we first compute and bound the directional
derivative ofW with respect to the vector field (8).

Lemma 2. There exists a positive scalar c ′ such that the directional
derivative of W along the vector field (8) satisfies

Ẇ ≤ − c ′
∥x(δ, ω, u)∥2

− ν⊤

ω (u − ū − ϵ2Q−11nG1⊤

n Mω)

+ ν⊤

u (ωG + ϵ1(∇U(δ) − ∇U(δ̄))G
− ϵ211⊤(u − ū)), (12)

with

x(δ, ω, u) := col(δ − δ̄, ω, u − ū). (13)

Proof. The proof consists of three parts. First, we calculate the
directional derivative ofW along solutions to (8). Second, wewrite
the derivative as a quadratic form, bounding it in terms of the norm
of a vector. Finally, we write this bound in terms of the familiar
state vector x.

The derivative of the orthodox part (9a) ofW is

Ẇ0 =(∇U(δ) − ∇U(δ̄))⊤Πω

+ ω⊤

G (−DGωG − (∇U(δ) − ∇U(δ̄))G
+ u − ū + νu)

+ ω⊤

L (−DLωL − (∇U(δ) − ∇U(δ̄))L)

+ (u − ū)⊤Q (−LuQ (u − ū) − Q−1(ωG + νω))

= − ω⊤Dω − (u − ū)⊤QLuQ (u − ū)

− (u − ū)⊤νω + ω⊤

G νu (14a)

The first cross term has derivative

Ẇ1 = ω⊤M∇
2U(δ)ω + (∇U(δ) − ∇U(δ̄))⊤

· (−Dω − (∇U(δ) − ∇U(δ̄))
+ col(u − ū + νu, 0L)) (14b)

Finally, the second cross term has derivative

Ẇ2 = ω⊤M11⊤Q−1(ωG + νω)
+(u − ū)⊤11⊤(Dω − col(u − ū + νu, 0L)) (14c)

so the directional derivative ofW becomes Ẇ = Ẇ0+ϵ1Ẇ1+ϵ2Ẇ2.
We will now proceed to bound the derivative in terms of the

vector

χ (δ, ω, u) := col(∇U(δ) − ∇U(δ̄), ω, u − ū), (15)

following the reasoning set forth inWeitenberg et al. [12, Lemma3],
but accounting for the fact that we do not have load-side con-
trollers in the current scenario.

Collecting the terms of the directional derivative (14) yields

Ẇ (δ, ω, u) = −χ (δ, ω, u)⊤K (δ)χ (δ, ω, u)
−ν⊤

ω (u − ū) + ϵ2ν
⊤

ω Q−11nG1⊤

n Mω

+ν⊤

u (ωG + ϵ1(∇U(δ) − ∇U(δ̄))G
− ϵ211⊤(u − ū)),

(16)

where

K (δ) = sp

⎡⎣ϵ1I ϵ1D −ϵ1 col(IG, 0L)
0 K22(δ) −ϵ2D1n1⊤

nG
0 0 QLuQ + ϵ21nG1⊤

nG

⎤⎦ , (17)

with sp(M) :=
1
2 (M + M⊤) and K22(δ) = D − ϵ1M∇

2U(δ) −

ϵ2M1n1⊤
n col(Q−1, 0L).

Using the fact [12, Lemma 6] that for any submatrices a, b, c, d,[
a b⊤c

c⊤b d

]
≥

[
a − b⊤b 0

0 d − c⊤c

]
, (18)

we conclude that K (δ) ≥ K ′(δ), where

K ′(δ) =block diag
(
1
2
ϵ1InG ,

sp K22(δ) − ϵ1D2
− ϵ2nGD1n1⊤

n D

QLuQ − (ϵ1 +
1
4ϵ2)InG + ϵ211⊤

)
. (19)

We define c as the minimum eigenvalue of K ′(δ), and note that it
is strictly positive provided ϵ1 ≤ ϵ2(nG −

1
4 ), and both ϵ1 and ϵ2 are

sufficiently small that the middle block of (19) is positive definite.
As a result,

