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Abstract

The electroencephalogram (EEG) is an important noninvasive tool used in the
neonatal intensive care unit (NICU) for the neurologic evaluation of the

sick newborn infant. It provides an excellent assessment of at-risk newborns and
formulates a prognosis for long-term neurologic outcome. In general, the exami-
nation of EEG data requires specific expertise and is performed by visual inter-
pretation of the neonatal EEG by an experienced neurophysiologist or pediatric
neurologist. However this expertise is not readily available on a 24hr basis in most
NICUs. For this reason, methods for the automated analysis of neonatal EEG
data in the NICU can provide valuable information to the clinician facilitating
medical intervention.

Recent advances in signal processing and machine learning techniques have led to
the development of automated analysis of EEG data. These techniques have re-
duced the EEG analysis and interpretation time from hours to minutes, thereby
reducing the burden on neurophysiologists. However, typical EEG signals are
contaminated by extra-cerebral sources known as artefacts and the separation of
actual brain electrical activity from extraneous artefacts is critical to the interpre-
tation of the neonatal EEG which significantly distort the EEG signal. Typically
these artefacts can be grouped into four broad categories: environment (power-
line noise, radio transmitters etc), instrumentation-patient interface (electrode
contacts, head positioning etc), instrumentation (movement of electrode leads),
and physiologic potentials of noncerebral origin (electrocardiogram, electrooculo-
gram, etc). These artefacts makes the interpretation of the EEG difficult, thereby
reducing the performance of the automated EEG analysis.

The aim of this thesis is to develop a system for automatic classification of neona-
tal EEG which can be mainly divided into two parts: (1) classification of neonatal
EEG seizure from nonseizure, and (2) classifying neonatal background EEG into
several grades based on the severity of the injury.

Atomic decomposition techniques use redundant time-frequency dictionaries for
sparse signal representations or approximations. Recently, this technique had
gained importance in the field of EEG (adult and neonatal) classification. In this
thesis the performance of three decomposition techniques, matching pursuit, or-
thogonal matching pursuit and basis pursuit was investigated for neonatal EEG
classification. It was shown that orthogonal matching pursuit provides best clas-
sification at a given decomposition level. Due to this, the orthogonal matching
pursuit was used as a preferred decomposition technique throughout this thesis.

The first novel contribution of this thesis is the development of a novel time-
frequency dictionary coherent with the neonatal EEG seizure states. This dictio-
nary was able to track the time-varying nature of the EEG signal. It was shown
that by using atomic decomposition (AD) and the proposed novel dictionary, the
neonatal EEG transition from nonseizure to seizure states could be detected ef-
ficiently. A new measure known as relative structural complexity was developed
to detect this transition.
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The second novel contribution of this thesis is the development of a neonatal
seizure detection algorithm (NSDA) using several time-frequency features from
the proposed novel dictionary. It was shown that the time-frequency features
obtained from the atoms in the novel dictionary improved the seizure detection
accuracy when compared to that obtained from the raw EEG signal. An AD-
based NSDA using support vector machines was proposed which provided better
seizure detection accuracy at clinically relevant false detections per hour.

The third novel contribution of this thesis is a system for automatic grading of
EEG of term neonates with hypoxic-ischemic encephalopathy (HIE). With the
assistance of a supervised multiclass SVM classifier and several time frequency
features, several methods to automatically grade EEG were explored. In particu-
lar, the Hilbert transform and atomic decomposition methods were compared and
the results were analyzed in detail. Additionally, a novel AD artefact detector is
proposed to improve the performance of the automatic grading system (AGS).
The proposed AGS was shown to obtain state-of-the-art performance of 87% by
using only 8 time-frequency features.

In summary, the novel techniques proposed in this thesis contribute to the ap-
plication of advanced signal processing techniques for automatic assessment of
neonatal EEG recordings.
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Chapter 1
Introduction

We can’t solve problems by using the same kind of thinking we used
when we created them. −−Albert Einstein

1.1 Introduction

The necessity to monitor the functionality of the brain is an important issue in
neonatal intensive care units (NICUs). It is essential to track the progress

of the brain injury caused by insufficient supply of oxygen to the brain which
can lead to hypoxic ischaemic encephalopathy (HIE). Based on the diagnosis, the
clinicians can make decisions about the treatment given to the baby with such
complications.

Compared to modern technologies such as computed tomography (CT) scan or
magnetic resonance imaging (MRI), which only provide the image of the brain
structure at a given instant, it is essential to have a system that can continuously
monitor the functioning of the brain. Electroencephalography (EEG) is a non-
invasive way to monitor brain activities and is the gold standard technology in
NICUs (Boylan et al., 2013, Niedermeyer and da Silva, 2005). Several researchers
have shown that the functional state of the brain can be deduced by studying the
EEG signals (Marret et al., 1997, Watanabe et al., 1999). Due to this, the EEG
is more suitable for long term monitoring of patients and for viewing variation in
neurological state such as seizures and sleep state analysis.

EEG signals are typically of the order of microvolts (µV ) and are usually measured
using metal electrodes placed on the patient’s scalp. The electrical activities of
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the neuronal cells in the brain generate a potential difference between the scalp
electrodes which are recorded in the EEG (Fisch, 1999). Several recent studies
have shown that the information obtained from the EEG signal can be used to
detect and predict abnormalities in the brain such as seizures (Mathieson et al.,
2015), HIE (Ahmed et al., 2014, Löfgren, 2005, Stevenson et al., 2013) etc.

In NICUs, most clinical neurophysiologists evaluate the EEG recordings through
visual inspection which provides intermittent evaluations, and cannot be used for
a continuous bedside monitoring. Moreover visual interpretation of the EEG is
time-consuming and not all NICUs have 24hr access to experienced neurophyi-
ologists. Amplitude-integrated EEG (aEEG) is commonly used to monitor the
brain activity of a patient in NICUs which provides a single or double channel
EEG on a smaller time scale. However, it has been shown that this method is
not robust since the presence of artefacts in the compressed time scale can be
misinterpreted as activity in the brain (Rosén, 2006) and can be less sensitive to
low amplitude seizure events (Toet et al., 2002).

Due to these limitations, it is necessary to develop automated methods for the
analysis and classification of activities in neonatal EEG. The method should be
robust enough for use in a NICU environment which can provide information
about the real-time conditions of the brain. The clinician should be able to
interpret the information obtained from the method for making a decision about
a treatment or to adjust the dosage of a medication. This long term neural activity
monitoring will help to track the development of the status of the patient over
time which enables the clinicians to adjust their treatments actively.

1.2 Aim and scope of this thesis

EEG is the recording that represents the electrical activity of the brain using
sensors placed on the scalp. The electrical activity recorded by EEG can be
classified as normal or abnormal. The EEG has high time resolution (in the
order of ms) and is noninvasive which means there is no pain caused to the
patient. Various activity levels are indicated by the components present in EEG.
There are several applications of EEG which are primarily used for the diagnosis
of sleep disorders and also to study the effect of drugs on the functionality of the
brain.

Several neonatal EEG analysis algorithms reported in the literature either use
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a small dataset of artefact free neonatal EEG or simulated or selective datasets
and report their performance with no apparent validation of results. Moreover,
the lack of datasets that can best represent the real-time situation in the NICU
also hinders the development of automated algorithms. In order to effectively use
automated neonatal EEG analysis systems in real-time, the algorithm must be
robust enough to deal with the variety of EEG signals that may arise in noisy,
medical environments. Here, robustness refers to the ability of the algorithm to
detect a signal of interest with minimum false detections per hour.

The main objective of this thesis is to classify neonatal EEG using Atomic De-
composition (AD) which is a Time-frequency signal analysis technique. Since the
newborn EEG is nonstationary and nonlinear, nonstationary signal analysis is
necessary to capture the time-varying statistical properties of the signal. It has
been shown that AD is well suited for the analysis of EEG signals. The atoms
selected during the decomposition provide meaningful information about the un-
derlying signal. The main advantage of using AD is that an application based
dictionary can be designed. In addition, AD techniques provide high resolution
time-frequency representation. It can also track time-varying properties of EEG
(Durka et al., 2005, Jouny et al., 2003, Rankine et al., 2007).

Automated analysis of neonatal EEG is an important problem in the NICUs. In
NICUs, neonatal seizures and HIE due to perinatal asphyxia occur at a rate of
1-3 per 1000 births (Glass et al., 2009). In order to have a bed-side neonatal
EEG analysis system, the system must be able to transfer the information real-
time to the neurophysiologists in a simpler way. Early detection of the brain
abnormalities in neonates is essential to prevent death or long term neurological
disabilities. In addition, the automated system can also be used to diagnose
and monitor the effect of anti-epileptic drugs given to the patients. A robust,
reliable and automated neonatal EEG analysis is thus essential to aid as a tool
to neurophysiologits for diagnosing neonatal brain functionality.

This thesis is focussed on developing advanced nonstationary signal processing
features for automated analysis of neonatal EEG. Classification of the neonatal
EEG is mainly divided into two parts:

1. Seizure detection - Classification of seizure from nonseizure/background
EEG, and

2. Hypoxic-ischaemic encephalopathy (HIE) grading - Classification of
HIE using EEG based on severity of the brain injury.
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Figure 1.1: Example of a newborn EEG with an obvious seizure event.
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Figure 1.2: Example of different morphologies of newborn EEG seizure.

In seizure detection, the primary aim is to design a novel time-frequency dictio-
nary and develop a neonatal seizure detection algorithm using atomic decom-
position which can significantly improve the performance of previously reported
neonatal seizure detectors. In this methodology, the activities of fixed length
epochs (or segments) of EEG are quantified using a set of features obtained us-
ing atomic decomposition. The set of features obtained are then classified using
machine learning techniques. An example of an EEG segment with a seizure
event is shown in figure 1.1. Examples of several seizure morphologies (artefact
free) across different patients is shown in figure 1.2 clearly indicating the rhyth-
mic characteristics of neonatal EEG seizure activity with time varying amplitude
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Figure 1.3: Example of a newborn EEG with a seizure event and several artefacts
in nonseizure.

and frequencies. In this case (figure 1.2), the seizure events can be easily dis-
tinguished from non-seizure due to the absence of artefacts. However figure 1.3
shows a sample EEG with several artefacts which makes it difficult to identify
the seizure event.

HIE grading, involves the grading of the EEG into four categories based on the
severity of the brain injury or HIE (Murray et al., 2009). In clinical practice,
both seizure detection and grading HIE requires the presence of highly qualified
neurophysiologists and this expertise is not widely available in all NICUs. Since
1992, automated neonatal seizure detection has been developed, however none
of them are robust enough for the clinical use (Faul et al., 2005). Automatic
grading of HIE using EEG is relatively a new area and is being developed since
2011 (Korotchikova et al., 2011). Examples of the different grades of clean EEG
based on the severity of HIE are shown in figure 1.4. These are typically corrupted
by artefacts (shown in figure 1.5) and represent a difficult classification problem
to automate.

1.3 Literature review

This section reviews some of the algorithms and their accuracy for the detection
of neonatal seizures and EEG based HIE grading.
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1.3.1 Neonatal seizure detection

Several neonatal seizure detection methods have been proposed using many signal
processing techniques which can be divided into two main categories - stationary
and nonstationary. Since neonatal EEG is nonstationary, the performance of
the methods using stationary techniques can lead to suboptimal performance
(Boashash and Mesbah, 2003). Only some of the techniques relevant to this
thesis are reviewed in this section.

1.3.1.1 Initial methods using stationary techniques

Liu et al. first proposed a method for detecting seizures in neonates (Liu et al.,
1992). In this method, the periodic or rhythmic discharges of the electrographic
seizures in the newborn which are distinctively different from the normal back-
ground cerebral activity were utilised to identify the electrographic seizure activ-
ity. Autocorrelation analysis was used for detecting seizures using a novel scoring
system known as scored autocorrelation moment (SAM) analysis on a dataset of
approximately 1h of EEG (from 9 neonates in total). SAM analysis showed a
sensitivity of 84% and a specificity of 98%.

The method proposed by Gotman et al. primarily used frequency domain char-
acteristics from the frequency spectrum of the EEG (Gotman et al., 1997) to
detect neonatal seizures. The method was developed using EEGs obtained from
55 newborns, recorded at 3 hospitals (a total of 281 h of recordings containing
679 seizures). An accuracy of 78% was reported at a false detection rate of 1.7/h.
Celka et al. proposed a seizure detector based on a model of the background
EEG (Celka and Colditz, 2002a). Singular values corresponding to the complex-
ity of the signal were used to determine the presence of seizure in the EEG. An
accuracy of 93% was reported at a false detection rate of 4/h. However, based
on a study by Faul et al., the performance of these methods was found not suit-
able in NICU (Faul et al., 2005) and the authors proposed the necessity for more
advanced features and classification algorithms.

A major problem with these methods is the assumption of stationarity. Since the
newborn EEG signal is nonstationary, the poor performance of these methods is
due to the overlap of frequency characteristics between classes which may result
in false detections even during the absence of seizures (Boashash and Mesbah,
2001, Rankine et al., 2005). Several model based approaches have also been
proposed in literature which is primarily based on the model of the newborn
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EEG (Celka and Colditz, 2002b, Da Silva et al., 1974, Roessgen et al., 1998). The
drawback of these methods is that the preprocessing stage uses a time-invariant
model of the neonatal EEG for whitening the signal. Since neonatal EEG is a
dynamic nonstationary signal, some of the sections of background EEG may not
be whitened properly and can lead to false detections.

1.3.1.2 Methods using nonstationary techniques

The wavelet transform (WT) is a popular nonstationary signal processing tech-
nique that separates a transient signal into different frequency scales. Several
seizure detection algorithms have been proposed using the features obtained from
the WT (Nagasubramanian et al., 1997, Zarjam et al., 2003). These methods were
trained and tested on a small database and since EEG patterns vary significantly,
their performance is yet to be assessed on large recordings of EEG.

A number of seizure detection systems have been proposed using time-frequency
representation (TFR) analysis of neonatal EEG. Due to the time-varying fre-
quency content of the EEG signal, this representation has an advantage of track-
ing the variation of frequency over time. The quadratic time-frequency distribu-
tion (QTFD) is a popular TFR method that has been used in development of
seizure detection algorithms1.

A seizure detection method based on detecting repetitive spike activity in a high
frequency region of QTFD was proposed in (Hassanpour et al., 2004). It was
shown that the singular values and singular vectors obtained from the singular
value decomposition (SVD) of the TFR using QTFD provide useful information
about seizures and can be used in seizure detection in Hassanpour et al. (Hassan-
pour et al., 2003). However, these methods require further validation as only a
small dataset was used to test the algorithm (50 minutes of EEG from 5 patients).

Several seizure detection methods for adult EEG using atomic decomposition
(AD) have been proposed (Bergey and Franaszczuk, 2001, Jouny et al., 2003).
The main advantages of AD are that it can provide an artefact free, high reso-
lution TFR (Blinowska and Durka, 2001) and also track the nonlinearity of the
signal (Bergey and Franaszczuk, 2001). The parametric form of the signal can
also be obtained using AD (Durka, 2004).

