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ScienceDirect
Monooxygenases (MOs) face the challenging reaction of an

organic target, oxygen and a cofactor – most commonly heme

or flavin. To correctly choreograph the substrates spatially and

temporally, MOs evolved a variety of strategies, which involve

structural flexibility. Besides classical domain and loop

movements, flavin-containing MOs feature conformational

changes of their flavin prosthetic group and their nicotinamide

cofactor. With similar mechanisms emerging in various

subclasses, their generality and involvement in selectivity are

intriguing questions. Cytochrome P450 MOs are often

inherently plastic and large movements of individual segments

throughout the entire structure occur. As these complicated

and often unpredictable movements are largely responsible for

substrate uptake, engineering strategies for these enzymes

were mostly successful when randomly mutating residues

across the entire structure.
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Introduction
Aerobic life evolved to use O2 as an electron acceptor in the

respiratory chain and as a co-substrate to oxygenate organic

compounds using enzymes such as monooxygenases

(MOs). As the spin-forbidden reaction of triplet ground

state O2 with singlet organic compounds is very slow,

enzymes lower the energy barrier by reductively activating

oxygen. Unless the organic substrate provides the reducing

power, this reaction requires a cofactor. Open-shell transi-

tion metals such as copper or iron can be deployed, and the

latter is often complexed by a porphyrin scaffold — the
www.sciencedirect.com 
heme cofactor. Alternatively, MOs use a purely organic

flavin mononucleotide (FMN) or flavin adenine dinucleo-

tide (FAD) cofactor. In the several hundred available MO

structures, the two most frequently co-crystallized ligands

are heme (43%) and FAD (14%), which are used by

cytochrome P450 MOs (CYPs or P450s) and flavoprotein

MOs, respectively. The traditional center of attention was

the active site of the MOs, which provides the structural

context for facilitating catalysis — electron transfer, O2

activation, and oxygenation. However, if any static struc-

ture is insufficient in describing an enzyme’s mode of

action, this is especially true with MOs due to their

extremely dynamic nature (Figure 1). For a full under-

standing of the reaction of MOs, we need to look beyond

the supposed catalytic center.

Flavoprotein monooxygenases
The isoalloxazine ring enables flavins to stabilize and

shuttle between redox states. In flavoprotein MOs, oxygen

is activated by the transfer of one electron from fully

reduced flavin to O2, followed by the coupling of the caged

radical pair at the flavin’s C4a locus [1]. Characteristically,

flavoprotein MOs stabilize the resulting catalytic (hydro)

peroxyflavin [2]. The electrons originate from a reduced

nicotinamide cofactor – NAD(P)H – which can bind either

transiently or permanently. The former is the case for the

aromatic hydroxylases of class A flavoprotein MOs, where

the nicotinamide cofactor dissociates immediately after

reducing a mobile flavin [3,4] (Figure 1). These enzymes

are quite narrow in substrate scope and ‘cautious’: before

NAD(P)H is consumed, a potential substrate needs to be

‘proofread’ [5]. In contrast, NAD(P)H is consumed sub-

strate-independently and bound in various conformations

throughout the catalytic cycle in ‘bold’ class B flavoprotein

MOs (Figure 1). These comprise N-hydroxylating MOs

(NMOs), which are highly substrate-specific, heteroatom-

oxygenating flavin-containing MOs (FMOs), and ketone to

ester-transforming Baeyer-Villiger MOs (BVMOs), which

often show relaxed substrate scopes.

Mobile flavins

For the prototype class A flavoprotein MO, p-hydroxy-
benzoate hydroxylase, a delicate dynamic interplay

between the coenzyme NADPH and the prosthetic

FAD cofactor, has been unraveled [6]. For reduction,

the flavin of class A MOs swings toward NADPH into

an ‘out’ position using the ribityl carbons as pivot points

(Figure 2a). Next, NADP+ is released, FAD returns to the
Current Opinion in Structural Biology 2019, 59:29–37
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Figure 1
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Simplified and/or exemplary mechanism of MO classes and structural flexibility. P450s are inherently plastic, with flexible regions occurring