Ẇ ≤ − c∥χ (δ, ω, u)∥2

− ν⊤

ω (u − ū) + ϵ2ν
⊤

ω Q−11nG1⊤

n Mω

+ ν⊤

u (ωG + ϵ1(∇U(δ) − ∇U(δ̄))G
− ϵ211⊤(u − ū)). (20)
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For the final bound in terms of x, we now recall [12, Lemma 4]
which states that there exists a positive scalar α1 such that for all
δ, δ̄ ∈ Θ , ∥∇U(δ) − ∇U(δ̄)∥2

≥ α1∥δ − δ̄∥2. As a result, letting
c ′

= c min(1, α1),

Ẇ ≤ − c ′
∥x(δ, ω, u)∥2

− ν⊤

ω (u − ū) + ϵ2ν
⊤

ω Q−11nG1⊤

n Mω

+ ν⊤

u (ωG + ϵ1(∇U(δ) − ∇U(δ̄))G
− ϵ211⊤(u − ū)). □

Next, it is convenient to bound the cross terms involving the
noise in (12) by quadratic expressions of the noise only, so we can
discuss their individual effect in the following exposition. To this
end, note that we can write (14) as

Ẇ ≤ −c ′
∥x(δ, ω, u)∥2

+χ (δ, ω, u)⊤Eωνω + χ (δ, ω, u)⊤Euνu, (21)

with χ as in (15) and

Eω :=

⎡⎣ 0

ϵ2Q−111⊤M
−I

⎤⎦ , Eu :=

⎡⎣ ϵ1I
I

−ϵ211⊤

⎤⎦ (22)

Lemma 3. There exist positive constants µ0, µ1 such that for all
values of νω, νu and x,

χ (δ, ω, u)⊤Eωνω + χ (δ, ω, u)⊤Euνu ≤

µ0∥x(δ, ω, u)∥2
+ µ1∥νω∥

2
+ µ2∥νu∥

2, (23)

and c ′
− µ0 > 0.

Proof. Note that for arbitrary vectors a and b and an arbitrary
positive constant µ,µ−

1
2 a − µ

1
2 b

2
=

(
µ−

1
2 a − µ

1
2 b

)
⊤
(
µ−

1
2 a − µ

1
2 b

)
> 0.

Therefore, 2a⊤b ≤ µ−1
∥a∥2

+µ∥b∥2.We apply this to the left hand
side of (23), which yields

χ⊤Eωνω ≤
1
2µ

∥χ∥
2
+

µ

2
∥Eωνω∥

2 , (24)

and likewise for the second term. Bounding ∥Eωνω∥
2

≤ λmax(E⊤
ω Eω)

∥νω∥
2, likewise for νu, and ∥χ∥

2
≤ max(1, α2)∥x∥2, where α2 is a

positive scalar derived using [12, Lemma 4] we see that (23) holds,
for any value of µ, with µ0 = max(1, α2)/(2µ),

µ1 :=
µ

2
λmax(E⊤

ω Eω) and µ2 :=
µ

2
λmax(E⊤

u Eu). (25)

To ensure that c ′
− µ0 > 0, we restrict the possible values of µ to

the ones satisfying µ >
max(1,α2)

2c′ . □

Combining Lemmas 2 and 3, we end up with the exponential
bound

Ẇ ≤ −(c ′
− µ0)∥x(δ, ω, u)∥2

+µ1∥νω∥
2
+ µ2∥νu∥

2. (26)

4. Main result

Having defined a Lyapunov function that is strictly decreasing
along solutions to the systemwithout measurement noise, we will
be able to derive a result along the lines of input-to-state stability.
First, we make explicit the stability criterion that is to be verified,
already considered in [13].

