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a b s t r a c t

Motivated by recent work in this area we expand on a generalization of port-Hamiltonian systems that
is obtained by replacing the Hamiltonian function representing energy storage by a Lagrangian subspace.
This leads to a new class of algebraic constraints and DAE systems in physical systems modeling. It is
shown howDirac structures and Lagrangian subspaces allow for similar representations, and how this can
be exploited to convert algebraic constraints originating from Dirac structures into algebraic constraints
corresponding to Lagrangian subspaces, and conversely.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known [1–3] that port-Hamiltonian system dynamics
may exhibit algebraic constraints in the state variables, leading
to mixtures of differential and algebraic equations (DAEs). From a
network modeling perspective these algebraic constraints arise
from interconnection of the subsystems composing the overall
system. The presence of such algebraic constraints is reflected in
the properties of the underlying Dirac structure of the system. In
fact, the Dirac structure is determined by the composition of the
Dirac structures of the subsystems, and need not be a mapping
from the co-energy variables to the flow variables but instead a
relation between them; see e.g. [4,3,5] for more details. In this
latter case, there are constraints between the co-energy variables
of the system, which, via the Hamiltonian function, translate into
algebraic constraints in the state variables. Examples include kine-
matic constraints in mechanical systems, and voltage or current
constraints in electrical circuits.

On the other hand it was recently observed in [6], see also
the subsequent work [7–10], that by generalizing the definition of
linear port-Hamiltonian systems algebraic constraints may arise
in different ways as well. At the same time in [11], motivated
primarily by considerations in the geometric formulation of La-
grangian systems, systems with kinematic constraints, as well as
optimal control, the definition of port-Hamiltonian systems was
generalized by replacing the gradient of the Hamiltonian function
in the port-Hamiltonian dynamics by a Lagrangian submanifold
which is not necessarily the graph of the gradient of a Hamiltonian.

* Corresponding author.
E-mail addresses: a.j.van.der.schaft@rug.nl (A. van der Schaft),

bernhard.maschke@univ-lyon1.fr (B. Maschke).

This leads to algebraic constraints in the state variables which are
of a different nature than those originating from Dirac structures.

In the present paper we will elaborate on the algebraic con-
straints of generalized port-Hamiltonian systems defined by Dirac
structures as well as by Lagrangian subspaces; thus elucidating and
complementing earlier contributions. For simplicity of exposition
we will concentrate on linear time-invariant finite-dimensional sys-
tems, and moreover on the lossless case (no energy-dissipation)
without external variables (inputs/outputs). For developments
concerning time-varying or infinite-dimensional linear port-
Hamiltonian DAE systems we refer to [7,6], and for the nonlinear
case to [11].

Conceptually, the current paper is closest to [11] by empha-
sizing the geometric definition of a generalized port-Hamiltonian
system as a pair of a Dirac structure and a Lagrangian subspace,
while some constructions (as well as the emphasis on the linear
case) are inspired by [6,12]. The paper is structured as follows.
In Section 2 we give the geometric definition of linear general-
ized port-Hamiltonian DAE systems (without energy-dissipation
and external variables), entailing algebraic constraints due to the
Dirac structure as well as to the Lagrangian subspace. Inspired
by [6,12] we give an explicit coordinate representation in terms of
a parametrizing state vector. The end of Section 2 provides a num-
ber of simple, but illustrative, examples of algebraic constraints
corresponding to either the Dirac structure or to the Lagrangian
subspace. In Section 3 we zoom in on algebraic constraints and the
underlying geometry ofDirac structures and Lagrangian subspaces.
We show, and illustrate by examples, how algebraic constraints
corresponding to Dirac structures may be converted into algebraic
constraints corresponding to Lagrangian subspaces on an extended
state space, and conversely. Section 4 contains the conclusions.

https://doi.org/10.1016/j.sysconle.2018.09.008
0167-6911/© 2018 Elsevier B.V. All rights reserved.
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2. Definition of generalized port-Hamiltonian DAE systems

An unconstrained linear lossless port-Hamiltonian systemwith-
out external variables on an n-dimensional linear state space X is
described by a system of ordinary differential equations (ODEs)

ẋ = JQx, (1)

where J : X ∗
→ X , J = −JT , is a skew-symmetric mapping (also

called Poisson structure map), and the symmetric matrix Q = Q T

defines a Hamiltonian function H(x) =
1
2x

TQx. Obviously by skew-
symmetry of J
d
dt

H(x) = xTQJQx = 0, (2)

expressing energy-conservation. On the other hand, in network
modeling of physical systems, the dynamics is not always in ODE
form (1), but instead involves algebraic equations in the state vec-
tor x. This was formalized in the standard definition of a port-
Hamiltonian system by generalizing the skew-symmetric map J
to a general (constant) Dirac structure, defined as follows [13,4,3].
Consider the product X × X ∗, with projections π : X × X ∗

→ X
and π∗

: X × X ∗
→ X ∗. Define on X × X ∗ the bilinear form

⟨(f1, e1), (f2, e2)⟩+ := ⟨e1 | f2⟩ + ⟨e2 | f1⟩, (3)

with (fi, ei) ∈ X × X ∗, i = 1, 2, and ⟨e | f ⟩ denoting the duality
product between f ∈ X and e ∈ X ∗.