throughout the protein structure. Class A flavoprotein MOs are well-known for their mobile flavin cofactor, whereas in class B, often the NAD(P)

cofactor is found in various conformations.
‘in’ position [7], and the formed C4a-hydroperoxyflavin

hydroxylates the substrate through electrophilic aromatic

substitution. While this mechanism was elucidated dec-

ades ago [3,4], its clinical relevance was established

recently, when a bacterial tetracycline MO that confers

antibiotic resistance was shown to be efficiently inhibited

by a substrate analogue, which locks FAD in the ‘out’
Current Opinion in Structural Biology 2019, 59:29–37 
position [8��]. Furthermore, novel variations on the

mobile flavin mechanism were discovered in two para-

logous class A MOs converting the same multicyclic

substrate to divergent products in a bifurcating metabolic

pathway [9]. While one, RebC, substitutes a carboxyl

group with a carbonyl group, the second, StaC, only

decarboxylates. Apparently, RebC uses flavin mobility
www.sciencedirect.com
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Figure 2

(a) (b)
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Mobile flavin cofactors. (a) The flavin of the class A flavoprotein MO p-hydroxy-benzoate hydroxylase swings in the plane of the isoalloxazine ring

from an ‘in’ position (grey carbons, 1PBE), to an ‘out’ position (1DOD, yellow carbons). The substrate (violet carbons) and a cut-open surface of

the protein stems from 1PBE. (b) Overlay of the class B L-ornithine MO (KtzI) in complex with L-ornithine, ‘in’ FAD, and NADP+ (violet, white, and

green carbons, respectively, 4TLX) and KtzI with the ‘out’ FAD (4TLZ).
for reduction before hydroxylating the substrate’s enol

tautomer, while StaC’s mobile flavin accelerates the

spontaneous decarboxylation of the keto tautomer via a

steric and/or electrostatic clash. The same group also

discovered that mobile flavins occur in N-hydroxylating

MOs of class B [10].

An early indication for a conformational change in NMOs

was the proposed allosteric regulation [11] of L-ornithine

MO (SidA) by L-arginine [12]. However, the regulation is

likely rather a competitive inhibition, as structures later

revealed L-arginine to bind at the same position in SidA

[13] as L-ornithine in a homologous NMO (PvdA) [14].

Eventually, structures of another homolog (KtzI) showed

FAD to undergo conformational changes [10]. While the

swing of the flavin in class A MOs occurs nearly in the

plane of the isoalloxazine ring, KtzI’s flavin pivots largely

at the ribityl C1 and rotates out of the plane (Figure 2b).

As this trajectory clashes with the nicotinamide riboside,

it might represent an NADP+ ejection mechanism. In the

resting state, the oxidized flavin is probably in an equi-

librium between ‘in’ and ‘out’. No hydride transfer ori-

entation was observed, but reduced flavin was always ‘in’

and the hydroperoxyflavin likely retains this position. A

distorted nicotinamide in crystals of PvdA trapped with

the product suggested an initial destabilization of NADP+

[14], which then would be ejected by the moving flavin.

Mobile nicotinamide cofactors

As they bind NADP stably [2], class B MOs are often

crystallized in complex with both cofactors. Several orien-

tations of NADP can be observed in available structures.

With varying degrees of confidence, these have been

attributed to the dual role of the cofactor over the course

of the catalytic cycle: reduction of the flavin and
www.sciencedirect.com 
stabilization of the (hydro)peroxyflavin [2]. As the two

roles require different orientations and no structure

appropriate for hydride transfer is known, a ‘sliding

mechanism’ has been proposed [15] (Figure 3a). Accord-

ingly, NADPH reduces the flavin while sliding over the

isoalloxazine into its fixed and commonly observed

‘stabilization’ position. Various structures appear to show

the positions sampled on the way: stacked above the

flavin in steroid MO (STMO, PDB IDs 4AOS), and an

intermediate position in one crystal form of cyclohexa-

none MO (CHMO, PDB ID 3GWF). Problematically,

however, the model conflicts with experiments showing

that NADPH’s pro-R hydride reduces the flavin, which is

incompatible with the anti conformation of the flavin-

stacked NADPH observed in the before-mentioned

structures. Although the stereoselectivity can be altered

by active site mutagenesis, it is conserved throughout the

class B MOs [16]. Two exceptions in the PDB display a

more suitable syn conformation: cadaverine MO (PDB ID

5O8R [17]) where unfortunately the NADP was modeled

on diffuse electron density and its validity is doubtful; and

a mutant of a bacterial trimethyl-amine MO (TMM, PDB

ID 5IQ4 [18]), where the electron density of the nicotin-

amide suffered from low occupancy (Figure 3b–c).