Rankine et al. demonstrated that AD using matching pursuit (MP) can be used to

1more details about TFR and QTFD are given in chapter 3
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detect changes in the signal states of the EEG (Rankine et al., 2007). Recently,
AD was used for the detection of neonatal EEG seizure (Khlif et al., 2008).
The performance of these methods was based on optimum thresholds and is not
practical as it requires apriori knowledge of the data. Moreover, their performance
was validated on a small artefact free data set and their performance is yet to
be reassessed in the presence of artefacts. The summary of the performance of
some of the recent advanced classifier based neonatal seizure detection methods
is given in Table 1.1 and are used in thesis for the purpose of comparison.

Table 1.1: Performance of some of the neonatal seizure detection methods. (∗
Authors use database obtained from Cork University Maternity Hospital which
is also used in this thesis).

Authors No. of Dataset Seizure False detections No. of
features (hours) detection rate(%) per hour neonates

Navakatikyan et al. 1 24.4 87 2 55
(Navakatikyan et al., 2006)

Greene et al. 12 154 81.4 3.15 17
(Greene et al., 2007)
Deburchgraeve et al. 1 217 75 0.66 26

(Deburchgraeve et al., 2008)
Mitra et al. 8 121 80 0.74 76

(Mitra et al., 2009)
Temko et al.∗ 55 268 89 1.0 17

(Temko et al., 2011)
Stevenson et al.∗ 3 826 79 1.0 18

(Stevenson et al., 2012)
Mathieson et al. 55 4060 75 0.36 70

(Mathieson et al., 2015)

1.3.2 Hypoxic-ischaemic encephalopathy grading

Hypoxic-ischaemic encephalopathy (HIE) is caused due to the lack of oxygen
to the neonatal brain during birth and is the most common cause of long-term
neonatal neurological dysfunction (Vannucci, 2000) or sometimes even neonatal
deaths with an incidence of 2-3 per 1000 births (Graham et al., 2008). It was
shown that the visual interpretation of the background EEG is a useful tool in
monitoring the recovery of brain activity after HI injury (Murray et al., 2009,
Toet et al., 1999). Some of the EEG characteristics such as amplitude, frequency
content, sharp waves, symmetry and synchrony measures are visualised to classify
the background EEG as normal or abnormal. The abnormal EEG is further
graded into four types based on the degree of abnormality or severity of the brain
injury.
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A first attempt to classify HIE-EEG based on the quantitative analysis of back-
ground EEG was investigated by Korotchikova et al. (Korotchikova et al., 2011).
In this approach, 9 quantitative EEG (qEEG) measures that replicate the neuro-
physiologist’s approach of visually classifying neonatal EEG were used to grade
HIE. The authors reported a classification accuracy of 91% on a dataset consist-
ing of recordings of 54 full term neonates with HIE (approximately one hour long
EEG selected from each recording). The data was recorded in the NICU of Cork
University Maternity Hospital, Cork, Ireland2. However, the results obtained
were estimated on artefact free training data and their performance dropped to
72% when validated on a dataset with artefacts.

Stevenson et al. extended this study by using features obtained from the back-
ground EEGmodel (Stevenson et al., 2013). An automated grading system (AGS)
using 15 features from the model of background EEG was proposed in this study.
The AGS was trained on artefact free data and tested on unseen data with arte-
facts. The AGS provided an accuracy of 83.3% and it was reported that the
majority of misclassifications were due to the presence of artefacts and several
abnormal patterns in the EEG such as sharp waves, asymmetry and asynchrony.

Ahmed et al. proposed an AGS based on a cross disciplinary method of using
support vector machine and supervectors (Ahmed et al., 2014). This system used
a total of 55 features which provided a generic EEG description computed from
the time, frequency and information theory domains. The AGS was trained and
tested on data with artefacts and an accuracy of 85% was reported. The dataset
recorded in the NICU of Cork University Maternity Hospital, Cork, Ireland has
been used in all these methods (Ahmed et al., 2014, Korotchikova et al., 2011,
Stevenson et al., 2013).

1.4 Thesis contributions

The following novel contributions are presented in this thesis:

1. A novel time-frequency (TF) dictionary consisting of atoms coherent with
the newborn EEG seizure was developed. Using this TF dictionary and a
novel signal complexity measure referred as relative structural complexity,
an atomic decomposition based neonatal seizure detection algorithm that
could classify seizure from nonseizure states was developed. (Chapter 4 )

2Same dataset is used in this thesis
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2. A robust neonatal seizure detection algorithm using nonstationary TF analy-
sis techniques. Several TF features from the novel dictionary were derived
and improved the performance of NSDA using support vector machine.
(Chapter 5 )

3. A novel atomic decomposition based automated HIE grading system was
developed. This also includes a novel atomic decomposition based artefact
detector. (Chapter 6 )

Novel Time-frequency

dictionary for seizure

detection

Neonatal EEG

Chapter 4

Seizure detection using

atomic decomposition 

and Time frequency 

distribution

Chapter 5

Neonatal EEG

Automatic grading of

HIE using

atomic decomposition

and support

vector machine

Chapter 6

Conclusions

and future

work

Seizure detection HIE grading

Chapter 7

Figure 1.6: Block diagram of the major contributions of the thesis.

1.5 Outline of thesis

The thesis is organized into the following chapters:

Chapter 1 describes the aim and scope of this thesis and also reviews some
earlier techniques for neonatal seizure detection and HIE grading. Some of their
limitations are also described. The objectives and major contributions of this
thesis are also described in this chapter.

Chapter 2 provides an introduction to the characteristics of neonatal EEG sig-
nal. The characteristics and morphology of the EEG signal in terms of both
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clinical and signal processing perspectives are summarized.

Chapter 3 introduces several time-frequency methods for analyzing neonatal
EEG signals. This includes Fourier and wavelet transforms, atomic decomposition
(AD) and quadratic time-frequency distribution techniques (QTFD). The analysis
of the EEG signals using these methods is demonstrated. Some advantages of
atomic decomposition methods over traditional stationary analysis methods is
also addressed.

Chapter 4 proposes a novel TF dictionary (referred to as the pseudo-periodic
Duffing dictionary) that is coherent with neonatal EEG seizure structures. This
TF dictionary uses a Duffing oscillator based neonatal EEG seizure model to
generate the atoms. The performance of several atomic decomposition methods
to discriminate seizure from nonseizure are compared. It was concluded that
the orthogonal matching pursuit provides best discrimination and is used in this
thesis.

Using a signal complexity measure referred as relative structural complexity, an
atomic decomposition neonatal seizure detection algorithm (NSDA) is developed.
The decomposition techniques use complexity measure from the TF dictionary
to detect seizure in EEG signal. The dataset employed throughout this thesis
for seizure detection is detailed and the performance metrics and validation tech-
niques are explained. The patterns in the EEG contributing to false alarms and
the properties of small duration seizures which are not detected by the NSDA
were also analyzed. The performance of the proposed NSDA is compared with the
performance of several state-of-the-art TF dictionaries and also neonatal seizure
detectors.

Chapter 5 proposes a support vector machine (SVM) based NSDA using time-
frequency features obtained from the pseudo-periodic Duffing dictionary. The ro-
bustness of TF features for neonatal seizure detection was studied in this chapter.
The proposed NSDA uses several QTFD based TF features for seizure detection
using SVM. It is shown that the TF features obtained from pre-processed EEG
signal provide poor performance at clinically relevant false detection thresholds
in the larger dataset used in this thesis. Alternatively, an AD based NSDA using
TF features obtained from the novel pseudo-periodic Duffing dictionary was pro-
posed which provided improved performance when compared to the TF features
obtained directly from the EEG signal.

The performance of the proposed NSDA was also compared with several state-of-
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the-art NSDA’s. It was concluded that the TF features obtained from the QTFD
of the pseudo-periodic Duffing dictionary were robust and could be incorporated
in the NSDA using larger feature-set used proposed in literature.

Chapter 6 introduces a novel AD based automated HIE-EEG grading system
(AGS) using SVM. The proposed AGS uses several amplitude and frequency
features obtained from the QTFD of the EEG signal. Several state-of-the art
methods to extract these TF features were also studied and their performance is
reported in this chapter.

It was observed that the presence of artefacts significantly reduced the perfor-
mance of the AD based AGS. A novel AD based patient independent artefact
detection system is proposed to improve the performance of the proposed AD
based AGS. Only the artefacts that were ≥ 16s in duration were considered in
this system since their contribution was higher for the misclassifications by the
AGS. A multiclass SVM was used in this study for classification of HIE-EEG.
Several limitations of AD based methods to automatically grade HIE-EEG are
also discussed in this chapter.

Chapter 7 summarises the main findings of this thesis and also provide a brief
overview of individual chapters. Several limitations of the proposed methods in
the thesis are discussed and some future research directions are proposed.

1.6 Publications arising from the thesis

Journal:

1. Nagaraj, S.B., Stevenson, N.J., Marnane, W.P., Boylan, G.B., Lightbody,
G., "Neonatal seizure detection using atomic decomposition with a novel
dictionary", IEEE Transactions on Biomedical Engineering, vol. 61, no. 11,
pp. 2724–2732, Nov. 2014.

2. Nagaraj, S.B., Stevenson, N.J., Marnane, W.P., Boylan, G.B., Light-
body, G., "Neonatal seizure detection using atomic decomposition and time-
frequency distribution features from a novel dictionary" to be submitted to
Medical Engineering & Physics.

3. Nagaraj, S.B., Stevenson, N.J., Marnane, W.P., Boylan, G.B., Light-
body, G., "Automated grading of Neonatal EEG with Hypoxic ischaemic
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encephalopathy using Atomic decomposition" to be submitted to Medical
Engineering & Physics.

Conference:

1. Nagaraj, S.B., Stevenson, N.J., Marnane, W.P., Boylan, G.B., Lightbody,
G., "Robustness of Time Frequency Distribution based Features for Auto-
mated Neonatal EEG Seizure Detection," Engineering in Medicine and Bi-
ology Society (EMBC), 2014 Annual International Conference of the IEEE,
pp. 2829–2832, Aug. 2014.

2. Nagaraj, S.B., Stevenson, N.J., Marnane, W.P., Boylan, G.B., Lightbody,
G., "A novel dictionary for neonatal EEG seizure detection using atomic de-
composition," Engineering in Medicine and Biology Society (EMBC), 2012
Annual International Conference of the IEEE , pp. 1073–1076, Aug. 2012.
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Chapter 2
Overview of Neonatal EEG

Whoever undertakes to set himself up as a judge of Truth and
Knowledge is shipwrecked by the laughter of the gods. −−Albert
Einstein

2.1 Introduction

The electroencephalogram (EEG) is an important tool used in neonatal inten-
sive care units (NICUs) to evaluate the function of the neonatal brain. In

1938, Loomis et al. and Smith et al. published the first EEG recordings of term
babies (Loomis et al., 1936, Smith, 1938) and cerebral activities of the preterm
babies was first published by Hughes et al. (Hughes et al., 1951). Based on
these early works, the field of neonatal EEG has been developed extensively for
diagnosis of the infant brain.

EEG is an excellent, noninvasive method to assess at-risk newborns and is used
to formulate a prognosis for long-term neurological outcome. EEGs are primarily
used for (see chapter 4 of (Aminoff, 2012)):

1. assessment of the central nervous system (CNS),

2. diagnosis and treatment of neonatal seizures,

3. estimation of the conceptional age (CA), and

4. determination of prognosis and long-term neurological outcome.

In this chapter, the basic characteristics of neonatal EEG signal are reviewed.
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The international standard for recording neonatal EEG is described in section
2.2. The descriptions of neonatal EEG signal characteristics including seizure,
normal and abnormal background states are given in section 2.3. A description
of different types of background EEG and their grading depending on the severity
of the brain injury is also presented in this section.

The following terms (defined in (Itai Berger, 2008)) will be frequently used in
this thesis for the description of neonatal EEG:

• Gestational age (GA): Time from the first day of the last menstrual period
to delivery (in weeks).

• Conceptional age (CA): Time from birth in additional to gestational age
(in weeks).

• Continuous tracing: Continuous (or uninterrupted) EEG activities in all
channels (or leads).

• Discontinuous tracing: Discontinuous or interrupted EEG activities by pe-
riods of inactivity of variable length.

• Active sleep: EEG activities characterized by irregular breathing pattern
and by facial movements including ocular movements and gentle body move-
ments, which is also called Rapid Eye Movement (REM) sleep.

• Quiet sleep: Characterized by regular breathing pattern and some body
movements, which is also referred to as Non REM (NREM) sleep.

• Interburst intervals (IBIs): Inactive periods in the EEG.

• Asynchrony: Refers to the EEG activity between hemispheres during dis-
continuous tracing.

• Asymmetry: Voltage difference between two hemispheres.

• Trace alternant: EEG activity alternating between low and high voltages.

2.2 Electroencephalogram

EEG can be described as a record of the electric signal generated by the coopera-
tive action of brain cells at different locations throughout the brain (Niedermeyer
and da Silva, 2005). The main advantage of using the EEG is that it provides con-
tinuous monitoring of brain activity rather than the snapshot provided by modern
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technologies such as computerized tomography (CT) scan and magnetic resonance
imaging (MRI). This helps clinicians or neurophysiologists to continuously moni-
tor changes in brain activity, such as the reaction to treatment/medication. This
makes EEG an ideal choice for the long term continuous monitoring of neonatal
brain activities. The EEG can be measured by placing electrodes on the scalp
(scalp EEG) or directly on the cortex, known as the electrocorticogram (ECoG).
The International 10-20 System which is used for the placement of recording
electrodes (Jasper, 1958) is shown in figure 2.2 where a letter and a number is
assigned to individual electrodes. In this system, the placement of electrodes
is determined by measurements from four standard positions on the head - the
nasion, inion, and right and left preauricular points. In this 10-20 system, the
letters refer to the Central, Frontal, Occipital, Parietal, and Temporal lobes of
the brain; even numbers correspond to right hemisphere and odd numbers cor-
respond to left hemisphere of the brain. The electrode placed on the mid-line,
which is a reference electrode is denoted as Z. There is no fixed optimal number
of electrodes, but clinical experience has shown that nine electrodes are sufficient
to characterize the neonatal EEG (Mizrahi et al., 2004).

Typically, the amplitude of the EEG is in the order of microvolts (µV ) and the
amplified potential differences between electrodes are then recorded as EEG. In
general, predetermined patterns, or montages are used to connect the electrodes
with amplifiers to record EEG in sequence. The potential difference can be mea-
sured either between pairs of electrodes known as a bipolar montage or between
individual electrodes and a common reference point known as monopolar montage
(Bozek-Juzmicki et al., 1994). In this thesis, the EEG recordings were recorded in
the NICU of the Cork University Maternity Hospital, Cork, Ireland using eight
EEG channels in the bipolar montage: F4-C4, C4-O2, F3-C3, C3-O1, T4-C4,
C4-Cz, Cz-C3, and C3-T3. The bipolar montage is preferred clinically as it tends
to result in the most interpretable EEG (see chapter 2 of (Rennie et al., 2008)).
Figure 2.1 shows a newborn in NICU with EEG electrodes placed on the scalp for
recording and figure 2.3 shows a sample EEG recording using the bipolar montage
used in this thesis.

