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Structural Accessibility and Its Applications to
Complex Networks Governed by Nonlinear Balance

Equations
Yu Kawano, Member, and Ming Cao, Senior Member

Abstract—We define and then study the structural controlla-
bility and observability for a class of complex networks whose
dynamics are governed by the nonlinear balance equations.
Although related notions of observability for such complex
networks have been studied before and in particular, necessary
conditions have been reported to select sensor nodes in order
to render such a given network observable, there still remain
various challenging open problems, especially from the systems
and control point of view. The reason is partly that driver and
sensor node selection problems for nonlinear complex networks
have not been studied systematically, which differs greatly from
the relatively comprehensive mathematical development for the
linear counterpart. In this paper, based on our refined notions
of structural controllability and observability, we construct their
necessary conditions for nonlinear complex networks, which are
further applied to those networks governed by nonlinear balance
equations in order to develop a systematic driver node selection
method. Furthermore, we establish a connection between our
necessary conditions for structural observability and the conven-
tional sensor node selection method.

Index Terms—Complex networks, nonlinear systems, struc-
tural controllability, driver node identification

I. INTRODUCTION

The challenge of controllability/observability analysis of
complex networks is that usually only the existence of cou-
plings between certain pairs of nodes in the networks is known
while it is difficult to delineate the dynamical interactions
between the related coupled nodes. So the resulting models
of complex networks are usually in the form of simplified dy-
namical processes evolving on graphs. Therefore, one needs to
analyze controllability and observability of complex networks
from a graphical point of view, which differs significantly from
standard analysis for classical dynamical system models. In
the linear case, such controllability has been referred to as
structural controllability and fully characterized by the concept
of the “cactus” of the graph of the complex network [1],
[2]. Then, by using the cactus, the paper [3] demonstrated
the applicability of structural controllability for understanding
the influential nodes of real-life networks, e.g. regulatory and
social communication networks.

Motivated by this pioneering work, structural controllability
analysis and driver node identification for complex networks
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have attracted significant attentions from researchers in dif-
ferent fields in the past few years. For example, in biology
and chemistry, the concept of structural controllability is
employed as a key tool for understanding critical underlying
mechanisms or relations of real-life biological and chemical
networks [4]–[8]. It is mentioned in [5] that inorganic-organic
hybrid materials are more structurally controllable than purely
inorganic compounds owing to organic components, and have
potential for the construction of functionalized crystalline
materials such as molecular conductors. These papers deal
with exclusively linear complex networks, and only a few
papers [9]–[11] have tried to study nonlinear complex net-
works. Obviously, nonlinearity is an intrinsic feature of various
dynamical processes evolving on real complex networks, such
as power flow in energy grids, epidemic processes in human
groups [12], gene regulation in multicellular organisms [13],
birth-death processes in large populations [14], and oscillations
in coupled nonlinear oscillators [15].

For nonlinear complex networks, in particular those gov-
erned by balance equations, a sensor node identification
method has been presented by [9] and improved in [10].
The method is based on the concept of strongly connected
components (SCCs) [9], [16] of the inference diagram of a
network. According to [9], if one chooses at least one node
from every leaf SCC as a sensor node, then almost all of the
balance equations become structurally observable, i.e., a suffi-
cient sensor set is obtained. To further characterize a sufficient
sensor set, the analysis in [10] utilizes in addition the property
of network symmetry. However, a complete characterization of
a sufficient sensor set has not been obtained.

One of the difficulties comes from the fact that there is
no systematic analysis method for structurally observability
for nonlinear complex networks. It is worth mentioning that
in contrast to traditional nonlinear properties such as local
accessibility, observability [17], and stability [18], lineariza-
tion techniques at an equilibrium point cannot be utilized here
because the method in [9] fully depends on nonlinearity of bal-
ance equations. Moreover, the computation of an equilibrium
point itself can be challenging since it can be a function of the
unknown parameters representing the couplings between the
nodes. In contrast to sensor node identification, driver node
identification of the nonlinear complex network has not been
studied, and duality between controllability and observability
is not very clear yet.

In this paper, we establish systematic controllability and
observability analysis methods for nonlinear complex net-
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works. First, we formulate a class of nonlinear systems, which
contains the complex networks governed by balance equations
studied in [9]. Then, motivated by a concept of structural
controllability for linear systems [19] that is different in nature
compared to those in [1], [2], we define the concept of
structural accessibility and observability for nonlinear complex
networks as nonlinear systems having unknown parameters.
Next, we present two corresponding necessary conditions:
for structural observability, because of specific structures of
nonlinear balance equations, one of the necessary conditions
is linked to the conventional sensor node selection method
in [9]; the other condition can help to analyze the case when
the conventional method does not render a sufficient sensor
set.

Moreover, we establish a drive node selection method based
on a structural accessibility condition. Our results on structural
accessibility and observability can be viewed as the dual of
each other. However, there are differences in contrast to the
linear case. For instance, we can compute lower bounds on
driver and sensor nodes based on our necessary conditions. For
sensor node selection, the lower bound can be less than the
one obtained by subtracting the number of parameters from the
number of nodes of the complex network; in comparison, for
driver node selection the lower bound can be more than that.
This implies that a simple modification of the existing sensor
node selection method to select driver nodes cannot give a
sufficient driver set if there is a huge gap between the numbers
of parameters and nodes in contrast to sensor node selection.
This insight can only be gained after our development of
systematic analysis.