When NADP+ is in its ‘usual’ position, a hydrogen bond

from the amide oxygen crucially stabilizes theN5 hydrogen

of the reduced flavin [18] and the subsequently forming

peroxyflavin [19].Additionally, theribose 20 hydroxyl group

hydrogen bonds to the reaction intermediate in BVMOs,

and donates its proton to form the hydroperoxyflavin in

FMOs/NMOs [20]. By a flip of the amide, the amine can

also interact with the N5 of the oxidized flavin after product

formation in a retained overall conformation of

NADP+. The distinction is difficult, as the orientation of
Current Opinion in Structural Biology 2019, 59:29–37
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Figure 3

(a) (b) (c)
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NADP and protein mobility. (a) Cut-open surface of PAMO (1W4X) with FAD- (yellow)-, NADP- (blue) and helical domains (orange). An ‘L’ marks a

moving BVMO loop with a conserved tryptophan (light grey), which can be folded in (2YLR, white cartoon) when NADP+ is present or form a

b-hairpin (3UOZ, dark grey) in a homolog. The inset magnifies the flavin (yellow carbons) and the various positions found in class B MOs of

NADP’s nicotinamide ring. ‘N1’ marks the apparent ‘sliding’ movement by overlaying STMO (4AOS, green carbons), CHMO (3GWF, cyan carbons),

and PAMO (2YLR, blue carbons). ‘N2’ marks an apparent rotation via a half-rotated (TMM, 5GSN, dark violet carbons and mFMO, 2XLR, violet

carbons) to a fully rotated form in CHMO (3UCL, pink carbons). (b–e) Electron densities (s = 1) of structures with controversial NADP+ modeling: (b)

cadaverine MO (5O8R) and (c) the TMM Y207S mutant (5IQ4) are modeled with NADP in a hydride transfer-suitable syn conformation, but suffer

from poor electron density at the nicotinamide end. (d) CHMO (3UCL) and (e) TMM (5GSN) with half-rotated, and fully rotated NADP+, respectively,

where additional density connected to NADP was modeled as substrate molecules.
the amide can usually not be inferred from the electron

density. The flexible part of NADP is the nicotinamide

mononucleotide. A hydrogen bond between its phosphate

and a conserved, hydroxyl-containing amino acid [21] is the

pivot point linking it to the well-anchored adenosine

mononucleotide moiety. This was also observed for two

additional NADP+orientations, which feature a rotated anti
nicotinamideriboside. A half rotation occurred in crystallo in

TMM upon substrate soaking (PDB ID 5GSN [18]), and in

a bacterial mFMO upon disruption of either of two hydro-

gen bonds to the nicotinamide: from the NADP+ amine to

the flavin N5 (using an NADP analog, PDB ID 2XLT) or

from the ribose to a central asparagine (in an aspartate

mutant, PDB ID 2XLR) [22] (Figure 3a). Interestingly,

aspartate is the conserved residue in BVMOs, which,

although never observed with the half-rotated cofactor,

delivered the only structure with a fully-rotated NADP+

[23] (PDB ID 3UCL, Figure 3a). In this structure, as in the

half-rotated TMM structure, additional electron density on

top of the flavin was assigned to substrate molecules.
Current Opinion in Structural Biology 2019, 59:29–37 
However, this assignment is controversial, as it stands in

contrast to previous ligand positions and there is a notice-

able connection to the density of the nicotinamide riboside

(Figure 3d–e). It can, therefore, hardly be excluded that the

origin is an alternative conformationof NADP, rather than a

ligand. Further research should clarify the substrate posi-

tion and whether the rotated cofactor is a general mecha-

nism of the enzyme class. This may contribute to solving

two remaining puzzles: the structural basis for the different

mechanisms and reactivities, and the cause of the vast

discrepancy in substrate specificity.