Definition 2.1 (Constant Dirac Structure [14]). A Dirac structure is
a subspace D ⊂ X × X ∗ such that D = D⊥⊥+ , where ⊥⊥+ denotes
the orthogonal companionwith respect to the bilinear form ⟨·, ·⟩+.

Remark 2.2 ([5,3]). An equivalent definition of a Dirac structure
can be stated as follows. A subspaceD ⊂ X×X ∗ is a Dirac structure
iff ⟨·, ·⟩+ restricted to D is zero, and D is maximal with respect to
this property. The dimension of any Dirac structureD ⊂ X ×X ∗ is
equal to dimX . Furthermore, by taking f1 = f2 = f , e1 = e2 = e in
(3) it follows that ⟨e | f ⟩ = 0 for any (f , e) ∈ D, expressing power
conservation, and generalizing skew-symmetry.

A linear port-Hamiltonian DAE systemwith Hamiltonian H(x) =
1
2x

TQx, briefly pH DAE system, is now geometrically given as1

(−ẋ,Qx) ∈ D (4)

Note that the graph of a skew-symmetric map −J

DJ := {(f = −Je, e) ∈ X × X ∗
| e ∈ X ∗

} (5)

is a special type of Dirac structure. In fact, a Dirac structure D can
be represented into the form (5) for some skew-symmetric J if and
only if π∗(D) = X ∗. On the other hand, if π∗(D) ̸= X ∗ then the
dynamics (4) gives rise to the algebraic constraints

e = Qx ∈ π∗(D) (6)

This type of algebraic constraints will be referred to as Dirac al-
gebraic constraints. They arise as constraints on the variables e,
called in port-basedmodeling terminology the co-energy (or effort)
variables. Through the specification of the Hamiltonian H(x) =
1
2x

TQx they translate into the algebraic constraints Qx ∈ π∗(D) on
the state variables x.

Recently, and from different points of view [6,11], it was noted
that a second type of algebraic constraints can be formulated by
generalizing the gradient Qx of the Hamiltonian H(x) =

1
2x

TQx to

1 Substitute f = −ẋ, e = Qx. Theminus sign in f = −ẋ ensures consistent power
flow sign convention.

a Lagrangian subspace of X × X ∗. This latter notion is defined as
follows, resembling2 the previous definition of a Dirac structure.
Consider on X × X ∗ the alternate bilinear form

⟨(x1, e1), (x2, e2)⟩− := ⟨e1 | x2⟩ − ⟨e2 | x1⟩, (7)

with (xi, ei) ∈ X × X ∗, i = 1, 2.

Definition 2.3 (Lagrangian Subspace). A Lagrangian subspace is a
subspace L ⊂ X × X ∗ such that L = L⊥⊥− , where ⊥⊥− denotes the
orthogonal companion with respect to the bilinear form ⟨·, ·⟩−.

Remark 2.4. Alternatively, a Lagrangian subspace is defined as a
maximal subspace L ⊂ X × X ∗ on which ⟨·, ·⟩− is zero. Similarly
to Dirac structures, the dimension of any Lagrangian subspace L ⊂

X × X ∗ is equal to n = dimX .

Note that the gradient of theHamiltonianH(x) =
1
2x

TQx defines
the special type of Lagrangian subspace

LQ := {(x,Qx) ∈ X × X ∗
| x ∈ X }, (8)

i.e., the graph of the symmetric mapping Q . Furthermore, a La-
grangian subspace L can be put into the form (8) for a certain
symmetric Q if and only if π (L) = X , while if π (L) ̸= X then
the following algebraic constraints in the state x arise

x ∈ π (L) (9)

This type of algebraic constraints will be referred to as Lagrange
algebraic constraints, since they are determined by the Lagrangian
subspace L.

A generalized port-Hamiltonian DAE system is now defined by
a pair (D,L) as follows.