2.3 Characteristics of the neonatal EEG

The EEG of a neonate shows well defined patterns related to different activities
in the brain such as awake, active and quiet sleep etc. Depending upon the
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Figure 2.1: A neonate in the NICU (Cork University maternity Hospital, Cork,
Ireland). EEG electrodes are placed on the scalp for recording.
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Figure 2.2: Illustration of a birds-eye-view of the International 10-20 electrode
placement system used for neonates.

activities in the EEG, it can be categorized as normal or abnormal, or pathological
(indicative of disease). In this thesis the dataset obtained from full term neonates
(GA ranging between 39-42 weeks) was used, so some of the characteristics of full
term neonatal EEG are presented in this section.
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Figure 2.3: Example of a 1-minute neonatal EEG recording using the bipolar
montage from the NicOne EEG machine in the neonatal intensive care unit at
Cork University Maternity Hospital. The EEG is sampled at a frequency of 256
Hz.

2.3.1 Normal background EEG

The patterns of the neonatal EEG become stable with maturation i.e., imma-
ture activities disappear and mature activities become prominent. In full-term
neonates, the background EEG activities consist of stable patterns without signif-
icant change in amplitude (voltage) and frequency (Lombroso, 1985, Niedermeyer
and da Silva, 2005). Based on the frequency range, the EEG can be grouped into
different bands as shown in Table 2.1 (Gevins and Rémond, 1987, Lombroso,
1985). In neonates, most cerebral activities are found in the range 1-20 Hz and
it is important the information in these extremely low frequencies should not be
filtered away (Lofhede et al., 2006).

Table 2.1: Properties of some common EEG rhythms (Thomas et al., 2011)

Name Frequency range properties
δ (Delta) 0-4 predominant in Infants.
θ (Theta) 4-7 predominant in children.
α (Alpha) 7-12 Visible during awake, resting with closed eyes.
β (beta) above 12Hz High-frequency activities during active state.

2.3.2 Abnormal background EEG

Several abnormal patterns are observed in the neonatal EEG. However, only
certain patterns that are most commonly seen and within the scope of this thesis

24



are presented here. Additional discussions on the abnormal patterns of EEG in
full-term newborns can be found in (Aminoff, 2012).

A spike is defined as "a transient, clearly distinguished from the background
activity, with a pointed peak at conventional paper speed and a duration between
20-70msec" (Niedermeyer and da Silva, 2005). The main component is negative
with a variable amplitude. The spikes can be distinguished from the background
activity based on the wave morphology and amplitude. In several cases, the
voltage of the spike is significantly greater than the background activity. However,
if the voltages are equal, then the spike can be identified by its faster character
(or shorter duration).

A sharp wave is defined as "a transient, clearly distinguished from background
activity, with pointed peak at conventional paper speeds and duration of 70-
200msec, i.e., more than approximately 1/14 to 1/5 sec" (Niedermeyer and da Silva,
2005). The rising phase of the sharp wave and spikes have the same order of mag-
nitude but the descending phase is prolonged in sharp waves. An example of sharp
wave is shown in figure 2.4.
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Figure 2.4: Example of a sharp wave in 1-minute neonatal EEG.

Electrocerebral Inactivity (Isoelectric) pattern is characterized by extremely low
voltage activities. This implies that there is no visible cerebral electrical activity,
even at high sensitivities. This EEG pattern is seen in various clinical settings
mostly due to severe asphyxia, circulatory collapse, and massive intracerebral
hemorrhage. The majority of neonates with inactive EEGs either die in the
neonatal period or survive with severe neurological deficits (Aminoff, 2012).

Burst-Suppression (Paroxysmal) pattern is characterized by an isoelectric back-
ground activity (amplitude < 10µV) interrupted by nonperiodic bursts of abnor-
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mal activity (amplitude > 10µV): bursts or short runs of diffuse or focal alpha
or theta activity that is occasionally rhythmic lasting approximately 1-10 sec-
onds. In the most severe form, this pattern is invariant and minimally altered
by stimuli, and persists throughout waking and sleeping states (Aminoff, 2012,
Niedermeyer and da Silva, 2005). Figure 2.5 shows an example of such a pattern.
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Figure 2.5: Example of burst suppression activity (green-suppression, pink-burst)
in 1 minute neonatal EEG. Note that the EEG is inactive for most of the time
with some bursts at frequent intervals.

Ictal EEG or seizures

Neonatal seizures result from conditions such as hypoxic ischaemic encephalopa-
thy (HIE), stroke, meningitis and occur at the rate of 1-3/1000 births (Volpe,
2008). Seizures are caused by an imbalance between the excitatory and inhibitory
influences in the neonatal brain and may or may not give rise to clinical symptoms
(Niedermeyer and da Silva, 2005). Seizures can be focal (appear in one channel),
multi-focal (appear in two or more channels) and generalised (appear in all chan-
nels). While the risk of developing epilepsy is significantly increased in these
neonates, the majority will not experience seizures in their adult life (Garcias
Da Silva et al., 2004). Neonatal seizures occur within several days of birth and
are associated with increased damage to the brain (Björkman et al., 2010, Lynch
et al., 2012, Wusthoff et al., 2011). In general, seizures can be classified into two
groups: Partial (focal, local) seizures which affects a limited region of the brain
and Generalized seizures (convulsive or nonconvulsive) affecting the whole brain
(Niedermeyer and da Silva, 2005).

The patterns in ictal EEG are highly variable consisting of a variety of frequencies
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with complex and varied morphologies (Aminoff, 2012). The seizure patterns are
more highly structured and characterized in the newborn EEG, by periods of
rhythmic or repeated sharp waves (Gotman et al., 1997, Pellock et al., 2007). An
example clearly indicating the rhythmic characteristics of neonatal EEG seizure
activity is shown in figure 2.6 (channels corresponding to F3, C3, F4, C4).

There is no "well-defined" minimum duration for ictal patterns in the neonatal
EEG. Most of the clinicians specify a limit of 10 seconds to consider ictal pattern
as a seizure event, however some specify a limit of 20 seconds (Clancy and Legido,
1987, Niedermeyer and da Silva, 2005).
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Figure 2.6: Example of a seizure activity in a 1-minute neonatal EEG. Note the
high amplitude, repetitive, rythmic, spiking characteristics of seizure in channels
corresponding to F3, C3, F4, C4.

Hypoxic-ischaemic encephalopathy

Hypoxic-ischaemic encephalopathy (HIE) is the brain injury caused by the lack of
supply of oxygen to the brain. HIE due to fetal or neonatal asphyxia is among the
leading cause of death or severe brain damage/impairment among infants with
an incidence of 2-3/1000 births (Graham et al., 2008, Inder and Volpe, 2000).
Within the first 24 hours of life, the infant may develop seizures with abnormal
EEG results. Some of the clinical symptoms includes coma, irregular breathing,
absence of neonatal reflexes, disturbances of ocular motion, irregular heart rate
and blood pressure (Fenichel, 2009).

The severity of the HIE insult determines the outcome of HIE. Mild HIE can
result in a normal outcome, moderate encephalopathy can increase the risk of
neurological disability to 20-40% and severe encephalopathy can lead to severe
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neurological disability, or in some cases, death. The grading of HIE can be done
either by clinical assessment or by using the electroencephalogram (EEG) or am-
plitude integrated EEG (aEEG). EEG based HIE grading is mainly done through
visual analysis of the background activity. Several features such as the continuity
of the EEG signal, interhemispheric symmetry and synchrony, amplitude, fre-
quency content, and presence or absence of sleep-wake cycling (SWC) have been
used to grade HIE (Murray et al., 2009). HIE are graded into four main types
which are summarized in Table 2.2 and sample epochs corresponding to each
grade are shown in figure 2.7.

Table 2.2: Properties of HIE
EEG/HIE grade Abnormality level Characteristics

1 normal/mild Continuous background pattern with mild
asymmetries and voltage depression (30-50 µV ).
Presence of poorly defined SWC.

2 moderate Discontinuous activity with IBI ≤10 s. Presence of
clear asymmetry or asynchrony and disrupted SWC.

3 major Discontinuous activity with IBI 10-60s,severe
disruption of background patterns (<30 µ V),
absence of SWC.

4 severe Background activity of ≤ 10 µV , or
severe discontinuity with IBI ≥ 60 s.
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Figure 2.7: Example of a 60s EEG showing different grades of HIE (a) Grade 1:
Normal/Mild abnormalities. (b) Grade 2: Moderate abnormalities. (c) Grade 3:
Major abnormalities. (d) Grade 4: Inactive.
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2.4 Summary

A brief overview of the neonatal EEG signal is provided in this chapter. The
EEG recordings can be obtained by placing electrodes on the scalp. Neona-
tal EEG is useful for detection of seizures, for continuous long-term assessment
of brain maturation, for prognosis after brain injury such as hypoxic ischaemic
encephalopathy, brain deformations etc. The most common application of per-
forming neonatal EEG is to assess the presence of neonatal seizures. It is one of
the most common neurological signs and is considered a clinal challenge which
is difficult to detect. It is important to detect seizures on time, especially in the
immature brain as they may be the only sign of brain disorder. Early detection
can have great impact on the prediction of outcome and the choice of therapy.

The majority of the seizure activities in the neonatal EEG are concentrated in
the 0.1-8 Hz frequency band. Several abnormal patterns can be clearly visible in
the EEG which can be used to obtain information about the state of the neona-
tal brain. Neonatal EEG can also provide information about the developmental
outcome of the child. Neonates with normal/mild abnormal EEG can have good
outcome, whereas those with moderate/severe have poor outcome (or even re-
sult in death). These results significantly contribute to the prognosis estimation
regardless of when they are analyzed.
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Chapter 3
Overview of Time-Frequency Signal
Analysis

The important thing is not to stop questioning. Curiosity has its own
reason for existing. −−Albert Einstein

3.1 Introduction

Time-frequency analysis (TFA) or time-frequency representation (TFR) is a
technique that represents the signal in both time and frequency domains

(2D), in contrast with the traditional time domain or frequency domain (1D)
analysis. For several years spectral estimation has been well developed for sta-
tionary signals - signals whose statistical properties do not change over time.
For non-stationary signals that we encounter in everyday applications, the TFR
proves to be essential to track the variation of frequency content of the signal
over the evolution of time. The energy contents of a non-stationary signal can be
visualized using the TFR. This also helps in understanding the properties of the
signal in order to determine the best approach for analysis.

In this chapter, several time-frequency representations of signals are described
that are relevant to the thesis. In section 3.2, the limitations of stationary tech-
niques (Fourier Transform) to analyze non-stationary signals are demonstrated.
Section 3.3 reviews several linear TFR’s which is followed by description of ad-
vanced TFR (Wigner-ville distribution and its improvements) in section 3.4. Fi-
nally, in section 3.5, various methods of atomic decomposition are described and
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their application for the analysis of the non-stationary signal is shown.

3.2 Necessity for non-stationary signal analysis
techniques

For several years, the Fourier transform (FT) has been the simplest and most
intuitive way to represent the signal in the frequency domain. The FT of a signal
decomposes the original signal into its harmonic components, giving the spectral
content of the signal. For a signal x(t), its FT is defined as:

X(f) = F{x(t)} =
∫ ∞
−∞

x(t)e−j2πftdt. (3.1)

However, when analyzing signals with time varying frequencies, the amplitude
of the FT, also known as magnitude spectrum (|X(f)|) does not give complete
information regarding the behavior of the system (Bracewell, 2000). To illustrate
this, a sample Gaussian test signal (x(t)) given by:

x(t) = e−π(t−α1)2
sin(β1t) + e−π(t−α2)2

sin(β2t) (3.2)

which is centered at (α1, β1) and (α2, β2), respectively is used. This is a special
case of the summation of two Gabor atoms with a scaling factor = 1(which is
described later in section 3.6).

Figure 3.1 shows the test signal and its magnitude spectrum using the FT which
gives information about the frequency content of the signal. Since the information
from the FT at a given frequency f is computed by averaging the contributions
for the entire duration, it is not possible to obtain the instantaneous frequency
content. This limitation of FT led to the development of time-frequency repre-
sentations (TFR) of the signal.

3.3 Linear time-frequency representations

The energy of a signal can be computed in the time or in the frequency domain
as:

Ex =
∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|X(f)|2df (3.3)
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Figure 3.1: (a) The time domain and (b) its corresponding frequency domain
representation of the test signal using the FT. No clear distinction is obtained
between two components in the signal.

where |x(t)|2 and |X(f)|2 correspond to time and frequency domain energy den-
sity, respectively. This idea of representing the energy density of the signal can
be extended to joint time-frequency (TF) space. The signal energy should be
completely represented by the TF energy density ρx(t, f) and fulfill the following
conditions at a given TF point:

1. The total energy is conserved:

Ex =
∫ ∞
−∞

∫ ∞
−∞

ρx(t, f)dtdf, (3.4)

2. The marginal distributions are preserved:
∫ ∞
−∞

ρx(t, f)df = |x(t)|2 (3.5)

∫ ∞
−∞

ρx(t, f)dt = |X(f)|2. (3.6)

Linear TFR’s are based on the superposition principle which states that if x(t)
can be represented as a linear combination of x1(t) and x2(t) then, the TFR of
x(t) is given by the linear combination of TFR of x1(t) and x2(t), i.e.,

x(t) = c1(x1(t)) + c2(x2(t)) =⇒ ρx(t, f) = c1(ρx1(t, f)) + c2(ρx2(t, f)) (3.7)
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where ρx(t, f) is the TFR of x(t) (Hlawatsch and Boudreaux-bartels, 1992).
In general, a linear TFR is obtained by correlating the signal with a collec-
tion of waveforms concentrated in time and frequency known as time-frequency
atoms(Mallat, 2008). The general formulation of a linear TFR in terms of inner
product1 is given by

ρx(t, f) =
∫ ∞
−∞

x(t)φ∗t,f (t)dt = 〈x, φ∗t,f〉 (3.8)

where φt,f is the time-frequency atom concentrated around t and f .

Due to the limitation of the FT in representing non-stationary signals, the short-
time Fourier transform (STFT) was developed. The STFT of a signal is given
by:

ρSTFTx (t, f) =
∫ ∞
−∞

x(τ)w(τ − t)e−j2πfτdτ (3.9)

which projects the signal on the basis function {w(τ − t)e−j2πfτ}. In other words,
the TF atom in (3.8) is given by φt,f = w(τ − t)ej2πfτ . In STFT, the input signal
x(t) is multiplied by a window function w(t), and then the Fourier transform is
applied. This method is repeated to obtain the FT with windowed signals that
emphasize the original signal at different instances which results in the STFT
(Oppenheim et al., 1999). By squaring the STFT, the signal’s energy spectrum
in the TF domain is obtained known as the spectrogram. In STFT, the signal is
segmented into small blocks that are assumed to be short enough to be considered
as stationary. Though the spectrogram provides a clear picture of change in
frequency content with respect to time, it has a limitation with respect to time
and frequency resolution. The resolution in frequency direction is decreased with
the increased resolution in time domain (using narrow window), and vice-versa
by using a wider window (Boashash, 1992).