Mobility of loops and domains in flavoprotein MOs

Substrate acceptance is an intensely researched enzyme

trait with biotechnological relevance, and protein flexi-

bility was identified as ‘perhaps the single most important

mechanism’ to achieve promiscuity [24]. The most flexi-

ble protein structures are loops and unsurprisingly, this

structural element differs most among otherwise similar

flavoprotein MOs.
www.sciencedirect.com
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In BVMOs, a long omega loop (where start and end are

close and act as a hinge [25]) appears crucial for function

and was called ‘control loop’ [26]. If visible, the loop folds

on top of the Rossmann fold-bound NADP, thereby often

trapping the cofactor in the crystal structure (Figure 3a).

SAXS experiments indicate that NADP+ exposure favors

this folded state, which also coincides with ‘closed’

enzyme conformations. In ‘open’ conformations, not only

the disordered loop may be unstructured, but also a wide

swing into the solvent (deemed a crystallization artefact)

was seen in phenylacetone MO (PAMO, PDB ID 1W4X

[27]), and 2-oxo-D3-4,5,5-trimethylcyclopentenylacetyl-

coenzyme A MO, where the loop adopts a structured

b-hairpin (e.g. PDB ID 3UOZ [28]) (Figure 3a). A central

role in loop reorganization is assumed for a conserved

tryptophan (Figure 3a), which is an active site residue if

the loop is folded and whose removal drastically reduces

enzyme activity [15]. The loop may also act as an ‘atomic

switch’ [15,26] that connects the active site and the

BVMO signature motif [29], a strictly conserved stretch

at the edge of the NADP domain, inexplicably far from

the active site. A histidine in this motif adopts varying

conformations and can form contacts with the linker

region, which in turn is connected to the control loop

[15]. The importance and ability of the linker for long-

range effects became also apparent when mutations in

this region drastically altered enzymatic activity [30].

Considering that the SAXS results were not fully explain-

able by loop movements, these data collectively sug-

gested that larger movements of the domains could occur.

Domain rotations of up to 6� [15,31] were already

observed, but the extent might have been artificially

hindered by crystal packing [26]. A drastic domain rota-

tion of 30� has been observed for an NMO, NbtG [32], but

it is unknown whether other NMOs, let alone other class

B families can sample this conformation as well. More

distantly related enzymes with the same domain archi-

tecture are able to rotate by even 67� [33], and some

members of class A flavoprotein MOs can cover their

active site with a flexible ‘lid’ domain [34]. Future dis-

coveries on such mechanisms in class B MOs can be

expected, and these may be key in understanding their

varying selectivities. It might also allow to explain the

profound allosteric effects of active site-remote mutations

[35], and the surprisingly mild effects of removal of

residues that (seemingly) form the active site [36�].

Cytochrome P450s
Referred to as ‘nature’s blowtorch’ [37], the iron-oxo

species forming in the core of cytochrome P450s MOs

(P450s) are endowed with the oxidative power to catalyze

various reactions: besides performing dealkylations, het-

eroatom oxidations and epoxidations, P450s hydroxylate

non-activated C–H and C–C bonds in substrates of

diverse size, functional group composition, and polarity

[38]. Similar to class A flavoprotein MOs, the catalytic

mechanism is initiated by substrate binding, which causes
www.sciencedirect.com 
a separate or translationally fused reductase to shuttle

NAD(P)H-derived electrons to the heme (Figure 1).

Dioxygen binds to the one electron-reduced ferrous

heme and the second electron creates the ferric peroxy

complex, which matures to the catalytically active

‘Compound I’. Despite amino acid sequence differences

of up to 90%, all P450s share a common fold with identical

topology and conserved secondary structural elements.

The question arises, how such a highly conserved archi-

tecture can sustain the observed immense variety in

catalyzed reactions. Clearly, the P450 fold evolved early

as a safe platform for an inherently dangerous reaction –

the activation of molecular oxygen – and as a versatile

scaffold. As such, the variability of P450 reactions cannot

be attributed to the composition and capacity of the active

site but is rather a result of the concerted and dynamic

action of the whole enzyme. A large body of research

spanning both selective prokaryotic and highly promis-

cuous eukaryotic P450s demonstrates the essential role of

plasticity in the selection of suitable substrates and their

delivery to the heme.