Definition 1. A system ẋ = f (x, ν) is called input-to-state stable
(ISS) with restriction X on x(0) and restriction N ∈ R>0 on ν(·), if
there exist a class KL-function β and a class K∞-function γ such
that for all t ≥ 0, x(0) ∈ X and all ν(·) ∈ Ln

∞
satisfying

∥ν(·)∥∞ := ess sup
t∈R>0

∥ν(t)∥ ≤ N, (27)

we have

∥x(t)∥ ≤ β(∥x(0)∥, t) + γ(∥ν(·)∥∞). (28)

Theorem1 (ISS of DAI-controlled Power System). Consider the system
(1) in closed-loop with the biased distributed integral controller (4)
as described in (8). Let Assumption 1 hold. Then there exist positive
constants N1,N2 and a set X such that the closed-loop system is ISS
from the noise νω , νu to the state x(t) = x(δ(t), ω(t), u(t)) with
restrictions X on x(0), N1 on νω(·) and N2 on νu(·). That is, there exist
positive constants α̂, λ and γ1, γ2 such that the solutions x(t) for which
x(0) ∈ X, ∥νω(·)∥∞ ≤ N1 and ∥νu(·)∥∞ ≤ N2 satisfy for all t ≥ 0,

∥x(t)∥2
≤ λe−α̂t

∥x(0)∥2

+γ1∥νω(·)∥2
∞

+ γ2∥νu(·)∥2
∞

. (29)

Proof. Combining Lemmas 2 and 3 yields

Ẇ (t) ≤ −(c ′
− µ0)∥x(t)∥2

+ µ1∥νω(t)∥2
+ µ2∥νu(t)∥2

≤ −(c ′
− µ0)∥xG(t)∥2

+ µ1∥νω(t)∥2
+ µ2∥νu(t)∥2

≤ −
c ′

− µ0

c
W (t) + µ1∥νω(t)∥2

+ µ2∥νu(t)∥2, (30)

where the last inequality follows from Lemma 1. For the remainder
of this proof, we set α̂ := 2 c′−µ0

c .
Note that this relation holds only to the extent that δ ∈ Θ .

As a result, we must require that X be the largest sublevel set
∆w := {x : W (x) ≤ w} for which B⊤δ ∈ Θ . Given that B⊤δ̄ is
in the interior of Θ , X is nonempty and has an interior. To then
ensure that the trajectories do not leave ∆w , we note that on the
boundary of ∆w , (30) becomes

Ẇ ≤ −
1
2 α̂w + µ1∥νω(t)∥2

+ µ2∥νu(t)∥2

≤ −
1
2 α̂w + µ1N1 + µ2N2.

Therefore, we require N1, N2 and w (and therefore X) be such that
the condition Ẇ ≤ 0 is satisfied.

We now apply the Comparison Lemma [19, Lemma B.2] to (30)
and bound ∥νω(t)∥2 and ∥νu(t)∥2 by ∥νω(·)∥2

∞
and ∥νu(·)∥2

∞
, which

yields

W (t) ≤ e−
1
2 α̂tW (0)

+µ1∥νω(·)∥2
∞

+ µ2∥νu(·)∥2
∞

, (31)

after which it follows from a double application of Lemma 1 that

∥xG(t)∥2
≤

c
c
e−α̂t

∥xG(0)∥2

+
µ1

c
∥νω(·)∥2

∞
+

µ2

c
∥νu(·)∥2

∞
. (32)

This result leaves the load frequencies unaccounted for. It is
possible to take them into account, by recalling that the initial
condition x(0) satisfies (8c). We define X such that this condition
on ωL(0) is met. Then,

∥ωL∥
2

≤ ∥DL
−1(∇U(δ) − ∇U(δ̄))L∥2

≤ λmax(D−2)∥∇U(δ) − ∇U(δ̄)∥2

≤ α2λmax(D−2)∥δ − δ̄∥2, (33)
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Fig. 1. The structure of the IEEE 39 New England benchmark network.

where the last inequality follows from Statement 1 of Lemma 4
in Weitenberg et al. [12]. As a result,

∥x(t)∥2
≤

c
c
e−α̂t (1 + α2λmax(D−2))∥x(0)∥2

+γ1∥νω(·)∥2
∞

+ γ2∥νu(·)∥2
∞

. (34)