Another popular linear TFR known as the wavelet transform (WT) is a technique
to analyze time varying signals (Mallat, 2008). The WT of signal x(t) is defined
as

ρWT
x (t, a) = 1√

a

∫ ∞
−∞

x(τ)φ∗
(
τ − t
a

)
dτ (3.10)

where φ(t) is called the analysing or mother wavelet, and a is the scale which can
be written in terms of frequency f as a = f0

f
where f0 is the center frequency of

the FT of φ(t). The WT can be considered as the projection of the signal on the
basis function

{√
f
f0
φ
(
f
f0

(τ − t)
)}

.

1The inner product of the two functions f1(t) and f2(t) is given by 〈f1, f2〉 =∫∞
−∞ f1(t)f∗2 (t)dt.
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Both the STFT and the WT are bounded by the limitation of fixed resolution
which is indirectly related to the Heisenberg uncertainty principle which states
that time and frequency resolution cannot be improved simultaneously, i.e.,

∆t∆f ≥ 1
4π (3.11)

where ∆t and ∆f corresponds to time duration and bandwidth of the TF atoms,
respectively (Boashash, 1992). Due to this limitation, we cannot precisely know
the frequency component of a signal at a give time instance also known as In-
stantaneous frequency (IF).2

3.4 Quadratic Time-Frequency Representations

To overcome the above mentioned limitations, several TFR techniques have been
developed to represent the signal in the time-frequency domain. The Wigner-
Ville distribution (WVD) was initially proposed for this reason (Boashash, 1992,
Cohen, 1995). The WVD is defined for the analytic associate of x(t) which is
given by

ρWVD
x (t, f) =

∫ ∞
−∞

z(t+ τ

2)z∗(t− τ

2)e−2πfτdτ (3.12)

where z(t) = x(t)+jH{x(t)} is a complex signal,H{x(t)} is the Hilbert transform
of x(t), and z∗(t) is the complex conjugate of z(t).

Several desirable properties such as time and frequency shift invariance, time and
frequency marginal satisfaction, time and frequency support (Boashash, 2003) of
WVD makes it as an ideal choice to explore TFRs. However, its main drawback
is the existence of oscillatory cross-terms (or artefacts) which makes the inter-
pretation of WVD difficult. Due to the quadratic representation of the WVD,
the cross-term artefact appears if the signal has multiple TF components. For
example, let us consider a signal x(t) composed of two signals x1(t) and x2(t)
such that x(t) = x1(t) + x2(t). The WVD of this signal can be expressed as:

ρWVD
x (t, f) = ρWVD

x1 (t, f) + ρWVD
x2 (t, f) + 2<{ρWVD

x1,x2 (t, f)}. (3.13)

The last term in (3.13) is called a cross-term. Figure 3.2 shows the WVD of the
test signal (given in equation 3.2). We can clearly see the presence of cross-terms

2Instantaneous frequency of a signal is defined as the derivative of the phase i.e., IF (t) =
1

2π
dθ(t)
dt where θ(t) is the phase function of the signal x(t).
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(outer artefacts) at the centre which masks the IF’s of the individual components,
thereby decreasing the performance of TFR.
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Figure 3.2: Time frequency representation of the test signal obtained using WVD.
Note the presence of cross-terms between the two signal components.

The quadratic time frequency distribution (QTFD) is an improved version of
the traditional WVD in which the WVD is smoothed with a time-lag kernel,
G(t, τ). By using an appropriate G(t, τ), the cross-term artefacts in WVD can
be eliminated. The general form of QTFD is given by (see page 67 of (Boashash,
2003))

ρQTFDz (t, f) = F
τ→f

G(t, τ) ∗
t
z
(
t+ τ

2

)
z∗
(
t− τ

2

)
=
∫ ∞
−∞

∫ ∞
−∞

G(u, τ)z
(
t− u+ τ

2

)
z∗
(
t− u− τ

2

)
due−2πfτdτ,

(3.14)

Several time-lag kernels have been designed to improve the resolution of QTFD
by tuning several parameters in G(t, τ). Table 3.1 gives some examples of QTFDs
and their corresponding time-lag kernels. It can be seen from table 3.1 that the
tunable parameters (σ for Choi-Williams (CW) and β for Modified B (MB) and
B distributions) can be adjusted for various signals to enhance the resolution of
the TFR obtained by these distributions (Boashash, 2003).

Figure 3.3 shows the TFR of the test signal obtained using the B-distribution.
We can clearly see that the cross-term artefacts are removed thereby enhancing
the resolution of the TFR.
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Table 3.1: QTFD and their time-lag kernels

QTFD time-lag kernel, G(t, τ)
Wigner-Ville δ(t)
Modified B cosh−2β t∫∞

−∞ cosh−2β ξdξ

B |λ|β cosh−2β t

Choi-Williams
√
πδ
|λ| e

−π2δt2/λ2

Spectrogram w
(
t+ τ

2

)
w
(
t− τ

2

)
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Figure 3.3: Time frequency representation of the test signal obtained using the
B-distribution. Note that the artefacts are removed by tuning the parameter β.

3.5 Atomic Decomposition

Atomic decomposition (AD) uses a time-frequency redundant dictionary to opti-
mally represent a given signal. A dictionary is a collection of elementary signals
or atoms such that D = {φλ}λ∈Λ, where Λ is the set of parameters used to build
φ, and can be used for signal representation. The atoms in the dictionary are
obtained through the transformations of the fundamental atom φλ(t). The trans-
formations can be obtained both in time and frequency to obtain a complete or
over-complete time-frequency dictionary. The dictionary is said to be complete
if it spans the Hilbert space, H (Mallat and Zhang, 1993). However, if the dic-
tionary contains more atoms than are needed to span H, it is called a redundant
dictionary, which is also referred to as overcomplete (Chen et al., 2001). There-
fore, a method that can best represent the signal structure using atoms from the
dictionary is desirable.
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AD techniques provide a signal representation (or approximation) as a linear
superposition of the selected atoms from the dictionary as

x =
∑
λ∈Λ

γλφλ (3.15)

where γλ is the coefficient associated with φλ. The approximate signal obtained
after K iterations 3.

x̂ =
K−1∑
k=1

γλk
φλk

(3.16)

There are several AD techniques available which includes: matching pursuit (Mal-
lat and Zhang, 1993), orthogonal matching pursuit (Pati et al., 1993) and basis
pursuit (Chen et al., 2001). These methods are briefly described in the following
subsections.

3.5.1 Matching Pursuit

Matching pursuit (MP) is a greedy algorithm used for sparse signal representation
(Mallat and Zhang, 1993). It finds linear approximations of signals by iteratively
projecting them over a redundant, non-orthogonal set of atoms in the dictionary.
Since MP is a greedy algorithm, the approximation obtained is not optimal,
however, it is useful in the case of higher order signal approximation. MP has
found its applications in the area of signal compression, in particular audio, video
and image compression. In addition, MP has also found its application in feature
extraction for classification problems (Cotton and Ellis, 2009, Hsu and Huang,
2001, Rankine et al., 2007).

Given a dictionary of M atoms, D = [φ1 φ2 . . . φM ] ∈ RN×M , where each
column represents a single atom of length N and M ≥ N , MP approximates the
signal x using an iterative greedy process as a linear combinations of K atoms
which can be summarized as follows:

1. Initialize the residual r0 = x, the index set Ψ0 = ∅, the dictionary D0 = ∅
and the iteration count k = 1.

2. Find ǐ = max |rTk−1φi|, φi ∈ D .

3. Update the index set Ψk = Ψk−1∪ ǐ and the active dictionary, Dk = [Dk−1 :
φǐ] ∈ RN×k.

3It should be noted that number of iterations and number of atoms will be used inter-
changeably which refer to number of atoms used in AD.
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4. Estimate γk by finding maximum inner product |〈Dk,γ〉| ;

5. Update the residual, rk = rk−1 −Dkγk.

6. Update the iteration count, k = k + 1. Repeat from step 2 until the given
stopping criteria is reached (k = K).

After K iterations, the MP provides the sparse approximation of the input signal
x as

x̂ = DKγK . (3.17)

The MP iterative procedure is shown in Figure 3.4.

Major improvements to the MP algorithm have been proposed in the literature
which deal with several aspects of the MP algorithm such as computation speed,
optimality of the solution, accuracy of approximation and sparsity of the repre-
sentation. Since MP is a greedy algorithm, with a finite K, the approximation x̂
will be suboptimal. Let SK be the span of all chosen atoms from dictionary such
that SK = span{φ1 φ2 . . . φK}. The approximation x̂ is said to be optimal
only if the residue after K iterations lies in the span of orthogonal complement
of SK, i.e., rK ∈ SK

⊥. However, MP only guarantees that the residue is perpen-
dicular to the final dictionary atom and therefore, the approximation given by
the MP is usually suboptimal. Due to this limitation, the MP algorithm requires
more iterations to obtain a residual rK less than the given threshold (Mallat
and Zhang, 1992, Pati et al., 1993). This limitation is removed by orthogonal
matching pursuit (OMP).

3.5.2 Orthogonal matching pursuit

OMP is an iterative, greedy algorithm that calculates the locally optimum signal
approximation at each iteration. At every iteration, an optimal approximation
is obtained from the linear combination of selected atoms from the dictionary
with residue orthogonal to all of the chosen dictionary atoms (Tropp and Gilbert,
2007). OMP uses the mean square error, rather than the inner product to opti-
mize the selection of γ. γk in step 4 of the MP algorithm is estimated by solving
a least squares problem using the Moore-Penrose pseudoinverse method (Penrose,
1955) as

γk = arg min
γ∈Rk
||x−Dkγ||2. (3.18)
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(a)

(b)

(c)

Figure 3.4: Illustration of MP decomposition. (a) The test signal to be decom-
posed (blue line) and its residual obtained after five iterations (red dotted line),
(b) the first five atoms selected during MP, (c) the weighted sum of five atoms.

This ensures that the residue rK ∈ SK
⊥ and an optimal approximation of x is

obtained for the given set of K dictionary atoms. OMP also differs from MP in
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that all possible values of γ are estimated at each iteration, rather than a single
value. This means that the same atom can never be selected twice and as a result,
OMP converges faster.

3.5.3 Basis pursuit

Both MP and OMP use a greedy approach to select the atoms from the dictionary
to give a speedy approximation but not necessarily a guaranteed globally optimal
solution. Basis Pursuit (BP) is an AD technique proposed as an alternative to MP
to provide the sparsest representation of a signal over the given dictionary through
convex optimization (Chen et al., 2001). BP finds the best representation of a
signal by minimizing the L1-norm 4 of the components of γ, i.e. the coefficients
in the representation. BP can be considered as an optimization method to solve
the following problem:

min ||γ||1 subject to x =
∑
λ∈Λ

γλφλ. (3.19)

During the process of finding γ, since the nonzero coefficients correspond to
columns of the dictionary, the indices of the nonzero components of γ can be
used to identify the columns of D that are needed to accurately represent the
given signal. The BP problem can be written as a linear programming problem
(LP) of the form:

Minimize cTγ subject to Dγ = x; γ > 0. (3.20)

Any LP technique can be used to solve this optimization problem like the simplex
or interior-point method (Boyd and Vandenberghe, 2004). More details about BP
can be found in (Chen et al., 2001).

3.6 Dictionaries for atomic decomposition

The performance of the AD algorithm mainly depends on the choice of the dic-
tionary. A dictionary is a collection of parameterized signals D = {φλ}λ∈Λ, also
called atoms which contain several characteristics of the signal. Depending on
the application, dictionaries can be either complete with n atoms or overcomplete

4L1 norm of a function f(t) is defined as ||f ||1 =
∫∞
−∞ |f(t)|dt
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with more than n atoms. In special cases, dictionaries with less than n atoms are
used which are known as undercomplete dictionaries. Several dictionaries have
been proposed in the literature which can be grouped into three categories:

3.6.1 Frequency dictionaries

A dictionary consisting of orthogonal bases such as the Fourier basis is an example
of a frequency dictionary. The Fourier dictionary is a collection of sinusiodal
waveforms φλ which is indexed by λ = (ω, v). In this case, ω ∈ [0, 2π] is the
variable angular frequency and v ∈ [0, 1] is the phase type (sine or cosine) given
by (Chen et al., 2001):

φ(ω,0) = cos(ωt), and φ(ω,1) = sin(ωt). (3.21)

In a standard Fourier dictionary, λ runs through the set of all cosines with Fourier
frequencies ωk = 2πk

n
fs, k = 0, 1, . . . , n/2 and all sines with Fourier frequencies

ωk, k = 1, 2, . . . , n/2− 1. There will be n atoms available in this dictionary and
the atoms in this dictionary will be mutually orthogonal (Chen et al., 2001).

3.6.2 Time-scale dictionaries

A time-scale dictionary is a collection of translated and dilated atoms from a
mother wavelet. A wavelet is a wave like function with finite energy that al-
lows the analysis of transient, or a time-varying event/phenomena. Wavelets are
orthogonal basis vectors formed by shifting and dilating a mother wavelet, φ(t)

φa,b(t) = 1√
|a|
φ

(
t− b
a

)
∀a, b ∈ R (3.22)

where a is the scale/dilation parameter and b is the location/time-shifting pa-
rameter (Chen et al., 2001). For a given signal of length N , each atom in the
wavelet dictionary is indexed by λ = (a, b) with 0 ≤ a ≤ log2(N), 0 ≤ p ≤ 2−aN .
Several orthogonal wavelet functions are available which includes the families of
Haar, Daubechies, coiflets, and symlets (Chen et al., 2001).

Traditionally, dictionaries consisting of orthogonal bases such as Fourier basis
and orthogonal wavelet bases have a minimum number of atoms to span the
Hilbert space. As a result, their performance is limited due to the amount of
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information provided. These limitations were outlined in (Mallat and Zhang,
1993) where it was demonstrated that the Fourier and Wavelet bases are poor
in representing signal structures that are well localized in time and have narrow
high frequency support, respectively (Chen et al., 2001).Therefore, it is necessary
to design a dictionary with TF atoms which can represent all types of signal
structures with high resolution. Figure 3.5 shows a sample atom; in a Fourier
and wavelet dictionary.
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Figure 3.5: Example of an atom from (a) Fourier and (b) wavelet dictionary.