Questions concerning P450 flexibility involved in sub-

strate binding have already been raised after the first

crystal structure. In P450cam, the camphor substrate is

effectively sealed from the outside, implying a structural

plasticity that enables the protein to open for substrates to

enter and products to leave [39]. Subsequent crystal and

NMR structures as well as molecular dynamics simula-

tions have since then confirmed how an impressive

degree of flexibility in P450s facilitates a stepwise adap-

tation of the enzyme to the substrate in order to lead it to

the active site.

Binding mechanisms in P450s

Work on CYP3A4, a human P450 involved in xenobiotic

metabolism, supported an induced fit substrate binding

mechanism. The enzyme structure in complex with mid-

azolam hints at substrate-induced, global structural read-

justments, with concurrent reshaping of the active site. In

particular, a conformational switch of two helices (the F–

G segment) and long-range residue movements transmit-

ting from remote areas (the D, E, H, and I helices)

triggered a collapse of the active site cavity and ligand

immobilization. Productive substrate positioning can

occur at two overlapping binding sites near the I helix,

and a substrate concentration-dependent collapse or wid-

ening of the catalytic cavity determines the reaction’s

regioselectivity [40]. Structural investigations of the pro-

karyotic OleP in complex with a macrolactone are also

consistent with an induced-fit binding, whereby a cascade

of interactions responsible for substrate-induced confor-

mational changes was proposed [41�]. Some P450s, how-

ever, were shown to explore an incessant motion between

different conformations regardless of the presence of

substrates. The ligand-free structures of the erythromy-

cin-converting P450 EryK suggest the presence of a
Current Opinion in Structural Biology 2019, 59:29–37
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heterogeneous conformational ensemble between an

open and a closed state [42].

Notably, the conformational changes occurring upon sub-

strate recognition can show striking similarities between

very distant representatives. P450cam and MycG are only

29% identical on sequence level and act on the structurally

diverse substrates camphor and mycinamicin IV, respec-

tively.Using a combination ofNMR structural studies, site-

directed mutagenesis and functional assays, several regions

far from the active site of P450cam were demonstrated to be

critical to ensure efficient recognition and orientation of the

substrate into the catalytic center. Many of the same

secondary structural features in MycG are perturbed upon

substrate binding. The most-affected residues were subse-

quently found to be functionally important and lie in a

conical region roughly anti-symmetric with the triangular

shape of the P450 molecule [43�].

P450s’ substrate selection via tailored plasticity

With twelve entries deposited in the protein data bank,

CYP2B enzymes show one of the highest degree of

plasticity among crystallographically characterized

P450s — about one third of the protein is accounted

for by five plastic regions (PRs). Comparison of PR2 and

PR4 allowed to distinguish four distinct conformations:

‘open’ to allow substrate access, ‘closed’ and ‘expanded’

upon binding of small and large ligands to CYP2B4,

respectively, and an ‘intermediate’ form induced by

and molded to the inhibitor 1-biphenyl-4-methyl-1H-

imidazole (1-PBI) (Figure 4a) [44]. As catalysis involves
Figure 4

(a)

Structural plasticity in P450s. (a) Superimposition of the conformations ob

cylinders. Regions of conformational variability are highlighted and coloure

CPI), ‘expanded’ (PDB 2BDM, ligand: bifonazole), and ‘intermediate’ (PDB

The heme cofactor is shown as red sticks. (b) The P450-BM3 heme doma

23 mutations (residues as green balls and sticks) that convert the enzyme

Current Opinion in Structural Biology 2019, 59:29–37 
subtle, concerted conformational changes spanning a