Definition 2.5 (Generalized pH DAE System). Consider a Dirac
structure D ⊂ X × X ∗ and a Lagrangian subspace L ⊂ X × X ∗.
This defines the generalized port-Hamiltonian DAE system (briefly,
gpH DAE system) (D,L), with dynamics given by

(−ẋ, e) ∈ D, (x, e) ∈ L (10)

Here (10) should be read as follows. Consider any (feasible)
x ∈ X for which there exist e ∈ X ∗ and f ∈ X such that (x, e) ∈ L
and (f , e) ∈ D. Then3 minus the velocity −ẋ is given as any such f .

Remark 2.6. Uniqueness of −ẋ = f given a feasible x can be
guaranteed only under extra assumptions. E.g., if the Lagrangian
subspace is the graph of a symmetric map Q which is positive
definite, then the corresponding pH DAE system has index 1 with
unique −ẋ = f and corresponding solution [2]. On the other hand,
Lagrange algebraic constraints typically have index 2 or higher.

A coordinate representation of the dynamics (10) of the gpH DAE
system (D,L) can be obtained as follows. As shown in [4,14], any
Dirac structure D ⊂ X × X ∗ for an n-dimensional linear space X
can be represented in kernel representation as

D = {(f , e) ∈ X × X ∗
| Kf + Le = 0} (11)

for n × nmatrices K , L satisfying

KLT + LK T
= 0, rank

[
K L

]
= n (12)

2 It should be noted that the definitions of Lagrangian subspaces and Dirac
structures diverge in the nonlinear case, with Dirac structures on a manifold X
still defining pointwise a linear subspace of the product TxX × T ∗

x X , x ∈ X ,
while Lagrangian subspaces generalize to Lagrangian submanifolds of the cotangent
bundle T ∗X .
3 Note that strictly speaking f is in the tangent space toX at x, which however by

linearity of X can be identified with X .
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Analogously, see Proposition A.1 for a proof, any Lagrangian sub-
space admits a kernel representation

L = {(x, e) ∈ X × X ∗
| ST x − PT e = 0} (13)

for n × n matrices P, S satisfying

STP = PT S, rank
[
ST PT

]
= n (14)

Equivalently, the Lagrangian subspace L can be represented in
image representation as

L = {(x, e) ∈ X × X ∗
| ∃z ∈ Z = Rn s.t.

[
x
e

]
=

[
P
S

]
z} (15)

It follows that the dynamics of the gpH DAE system defined by
the pair (D,L) is obtained by setting f = −ẋ in (11), yielding
Kẋ = Le with (x, e) ∈ L. Using the image representation (15) of
L this implies the following DAE system in the parametrizing state
vector z ∈ Z

KPż = LSz (16)

In case of Lagrange algebraic constraints the matrix P is not of full
rank, inducing algebraic constraints in z, while in case of Dirac
algebraic constraints the matrix K is not of full rank; also inducing
algebraic constraints. A Hamiltonian function for the coordinate
representation (16), in terms of the parametrizing state vector z,
is defined by (note that STP = PT S by (14))

H(z) :=
1
2
zT STPz (17)

In fact, along solutions of (16)
d
dt

H(z) = zT STPż = eT ẋ = 0, (18)

since eT f = 0 for all (f , e) ∈ D. The model (16) together with the
expression (17) was already postulated in [12].

(15) shows that the parametrizing state vector z can be always
taken to be a mixture of the x and e variables; i.e., a mixture of
energy and co-energy variables. This can be formalized as follows.
Consider any Lagrangian subspace L ⊂ X × X∗. Then, see Propo-
sition A.2 for a proof, there always exists a sub-vector x1 of x ∈ X ,
and a complementary sub-vector e2 of e ∈ X ∗, such that L is
represented as

L = {(x, e) ∈ X × X ∗
|

[
e1
x2

]
= Q̂

[
x1
e2

]
} (19)

Particular cases are x1 = x and e2 void, in which case Q̂ = Q ,
or e2 = e and x1 void, in which case Q̂ = Q−1 if Q is invertible,
and the co-energy function 1

2 e
TQ−1e is the Legendre transform of

H(x) =
1
2x

TQx.
An alternative, and in some sense dual, coordinate representa-

tion of a generalized port-Hamiltonian DAE system (D,L) can be
obtained as follows. Consider based on (11) and (12) the image
representation of D given as

D = im
[
LT

K T

]
, (20)

and the kernel representation (13) of L. Substitution of −ẋ = f =

LTv, e = K Tv, with v an alternative parametrizing state vector,
then leads to the DAEs

ST LTv + PTK T v̇ = 0 (21)

By pre-multiplying (21) by zT , and performing integration by parts
on the second term zTPTK T v̇, this results in the previously obtained
coordinate expression (16) in the parametrizing state vector z.
Thus (21) can be considered as a dual (or adjoint) representation
to (16).