3.6.3 Time-Frequency dictionaries

For many applications of AD, parametric dictionaries are preferred to reduce the
computation speed and storage space required. Parametric dictionaries refer to
a group of atoms with a well-defined parametric form and the entire group can
be generated by varying the parameters of the atoms. Using a group of signals
as a dictionary has an advantage of reducing storage requirements since only
the parametric form of the dictionary and the corresponding parameters for each
atom are sufficient. In addition, the computational speed of the AD algorithms
can be increased by exploiting the inherent structure of the dictionary.

Time-Frequency (TF) atoms are functions that are well localized in both time
and frequency domains. The Wavelet transform is an example of a signal decom-
position method that uses TF atoms which can have different properties based on
the selection of TF atoms. Due to this reason, the selection of the family of TF
atoms for decomposition mainly depends upon the type of data being analyzed.
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A general family of time-frequency atoms can be generated by scaled, translated
and modulated version of a single window function φ(t) ∈ H. Each atom in D is
normalized such that its L2 norm5 is unity i.e., ||φλ(t)||2 = 1;∀λ.

A Gabor dictionary is an example of a TF dictionary that is commonly used
in signal approximation (Chen et al., 2001). The Gabor dictionary consists of
translated (α), scaled (m) and modulated (β) versions of a Gaussian window
such that6:

φ(t;λ) = 1√
m
e−π(

t−α
m )2

sin(βt) (3.23)

where λ = [α,m, β]T ∈ Λ and Λ = R+ × R2 are the time-frequency parameters.
Figure 3.6 shows an example of atoms in the Gabor dictionary.
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Figure 3.6: Example atoms in the Gabor dictionary.

3.7 Time-Frequency representation using atomic
decomposition

The AD of signal can be used to produce the time-frequency distribution. In this
approach, the best properties of QTFD and ADs can be combined to provide a
joint TFR. The WVD of the AD can be written as:

ρADx (t, f) =
K∑
k=0
|〈rk, φλk〉|2ρφλk (t, f) (3.24)

5L2 norm of a function is defined as ||f ||2 =
∫∞
−∞ f(t)f∗(t)dt

6more details about Gabor dictionary is given in chapter 4
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where rk is the residual obtained using φλk
atoms during AD, and ρφλk (t, f) is

the WVD of individual atoms. This TFR has no cross-terms and therefore offers
the highest resolution. Figure 3.7 shows the TFR obtained using AD techniques.

In addition to the TFR, the dictionaries in AD can be designed to be coherent
with desired structures in the given signal. For example the Gabor dictionary
with MP has been used in detecting structural changes in EEG (Jouny et al.,
2003). It was shown that the features obtained from AD can provide necessary
information about the change in structures of the EEG signal which could be
useful in detecting components with varying time instances of the rising and
decaying parts.
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Figure 3.7: WVD of the first five weighted atoms selected from the Gabor dic-
tionary during the decomposition of test signal in equation (3.2). The selected
atoms are shown in figure (3.4b).

3.8 Summary

In this chapter, time-frequency analysis and its applications in nonstationary
signal analysis are discussed. It was shown that TFA is an ideal choice for an-
alyzing nonstationary signals. The positive properties of traditional STFT and
WVD are the speed of computation and the time and frequency shift invariance,
which makes the interpretation of the resulting TFR maps easy. However, the
major limitations are: (i) limited or bounded time and frequency resolution in
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the TF space resulting in smearing of the TFR, (ii) the presence of cross-terms
or artefacts between the neighbouring time-frequency structures.

AD is mainly useful for randomly appearing signal components in the time series.
The TFR derived from the AD has explicitly no cross-term, which leads to clean
and easy-to-interpret time-frequency maps of energy density. However, this is
obtained at the cost of higher computational complexity which can be simplified
using a well designed dictionary. The sparsity of AD can be obtained from the
very redundant set of atoms, which represents the signal structures as a summa-
tion of limited number of atoms. The parameterization of the signal structures in
terms of the amplitude, frequency, time of occurrence, time, and frequency span
can be obtained from the TF dictionary used in AD.
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Chapter 4
Neonatal Seizure Detection using Atomic
Decomposition with a Novel Dictionary

You have to learn the rules of the game. And then you have to play
better than anyone else. −−Albert Einstein

4.1 Introduction

Neonatal seizures can be identified and diagnosed using the EEG which re-
quires continuous access to trained expertise for the interpretation in neona-

tal intensive care units (NICU). Currently, the detection of neonatal seizures
NICUs requires a specific expertise to visually interpret the neonatal EEG by
an experienced neurophysiologist or paediatric neurologist. This expertise is not
available 24/7 in most NICUs. Due to this it is essential to develop methods
for the automated detection of seizures in the NICU which can provide valuable
information and can aid as a tool to the clinician facilitating medical intervention
(Celka and Colditz, 2002b).

The automated detection of seizures attempts to classify the EEG into two states:
non-seizure and seizure. The non-seizure EEG consists of background EEG, which
can be modelled as an amplitude modulated, coloured random noise process con-
taminated by several sources of artefact of electrical and biological origin (Rankine
et al., 2007, Roessgen et al., 1998, Stevenson et al., 2013). The seizure patterns
in the newborn EEG, however, are more highly structured and characterized by
periods of rhythmic spiking or repeated sharp waves (Gotman et al., 1997, Pellock
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et al., 2007).

A number of groups have published methods to automatically detect neonatal
seizures using linear, nonlinear and nonstationary signal analysis (Aarabi et al.,
2007, Celka and Colditz, 2002a, Deburchgraeve et al., 2008, Gotman et al., 1997,
Liu et al., 1992, Navakatikyan et al., 2006). A method for detecting seizures
based on atomic decomposition (AD) was outlined in Rankine et al. (Rankine
et al., 2007) and was inspired by the analysis of Durka et al. (Durka et al., 2001).
AD is a non-stationary signal analysis technique, in which a non-stationary signal
is optimally decomposed into atoms drawn from an over-complete (redundant)
dictionary. The main advantage of AD is that the dictionary of atoms can be
designed to suit the application, resulting potentially in a sparse signal represen-
tation; this sparsity is useful in signal classification. Several techniques have been
proposed for the optimal selection of atoms in AD; these include the matching
pursuit (MP), basis pursuit (BP) and orthogonal matching pursuit (OMP) algo-
rithms (Chen et al., 2001, Mallat and Zhang, 1993, Tropp and Gilbert, 2007).
Rankine et al. proposed a novel measure called relative structural complexity
(RSC) which is based on analysing the convergence of an AD implemented with
a MP estimate of atom weights. In this context, convergence refers to the rate
at which AD via MP approximates the signal (Rankine et al., 2007). The RSC,
however, is highly dependent on the coherence of the dictionary with the signal
classes under analysis. For high seizure discrimination the atoms in the dictio-
nary should have a high coherence with seizure (low RSC) and low coherence with
non-seizure (high RSC). Rankine et al. used a dictionary, based on the modelling
of neonatal EEG seizure, that consisted of linear frequency modulated (LFM)
atoms and Gabor atoms to complete the dictionary (Rankine et al., 2007).

Recent developments in modelling the neonatal EEG may provide a better choice
of dictionary (Stevenson et al., 2010). These advances suggest that using a dic-
tionary based on short duration wideband atoms rather than narrowband atoms
may result in an RSC that is better able to differentiate between seizure and
non-seizure.

In this chapter, a novel dictionary for automated seizure detection is proposed.
This begins with an experiment in which the sparsity of signal approximations us-
ing basis pursuit (BP), matching pursuit (MP) and orthogonal matching pursuit
(OMP) techniques are compared. This is done to determine the best decom-
position method and dictionary type (time-scale, frequency, time-frequency) to
provide optimal discrimination between seizure and non-seizure. A novel dic-
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tionary based on the Duffing oscillator model (Stevenson et al., 2010) is then
developed, in which the atoms are highly coherent with neonatal seizure. The
RSC feature is then modified for computational reliability as RSC is dependent
on the type of dictionary used in AD. The use of the RSC with the proposed dic-
tionary was compared to the RSC with several other dictionaries for the detection
of neonatal seizures. The effect of dictionary size and decomposition level was
also investigated. The performance of the RSC for neonatal seizure detection was
then estimated on a large database of neonatal EEG using leave-one-out (LOO)
cross validation.

4.2 Neonatal EEG seizure dataset

The dataset consisted of EEG recordings from 18 neonates who had seizures.
The EEG recordings were recorded in the NICU of Cork University Maternity
Hospital, Cork, Ireland. The patients were full-term neonates ranging in gesta-
tional age from 39 to 42 weeks. The EEG was recorded using the Viasys NicOne
EEG system, with a sampling frequency of 256 Hz. The data were annotated
using eight EEG channels in bipolar montage: F4-C4, C4-O2, F3-C3, C3-O1,
T4-C4, C4-Cz, Cz-C3, and C3-T3. All seizures were annotated independently
by two experienced neonatal electroencephalographers with the assistance of si-
multaneously recorded video. Any disagreement in annotations was resolved by
consensus. The median recording length was 50.6h (IQR: 29.7–59.8h) with a
combined recording duration of 826h. There were 1389 recorded seizures includ-
ing both electrographic-only and electro-clinical seizures of focal, multi-focal and
generalized types with a mean duration of 194s (median 249s, IQR 96–356s).
The ratio of seizure to non-seizure duration had a median of 5.9%, IQR (4.2–
12.1%). Additional details of this database can be found in table 4.1. All EEGs
were recorded with informed parental consent and under ethical approval of the
CUMH and University College Cork. All data were anonymized at the time of
recording. The EEG was down-sampled from 256 to 32 Hz with an anti-aliasing
filter set at 12.8 Hz, as the significant energy in the newborn EEG (> 95%) does
not exceed alpha band (8-12 Hz) (Scher et al., 1994, Victor et al., 2005). The
data were also filtered with a single pole highpass filter with a cutoff of 0.5Hz
and then segmented into 8 s epochs with a 4 s overlap.
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Table 4.1: EEG dataset of newborns with seizures used in this thesis.

Record Seizure Seizure duration
Patient length(h) event

Mean Min Max
1 29.7 17 1′30′′ 17′′ 3′54′′
2 24.7 3 6′10′′ 55′′ 11′09′′
3 29.9 209 1′50′′ 11′′ 10′43′′
4 47.5 84 1′38′′ 32′′ 9′58′′
5 47.2 62 6′37′′ 20′′ 34′10′′
6 19.2 46 1′8′′ 15′′ 4′17′′
7 60.8 99 1′32′′ 14′′ 10′20′′
8 49.5 17 5′56′′ 29′′ 19′14′′
9 67.7 201 4′59′′ 13′′ 37′06′′
10 59.8 41 4′51′′ 13′′ 34′46′′
11 21.8 43 2′27′′ 17′′ 7′36′′
12 54.4 150 1′36′′ 15′′ 10′08′′
13 51.7 60 3′26′′ 19′′ 16′56′′
14 22.8 21 8′13′′ 22′′ 39′03′′
15 59.7 121 1′31′′ 10′′ 7′08′′
16 76.4 190 5′03′′ 26′′ 34′37′′
17 30.7 21 5′31′′ 27′′ 23′16′′
18 63.0 4 9′34′′ 7′19′′ 13′22′′
Total 816.7 1389

4.3 Comparison of performance of AD techniques

The Gabor dictionary with MP has been used in detecting structural changes
in EEG (Jouny et al., 2003). It was shown that the features obtained from AD
can provide necessary information about the change in EEG signal structures.
In this section, two experiments were performed which demonstrated the effect
of different AD techniques and dictionary types on the performance of neonatal
seizure detection. 100 seizure and non-seizure neonatal EEG epochs from the
neonatal EEG database (each epoch is 8 s in duration downsampled from 256 Hz
to 32 Hz) were used 1. Figure 4.1 shows sample epochs used in these experiments.

1More details about the preprocessing and filtering is given in section 4.4.
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Figure 4.1: Sample epochs used in this experiment to demonstrate the perfor-
mance of AD techniques to discriminate seizure (a,b) from non-seizure epochs
(c,d).

4.3.1 Experiment 1: Effect of dictionary types on seizure
detection

In this experiment, through the analysis of real newborn EEG data, it is shown
that the selection of dictionary can influence the seizure detection accuracy. Three
different dictionaries were used in this experiment2:

1. A Gabor dictionary consisting of translated, scaled and modulated versions
of a Gaussian window (Mallat and Zhang, 1993).

2. A Fourier dictionary consisting of sinusoidal waveforms, and

3. A wavelet packet dictionary built from a Daubechies 10 quadrature mirror
filter, consisting approximately of Nlog2N waveforms which is a family of
orthonormal wavelet bases (Mallat and Zhang, 1993).

Two times overcomplete dictionaries were used to run the MP algorithm. To
evaluate the performance, a performance metric known as percentage time error
(PTE%) was used which is given by:

PTE% = 100

√√√√∑K
n=1(xo(n)− xr(n))2∑K

n=1(x2
o(n))

(4.1)

2The properties of these dictionaries was discussed in chapter 3

55



where xo and xr are the original and reconstructed signal, respectively. For a
given number of atoms K, the reconstruction error (PTE%) would naturally
be expected to be lower for seizure when compared to nonseizure signals if the
atoms in the dictionary are coherent with the seizure signal. The difference in
PTE defined as :

dPTE% = |PTES − PTENS|% (4.2)

gives the level of separability between seizure and nonseizure signals for a given
dictionary. Here PTES and PTENS are the reconstruction errors for seizure and
nonseizure signals, respectively. Here K was restricted to 25 atoms.

Figure 4.2 shows the performance of different dictionaries using the MP algorithm.
It can be seen that the Gabor dictionary requires less atoms to separate seizure
from non-seizure class when compared to the Fourier and wavelet dictionaries.
This experiment suggests that for detecting neonatal EEG signal transitions, TF
dictionaries are more efficient when compared to frequency dictionaries (Fourier)
or time-scale dictionaries (wavelet).
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Figure 4.2: Illustration of the effect of dictionary types on discrimination level
using the MP algorithm.

4.3.2 Experiment 2: Performance of AD techniques for
seizure detection

In this experiment, the performance of MP, OMP and BP techniques were com-
pared for discriminating seizure from non-seizure. Gabor dictionary was used
for this experiment. Figure 4.3 shows the performance of the AD techniques in
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representing seizure and non-seizure using K = 25 atoms. It can be seen that as
the number of atoms are increased, the PTE% for both seizure and nonseizure
decreases. However, from figure 4.4, it can seen that the OMP outperforms BP
and MP in discriminating seizure from non-seizure epochs using 4-5 atoms. This
suggests that features obtained from the AD using OMP is efficient in discrim-
inating neonatal EEG seizure from non-seizure, or in other words, in neonatal
seizure detection. For this reason, OMP was used as the preferred AD technique
in this thesis.
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Figure 4.3: Illustration of the reconstruction error obtained using 100 eight second
epochs each of (a) seizure, and (b) non-seizure EEG using different AD techniques
for the increasing number of decomposition atoms.
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Figure 4.4: Illustration of the variation in the discrimination level with the in-
crease in number of atoms. OMP always outperformed MP when tested on several
epochs.