As mentioned in [9], necessary conditions can help to
narrow the candidates of variables that are essential for inhibit-
ing/monitoring some chemical/biological reactions. At least,
our structural accessibility analysis can be used to a priori
check whether an experimental setups satisfy our constructed
necessary conditions. As another possible situation, in chemi-
cal reaction networks, directly controlling some specific chem-
ical species may be too difficult or expensive due to technical
reasons, but to fully control such networks, these species may
be needed to be driver nodes. By identifying necessary sets of
driver nodes, one may identify such challenging scenario well
ahead of real experiments.

Preliminary results for structural observability analysis and
sensor node identification have been presented in [20], where
however, structural accessibility analysis or driver node identi-
fication has not been studied. Some of the results on structural
controllability analysis including Theorem 3.2 of this paper do
not directly follow from the results on structural observability
analysis. Furthermore, as explained, driver and sensor node
identifications have different features. Also, in contrast to
the preliminary conference version, we provide the complete
proofs in this paper.

The remainder of this paper is organized as follows. Sec-
tion II formulates problems addressed in this paper. Section III
gives two necessary conditions for structural accessibility and
establishes a driver node selection method based on one of
the necessary conditions. Section IV studies the conventional
graphical sensor node selection method systematically. Sec-

tion V demonstrates our methods by a chemical reaction
network. Finally, Section VI summarizes this paper.

II. PROBLEM FORMULATION

A. System Description

Let rα, rβ , and rγ be given positive integers, and define
the sets σα := {1, 2, . . . , rα}, σβ := {1, . . . , rβ}, and
σγ := {1, . . . , rγ}. In this paper, we consider nonlinear
complex networks including those associated with balance
equations [9], whose dynamics are governed by the following
nonlinear system with unknown parameters αi, i ∈ σα,

Σ : ẋ = f(x) +
∑
i∈σα

αihi(x)pi,

where x ∈ Rn denotes the state, f : Rn → Rn is a given
smooth vector field, hi : Rn → R, i ∈ σα, are given smooth
functions, and pi ∈ Rn, i ∈ σα, are given vectors.

It is emphasized that the class of system Σ is not restrictive.
Since hi(x) is an arbitrary smooth function, various nonlin-
ear functions can be represented by using combinations of
hi(x). Indeed, not only balance equations, but also plenty
of nonlinear systems and networks can be represented in
the form Σ, such as nonlinear mechanical systems, electri-
cal circuits, coupled oscillators [15], Lorenz equations [21],
epidemic processes [12], gene regulation [13], and birth-death
processes [14]. For these networks, usually only the existence
of couplings between certain pairs of nodes is known while
it is difficult to delineate exactly the dynamical interactions
between the related coupled nodes. These interactions are
represented by the unknown parameters αi.

Remark 2.1: For these nonlinear systems and networks, the
number of unknown parameters is determined by the model.
However, there might be several choices of f(x), hi(x), and
pi in the form Σ. This choice depends on the choices of
parameters αi. Instead of αi, ᾱi := αi + ci can be chosen
as a parameter for any constant c ∈ R. More generally, denote
α := [α1 . . . αrα ]

T. Then, for any non-singular constant
matrix G ∈ Rrα×rα and constant vector c ∈ Rrα , the set
of the elements of ᾱ = Gα + c can be chosen as a set of
parameters. However, all results obtained in this paper do not
depend on the choice of parameters αi.

Nonlinear balance equations [9] can be represented in the
form Σ with f = 0 and has the following specific relationship
between hi(x) and pi.

Assumption 2.2: Let f = 0. If ∂hi(x)/∂xj ̸= 0, i ∈ σα for
some j, then the jth element of pi is not zero.

This structure is utilized when we establish the connection
between one of our necessary conditions and the inference
diagram. However, for system Σ itself, we do not assume this
relationship.

In this paper, our objective is studying driver/sensor node
selection through the controllability/observability analysis. For
controllability analysis, we use the system Σ with constant
input vector fields including unknown parameters βj , j ∈ σβ ,

ΣA : ẋ = f(x) +
∑
i∈σα

αihi(x)pi +

(
B +

∑
j∈σβ

βjpbjq
T
bj

)
u,



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2901822, IEEE
Transactions on Automatic Control

3

where u ∈ Rm denotes the input, B ∈ Rn×m is a given
matrix, pbj ∈ Rn and qbj ∈ Rm, j ∈ σβ , are given vectors.

For observability analysis, we use the system Σ with linear
output functions including unknown parameters γk, k ∈ σγ ,

y =

(
C +

∑
k∈σγ

γkpckq
T
ck

)
x,

where y ∈ Rp denotes the output, C ∈ Rp×n is a given matrix,
pck ∈ Rp and qck ∈ Rn, k ∈ σγ , are given vectors. The
system Σ with this output is simply denoted by ΣO. Note that
we have slightly abused the notation, since subscripts bj and
ck of ΣA and ΣO represent indexes.

In systems ΣA and ΣO, there are parameters βj and γk. For
driver and sensor node selections, these parameters correspond
to the sets of driver and sensor nodes; for more details see
Sections III-B and IV below. As mentioned in Remark 2.1, our
results do not depend on the choice of parameters βj and γk.
When studying these selection problems, the input or output
node is directly controlled or measured. Therefore, linear input
vector fields and linear outputs are enough, and the following
assumptions are satisfied.