2.1. Examples

Dirac algebraic constraints arise from the interconnection of
subsystems. On the other hand, Lagrange algebraic constraints
reflect degeneracies in the definition of energy-storage. This is
illustrated by the following examples. The first two are standard
examples of Dirac algebraic constraints, while the last three show
how Lagrange algebraic constraints arise in physical systemsmod-
eling.

Example 2.7 (Mechanical Systemswith Kinematic Constraints). Con-
sider a mechanical system with position coordinates q ∈ Rn,
momenta p = Mq̇ ∈ Rn, and mass matrix M = MT > 0, subject to
constant kinematic constraints AT q̇ = 0, where A is an n×kmatrix.
Consider a Hamiltonian functionH(q, p) =

1
2p

TM−1p+
1
2q

TKqwith
K a matrix defining the elastic energy. The Dirac structure D is
given as (see [4,3,2,5])

D = {(fq, fp, eq, ep) ∈ R2n
× R2n

| ∃λ ∈ Rk s.t.[
fq
fp

]
=

[
0n −In
In 0n

][
eq
ep

]
−

[
0
A

]
λ, AT ep = 0}

Substitution of ep = M−1p leads to the Dirac algebraic constraints
ATM−1p = 0. Note that Aλ is the vector of constraint forces.

Example 2.8 (LC-circuits). Dirac algebraic constraints are ubiqui-
tous in electrical circuits; cf. [15] for the port-Hamiltonian mod-
eling. Concentrating on LC-circuits, such constraints arise in two
ways. The first case corresponds to the occurrence of a cycle in the
circuit graph whose edges only contain capacitors. By Kirchhoff’s
voltage law the sum of the voltages across these capacitors is
identically zero, leading to an algebraic constraint between the
charges of those capacitors. The second case corresponds to the
existence of a node in the circuit graph whose adjacent edges
only contain inductors. By Kirchhoff’s current law the sum of the
currents entering this node is equal to zero, thus leading to an
algebraic constraint between the flux linkages of those inductors.

Example 2.9 (Mass–spring System with Zero Mass). Consider a
mass–spring system with Hamiltonian Ĥ(q, p) =

1
2kq

2
+

p2
2m , with

mmass and k spring constant. Form ̸= 0 the graph of the gradient
of Ĥ is given as the Lagrangian subspace⎡⎢⎣ q

p
eq
ep

⎤⎥⎦ =

⎡⎢⎣1 0
0 m
k 0
0 1

⎤⎥⎦[
z1
z2

]
,

with z1 = q the position of the mass (an energy variable), and
z2 =

p
m its velocity (a co-energy variable). Now let m converge to

zero. Then the Lagrangian subspace converges to the Lagrangian
subspace⎡⎢⎣ q

p
eq
ep

⎤⎥⎦ =

⎡⎢⎣1 0
0 0
k 0
0 1

⎤⎥⎦[
z1
z2

]
,

which is not the graph of a symmetric map Q : X → X ∗ anymore,
with resulting Lagrange algebraic constraint p = 0. We obtain the
gpH DAE system[
1 0
0 0

][
ż1
ż2

]
=

[
0 1

−k 0

][
z1
z2

]
with Hamiltonian H(z1, z2) =

1
2kz

2
1 . (Note that in this simple

example the resulting DAE system is trivial, since necessarily z1 =

q = 0 whenever k ̸= 0.)
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Example 2.10 (Mechanical Systems with Strong Constraining Force).
Consider a two-dimensional mass–spring system with Hamilto-
nian Ĥ (q1, q2, p1, p2)

Ĥ =
1
2
k1q21 +

1
2
k12(q2 − q1)2 +

1
2m1

p21 +
1

2m2
p22

being the series interconnection of two masses m1,m2 and two
springs with spring constants k1, k12. This defines the Lagrangian
subspace given in image representation as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q2
p1
p2
eq1
eq2
ep1
ep1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1
1
k12

0 0

0 0 1 0
0 0 0 1
k1 −1 0 0
0 1 0 0

0 0
1
m1

0

0 0 0
1
m2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣z1
z2
z3
z4

⎤⎥⎦ ,

where we have chosen the parametrizing state vector z as the
following mixture of energy and co-energy variables:

z1 = q1, z2 = k12(q2 − q1), z3 = p1, z4 = p2

(thus z2 equals the elastic force of the second spring). Letting k12 →

∞ (corresponding to the replacement of the second spring by a
rigid rod) yields the Lagrangian subspace

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q2
p1
p2
eq1
eq2
ep1
ep1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1
k1 −1 0 0
0 1 0 0

0 0
1
m1

0

0 0 0
1
m2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣z1
z2
z3
z4

⎤⎥⎦ =:

[
P
S

]
z, (22)

with P singular, entailing the algebraic constraint4 q1 = q2. This
leads to the gpH DAE system⎡⎢⎣1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦
⎡⎢⎣ż1
ż2
ż3
ż4

⎤⎥⎦ =

⎡⎢⎣ 0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎣
k1 −1 0 0
0 1 0 0

0 0
1
m1

0

0 0 0
1
m2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣z1
z2
z3
z4

⎤⎥⎦
where z3

m1
=

z4
m2

(equality of velocity of the first and the second

mass, linked by a rigid rod). Note that z2 (whose derivative does not
appear in the DAE system) represents the constraint force exerted
by the rigid rod on the massesm1 and m2 (with opposite sign).