In the above, we have set γi := µi(α2λmax(D−2) + 1)/c , i = 1,2.
We therefore conclude that the theorem holds with λ :=

c
c (1 +

α2λmax(D−2)). □

Remark 2. It is worthwhile to observe that a slight variation of the
previous analysis shows that the uncontrolled Bergen–Hill model
is ISS with restrictions with respect to the input disturbance νu. To
see this, it is enough to neglect the controller dynamics (8d), set u−

ū = 0 in (8b) and let ϵ2 = 0 in the Lyapunov functionW . Then,with
x(δ, ω) := col(δ − δ̄, ω), the analysis above leads to conclude that
the solutions satisfy ∥x(δ(t), ω(t))∥2

≤ λe−α̂t
∥x(δ(0), ω(0))∥2

+

γ2∥νu(·)∥2
∞

for all t ≥ 0, provided that x(δ(0), ω(0)) ∈ X , and
∥νu(·)∥∞ ≤ N2, possibly with different values of the parameters
λ, α̂, γ2,N2 and a different set X .

4.1. Discussion

For tuning purposes, it is useful to explicitly note the effects of
the controller parameters on the convergence and noise rejection.
The only parameters are the values Qi, which are partially fixed
by the definition of the cost function C(u) defined in Section 2.
However, we note that replacing Q by σQ , with the scaling factor
σ ∈ R>0, does not change the equilibrium (7), and therefore leaves
the ‘true’ generation cost unchanged. We investigate the effect of
using values σ ̸= 1 on the decay rate α̂ and the noise-to-state gains
γ1 and γ2 appearing in the ISS inequality (29) of Theorem 1.

Exponential decay rate α̂. First, consider the parameter α̂ =

2 c′−µ0
c in Theorem 1. Assuming that µ0 is kept constant, and

considering that c is a non-decreasing function of σ while c ′ is,
for sufficiently small ϵ2, independent of Q , we conclude that α̂ is
a non-increasing function of σ .

Noise-to-state gains γ1, γ2. The parameters γ1, γ2 depend on c ,
the lower bound parameter given in (11), and on µ1, µ2, the
Young’s inequality parameters defined in (25). Note that c is a non-
decreasing function of σ .

Using the definition of γ1 in the proof of Theorem 1, which is
γ1 = µ1(α2λmax(D−2)+1)/c , we conclude that it is increasing in the
parameter µ1, which is non-increasing in σ 2. Note that the factor
α2λmax(D−2) + 1 is a constant with respect to σ . As a result, for
sufficiently small values of ϵ2, we conclude that γ1 is non-increasing
as a function of σ .

The same holds for γ2 = µ2(α2λmax(D−2) + 1)/c; however, since it
depends on µ2 which is independent of σ , the effect of tuning σ

on µ2 is expected to be less pronounced. This is in line with expec-
tations: since actuation noise is added at the controller output, it
affects the plant dynamics unfiltered.

Summary. Based on these considerations, we infer that higher
values in Q will likely increase robustness to noise by decreasing
the noise-to-state gains γ1, γ2, whereas they reduce the overall
convergence speed α̂ of the closed-loop system. However, due to
the considerations above, the range of γ1 and γ2 as function of σ

may be bounded from below. In our simulations, discussed next,
this turns out not to be an issue, as using such high values of σ

reduce the convergence speed past the point where the control
action is useful.

4.2. Case study

As a case study, we use the 39-node IEEE ‘New England’ bench-
mark, the network structure of which is depicted in Fig. 1. For this
case study, we have equipped all 10 generation units with a DAI
controller. The relative values ofQi have been chosen in such away
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Fig. 2. Simulations of the IEEE 39-bus New England system, with a complete communication graph. The system is initialized without demand, and at t = 0 the loads are
turned on. The same noise is applied each time to the measurements and communication, but the cost function C(u) = u⊤Qu is scaled by an increasing factor. Note how
measurement noise is rejected more effectively, but convergence is slower, as values of Q increase.