Assumption 2.3: Let B = 0. If xi is the driver node
corresponding to uj , then the ith element of pbj ∈ Rn and the
jth element of qbj ∈ Rm are chosen as 1, and the others are
chosen as 0, i.e., the (i, j) element of pbjq

T
bj

is 1; 0 otherwise.
Assumption 2.4: Let C = 0. If xi is the sensor node

corresponding to yk, then the kth element of pck ∈ Rp and
the ith element of qck ∈ Rn are 1, and the others are 0, i.e.,
the (k, i) element of pckq

T
ck

is 1; 0 otherwise.

B. Structural Accessibility and Observability

Next, we give definitions of accessibility and observability
studied in this paper. For nonlinear systems, controllability
and observability are extended as local strong accessibility
and local observability, respectively [17]. First we recall these
definitions to be self-contained.

Definition 2.5: [17] Consider a nonlinear system ẋ =
f(x)+

∑m
i=1 gi(x)ui. Let RV(x0, T ) be the reachable set from

x0 at time T > 0 in a neighborhood V ⊂ Rn of x0, i.e.,

RV(x0, T ) = {x ∈ Rn : ∃u : [0, T ] → Rm s.t. for x(0) = x0,

x(t) ∈ V, 0 ≤ t ≤ T, and x(T ) = x}.

The system is said to be locally strongly accessible from x0

if for any neighborhood V of x0 the set RV(x0, T ) contains
a non-empty open set for any sufficiently small T > 0.

Definition 2.6: [17] Consider a nonlinear system ẋ = f(x),
y = h(x). Let V ⊂ Rn be an open set containing x0, x1. Two
states x0, x1 ∈ Rn are said to be indistinguishable (denoted by
x0I

Vx1 ) for the system if the output functions t → y(t, x0)
and t → y(t, x1) of the system for initial states x(0) = x0 and
x(0) = x1 are identical on their common domain of definition.
The system is said to be locally observable at x0 if there exists
a neighborhood W of x0 such that for every neighborhood
V ⊂ W of x0 the relation x0I

Vx1 implies x0 = x1.
For linear systems, the concepts of structural controllabil-

ity and observability [1], [2], [19] are introduced to study

controllability and observability of linear complex networks.
By combining local strong accessibility/local observability and
structural controllability/observability concepts, we introduce
the concepts of structural accessibility and observability.

Definition 2.7: The system ΣA is said to be structurally
accessible if there exist αi, βj ∈ R, i ∈ σα, j ∈ σβ such
that the system is locally strongly accessible from almost all
x0 ∈ Rn.

Definition 2.8: The system ΣO is said to be structurally
observable if there exist αi, γk ∈ R, i ∈ σα, k ∈ σγ such that
the system is locally observable at almost all x0 ∈ Rn.

The paper [9] studied structural observability in the sense of
the above definition, while it has not formally described a class
of nonlinear systems and defined its observability. In the linear
case, the papers [1], [2] have looked into similar properties
for linear systems, where the nonzero elements of matrices
(A,B,C) are considered to be independent parameters. The
paper [19] has studied the corresponding properties to ours
and has provided necessary and sufficient conditions, but
these conditions are derived based on the PBH rank tests.
For nonlinear systems, the PBH tests have not been well
studied, while some recent work [22] has tried to provide the
PBH eigenvector tests. There is still no PBH rank test for
nonlinear systems, and therefore extending the results in [19]
to nonlinear systems is not straightforward at all.

III. STRUCTURAL ACCESSIBILITY

A. Necessary Conditions

In this subsection, we present two necessary conditions
for structural accessibility. The first condition is given for
system ΣA, and the second condition is given for system ΣA

with f = 0. Note that ΣA with f = 0 still contains the class
of balance equations studied in [9].

In the standard accessibility analysis, it is known that a
system is locally strongly accessible if and only if it satisfies
the strong accessibility rank condition, or equivalently, if and
only if it does not admit the local accessibility decompo-
sition [17]. One can readily extend the rank condition to
structural accessibility and consequently the above necessary
and sufficient relations. Therefore, one can conclude that a
system ΣA is structurally accessible if and only if it does not
admit a structural accessibility decomposition. Different from
the non-structural case, there are two possible decompositions
x = φ(z) and x = φ(α, β, z). Our first necessarily condition is
based on the parameter independent decomposition x = φ(z).

Theorem 3.1: Let σα1 := {i1, . . . , isα} and σα2 :=
{isα+1, . . . , irα} be disjoint subsets of σα. A system ΣA does
not admit a parameter independent structural accessibility
decomposition x = φ(z) if and only if one cannot find σαi

,
i = 1, 2, satisfying all of the following three conditions.

1) the following system is not locally strongly accessible
(from any x0 ∈ Rn) with respect to inputs u ∈ Rm,
uai

, ubj ∈ R, i ∈ σα1
, j ∈ σβ .