Example 2.11 (Ideal Transformer). An electrical transformer is a
magnetic energy storage element consisting of two coils coupled

4 This can be called a geometric constraint, although the set-up is different from
the standard approach to geometric constraints following from the integration of
kinematic constraints AT q̇ = 0 as in Example 2.7 to AT q = c , with the vector c
determined by the initial condition of the system.

by a magnetic core. Its constitutive relations define the Lagrangian
subspace given by

ST
[
ϕ1
ϕ2

]
= PT

[
i1
i2

]
in the magnetic fluxes ϕ1, ϕ2 and currents i1, i2 corresponding to
the two coils. Here S =

(
Rm
N1N2

)
I2, with I2 the 2× 2 identitymatrix,

and

P =

⎡⎢⎢⎣
N1

N2

(
1 +

Rm

Rl1

)
1

1
N2

N1

(
1 +

Rm

Rl2

)
⎤⎥⎥⎦

with reluctancesRl1,Rl2 andRm, andN1,N2 the number of turns of
the two coils. In case of an ideal transformer, Rm

Rli
→ 0 for i = 1, 2,

and the rank of the matrix P drops from 2 to 1, leading to Lagrange
algebraic constraints and the well-known transformer ratio.

Now connect the transformer at port 1 to a capacitor with
electrical charge q, voltage vC and capacitance C , and at port 2
to an inductor with flux Φ , current iL and inductance L. Adding
the constitutive relations of the capacitor q = C vC and of the
inductor Φ = L iL, one obtains the extended Lagrangian subspace
Ltot represented by

Ptot = diag

⎛⎜⎝
⎡⎢⎣
N1

N2
1

1
N2

N1

⎤⎥⎦ ,

[
C 0
0 L

]⎞⎟⎠ , Stot = diag (S, I2)

in the energy variables ϕ1, ϕ2, q, Φ, and co-energy variables
v1, v2, iC , vL. The total Dirac structure Dtot of the system is given
by the matrices Ktot = I4 and

Ltot =

⎡⎢⎣ 0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤⎥⎦
This defines a gpH DAE system given as in (16) or (21).

3. Algebraic constraint representations

In this section we further analyze Dirac and Lagrange alge-
braic constraints. First we elaborate on different representations
of them.

Consider a Dirac structure D ⊂ X × X ∗. Denote as before by
π : X×X ∗

→ X the projection onX , andbyπ∗
: X×X ∗

→ X ∗ the
projection on X ∗. The subspaceD ∩ (0×X ∗) defines the conserved
quantities of any corresponding pH DAE system [5,3], while π∗(D)
defines the Dirac algebraic constraints.

Following [14] the bilinear form∆ on the subspaceπ∗(D) ⊂ X ∗

given as

∆(π∗(v), π∗(w)) := ⟨π∗(v) | π (w)⟩, v, w ∈ D (23)

is well-defined and skew-symmetric. Conversely [14], any skew-
symmetric form on a subspace of X ∗ defines a Dirac structure
D. Thus Dirac structures are in one-to-one correspondence with
skew-symmetric forms defined on subspaces of X ∗. Furthermore,
it follows [4] that any Dirac structureD ⊂ X ×X ∗ can be embedded
into the graph of a skew-symmetric map on an extended space.

Proposition 3.1. Consider any Dirac structure D ⊂ X × X ∗, and
suppose π∗(D) ⊂ X ∗ is (n − k)-dimensional. Define Λ∗

:= Rk. Then
there exists a full-rank n × k matrix G and a skew-symmetric n × n
matrix J extending the skew-symmetric form ∆ in (23), such that D



A. van der Schaft, B. Maschke / Systems & Control Letters 121 (2018) 31–37 35

is given as the set of all points (f , e) ∈ X × X ∗ satisfying for some
λ ∈ Λ∗

− f = Je + Gλ, 0 = GT e (24)

In fact, G is such that kerGT
= π∗(D). Conversely, any such equations

for a skew-symmetric map J : X ∗
→ X define a Dirac structure.