4.4 Seizure detection using atomic decomposi-
tion

AD is a technique that uses a large dictionary of signal atoms to efficiently rep-
resent a given signal. Given a real dictionary of M atoms D = [φ1 φ2 . . . φM ] ∈
RN×M , where each column represents a single atom of length N and M ≥ N , a
signal x ∈ RN can be represented as

x = Dγ, (4.3)

where γ is a M ×1 vector containing the analysis coefficients (Goodwin and Vet-
terli, 1999). The aim of AD is to estimate γ to yield a suitable approximation of
the signal. Ideally, γ should contain a minimum number of non-zero coefficients
for a given approximation accuracy (a sparse solution). The MP was originally
proposed by Mallat and Zhang in 1993 (Mallat and Zhang, 1993). It is a greedy
algorithm that selects atoms using a maximum inner product criteria. The coeffi-
cient value is the maximum inner product. MP is iterated until a certain level of
signal approximation is achieved. BP uses linear programming to minimize the
L1-norm, but unlike MP, the BP decomposition technique does not select atoms
iteratively. The use of the L1-norm attempts to minimize the number of atoms
used to approximate a signal at a given level. It was shown that the MP provides
a sparser signal approximation when compared to the BP (Rankine et al., 2007).
The OMP uses the same criteria as the MP for the atom selection but estimates
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the entire coefficient vector using a pseudo-matrix inversion at each iteration in
order to minimise the mean square error. As a result, the OMP will not select an
atom more than once and provides a better signal approximation as described in
section 4.3.

In this work, the OMP was utilised to decompose the neonatal EEG with a com-
plex dictionary (Tropp and Gilbert, 2007) as the OMP has a faster convergence
rate. The use of a complex dictionary improves the convergence rate of the OMP
algorithm as additional phase information can improve the alignment of atoms
in time (Goodwin and Vetterli, 1999). Here convergence refers to the rate at
which the OMP approximates the signal. The OMP algorithm using a complex
dictionary can be summarized as follows (Goodwin and Vetterli, 1999, Tropp and
Gilbert, 2007):

1. Initialize the residual r0 = x, the index set Ψ0 = ∅, the dictionary D0 = ∅
and the iteration count k = 1.

2. Find ǐ = arg max
i/∈Ψk−1

|rTk−1φi|, φi ∈ D .

3. Update the index set Ψk = Ψk−1∪ ǐ and the active dictionary, Dk = [Dk−1 :
φǐ] ∈ CN×k.

4. Estimate γk by solving a least squares problem using Moore-Penrose pseu-
doinverse method (Penrose, 1955), γk = arg min

γ∈Ck
||x− 2<{Dkγ}||2. .

5. Update the residual, rk = rk−1 − 2<{Dkγ}.

6. Update the iteration count, k = k + 1. Repeat from step 2 until the given
stopping criteria is reached (k = K).

After K iterations, the OMP provides the sparse approximation of the input
signal x as,

x̂ = 2<{DKγK}. (4.4)

Given a full rank dictionary and large enough K, then x = x̂ can be achieved.

AD via MP has been used as the basis of a method to detect neonatal seizures in
the EEG (Rankine et al., 2007). This method exploited differences in the rate of
convergence of the MP algorithm for seizure detection (the dictionary was chosen
so that AD converged faster for seizures compared to non-seizure). The rate of
convergence was measured using the number of atoms required to reach a set
signal to error ratio (SER). The SER at a given level of decomposition, K, is
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given by

SERK = 20log10

(
||x||2
||rK||2

)
(4.5)

where x is the input EEG signal and rK is the residual obtained after K iterations
of AD. In this present study, the SER after K OMP iterations was used to define
the RSC which is an improvement on the measure used in (Rankine et al., 2007).
A set decomposition level, rather than approximation level, was used as it ensures
that the OMP algorithm will be computationally tractable.

In order to enhance the ability of the RSC to separate seizure from non-seizure an
application specific dictionary was introduced by Rankine et al. (Rankine et al.,
2007). This dictionary was based on a model of EEG seizure and consisted of
a series of linear frequency modulated (LFM) sinusoids supplemented by Gabor
atoms in order to generate a full rank dictionary. This current study now investi-
gates the use of alternate dictionaries with the aim of improving seizure detection.
The results of this investigation were used to develop a seizure detection algo-
rithm (SDA) based on AD (see figure 4.5). The input signal is passed through an
anti aliasing filter set at 12.8Hz, downsampled to 32 Hz and segmented into 8 s
epochs with 4 s overlap. Sharp transients in the RSC output are then suppressed
using a median filter of 32s in duration. The maximum RSC across all channels
was then computed. The RSC decision threshold was varied and seizure was
detected if it exceeded a set threshold. An adaptive collar was then applied to
extend the duration of the preliminary detection. An automated annotation of
seizure is then obtained. The main structural difference to the SDA proposed by
Temko et al. (apart from the feature used) is in the post-processing stage (Temko
et al., 2011a). A mean operation is substituted with a median operation and the
fixed collar is replaced with an adaptive collar. The adaptive collar extends the
detection results in proportion to the initial detection duration and is constrained
from 30 to 80s such that ac = 30s when Td < 30s, ac = Td when 30 ≤ Td ≤ 80s,
and ac = 80s when Td > 80s, where Td is the duration of the detected seizure (in
seconds). The assumption of this collar is that the decay in seizure amplitude is
in proportion to its duration.

4.5 Dictionaries for seizure detection

In this section, the design of different dictionaries used in this thesis are described.
Consider the general mother atom g(t;λ) for some particular parameter vector
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Figure 4.5: Neonatal seizure detection system based on atomic decomposition.

λ ∈ Λ. The analytic associate of each atom ḡ(t;λ) = H(g(t;λ) can then be
generated using the Hilbert transform.

The complex dictionary D ∈ CN×M is then constructed from the sampled version
of the complex mother atom. The complex dictionary is D = [φ1 φ2 . . .φM ],
where the ith complex atom φi is the time sampled version of the complex mother
atom with parameter vector choice λi ∈ Λ = {λ1, λ2, . . . , λM}. Hence, for a given
signal duration of T and sample time Ts seconds, the nth element of φi can be
expressed as

φi(n) = g(nTs;λi) + jḡ(nTs;λi) (4.6)

where 0 ≤ nTs < T .

4.5.1 Gabor dictionary: DG ∈ CN×MG

As a benchmark, a Gabor dictionary consisting of translated (α), scaled (m) and
modulated (β) versions of a Gaussian window is first investigated to test the
proposed SDA,

gG(t;λG) = 1√
m
e−π(

t−α
m )2

sin(βt). (4.7)

Here λG = [α,m, β]T ∈ ΛG are the time-frequency parameters, T = 8s is the
time duration of the EEG epoch, Ts = 1/fs, fs = 32 Hz and N = 256.

The result of AD on an epoch of seizure and non-seizure EEG is shown in Fig.
4.6(i). Fig. 4.6(ii) shows the changes in RSC with respect to the number of
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Figure 4.6: Illustration of atomic decomposition of an 8 s EEG epoch using a
variable number of Gabor atoms. (i) a,b,c are the actual (x), reconstructed (x̂),
residual seizure epoch (r), and d,e,f are the actual (x), reconstructed (x̂), residual
non-seizure epoch (r) respectively using 15 atoms, and (ii) RSC for fifteen 8 s
seizure and non-seizure epochs for 1–25 atoms (−seizure, −− non-seizure).

atoms used for decomposition. As the Gabor dictionary is more coherent with
seizure, due to its inherent structure, AD provides a more accurate representation
of seizure, at a set decomposition level, than non-seizure.
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4.5.2 Linear frequency modulated (LFM) dictionary: DL ∈
CN×ML

The dictionary proposed by Rankine et al., consisted of LFM atoms as it had
been shown that the variation in the frequency content of seizure could be broadly
categorized with a piecewise linear function (Rankine et al., 2007). The set of
LFM atoms used were of the form

gL(t;λL) = A(λL) cos
(
π

fs

[
at2

fs
+ 2bt

])
. (4.8)

Here the parameter vector λL = [a b]T ∈ ΛL, fs is the sampling frequency (Hz),
a (Hz/s) is the frequency rate and b (Hz) is the initial frequency. For each choice
of λL ∈ ΛL, the normalizing constant A(λL) is chosen such that ||gL(t;λL)||2 =1.

4.5.3 Duffing dictionary: DD ∈ CN×MD

Recent advances in modelling the neonatal EEG seizure signal offer the potential
to improve the dictionary used for seizure detection (Stevenson et al., 2010).
An alternate model of neonatal EEG seizure was based on a Duffing oscillator.
Seizure was modelled as

ẍ(t) = u(t)− cẋ(t)− k2x
3(t), (4.9)

where x(t) represents the recorded EEG voltage, [c, k2] are the nonlinear spring
constant and damping coefficient, respectively, and u(t) is an impulse train with
time-varying period (Stevenson et al., 2010). The parameters [c, k2] control the
time and frequency characteristics of the Duffing oscillator, respectively. The
impulse response of the Duffing oscillator has time-varying frequency content
and was used to approximate the morphology of the underlying seizure waveform
which is not sinusoidal as shown in figure 4.7. In addition, a range of seizure mor-
phologies (examples shown in figure 1.2) can be modelled by selecting appropriate
values of [c, k2] as shown in figure 4.8.

The set of Duffing atoms used were of the form

gD(t;λD) = h ((t− τ); c, k2) (4.10)

where λD = [c, k2, τ ]T ∈ ΛD, τ ∈ {Ts, 2Ts, . . . , NTs} is the time shift, and h(t) is
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the impulse response of the Duffing oscillator.

 ∫  ∫
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(.)32

    Random 
 impulse train

Duffing oscillator model
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Figure 4.7: The model of the Duffing oscillator to generate simulated seizure
signals. x represents the simulated seizure, [c, k2] controls the time and frequency
characteristics of the Duffing oscillator and u is the unit impulse voltage with
time varying period.
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Figure 4.8: Examples of several types of newborn EEG seizure morphology sim-
ulated using Duffing oscillator model of figure 4.7.
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4.5.4 Pseudo-periodic Duffing dictionary: DD̃ ∈ CN×MD̃

This dictionary was based on a pseudo-periodic sequence of Duffing outputs which
captures both the morphological and repetitive characteristics of seizure in a
single atom. As the random nature of the periodicity used in Stevenson et al.,
(Stevenson et al., 2010) precludes a systematic implementation of a dictionary,
the linear instantaneous frequency laws outlined in Rankine et al. (Rankine et al.,
2007) were used instead. This results in an atom defined as,

gD̃(t;λD̃) =
P (a,b)−1∑
p=0

h ((t− τp(a, b)); c, k2) (4.11)

where λD̃ = [c, k2, a, b]T ,

τp(a, b) = fs

−b+
√
b2 + a(2p+ 1

2)
a

 ,
p = [0, 1, · · ·P (a, b)− 1], and

P (a, b) =
⌊

2aT 2 + 4 b
a
T − 1

4

⌋
,

(4.12)

where (b.c) is the floor operator.

The various atoms described above are illustrated in Fig. 4.9(a-d). As an exam-
ple, a complex Duffing oscillator atom, obtained using the Hilbert transform is
shown in Fig. 4.9e. In addition to the above mentioned dictionaries, a standard
Fourier dictionary (DF ) is also used for the purpose of comparison.

4.6 Training and testing

A leave-one-out (LOO) cross-validation method was used in this work to assess
the performance of the proposed algorithm for patient independent seizure de-
tection. This approach is known to provide an almost unbiased estimation of
the generalization error (Vapnik and Kotz, 2006) and is in keeping with the de-
velopment of a patient independent seizure detection algorithm (Temko et al.,
2011a). For each iteration within the LOO framework adopted here, the contin-
uous unpruned dataset from one neonate was first reserved as an unseen testing
set. A training set consisting of 85min of seizure data and 850min of non-seizure
data was then selected from the EEG data of the remaining 17 neonates (5min of
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Figure 4.9: Example atoms in the dictionaries corresponding to (a) Gabor, (b)
LFM, (c) Duffing, and (d) pseudo-periodic Duffing dictionaries, respectively. (e)
A complex Duffing oscillator atom obtained after Hilbert transform (− real, −−
imaginary atom).

seizure and 50min of non-seizure per patient). The parameters of the seizure de-
tection scheme (dictionary type, size and decomposition level) were then selected
to provide the optimal performance over the training set. This trained algorithm
was then tested on the continuous unpruned multi-channel EEG data from the
remaining (left out) neonate and the performance reported. This process was
repeated (total number of iterations here is 18) until the data from each neonate
had been used once for testing.

The area under the receiver operator characteristic (ROC) curve (AUC) was used
as an epoch based performance metric for the training phase and for each unseen
test neonate. The ROC curve displays the relationship between the sensitivity of
the algorithm and its specificity as a single classification threshold is varied. The
sensitivity and specificity are defined as TP/(TP + FN) and TN/(TN + FP )
respectively, where TP is the number of seizure epochs correctly detected as
seizure, FP is the number of non-seizure epochs incorrectly detected as seizure,
TN is the number of non-seizure epochs correctly detected as non-seizure, and
FN is the number of seizure epochs incorrectly detected as non-seizure. The
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individual ROC curves of all the test neonates were combined (mean or median)
to provide an estimate of the performance curve of the algorithm over unseen data.
The AUC provides a good estimate of the ability of the algorithm to discriminate
between a seizure and a non-seizure epoch from a new, unseen neonate (Temko
et al., 2011b).

For each dictionary (except DF ), an overcomplete dictionary was first constructed
from d subdictionaries as

DD = [D1 D2 · · ·Dd] ∈ CN×dN . (4.13)

In the training phase, the P "best" subdictionaries are then selected from this
overcomplete dictionary, to produce the optimal AUC. This then yields an optimal
trained dictionary of size M = PN .

For the Gabor overcomplete dictionary, 7 subdictionaries were constructed with
atom parameters chosen from the dyadic sequence of integers: m = 2q, 0 ≤ q ≤ L,
N = 2L, α ∈ {2, 4, 8, 16, 32, 64, 128} and β ∈ {128, 64, 32, 16, 8, 4, 2}.

For the LFM overcomplete dictionary, a single (N × N/2) LFM subdictionary
was constructed for N/2 possible choices of a and b (a ∈ [−0.06, 0.06]Hz/s and
b ∈ [0.25, 8.5]Hz). In order to span the TF plane, additional Gabor atoms were
used to fill the high frequency segment of the TF plane (8-16) Hz (Mallat and
Zhang, 1993, Rubinstein et al., 2010). This dictionary was augmented with 6
(N ×N) Gabor subdictionaries to form an overcomplete dictionary.

In the Duffing and pseudo-periodic Duffing dictionary, it was important that the
overcomplete dictionary captured the wide variety of seizure impulses seen in
practice. For the Duffing overcomplete dictionary, 37 (N × N) subdictionaries
were generated by sampling the distribution of [c, k2] as shown in figure 4.10.
This distribution was used to model several morphologies of neonatal seizure in
(Stevenson et al., 2010). However, for the pseudo-periodic Duffing overcomplete
dictionary each subdictionary corresponded to N choices of a and b obtained from
the LFM dictionary.