ẋ = f(x) +
∑

i∈σα1

piuai
+Bu+

∑
j∈σβ

pbjubj ; (1)
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2) the strong accessibility distribution of system (1) is
invariant [17] with respect to pk, k ∈ σα2 ;

3) the relative degree of (1) with the following output

yk = hk(x), k ∈ σα2
(2)

is infinity.
Proof: (Necessity) We prove by contraposition. Suppose

that there exist σαi , i = 1, 2 such that all of the three
conditions hold. If system (1) is not locally strongly accessible,
there exists a coordinate transformation x = φ(z) for the local
strong accessibility decomposition [17]. In the z-coordinates,
system (1) becomes

ż1 =f̄1(z1, z2) +
∑

i∈σα1

p̄1,i(z1, z2)uai
+

∑
j∈σβ

p̄1,bj (z1, z2)ubj

+ B̄1(z1, z2)u,

ż2 =f̄(z2) (3)

with suitable functions, where z1 and z2 are respectively
the states of locally strongly accessible and non-accessible
subsystems. Although the original B, pi, and pbj are constants,
new B̄1, p̄1,i, p̄1,bj can become functions of z1 and z2.

Next, we apply the same coordinate transformation x =
φ(z1, z2) to system ΣA. Then, we have

ż1 =f̄1(z1, z2) +
∑

i∈σα1

αip̄1,i(z1, z2)hi(φ(z1, z2))

+
∑

k∈σα2

αkp̄1,k(z1, z2)hk(φ(z1, z2))

+

(
B̄1(z1, z2) +

∑
j∈σβ

βj p̄1,bj (z1, z2)q
T
bj

)
u,

ż2 =f̄(z2) +
∑

k∈σα2

αkp̄2,k(z1, z2)hk(φ(z1, z2)) (4)

with suitable functions. Note that Conditions 2) and 3) respec-
tively imply that p̄2,k(z1, z2) and hk(φ(z1, z2)), k ∈ σα2 do
not depend on z1. Therefore, the second subsystem does not
depend on z1, i.e. it is not structurally accessible.

(Sufficiency) We prove by contraposition. Suppose that one
obtains a structurally non-accessible subsystem by x = φ(z).
The system in the z-coordinates can always be described as

ż1 =f̄1(z1, z2)

+
∑

i∈σα1

αip̄1,i(z1, z2)h̄i(z1, z2) +
∑

k∈σα2

αkp̄1,k(z2)h̄k(z2)

+

(
B̄1(z1, z2) +

∑
j∈σβ

βj p̄1,bj (z1, z2)q
T
bj

)
u,

ż2 =f̄(z2) +
∑

k∈σα2

αkp̄2,k(z2)h̄k(z2) (5)

for some σi (i = 1, 2), where z2 is the state of structurally
non-accessible subsystem. By applying the same coordinate
transformation to system (1), we have system (3), which is
not locally strongly accessible. Moreover, in (5), p̄2,k and
h̄2,k, k ∈ σα2

do not depend on z1, which respectively
imply that the accessibility distribution of the system (3)
is invariant with respect to p̄k, k ∈ σα2 , and the relative

degree of the system (3) with any output y = h̄2,k(z2),
k ∈ σα2 is infinity. Therefore, Conditions 1) – 3) hold in
the z-coordinates, and these conditions do not depend on the
coordinates. This completes the proof.

From the proof of Theorem 3.1, if there exists x = φ(z) for
structurally non-accessible decomposition, then this is nothing
but a coordinate transformation for the local strong accessi-
bility decomposition of the system in (1). In other words, if
one computes for the local strong accessibility decomposition
of (1), then x = φ(z) can readily be obtained.

For system (4), we prove that the second subsystem with
the states z2 is structurally non-accessible. This does not
imply that the first subsystem is structurally accessible because
this subsystem can admit structural accessibility decompo-
sition by a parameter dependent coordinate transformation
x = φ(z, αi, βj). When f = 0, we have a necessary condition
for the non-existence of x = φ(z, αi, βj).

Theorem 3.2: Let σα1
:= {i1, . . . , isα} and σα2

:=
{isα+1, . . . , irα} be disjoint subsets of σα, and let σβ1 :=
{j1, . . . , jsβ} and σβ2 := {jsβ+1, . . . , jrβ} be disjoint subsets
of σβ . If system ΣA with f = 0 is structurally accessible, then
one cannot find σαi , i = 1, 2 and σβj , j = 1, 2 such that

n > rankB̄ + dimH + dimQ, (6)

where

B̄ := [ B pisα+1 · · · pirα pbjsβ+1
· · · pbjrβ ],

H := spanR{hi1(x), . . . , hisα (x)}, Q := spanR{qbj1 , . . . , qbjsβ }.

Proof: We prove by contraposition. Suppose that there
exist σαi

, i = 1, 2 and σβj
, j = 1, 2 such that (6) holds.

First, define tα := dimH , and tβ := dimQ. Then, there exist
the orderings of hi(x), i ∈ σα1

and qbj , j ∈ σβ1
such that

hi1(x), . . . , hitα (x) and qbj1 , . . . , qbjtβ
are the basis of H and

Q, respectively. In these orderings, there exist some constants
δkα,ℓα and δkβ ,ℓβ such that

hkα
(x) =

∑itα
ℓα=i1

δkα,ℓαhℓα(x), kα = itα+1, . . . , isα ,

qbkβ
=

∑itβ
ℓβ=i1

δkβ ,ℓβqbℓβ , kβ = jtβ+1, . . . , jsβ .