Hence any Dirac structure D extends to a Dirac structure D̃ ⊂

X × Λ × X ∗
× Λ∗ given by (̃K , L̃) defined as

K̃ =

[
I 0
0 I

]
, L̃ =

[
J G

−GT 0

]
: X ∗

× Λ∗
→ X × Λ (25)

Analogously, cf. Proposition A.3, any Lagrangian subspace L ⊂

X × X ∗ gives rise to the well-defined symmetric bilinear form on
π (L)

Σ(π (v), π (w)) := ⟨π∗(v) | π (w)⟩, v, w ∈ L (26)

Conversely any symmetric bilinear formon a subspace ofX defines
a Lagrangian subspaceL. Thus Lagrangian subspaces are in one-to-
one correspondence with symmetric forms defined on subspaces
of X .

Furthermore, analogously to the Dirac structure case, cf. Propo-
sition A.3, any Lagrangian subspace can be embedded into the
graph of a symmetric mapping on an extended space.

Proposition 3.2. For any Lagrangian subspace L there exists full-
rank n × k matrix M and a symmetric n × n matrix Q extending the
symmetric form Σ in (26) such that L is given as the set of all points
(x, e) ∈ X × X ∗ satisfying for some µ ∈ M := Rk

e = Qx + Mµ, 0 = MT x (27)

In fact, M is such that kerMT
= π (L). Conversely, any such equations

for a symmetric map Q : X → X ∗ define a Lagrangian subspace.

Hence any Lagrangian subspace extends to a Lagrangian sub-
space L̃ ⊂ X × M × X ∗

× M∗ given by a pair (̃P, S̃) defined as

P̃ =

[
I 0
0 I

]
, S̃ =

[
Q M
MT 0

]
: X × M → X ∗

× M∗ (28)

Note that one can associate with (27) the constrained optimization
problem of extremizing 1

2x
TQx under the constraint MT x = 0, or,

using Lagrange multipliers, the unconstrained optimization (over
x, µ) of 1

2x
TQx+µTMT x, with π (L) the constrained state space and

L ∩ (X × 0) the set of constrained extrema.

3.1. From Dirac to Lagrange constraints, and back

These results canbe employed as follows. Consider any gpHDAE
system (D,L), withD given by (K , L) andL given by (P, S). Thenwe
can convert its Dirac algebraic constraints into Lagrange algebraic
constraints as follows. Define the extended Dirac structure D̃ given
by (̃K , L̃) as in (25). Furthermore, define the extended Lagrangian
subspace L̃ ⊂ X × Λ × X ∗

× Λ∗ by specifying

P̃ :=

[
P 0
0 0

]
, S̃ :=

[
S 0
0 I

]
, (29)

i.e., L̃ = L×0×Λ∗. This corresponds to the parametrizing extended
state vector z̃ =

[
x
λ

]
, and a Hamiltonian H̃(z̃) given as

H̃(z̃) =
1
2
z̃T S̃T P̃ z̃ =

1
2
xT STPx (30)

(thus reducing in value to the original Hamiltonian function). The
resulting gpH DAE system on the extended space is given as[
I 0
0 I

][
P 0
0 0

][
ẋ
λ̇

]
=

[
J G

−GT 0

][
S 0
0 I

][
x
λ

]
(31)

It is directly checked that any solution of (31) projects to a solution
of the original gpH DAE system, and conversely any solution of
the original gph DAE system is the projection of a solution of
(31). Thus the gpH DAE system with Dirac and Lagrange algebraic
constraints has been converted into a gpH DAE system in the
extended state vector z̃ with only Lagrange algebraic constraints.
This underlies some of the examples in [6], and shows that the
framework adopted in [6] (which is not employing Dirac algebraic
constraints) is in this sense general enough for the analysis of gpH
DAE systems.

Analogously, we may as well convert the Lagrange algebraic
constraints of the gpH DAE system (D,L) into additional Dirac
algebraic constraints on an extended space. Consider for this pur-
pose the extended Lagrangian subspace L̃ given by (̃P, S̃) as in (28),
corresponding to the Hamiltonian H̃(x̃) =

1
2x

TQx + xTMµ. Then
define the extended Dirac structure D̃ ⊂ X × M × X ∗

× M∗ by
specifying

K̃ :=

[
K 0
0 0

]
, L̃ :=

[
L 0
0 I

]
, (32)

i.e., D̃ = D × M × 0. The resulting gpH DAE system is given as[
K 0
0 0

][
I 0
0 I

][
ẋ
µ̇

]
=

[
L 0
0 I

][
Q M
MT 0

][
x
µ

]
(33)

Thus, dually, we have converted the gpH DAE system with Dirac
and Lagrange algebraic constraints into a pH DAE system on an
extended space with only Dirac algebraic constraints. These two
conversions, using ‘generalized Lagrange multipliers’ λ or µ, are
especially useful for simulation of gpH DAE systems; see also [6].