The optimized method for estimating the RSC was then tested on the full record-
ing of the remaining neonate and used to generate an automated annotation of
seizure (see Fig. 4.5). The level of agreement between the human and automated
annotation of seizure was then assessed using time (sensitivity and specificity)
and event (seizure detection rate (SDR) and false detections per hr (FD/h)) based
metrics (Temko et al., 2012). After testing, a subset of false and true seizure de-
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Figure 4.10: The joint distribution of the parameters of the Duffing oscillator
that best represents neonatal EEG seizure, where o denotes the parameters that
were used to generate mother atoms to build the Duffing dictionary.

tections were analyzed (Greene et al., 2008).

4.7 Results and discussion

The effect of dictionary type, dictionary size and decomposition level is shown in
Fig. 4.11. The maximum likelihood estimate across the training iterations would
result in a RSC calculated using a pseudo-periodic Duffing dictionary (DD̃) of
size 2N and a decomposition level of 5 atoms. A median AUC of 0.92 (mean =
0.91) was obtained across training folds.

The performance of the SDA for each patient (test fold) is given in Table 4.3. The
results shown in Table 4.4 demonstrate how the performance of the algorithm,
as measured by the mean or median AUC of the ROC across all testing folds,
depends on the dictionary type and the use of the adaptive collar. The use of
the pseudo-periodic Duffing dictionary as a basis for AD and the additional of
post-processing stages improved the performance of the SDA. Time and event
based metrics at 0.1, 0.5 and 1.0 FD/h are shown in Table 4.5. The SDA has a
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Table 4.2: A summary of the optimal parameters selected during training. Results
presented as median (IQR) or † most commonly selected (selections)

Parameters Optimal value
Atoms 5 (4.0-5.2)
Dictionary type† DD̃(18)
Dictionary size† 2N (18)
AUC 0.915 (0.91-0.92)
RSC (seizure), dB 5.3 (4.7-6.5)
RSC (non-seizure), dB 1.6 (1.3-2.2)
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Figure 4.11: Training results for several different dictionaries on the training
sets. a) AUC v number of atoms b) AUC v dictionary size. AUC is the median
AUC across 18 training folds of the LOO. Note, the Fourier dictionary cannot be
increased above 256 atoms.
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Figure 4.12: Example of the behavior of the proposed RSC for patient 3. (a) raw
100 seconds single channel (F4-C4) EEG with a seizure event emerging from low
voltage activity, and (b) its corresponding RSC. Note that RSC increases in the
presence of seizure as the atoms in the dictionary are coherent with seizure which
provides improved reconstruction of seizure compared to non-seizure.

median seizure detection rate of 82.3% at 1FD/h and 56.5% at 0.1FD/h (a more
clinically relevant threshold (Lawrence and Inder, 2010)). An example illustrating
the behaviour of the RSC corresponding to seizure and non-seizure is shown in
Fig. 4.12. It can be seen that the RSC increases in the presence of seizure since
the atoms selected during AD are coherent with seizure, thereby decreasing the
reconstruction error. A comparison of the SDA performance and other methods
reported in the literature is shown in Fig. 4.13. While the comparison of SDA
performance is fraught with difficulty (Temko et al., 2011a), the proposed SDA
has comparable performance with existing methods. Figure 4.14 shows the affect
of the postprocessing stage on the SDA performance.

The signal characteristics of the false and detected seizures for a defined false
alarm rate of 1FD/h were investigated with other quantitative measures of EEG
(Greene et al., 2008). The results are shown in Table 4.6. The spectral en-
tropy and the AR model fit show significant difference between correctly detected
seizures and false detections across the cohort of 18 neonates.
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Figure 4.13: The performance curves of the proposed SDA. These are the ROC
and the seizure detection rate/false detections per hour curves, determined as the
median over the 18 unseen neonates in the LOO cross-validation. These curves
present an almost unbiased estimate of the performance of the proposed SDA on
unseen data. As a comparison, the performance curves of Temko et al. (Temko
et al., 2011a) are included. The reported results of other key research groups
are also reported here for comparison (Aarabi et al., 2007, Deburchgraeve et al.,
2008, Mitra et al., 2009, Navakatikyan et al., 2006, Smit et al., 2004).

Fig. 4.15 shows the performance of the proposed SDA with respect to the seizure
duration. Seizures less than 30s in duration were more difficult to detect and the
largest amount of false detections were less than 30s in duration. EEG recordings
from 3 neonates resulted in significantly reduced SDA performance (figure 4.17).
Fig. 4.17 shows the distribution of mean RSC for high (15/18) and low (3/18)
performing neonates.

It should be noted that there is a large difference in the training and testing
results (mean AUC = 0.91 vs 0.79). This is most likely due to the fact that the
training data consisted of single channel EEG epochs whereas testing is performed
on multichannel EEG recordings which require a post-processing stage (a maxi-
mum across EEG channels) to generate a decision. The affect of this maximum
operation is not examined during training. The use of further post-processing (a
median filter and collaring operation), however, alleviated this difference (mean
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Table 4.3: Performance of the proposed SDA for each unseen test patient.
Here, ID=Patient ID, Sens=sensitivity (%), Spec=specificity (%), SN=Number
of seizures, MSD=Mean seizure duration (seconds) and SDR0.5=Seizure detection
rate at 0.5 FD/h.

ID AUC Sens Spec SN MSD SDR0.5
1 0.74 64.3 66.5 17 90 52.9
2 0.70 65.2 67.8 3 370 66.6
3 0.94 86.4 87.5 209 110 72.1
4 0.90 84.2 85.6 84 98 77.6
5 0.63 58.6 56.8 62 397 55.3
6 0.85 74.3 76.4 46 68 65.4
7 0.91 83.1 81.7 99 92 85.5
8 0.89 81.3 78.5 17 356 76.5
9 0.92 82.5 87.6 201 299 75.3
10 0.91 83.4 84.5 41 291 68.1
11 0.99 95.6 94.4 43 147 86.2
12 0.96 90.3 89.5 150 96 84.5
13 0.95 91.2 90.4 60 206 98.5
14 0.95 91.6 88.7 21 493 85.6
15 0.92 82.3 81.5 121 91 62.3
16 0.92 84.5 81.3 190 303 81.2
17 0.91 83.4 87.6 21 331 57.5
18 0.96 91.2 90.5 4 574 99.4

Table 4.4: The effect of dictionary type and post-processing on the performance
of the proposed SDA when applied to each test fold (N=18). Mean, median and
IQR of the AUC are presented.

Dictionary without with adaptive
type post-processing collaring

Mean Median Mean Median
(IQR) (IQR)

DD̃ 0.79 0.81 0.88 0.91
(0.72–0.84) (0.87–0.95)

DL 0.72 0.73 0.76 0.78
(0.68–0.81) (0.70–0.87)

DD 0.68 0.69 0.75 0.77
(0.58–0.77) (0.64–0.87)

DF 0.63 0.64 0.75 0.79
(0.58–0.68) (0.66–0.85)

DG 0.66 0.67 0.70 0.71
(0.62–0.77) (0.62–0.84)

AUC = 0.91 (training) vs 0.88 (testing)).

There are many SDAs proposed in the literature, although a fair comparison be-
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Figure 4.14: Effects of the post-processing scheme. (a) Ground truth or human
annotation where 1 indicates seizure, (b) The binary decisions obtained from the
SDA, (c) The smoothed binary decisions after a 32s median filter is applied, and
(d) The final binary decisions after the adaptive collar operation, which increases
the duration of all positive decisions. An example of a false detection event is
also shown (highlighted by the red ellipse).

Table 4.5: Testing results (median) using the proposed SDA at several FD/h.

FD/h SDR (IQR) % Sensitivity (IQR) % Specificity (IQR) %
0.1 56.5 (50.5–65.2) 53.5 (48.4–65.6) 97.5 (93.6–98.8)
0.5 75.9 (65.4–85.5) 63.9 (58.6–75.8) 93.4 (86.3–95.4)
1.0 82.3 (78.8–93.2) 82.5 (76.2–90.3) 86.5 (75.9–91.7)

tween methods is difficult (Temko et al., 2011a), as there are (a) differences within
datasets used and (b) methodological differences particularly when validating a
SDA. The differences in datasets mean that only some datasets reflect the real-
ity of neonatal monitoring for seizures and so permit the robustness of a SDA
to be tested. There are also large differences in the prevalence index (typically,
EEG consists of 90% more non-seizure than seizure) of the datasets which means
that traditional methods of assessing agreement such as Cohen’s Kappa statistic
are highly variable and, therefore, not sufficient. This results in a large array
of different metrics for the analysis of SDA performance (Temko et al., 2011a).
Methodological differences include cross-pollination between training and testing
data resulting in optimistic assessments of SDA performance.
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Figure 4.15: Illustration of the seizure detection rate (%) and corresponding
number of false detections of seizures of different duration by the proposed SDA
at 1 FD/h using testing data. Most false detections occur when the duration of
seizure is less than 30s. As the duration of seizure increases, the seizure detection
rate increases and the number of false detections decreases.

The proposed seizure detection algorithm is conceptually similar to Navakatikyan
et al. (Navakatikyan et al., 2006) and Deburchraeve et al. (Deburchgraeve et al.,
2008), but rather than attempting to estimate periodicity by looking at the corre-
lation between the outputs of an adaptive segmentation procedure, the correlation
is performed between the EEG signal and a dictionary of possible nonstationary
atoms. The performance of the proposed SDA (see Fig. 4.13) is comparable to
these methods (mean SDR = 0.82 vs 0.89, 0.88) (Deburchgraeve et al., 2008,
Navakatikyan et al., 2006) at 1 FD/h. It should be noted that Navakatikyan
et al. and Deburchraeve et al. trained and tested on the same data. The per-
formance of the proposed SDA was similar to that of the multi-stage neonatal
SDA proposed by Mitra et al. (GDR = 80% at 0.74 FD/h) in which 121h of
EEG recordings with artefacts were used to test the SDA (Mitra et al., 2009).
However in this study, the results were obtained on the larger dataset, which
comprises 826 h of unedited neonatal EEG. Proper comparison is difficult since
only performance points rather than performance curves are provided from the
literature. The performance of the proposed SDA exceeded the single feature
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method of Stevenson et al. (Stevenson et al., 2012), but was less than the SDA
proposed by Temko et al. (Temko et al., 2011a). This comparison offers a better
reflection of true results as the datasets used in these methods are the same.
The superior performance of the method of Temko et al. (a method based on
55 features) is not uniform across the cohort but is significant on a subset of 3
neonates on which the proposed SDA performs poorly (mean AUC = 0.69 vs
0.92). In these 3 neonates, the RSC does not provide sufficient discrimination
between seizure and non-seizure states, primarily due to a lack of response to
seizure epochs (see Figs. 4.16 and 4.17). The use of additional features as used
by Temko et al. (Temko et al., 2011a) may better represent seizure in this sub-
set of poorly performing neonates and reduce the number of false alarms. Table
4.6 gives the analysis of the performance of additional features to discriminate
detected seizures from false alarms. From this analysis, AR fit, bandwidth and
spectral entropy measures provide the best additional discriminative power for
reducing the false detections.

Table 4.6: Analysis of some additional features on true (TD) and false (FD)
seizure detections by the SDA at 1FD/h. The median was used to summarise
the feature value across each neonate. A Mann Whitney U Test was used to test
the difference between TDs and FDs across the cohort of neonates (N=18). For
details on the features see (Greene et al., 2008).

Feature Detected seizures False alarms p-value
median median
(IQR) (IQR)

RMS amplitude(µV) 15.3 16.3 p =0.889
(7.78–24.25) (13.72–20.98)

Maxima and minima 50 38 p =0.289
(26–56) (23–46)

Number of extrema 4.74 5.79 p =0.962
(3.44–7.87) (4.25–7.16)

AR Fit 0.64 1.19 p =0.002
(0.34–1.11) (1.10–1.39)

Bandwidth 2.95 3.67 p =0.091
(2.15–4.23) (3.20–4.19)

Spectral Entropy 0.42 0.63 p =0.001
(0.34–0.55) (0.52–0.68)
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Figure 4.16: Boxplot showing the distribution of RSC (mean values) obtained for
all seizure and non-seizure epochs for (a) 15/18 high performing, and (b) 3/18
low performing neonates using testing data.
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Figure 4.17: Histogram of RSC obtained for all seizure and non-seizure epochs
for each testing data showing the distribution of the performance of the pro-
posed SDA in (a) 3/18 low performing neonates, and (b) 15/18 high performing
neonates.

4.8 Summary

In this chapter, a method for the detection of neonatal seizures from EEG is
presented. The method was based on a single feature (RSC) of the EEG signal
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which was defined as the signal to error ratio obtained using a set number of atoms
for decomposition. It was observed that the number of atoms used to decompose
the signal and the size of the dictionary can significantly improve the detection
performance of the RSC feature. The major factor in RSC performance was,
however, the type of dictionary used for AD. It was shown that a novel pseudo-
periodic dictionary based on Duffing atoms results in an RSC with superior seizure
detection performance. Atoms in the pseudo-periodic Duffing dictionary have a
high correlation with seizure waveforms and a low correlation with non-seizure
waveforms. As a result, the RSC will increase in the presence of seizure. As
seizure tends towards a higher energy than non-seizure, further increases in the
RSC are observed, due to the improved signal to error ratio.

A short-coming of the proposed SDA is its inability to detect short-duration
seizures (the seizure detection rate drops below 80% for seizures less than 30s in
duration). A significant proportion of false detections (12%) are also less than
30s in duration. A limit on seizure duration will improve the performance and
may also permit the lengthening of the epoch length from 8 seconds resulting
in more data to be processed for a decision. The simplest solution to the short
seizure duration problem would be to redefine the length of a seizure to 30s (the
minimum duration of 10s that is currently used is relatively arbitrary) as the
majority of seizures in the database were longer than 93s. A change in minimum
seizure duration would improve the median AUC to 0.94 (IQR 0.89–0.97) and
the mean AUC to 0.92.
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Chapter 5
Robustness of Time-Frequency
Distribution Features for Neonatal
Seizure Detection

As far as the laws of mathematics refer to reality, they are not cer-
tain, as far as they are certain, they do not refer to reality. −−Albert
Einstein

5.1 Introduction

In the real world, the majority of signals such as the electroencephalogram
(EEG) are nonstationary in nature since their properties change with time.