Using them, the system ΣA with f = 0 can be rewritten as

ΣA : ẋ =

itα∑
ℓα=i1

hℓα(x)ξℓα +
∑

i∈σα2

αihi(x)pi

+Bu+

itβ∑
ℓβ=i1

ηℓβq
T
bℓβ

u+
∑

j∈σβ2

βjpbjq
T
bju,

where

ξℓα := αℓαpℓα +
∑isα

kα=itα+1
αkαδkα,ℓαpkα ,

ηℓβ := βℓβpbℓβ +
∑isβ

kβ=itβ+1
βkβ

δkβ ,ℓβpbkβ
.

To show that the above system ΣA is not structurally acces-
sible, let us consider the following linear system

ẋ =

itα∑
ℓα=i1

ξℓαuaℓα
+

∑
i∈σα2

piuai
+

itβ∑
ℓβ=i1

ηℓβubℓβ
+

∑
j∈σβ2

pbjubj
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+Bu.

From (6), the number of inputs u, uaj , j = i1, . . . , itα , j ∈
σα2

and ubk , k = i1, . . . , itβ , k ∈ σβ2
is less than n, which

implies that this linear system with A = 0 is not controllable.
Therefore, one can conclude that the system ΣA with f = 0
is not structurally accessible.

In the linear case when f = 0, it is possible to show
that the first and second necessary conditions reduce to Con-
ditions (iiia) and (iiib) of Criterion 1 in [19], respectively,
which implies that if these two conditions hold, the linear
system is structurally controllable. In the nonlinear case, the
sufficiency is not clear yet. Another difficulty in the nonlinear
case is extending Theorems 3.2 to the nonzero f . These two
problems are considered for future work. From the viewpoint
of application to driver node identification of the balance
equation, a necessary condition when f = 0 is useful in itself.

In the next subsection, we study graphical driver node
identification based on Theorem 3.1. The conditions con-
structed in [19] for linear systems have not been linked to
the graphical structures of networks. As we show below,
nonlinearity of the complex network is a key factor to connect
structural accessibility (controllability) conditions and driver
node identification.

B. Driver Node Selection for Balance Equations

We develop a driver node selection method of the balance
equation based on the existing sensor node selection method
for it [9] and Theorem 3.1. Then, we discuss Theorem 3.2
from the viewpoint of driver node selection.

Our driver node selection method is based on the strongly
connected component (SCC) [16] of the inference diagram of
the system ΣA, which is obtained as follows:

1) Draw its inference diagram, which contains a directed
edge xj → xi if xj appears in xi’s differential equation.

2) Decompose the inference diagram into SCCs, where an
SCC is a maximal strongly connected subgraph.

To establish the connection between driver node selection
and Theorem 3.1, we introduce two concepts for SCCs. First,
as mentioned in Section II-A, the balance equation satisfies
Assumption 2.2. This structure implies that the set of nodes
xj satisfying ∂hi(x)/∂xj ̸= 0 is an SCC. Moreover, every
node of this SCC has a self loop. We call this type of SCC the
strictly SCC corresponding to hi(x) or simply strictly SCChi .

Second, an SCC is said to be a root SCC if the SCC has
no incoming path from the other SCCs. It is possible to show
that every inference diagram has at least one root SCC.

Remark 3.3: In [9], the directions of edges in the inference
diagram are the opposite of what has been defined here.
However, our representation follows the flow of information
more naturally because xj → xi implies that xj affects the
dynamics of xi. Since the directions of edges are opposite, a
root SCC used for sensor node selection in [9] is a different
concept from our root SCC, and thus we call a root SCC in [9]
a leaf SCC. That is, an SCC is said to be a leaf SCC if the
SCC has no outgoing path to the other SCCs. A root and leaf
SCCs are the dual concepts of each other.

The sensor node selection method proposed in [9] is to
choose at least one node of every leaf SCC as a sensor node.
This method can simply be extended to driver node selection,
but this extension is not enough for driver node identification
as shown in the following main result of this paper.

Assumption 3.4: If ∂hk(x)/∂xℓ ̸= 0, ℓ = j1, . . . , ji, then
(∂hk/∂xℓ)v ̸= 0 for any non-zero v := [vj1 · · · vji ] ∈ Rℓ.

Theorem 3.5: Consider the inference diagram of system
ΣA. Under Assumptions 2.2, 2.3 and 3.4, a system ΣA does
not admit a parameter independent structural accessibility
decomposition x = φ(z) if and only if a set of driver nodes
is chosen such that both of the following conditions hold.

i) at least one node from every root SCC is a driver node;
ii) the following P has the full rank.

P :=
[
Pα Pβ

]
, (7)

Pα := [ p1 · · · prα ], Pβ := [ pb1 · · · pbrβ ].

Proof: The proof is based on Theorem 3.1. In particular,
we show that one cannot find σαi

, i = 1, 2 such that all
Conditions 1) – 3) in Theorem 3.1 hold if and only if
Conditions i) and ii) of this theorem hold.

First, we prove the only if part by contraposition. If
Condition i) does not hold, i.e., if there is a root SCC not
having a driver node, then every node in this root SCC is not
structurally accessible according to the definition of root SCC.
Furthermore, in the x-coordinate, one can find σαi , i = 1, 2
such that all of Conditions 1) – 3) hold. Next, if Condition ii)
does not hold, then for σα1

= σα Condition 1) holds, and in
this case Conditions 2) and 3) are automatically satisfied.