Example 3.3. Consider the system in Example 2.10, where we
additionally impose as in Example 2.7 the kinematic constraint
q̇1 = 0. The skew-symmetric map L̃ as in (25) is given as

L̃ =

⎡⎢⎢⎢⎣
0 0 1 0 0
0 0 0 1 0

−1 0 0 0 1
0 −1 0 0 0
0 0 −1 0 0

⎤⎥⎥⎥⎦ ,

where the scalar λ corresponds to the constraint force for the
kinematic constraint q̇1 = 0. The extended Lagrangian subspace
L̃ as in (29) is specified by (cf. the expressions of P, S in (22))

S̃ =

⎡⎢⎢⎢⎢⎢⎢⎣

k1 −1 0 0 0
0 1 0 0 0

0 0
1
m1

0 0

0 0 0
1
m2

0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , P̃ =

⎡⎢⎢⎢⎣
1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎦
This yields the following gpH DAE system as in (31)⎡⎢⎢⎢⎣
1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
q̇1
q̇2
ṗ1
ṗ2
λ̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 1 0 0
0 0 0 1 0

−1 0 0 0 1
0 −1 0 0 0
0 0 −1 0 0

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣

k1 −1 0 0 0
0 1 0 0 0

0 0
1
m1

0 0

0 0 0
1
m2

0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
q1
q2
p1
p2
λ

⎤⎥⎥⎥⎦
Example 3.4 (Singular Optimal Control). This example does not
originate from physical systemmodeling, but instead from optimal
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control, and is partly based on [11] (see also [2] and references
quoted in there). Consider the totally singular optimal control
problemofminimizing a quadratic cost criterion 1

2

∫ τ

0 qT (t)Gq(t)dt ,
with G = GT

≥ 0, over the control system q̇ = Aq + Bu with
q ∈ Rn, u ∈ Rm. Define the optimal control Hamiltonian

H(q, p, u) = pT (Aq + Bu) +
1
2
qTGq

with p ∈ Rn the co-state vector. Application of Pontryagin’s Maxi-
mum principle leads to the consideration of the pH DAE system[q̇
ṗ
0

]
=

[ 0 In 0
−In 0 0
0 0 Im

]⎡⎣G AT 0
A 0 B
0 BT 0

⎤⎦[q
p
u

]
involving Dirac algebraic constraints. On the other hand, the sys-
tem can be rewritten as a gpH DAE system in the (q, p) variables,
having only Lagrange algebraic constraints, with Dirac structure D
given by the graph of −J =

[
0 −In
In 0

]
and Lagrangian subspace

L = {

([
q
p

]
,

[
eq
ep

])
|

[
eq
ep

]
=

[
G AT

A 0

][
q
p

]
+

[
0
B

]
u, BTp = 0}

with u ranging over Rm (playing the role of the generalized La-
grange multiplier vector µ).

4. Conclusions

Following [11], and inspired by [6], we have elaborated on a ge-
ometric definition of generalized port-Hamiltonian DAE systems,
defined by pairs of Dirac structures and Lagrangian subspaces.
For physical system models, the Dirac structure corresponds to
the interconnection structure of the system, while the Lagrangian
subspace corresponds to the definition of their energy. This gen-
eralizes the classical definition of port-Hamiltonian systems by
symmetrizing the role of energy and co-energy variables, and al-
lowing for degenerate energy or co-energy functions. In particular
we analyzed their algebraic constraints and representations as
DAE systems using the kernel or image representations of both
the Dirac structure and the Lagrangian subspace. As a result we
showed how systems with both Dirac and Lagrange algebraic con-
straints can be converted, through the use of generalized Lagrange
multipliers, to a system involving only Lagrange or only Dirac
algebraic constraints. The study of gpH DAE systems, e.g. their
regularity and index properties, appears to be of great interest; see
already [6,9,7,10,2].

Although for clarity of exposition we restricted attention to
systems without energy-dissipation and external variables, the
extension is straightforward by replacing theHamiltonian function
in the standard definition of a pH DAE system by a Lagrangian sub-
space. Important further extensions concern the generalization to
distributed-parameter systems, and to nonlinear systems, replacing
Lagrangian subspaces by Lagrangian submanifolds (see [11]).

Acknowledgments

We thank Volker Mehrmann (TU Berlin) and Hans Zwart
(University of Twente) for very stimulating discussions on port-
Hamiltonian DAEs and their representations.

Appendix

Proposition A.1. A subspace L ⊂ X × X ∗ with dimX = n is
a Lagrangian subspace if and only if there exist n × n matrices P, S
satisfying

STP = PT S, rank
[
ST PT

]
= n (34)

such that (see (15))

L = {(x, e) ∈ X × X ∗
| ∃z ∈ Z = Rn s.t.