large part of the enzyme, allosteric effects are frequently

observed and sometimes drastic. In CYP2Bs, mutations of

residues remote from the active site caused not only a

switch in selectivity for some substrates, but also pro-

found functional changes affecting the enzyme’s catalytic

rates and inhibition [45]. Interestingly, mutations target-

ing active site residues produced much smaller changes

[46]. In CYP2B1, equally distant mutations enhanced the

metabolism of several substrates including the anticancer

prodrugs cyclophosphamide and ifosfamide [47]. Simi-

larly, the enhanced activity of a rat CYP1A1 mutant

toward a dibenzo-p-dioxin toxin is triggered by a more

efficient binding of the substrate in the active site even

though the mutation is over 25 Å away [48]. In this

scenario, it is not surprising how most of the single

nucleotide polymorphisms (SNPs) that make CYP2B6

highly polymorphic and, accordingly, differently active in

the metabolism of a variety of drugs lie far from the active

site of the enzyme [49]. Another demonstration of how

the creation of a new activity passes mostly through

mutations in flexible regions involved in substrate recog-

nition [50] is the engineering of P450-BM3 toward a

propane monooxygenase [51] where only a fraction of

the mutations was located in the active site (Figure 4b).

The role of dynamics of the overall P450 fold is also well

exemplified by the long-range effects of putidaredoxin

(Pdx) binding to the proximal face of P450cam, which

influences motions on the opposite side of the protein.

The open/close motion of the F/G helical region is
(b)

Current Opinion in Structural Biology

served for CYP2B. The protein is shown as cartoon with helices as

d with ‘open’ (PDB 1PO5, no ligand), ‘closed’ (PDB 1SUO, ligand: 4-

 3G5N, ligand: 1-PBI) in yellow, violet, green, and blue, respectively.

in shown as white–blue cartoon, with the locations of the

 to a propane monooxygenase.

www.sciencedirect.com
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coupled to a movement of the C helix, which directly

contacts Pdx. The Pdx-induced changes in the F/G

helical region are instrumental to carry out the enzymatic

activity: it triggers free an important aspartate involved in

the proton delivery network required for O2 activation

[52��]. Even the entrance of molecular oxygen into the

active site is tuned by protein dynamics. Simulations of

the protein backbone dynamics of P450-BM3 revealed

the transient nature of some channels, with subchannels

forming and merging and O2 molecules hopping in

between [53,54�].

The full understanding of P450s catalysis is pivotal for

exploiting their selectivity in industrial processes and

designing tailored inhibitors for drug metabolism. The

joint participation of remote, flexible elements can rep-

resent a complication, as their influence on specificity and

catalytic activity may be difficult to predict. This explains

why directed evolution approaches with this enzyme

family have been much more successful than rational

approaches focused on active-site engineering. A picture

emerges where the active site of P450s are reduced to a

mere accessory role. A recent structural characterization

of different members of CYP153s illustrates this. Among

these homologs, all active site residues are conserved, but

the enzymes display varying hydroxylation activities with

alkanes, fatty acids, and heterocyclic compounds. The

comparison of five crystal structures allowed to plot out

the regions which exhibited the most pronounced

sequence variabilities and conformational changes. In

this manner, it was possible to identify the B/C-loop,

the F, G, and H helices and the F/G-loop to be responsi-

ble for substrate recognition and binding [55�].

Conclusions
While flavin-dependent MOs compensate their sub-

domain’s intrinsic rigidity by linker and loop movements

and/or cofactor mobility, P450s counterbalance the heme

cofactor’s inflexibility by widely dispersed mobile regions

involved in substrate binding. The structural and mecha-

nistic complexity found in flavoprotein MOs reflects the

complex catalytic duty of efficiently coordinating three

substrates by the same active site in a timely regulated

fashion. A complete understanding of the reaction mech-

anism relies on future discoveries, specifically with regard

to hydride transfer and substrate selectivity differences.

When considering P450s, novel features of their mecha-

nisms have emerged from various P450 subfamilies. For

both monooxygenase classes, it has become clear that

structural dynamics play an important role in their cata-

lytic functioning. Besides better understanding their

molecular functioning, new insights will hopefully clarify

vast discrepancies in substrate acceptance and fuel the

design of enzyme engineering strategies. Clearly, such

rational approaches need to take all steps and loci

involved in enzyme catalysis into consideration, rather
www.sciencedirect.com 
than focusing solely on the chemical step thought to occur

in a static active site.
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