Fig. 3. Same simulation as in Fig. 2, but without any noise, for comparison.

Fig. 4. Simulations of the IEEE 39-bus New England system, this time with different communication topologies.

as to lead to balanced performance, with the relative weight of the
generators decided arbitrarily.

For each simulation, the network was initialized without de-
mand. At time t = 0, each node was assigned an arbitrary load, the
same for each simulation. The evolution of the closed-loop system
was then measured. In the simulations with noise, a randomly
distributed piecewise constant noise function was used (again the
same for each simulation). Since the actuator usually resides at the
plant actuation noise is disregarded except in Fig. 5.

To highlight the role of the network parameters in the ISS gain
of the noise, as evidenced by (22), we show the evolution of the
system in Fig. 2 (compare Fig. 3) for the nominal value of Q as well
aswithQ scaled up and downby a factor 5. Note that the effect ofQ
is clearly visible in the injected power by the nodes. Additionally,
these simulations illustrate the presence of a trade-off described
earlier between a fast controller performance, for lower values of
Q , and more effective rejection of noise, for higher values.

Additionally, we compare the effects of using a circle graph or a
line graph as the communication topology (instead of a complete
graph) in Fig. 4. Though, as expected from the definition of α̂
in Theorem 1, the convergence speed is slower for more sparse
graphs, noise rejection is not affectedmuch by the communication
topology.

Finally, in Fig. 6we show the rootmean squared error (RMSE) of
the frequency deviation at t = 150ms, scalingQ by the scale factor
σ . Note that for σ → 0 (and therefore Qi → 0), the robustness of
the system to noise vanishes, as predicted. Large values of σ lead
to robustness, but the system convergesmore slowly, as evidenced
by the fact that the RMSE at 150ms rises for larger values.

5. Conclusions

Finally, we summarize our results and observations and discuss
the aspects that should be taken into account when tuning a DAI
controller.
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Fig. 5. Simulations of the IEEE 39-bus New England system, this time with noise on actuation in addition to measurements and communication. Since actuation noise enters
ω̇ at the control input, it is more visible in ω, but its effect is filtered out of u.

Fig. 6. Same simulation as in Fig. 2, with Q replaced by σQ . The root mean squared
error (RMSE) of the frequency is plotted versus σ .

As shown in Theorem 1, the DAI controller is input-to-state sta-
ble, with respect to supremum-bounded noise in measurements,
communication and actuation. We find therefore that the DAI con-
troller combines the attractive properties of frequency regulation
and economic optimality with robustness.

The DAI controller can be tuned via its weight variable Q . The
relative magnitude of the elements Qi are used to achieve optimal
dispatch. However, multiplication by a factor does not affect ū as
seen from (7),while the local convergence behavior and robustness
to noise is affected.

Naively, the edge cases Qi → 0 and Qi → ∞ result in pure
integral control and an open loop, respectively. Pure integral con-
trol offers perfect frequency regulation, but no optimal dispatch
or robustness to noise. Open loop control, having no frequency
measurements, does not offer frequency regulation at all.

These edge cases correspond with our findings. Specifically,
fromTheorem1,we conclude that lowvalues ofQ result in a higher
rate of convergence to the synchronous solution, but also a higher
noise-to-state gain, i.e. less robustness. Conversely, high values of
Q result in a lower rate of convergence, but a lower noise-to-state
gain, therefore more robustness to noise.

It is worth noting that the ISS gains γ1, γ2, the decay rate α̂ and
restrictions N1, N2 and X are likely to be conservative compared
to the behavior of the system. This is due to the fact that we take
the minimum decay rate for states in a level set of the Lyapunov
function; reducing the permissible state values should improve the
tightness of the bounds. This was also discussed in Weitenberg et
al. [12].

In conclusion, the DAI controller offers perfect frequency regu-
lation and optimal dispatch when applied to the swing equations,
as well as any other network of nonlinear systems as noted in Re-
mark 1. Though its transient performance and ISS-style robustness
to noise are at odds with each other, once can reduce the effect of
noise on the power injections by tuning Q .
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