[
x
e

]
=

[
P
S

]
z} (35)

Proof. The ‘if’ direction followsby checking that ⟨(x1, e1), (x2, e2)⟩−
= 0 for any two pairs (xi, ei) with xi = Pzi, ei = Szi, i = 1, 2, and
P, S satisfying (34).

For the ‘only if’ direction we note that any n-dimensional sub-
space L can be written as in (35) for certain n × n matrices P, S
satisfying rank

[
ST PT

]
= n. Then take any two pairs (xi, ei) ∈ L

with xi = Pzi, ei = Szi, i = 1, 2. Since L is Lagrangian it follows
that

0 = ⟨(x1, e1), (x2, e2)⟩− = zT2 S
TPz1 − zT1 S

TPz2 =

− zT1 (S
TP − PT S)z2

(36)

for all z1, z2, implying that STP = PT S. ■

Proposition A.2. Consider any Lagrangian subspace L ⊂ X × X∗

with kernel representation (see the previous Proposition A.1)

L = {(x, e) ∈ X × X ∗
| ST x − PT e = 0} (37)

for n × n matrices P, S satisfying (34). Suppose rank P = m ≤ n =

dimX . Then there exists an m-dimensional sub-vector x1 of x ∈ X ,
and a complementary n − m-dimensional sub-vector e2 ∈ X ∗ such
that L is represented as

L = {(x, e) ∈ X × X ∗
|

[
e1
x2

]
= Q̂

[
x1
e2

]
} (38)

with

Q̂ T
[
Im 0
0 −In−m

]
=

[
Im 0
0 −In−m

]
Q̂ (39)

Proof. The proof resembles the proof of a similar statement for
Dirac structures in [16]. Write, possibly after row permutations of
P , PT

=
[
PT
1 PT

2

]
with P1 having m rows and rank P1 = rank P .

Then im PT
2 ⊂ im PT

1 . Furthermore, STP = PT S yields

ST1 P1 + ST2 P2 = PT
1 S1 + PT

2 S2 (40)

Combined with surjectivity of P1 and im PT
2 ⊂ im PT

1 this yields
im ST1 ⊂ im PT

1 + im ST2 . Hence

rank
[
ST2 PT

1

]
= rank

[
ST1 ST2 PT

1 PT
2

]
= n, (41)

thus implying that
[
ST2 PT

1

]
is invertible. In view of (35) we have[

e1
x2

]
=

[
S1
P2

]
z,

[
x1
e2

]
=

[
P1
S2

]
z (42)

implying that[
e1
x2

]
=

[
S1
P2

]([
P1
S2

])−1 [
x1
e2

]
=: Q̂

[
x1
e2

]
(43)

Since L is Lagrangian it follows that for all (xj, ej) ∈ L, j = a, b

xTbea = xTaeb (44)

Writing out xj =

[
xj1
xj2

]
and ej =

[
ej1
ej2

]
this yields

xTb1ea1 − xTa2eb2 = xTa1eb1 − xTb2ea2 (45)

implying equality (39). ■

Proposition A.3. Let L ⊂ X × X ∗ be a Lagrangian subspace. Then

Σ(π (v), π (w)) := ⟨π∗(v) | π (w)⟩, v, w ∈ L (46)
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is a well-defined and symmetric bilinear form on π (L). Furthermore,
the symmetric map induced by Σ can be extended to the symmetric
map S̃ as in (28) with kerMT

= π (L), in such a way that L is given
by (27).

Proof. In order to prove that Σ is well-defined let v1, v2 be such
that π (v1) = π (v2). Then v := v1 − v2 ∈ L satisfies π (v) = 0, and
thus for any w ∈ L

⟨π∗(v) | π (w)⟩ = ⟨π∗(w) | π (v)⟩ = 0 (47)

showing that indeed ⟨π∗(v1) | π (w)⟩ = ⟨π∗(v2) | π (w)⟩ for any
w ∈ L. Symmetry of Σ directly follows from ⟨π∗(v) | π (w)⟩ =

⟨π∗(w) | π (v)⟩ for any two v, w ∈ L. As done in [4] for the Dirac
structure case we may extend the symmetric map induced by Σ

to the symmetric map Q as in the left-upper block of (28). Since L
is Lagrangian it easily follows that L ∩ (0 × X ∗) = π (L)⊥ with ⊥

denoting the orthogonal complement with respect to the duality
pairing between X and X ∗. Define M such that kerMT

= π (L).
Now, let (x, e) ∈ L. Then x ∈ kerMT

= π (L) and e = Qx modulo
(kerMT )⊥ = imM , and thus L is indeed given by (27). ■
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