Then, we consider the if part. If Condition ii) holds, Condi-
tion 1) does not hold for σα1 = σα. It remains to consider
the case σα1

̸= σα. We show that if Condition i) holds,
Condition 3) does not hold for σα1

̸= σα by contraposition.
Suppose that there exist σαi

, i = 1, 2, σα1
̸= σα such that the

relative degree of system (1) with output (2) is infinity. Then,
for any k ∈ σα2, we have

∂hk(x)

∂x
pi = 0, ∀i ∈ σα1 ,

∂hk(x)

∂x
pbj = 0, ∀j ∈ σβ . (8)

From Assumption 2.2 and structure of the system Σ, if
there is a path from a strictly SCChi

to node xℓ, then the
ℓth element of pi is non-zero. The first equality in (8) and
Assumption 3.4 imply that if the ℓth element of pi is non-zero,
then ∂hk(x)/∂xℓ = 0. That is, any strictly SCChk

, k ∈ σα2

does not contain node xℓ. Therefore, there is no path from a
strictly SCChi , i ∈ σα1 to a strictly SCChk

, k ∈ σα2.
The second equality of (8), Assumption 3.4 and the defi-

nition of pbj imply ∂hk(x)/∂xi = 0, i.e., a strictly SCChk
,

k ∈ σα2 does not contain a driver node xi. Therefore, any
SCC containing a strictly SCChk

, k ∈ σα2 does not have a
driver node.

Assumption 3.4 implies that if there is a path from a strictly
SCChk

to a strictly SCChj
, then the information is conveyed

without cancellation. This assumption holds if hi(x) depends
on only one node xj or hi(x) is not a linear function. This
is a mathematical explanation, which has not been explained
by [9], for the importance of nonlinearity when one studies
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driver and sensor node selection of the balance equation based
on its inference graphical.

According to Theorem 3.5, for driver node selection, we
need to choose at least one node from a root SCC as a driver
node such that P in (7) has the full rank. This rank condition
gives a lower bound on the number of driver nodes rβ ≥ n−
rankPα(≥ n− rα). Since rα is the number of strictly SCCs,
the lower bound on the number of driver nodes n − rankPα

becomes large if a strictly SCC consists of many nodes. In such
a case, the concept of a root SCC is not enough to determine a
sufficient driver set. In fact, as explained in Section IV below,
this observation is specific for driver node selection.

As mentioned in [9], an (educated) brute-force search may
be used to inspect a minimum set of driver nodes but is a
computationally prohibitive task for large complex networks.
For 2n driver node combinations, and a randomly chosen
set of parameters αi and βj , we need to verify local strong
accessibility. As a necessary and sufficient condition, the local
strong accessibility rank condition [17] is known. To check this
condition, we need to compute Lie brackets of the system, that
is to compute partial derivatives of the nonlinear functions.
This may be doable, but is not always easy for large scale
systems. In contrast, by using our Theorem 3.5, we obtain at
least a necessary driver set that seems to be sufficient in many
cases because of the reasons explained in the next paragraph.
Our method only requires the computations of the rank of a
constant matrix P and the SCC decomposition, and for the
latter there is a linear time algorithm [16]. To verify whether
our method gives a sufficient sensor set, a brute-force search
may be used. If we combine our method and a brute-force
search, the considered driver node combinations is reduced
from 2n to 2n−rβ , where rβ is the number of driver nodes
determined by our method. Even though our method may not
give a sufficient driver set, the method is useful to reduce
computational complexity of a brute-force search.

In the previous subsection, we obtained two necessary
conditions, and the first condition is connected with driver
node selection. Let us consider the second necessary condition
in Theorem 3.2. When hi(x), i ∈ σα and qbj , j ∈ σβ are
linearly independent, condition (6) does not hold if the matrix
P in (7) has the full rank. For driver node selection, qbj are
chosen to be linearly independent. Thus, we need to take care
of the linear dependence of nonlinear functions hi(x), i ∈ σα.
However, nonlinear functions are not linearly dependent in
general unless hi(x) = hj(x), i ̸= j. Therefore, the first
condition is more relevant than the second when we study
driver node selection of nonlinear complex networks.

IV. STRUCTURAL OBSERVABILITY

In this subsection, we analyze the existing graphical ap-
proach for sensor node identification [9]. First, we connect the
graphical approach with structural observability decomposition
by a parameter independent coordinate transformation as done
for structural accessibility. Then, we show that a parameter
dependent transformation characterizes the cases when the
existing method does not give a sufficient sensor set in contrast
to driver node selection.

We have the following graphical necessary condition for
structural observability. We omit the proof because it is similar
to that of Theorem 3.5 for structural accessibility.

Theorem 4.1: Consider the inference diagram of system
ΣO. Under Assumptions 2.2, 2.4 and 3.4, a system ΣO does
not admit a parameter independent structural observability
decomposition x = φ(z) if and only if a set of sensor nodes
is chosen such that both of the following conditions hold.

i) at least one node from every leaf SCC is a sensor node;
ii) the following system is locally observable:

ẋ =
∑
i∈σα

piuai
,

yj = hj(x), j ∈ σα,
yck = qTckx, k ∈ σγ .

(9)

Condition 2) gives a lower bound on the number of sensor
nodes rγ . Let rO be the maximum dimension of the ob-
servability codistribution [17] of system (9) with outputs yj ,
j ∈ σα. Then, we need to choose yck , k ∈ σγ = {1, . . . , rγ}
such that system (9) becomes locally observable. Therefore,
the number of sensor nodes rγ is lower bounded on n− rO,
where rO can be greater than rα, i.e., the lower bound can be
less than n− rα in contrast to driver node selection.

Next, we provide a necessary condition for the non-
existence of parameter dependent structural observability de-
composition. This condition is more complicated than the
accessibility condition in Theorem 3.2 because in contrast to
accessibility, the number of outputs does not directly relate to
structural observability even if f = 0.

Theorem 4.2: Let σα1
:= {i1, . . . , isα} and σα2

:=
{isα+1, . . . , irα} be disjoint subsets of σα, and let σγ1 :=
{j1, . . . , jsγ} and σγ2 := {jsγ+1, . . . , jrγ} be disjoint subsets
of σγ . Next, define tα and tγ as

tα := dim spanR{pi1 , . . . , pisα },
tγ := dim spanR{qcj1 , . . . , qcjsγ }.

Suppose that pk, k ∈ σ1 and qck , k ∈ γ1 are ordered such that
pi1 , . . . , pitα and qcj1 , . . . , qcjtγ are the basis of the above
subspaces respectively. Then, if system ΣO with f = 0 is
structurally observable, one cannot find σαi

and σγj
, i, j =

1, 2 such that

∂hi(x)

∂x
pj = 0, i ∈ σαk

, j ∈ σαℓ
, k ̸= ℓ, (10)

n > v1 + v2 + v3 (11)

for the following vk (k = 1, 2, 3):
1) v1 = rank[CT qci1 · · · qcitα qcisγ+1

· · · qcirγ ];
2) v2 is the maximum dimension of the observability

codistribution of the following system, ẋ =
∑

i∈σα2

piuai
,

yck = hk(x), k ∈ σα2
;

(12)

3) If for any hℓ(x), ℓ ∈ σα1
, there exists constant µhℓ

and
uniformly exist constants v and µ0, µ1, . . . , µv such that
the Lie derivatives satisfy

Lpj1
,...,pjv+1

hℓ(x)
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= µhℓ
+ µ0hℓ(x) +

v∑
i=1

µiLpj1 ,...,pji
hℓ(x),

for any j1, . . . , jv+1 ∈ {i1, . . . , itα}, then denote v̂ by
the minimum number of v. Define v3 = tα(v̂ + 1). If
there does not exist v, then v3 := ∞.

Proof: We prove by contraposition. Suppose that there
exist σαi

and σγj
, i, j = 1, 2 such that all conditions holds.

First, there exist some constants δkα,ℓα and δkγ ,ℓγ such that

pkα
=

∑itα
ℓα=i1

δkα,ℓαpℓα , qckγ
=

∑jtγ
ℓγ=j1

δkγ ,ℓγ qcℓγ ,

kα = itα+1, . . . , isα , kγ = itγ+1, . . . , isγ .

By using them, the system ΣO can be rewritten as

ΣO :


ẋ =

itα∑
ℓα=i1

ξℓα(x)pℓα +
∑
i∈σ2

αihi(x)pi,

y =

(
C +

jtγ∑
ℓγ=j1

ηcℓγ q
T
cℓγ

+
∑

j∈σγ2

γjpcjq
T
cj

)
x,

where

ξℓα(x) := αℓαhℓα(x) +
∑isα

kα=itα+1
αkαδkα,ℓαhkα(x),

ηcℓγ := γℓγpcℓγ +
∑isγ

kγ=itγ+1
γkγ

δkγ ,ℓγpckγ
.

For the above system ΣO, we show that the maximum dimen-
sion (with respect to x and parameters) of its observability
codistribution is not more than v1 + v2 + v3. Then, condition
(11) implies that the system ΣO is not structurally observable.

Since the output function of the system ΣO is linear, its
time derivative ẏ is a linear combination of hi(x), i ∈ σα.
For any parameters, the observability codistribution of ΣO is
contained in the sum (in the sense of the linear subspace) of

spanR{d(Cx), d(qTci1x), · · · , d(q
T
citα

x),

d(qTcisγ+1
x), · · · , d(qTcirγ x)} (13)

and the observability codistribution of the following system.
ẋ =

itα∑
ℓα=i1

ξℓα(x)pℓα +
∑
i∈σ2

αihi(x)pi,

ycj = hj(x), j ∈ σα2
,

yckα
= ξkα

(x), kα = i1, . . . , itα .

(14)

Moreover, from (10), the observability codistribution of the
system (14) is the sum of the observability codistributions of
the following two systems ẋ =

∑
i∈σα2

αihi(x)pi,

yck = hk(x), k ∈ σα2
;

(15)

 ẋ =

itα∑
ℓα=i1

ξℓα(x)pℓα ,

yckα
= ξkα(x), kα = i1, . . . , itα .

(16)

From 1), the dimension of (13) is v1. Next, from the structure
of (15), the observability codistributions of the systems (12)
and (15) are the same. Then, from 2), the maximum dimension
of the observability codistributions of the system (15) is v2.

It suffices to consider system (16). From its structure, the
observability codistribution of system (16) is spanned by the
differential one-forms of ξℓα(x), ℓα = i1, . . . , itα and its Lie
derivatives Lpj1

,...,pjk
ξℓα(x), where j1, . . . , jk ∈ {i1, . . . , itα}

and k = 1, 2, . . . . Since ξℓα(x) is a linear combination of
hi(x), i ∈ σα1

, from 3) there exists constant µξℓα
such that

Lpj1
,...,pjv+1

ξℓα(x)

= µξℓα
+ µ0ξℓα(x) +

∑v̂
i=1 µiLpj1

,...,pji
ξℓα(x)

for any j1, . . . , jv̂+1 ∈ {i1, . . . , itα}. Note that the number of
outputs of the system (16) is tα. Then, it is possible to show
that the maximum dimension of its observability codistribution
is not more than v3 = tα(v̂ + 1).

For driver node selection, we mentioned that Theorem 3.2
may not be relevant. In contrast, Theorem 4.2 characterizes the
cases when the existing sensor node selection method does not
give a sufficient sensor set.

Example 4.3: Consider the nonlinear balance equation [9]
that can be represented as the system Σ with

h1 = x1x2, p1 =
[
−1 −1 1 1

]T
,

h2 = x3x4, p2 =
[
1 1 −1 −1

]T
.

If we apply the method in [9], at least one node is chosen
as a set of sensor nodes. For instance, we choose x1 as the
sensor node, i.e., yγ1

= γ1[1 0 0 0]Tx. First, one can check
that Conditions i) and ii) in Theorem 4.1 hold. Next, we show
that the necessary condition in Theorem 4.2 does not hold. Let
σα1 := σα and σγ1 := σγ = {1}. Then, we obtain v1 = 1,
and v2 = 0. It suffices to compute v3 in 3). Since p1 = p2,
we have tα = 1. To find v̂, we compute the Lie derivatives of
h1(x) and h2(x). They satisfy

Lp1
Lp1

hi(x) = 2, i = 1, 2.

Then, v̂ = 1, and consequently v3 = tα(v̂ + 1) = 2. In
summary, v1+v2+v3 = 1+0+2 < 4 = n. From Theorem 4.2,
if we choose x1 as the sensor node, the balance equation
is not structurally observable. Actually, we have a structural
observability decomposition as follows:

ż =


z2

−z2z3
2(α1 − α2)z2

z2

 , y = z1,

where

z =


x1

−α1x2x2 + α2x3x4

α1(x1 + x2) + α2(x3 + x4)
x2

 .

Therefore, z1, z2, z3 and z4 are the states of the structurally
observable and unobservable subsystems, respectively. Note
that if we choose arbitrary two distinct nodes from xi (i =
1, . . . , 4) as sensor nodes, then v1 = 2, and the necessary
condition in Theorem 4.2 holds. Actually, one can check that
the balance equation becomes structurally observable. For this
balance equation, every necessary and sufficient sensor set is
clarified by our methods in contrast to the existing method [9]
and its improvement [10].
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V. EXAMPLE

Consider the chemical reaction system with 11 species
involved in four reactions [9].

x1 + x2 + x3 → x4 + x6 + x10

x4 ↔ x5

x8 + x9 ↔ x7

x10 + x11 → x7 + x8

Its state space equation is

ẋi = −ẋ6 = −α1x1x2x3, i = 1, 2, 3,

ẋ4 = α1x1x2x3 − α2x4 + α3x5,

ẋ5 = α2x4 − α3x5,

ẋ7 = α4x8x9 − α5x7 + α6x10x11,

ẋ8 = −α4x8x9 + α5x7 + α6x10x11,

ẋ9 = −α4x8x9 + α5x7,

ẋ10 = α1x1x2x3 − α6x10x11,

ẋ11 = −α6x10x11,

and Fig. 1 shows its inference diagram.
The inference diagram has three leaf SCCs, and thus at least

one node from each leaf SCC is chosen as a sensor node. For
instance, in [9], x5, x6, and x7 are chosen. Then, the chemical
reaction network becomes structurally observable indeed [9].

We consider driver node selection. First, the inference dia-
gram has only one root SCC. Next, one can check rankPα =
4. Then, we need at least 7 driver nodes, which is not clear
only from the inference diagram, and there is a significant
difference between the number of driver nodes and root SCCs.
For instance, if we choose nodes xi (i = 1, 2, 3, 5, 8, 10, 11) as
driver nodes, P has the full rank. Indeed, the chemical reaction
network becomes structurally accessible. In this case, there is
a gap between driver and sensor node identification.

VI. CONCLUSION

In this paper, we have defined structural accessibility and
observability for nonlinear complex networks governed by
balance equations. Then, we have developed a driver node
selection method based on a necessary condition for structural
accessibility. Our driver node selection method can be viewed
as the dual of the existing sensor node selection method, but
there are differences. There can be a huge gap between the
numbers of driver nodes and root SCCs in contrast to the
difference between the numbers of sensor nodes and leaf SCCs
as demonstrated by a chemical reaction network. Currently
we are interested in developing a graphical approach for more
general nonlinear networks based on our necessary conditions.
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