This may be due to external/internal events which influence the dynamics, char-
acteristic time scale, transient processes and change in system parameters (Paluš,
1996). The changes in EEG waveforms are directly influenced by several behav-
ioral and mental states (Gribkov and Gribkova, 2000, Kohlmorgen et al., 2000)
and are clearly visualized especially during epileptic seizures (Jefferys et al., 1990).
The duration of this change in EEG properties is not fixed and can vary between
10s - 1min or even longer (Niedermeyer and da Silva, 2005). In this chapter,
the performance of the neonatal seizure detection algorithm (NSDA) proposed in
chapter 4 was improved using additional time-frequency distribution (TFD) fea-
tures obtained from the pseudo-periodic Duffing dictionary. The main advantage
of using TFD is that it can provide key instantaneous frequency values which
characterize the nonstationary nature of the EEG signal.
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5.2 EEG seizure detection using time frequency
(TF) analysis techniques

Several seizure detection algorithms have been proposed based on the time, fre-
quency, nonlinear and nonstationary characteristics of EEG signals. The basic
architecture of these methods is illustrated in figure 5.1 which involves the analy-
sis of single channel EEG for seizure detection. Most of these methods either use
short duration EEG dataset (varying between 30 mins to 2 hours) or use carefully
selected artefact free segments and do not achieve a level of performance simi-
lar to the inter-observer agreement seen between human experts (Wilson et al.,
2003).

Single channel 

EEG signal/

 free 

EEG segments

artefact

Time/frequency/

 TF analysis 
Feature extraction

Classification using

 classifiers
Automated seizure

 annotation

Comparison with

human annotation

Figure 5.1: Illustration of basic methodology for automated seizure detection
using Time-Frequency analysis.

Some of these methods use basic time domain features (Gotman, 1990), spectral
features (Widman et al., 2000) and autoregressive modelling approach (Subasi
et al., 2006). Other methods use some advanced features which include a combi-
nation of time and frequency features (Srinivasan et al., 2005), discrete wavelet
transform (DWT) of EEG signals (Subasi, 2007), energy measures from the TFD
of the EEG signals (Tzallas et al., 2007) and time frequency (TF) matched fil-
tering methods (Boashash and Mesbah, 2001). A combination of time, frequency
and time-scale domain features are used for neonatal seizure detection in (Greene
et al., 2008, Temko et al., 2011).

The non-stationarity nature of the neonatal EEG has led to the application of
non stationary signal processing and segmented analysis for the seizure detection
problem. It was shown that TF and instantaneous frequency (IF) based methods
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were more suitable for automated seizure detection and classification (Boashash
and Mesbah, 2001). A seizure detection method using nonstationary features
obtained from TFD of the EEG signals was proposed in (Boashash et al., 2011).
TFDs inherently deal with nonstationarity by projecting a signal onto a joint
TF domain. An interesting approach was outlined by Boashash et al. in which
features obtained from the TFD were used to detect neonatal seizures (Boashash
et al., 2012b). This method was tested on a small dataset of artefact free neonatal
EEG (50 segments of seizure and non-seizure with individual segments of length
12.8s) with no apparent validation of results.

A significant problem with the development of a neonatal seizure detection al-
gorithm (NSDA) is the lack of commonly available datasets to allow for the
comparison of proposed methods. This problem, in conjunction with a lack of
data on inter-observer variability between human experts, hinders the progress
of NSDA development. In this chapter, the NSDA proposed by Boashash et al.
(Boashash et al., 2012b) (TFD feature-set classified by a support vector machine
(SVM)) was applied to a large dataset of neonatal EEG that better represents the
application of a NSDA in the NICU (a NSDA as a surrogate neurophysiologist
for long duration assessment of the neonatal EEG). The usefulness of such a pro-
cess is twofold in that it provides information on the robustness of this method
when applied to a real world setting and permits the comparison between this
method and other methods developed on the same datasets (Stevenson et al.,
2012a, Temko et al., 2011, Thomas et al., 2010).

5.3 Support vector machine

The support vector machine (SVM) was introduced by Vapnik et al. in 1995
(Vapnik and Cortes, 1995). The main idea behind classification is to identify
certain patterns in a data set and classify accordingly into two classes. The
classification process requires the SVM to be trained on a specific data set which is
divided into training and testing sets. The patterns in the training set correspond
to a particular class which is labeled with a certain target class. The SVM model
parameters are tuned to provide the best classification accuracy over the training
set and then the model is tested on the unseen testing set (see figure 5.2). Since
this thesis is mainly focussed on developing advanced features for neonatal EEG
classification, it is out of scope of this thesis to explain the extensive theory
of SVMs. Only a basic understanding of classification using SVMs is therefore
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provided. For a more detailed description, readers are referred to (Cristianini and
Shawe-Taylor, 2000, Vapnik and Cortes, 1995).

    Dataset

   labelled

training data

testing data

Learning 

   SVM

  Trained SVM

     classifier

Predicted labels 

 for testing data

Figure 5.2: Basic SVM learning process involved in classification. With the help of
a particular training set of data with labels, the learning algorithm generates a de-
cision rule which can then be used to predict the labels of new unlabelled/testing
data.

Consider a classification problem with a training set X consisting of M pattern-
label instances with patterns belonging to either positive (w1) or negative class
(w−1) are defined as y ∈ {1,−1}. A vector xj ∈ Rn, where 1 ≤ j ≤M represents
a vector of n features which are used to characterise the data. The training set
X can now be denoted as:

X = {(xj, yj)}Mj=1, x ∈ Rn, yj ∈ {1,−1} (5.1)

The goal is to find a decision surface, also known as hyperplane that can correctly
separate the patterns in the training set into their corresponding classes which
can be written in the linear form as

f(x) = wTx + b (5.2)

where w ∈ Rn and b is the bias. Depending on the values of w and b, there are
many hyperplanes that can separate the training set (see figure 5.3), however it
is important to find the best hyperplane that achieves maximum separation.

Let H0, H1, H−1 be the hyperplanes corresponding to f(x) = 0, f(x) = 1 and
f(x) = −1 respectively. The optimal hyperplane which is also denoted as the
maximum-margin hyperplane is obtained by maximizing the distance between
hyperplanes, also known as maximum margin (see figure 5.4) given by

Maximum margin = 2
||w||

. (5.3)
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Figure 5.3: Illustration of several hyperplanes that can classify the data. The
real problem is to find the optimal hyperplane that best separates the data.

The following constraints must be satisfied in order to ensure that data points
are on/outside maximum margin:

wTxj + b ≥ +1 if, yj = +1, and (5.4a)
wTxj + b ≤ −1 if, yj = −1 ∀j (5.4b)

which can be written in simple form as:

yj(wTxj + b) ≥ +1 ∀ j. (5.5)

Maximizing the margin is equivalent to minimizing w and can be written in the
form of optimization problem as:

minimise 1
2 ||w||

2, subject to yj(wTxj + b) ≥ +1 ∀ j. (5.6)

This formulation using constraints ensures that the maximum margin classifier
can classify the data correctly, given that the data is linearly separable. How-
ever, in practice, data is often not linearly separable (which is generally the case
with biomedical signals) and the optimization problem would diverge and grow
arbitrarily. A set of slack variables ε are then introduced in equation 5.4(a,b) to
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Figure 5.4: Example of a maximum-margin hyperplane and the margins for an
SVM trained on two classes. The support vectors are indicated with a blue dotted
circle.

ensure convergence such that

wTxj + b ≥ +1− εj if, yj = +1, and (5.7a)
wTxj + b ≤ −1 + εj if, yj = −1 (5.7b)

where εj ≥ 0 allows a feature vector xj given data to lie inside the margin and
possible be misclassified if εj ≥ 1. Since data can be misclassified if the value of
its slack variable is greater than 1, a regularisation constant C is introduced into
the objective function in equation 5.6 which can be written as:

minimise 1
2 ||w||

2 + C
M∑
j

εj, subject to yj(wTxj + b) ≥ +1 ∀ j. (5.8)

The constant C > 0 sets the relative importance of maximizing the margin and
minimizing the amount of slack and was introduced by Cortes and Vapnik (Vapnik
and Cortes, 1995). The convex optimization problem in equation 5.8 is solved by
the introduction of Lagrange multipliers, αj ≥ 0, ∀ j (Boyd and Vandenberghe,
2009). The training samples xj for which αj > 0 are on or within the margin
are called support vectors (see figure 5.4). Given a test vector x̃ ∈ Rn, the
classification process now simplifies to assigning one of the two classes defined in
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Φ

(a) (b)

Figure 5.5: Simple illustration of mapping linearly inseperable data (a) to a
seperable data (b) using mapping.

y using a SVM such that,

f(x) =
∑
j∈Nsv

αjyjx̃Tj xj + b. (5.9)

Here Nsv is the set of indices for the support vectors extracted from the training
data. A hyperplane can be efficiently used to separate the data, if the data is
linear. However, in most of the cases, the data is far from linear and is inseparable.
In such cases, the non-separable data is mapped into a high-dimensional linearly
separable feature space using kernels (illustrated in figure 5.5) such that:

f(x) =
∑
j∈Nsv

αjyjK
(
xTj , x̃j

)
+ b. (5.10)

where K
(
xTi , x̃i

)
is the kernel function.

There are several kernel functions available, however the Gaussian radial basis
function (rbf) is used in this thesis and is defined as,

K(xj, x̃j) = e−
(xT
j
−x̃j)T (xT

j
−x̃j)

2σ2 (5.11)

where σ is the parameter that controls the width of Gaussian kernel. It has
been demonstrated that Gaussian kernel SVM classifiers are effective in neonatal
seizure detection (Temko et al., 2011, Thomas et al., 2010). The kernel K(xj, x̃j)
can be interpreted as the non-linear similarity measure between two data points
which can be used to replace the mapping function using a property known as
the kernel trick (Scholkopf, 2001). With the inclusion of a kernel function, the
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SVM classifier can now be written as (Maji et al., 2008):

y(x̃j) = sign(f(x̃j)) = sign

 ∑
j∈Nsv

αjyjK(xj, x̃j) + b

 . (5.12)

It should be noted that the decision function in equation 5.12 will provide hard
decisions i.e the output of the SVM varies from [−∞ to ∞] . The output of the
SVM can be converted to a probabilistic measure of seizures, bounded within
[0,1] via Platt scaling (Platt, 1999). The output of SVM can be converted to a
probabilistic measure of data belonging to the positive class w1, using a sigmoid
function:

P (w1|x) = 1
1 + exp(Af(x) +B) , (5.13)

where P (w1|x) is the probability of the presence of a seizure in an epoch, f = f(x)
is the output of the SVM classifier (distance to the separating hyperplane), A
and B are the parameters of the sigmoid function which are estimated over the
training dataset (Platt, 1999).

5.4 TF features from atomic decomposition

Nonstationary signals with time-varying frequency content can be best repre-
sented by a TFD which represents the energy distribution of the signal over a
two-dimensional (2D) TF space. The TFD provides the variation of frequency
of the signal components with time, also defined as instantaneous frequency (IF)
(Boashash, 1992). By using a peak detector, the IF can be obtained from the
TFD by selecting the frequency with the maximum value in the TFD as a function
of time. Therefore, it is appropriate to use TFD for detection and classification
of EEG abnormalities based on their nonstationarity nature (Boashash, 1991).

TFD based on the Wigner-Ville distribution (WVD) can be used to analyze and
classify non-stationary signals. However, due to the bilinear nature of the signal
kernel, the WVD is contaminated by cross-terms (described in section 3.4 of
chapter 3). By using an appropriate smoothing window (a 2D low pass filter),
these cross-terms can be minimized. It was demonstrated that the quadratic
time-frequency distributions (QTFD) were efficient for analysis of non-stationary
signals which can be written for a given input signal x as (Boashash, 1991)

ρx(t, f) = ρWVD
x (t, f) ∗∗

t,f
G(t, f) (5.14)
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where ρx(t, f) is the QTFD, ρWVD
x (t, f) is the Wigner Ville distribution (WVD),

G(t, f) is the TF kernel or a 2D smoothing window. Depending on the selec-
tion of kernels or smoothing window, several QTFD can be obtained which can
be adapted to a particular class of signals (Boashash, 1991) some of which are
described in table 3.1 of chapter 3.

The QTFD of a given real discrete time signal x[n], n = 0, 1, . . . , N−1, is defined
in terms of its analytic associate z[n] (Boashash et al., 2011) as:

ρ[n, p] = 2DFT
n→p
{G[n,m] ∗

n
z[n+m]z∗[n−m]} (5.15)

where G[n,m] is the kernel of the TFD and ρ[n, p] is an N × N matrix. The
modified B distribution (MBD) and smoothed WVD (SWVD) was used in this
work as it has been shown that these TFDs provide superior performance for
neonatal and adult seizure detection (Boashash et al., 2012b), respectively. The
discrete time kernel functions for MBD and SWVD are listed in Table 5.1.

Table 5.1: QTFD and their time-lag kernels. Here β is positive and real, w[n] is
the Hanning window function.

QTFD time-lag kernel, G[n,m]
MBD cosh−2β∑

n
cosh−2β n

SWVD δ[n]w[n]

In the previous chapter, a method for the detection of neonatal seizures from
EEG was presented. The method was based on a single feature denoted as rel-
ative structural complexity (RSC) of the EEG signal which was defined as the
signal to error ratio obtained using a set number of atoms for decomposition. It
was observed that the number of atoms used to decompose the signal and the
size of the dictionary can significantly improve the detection performance of the
RSC feature. The major factor in RSC performance was, however, the type of
dictionary used for AD. It was shown that a novel pseudo-periodic Duffing dic-
tionary (DD̃) based on Duffing atoms results in an RSC with superior seizure
detection performance. Atoms in the pseudo-periodic Duffing dictionary have a
high correlation with seizure waveforms and a low correlation with non-seizure
waveforms. As a result, the RSC will increase in the presence of seizure. As
seizure tends towards a higher energy than non-seizure, further increases in the
RSC are observed, due to the improved signal to error ratio. The (DD̃) of size
2N (two times over complete dictionaty and N is the length of the signal) and
a decomposition level of 5 atoms was found optimal for seizure detection. This
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suggested that the atoms selected in the (DD̃) dictionary during AD can provide
valuable information about the presence of seizures.

In this study, the TFD of the atoms from the (DD̃) dictionary selected during
AD was obtained as

ρAD[n, p] =
K∑
k=1

TFD {γkφk} (5.16)

whereK is the number of iterations/atoms used in AD, γk is the weight associated
with the corresponding atom φk.
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Figure 5.6: Example of (a) 8s seizure epoch (b) and its corresponding TFD
using MBD (β = 0.01), (c) a pseudo periodic Duffing oscillator atom and (d) its
corresponding TFD using MBD (β = 0.01).

The proposed feature extraction using AD is primarily based on the assumption
that the most significant information of the EEG signal can be provided by the
synthesizing atoms with the maximum energy during AD. Since OMP selects
atoms in a sequence by removing the largest residual energy and also does not
select the same atom twice, it tends to provide most useful atoms in just fewer
iterations. Since atoms in the (DD̃) dictionary are designed to be highly coherent
with seizure, by extracting the information from the atoms selected during the
OMP the presence of seizure can be detected efficiently. Moreover, the TFD
obtained from AD provides a noise-free representation and increases the time-
frequency resolution (demonstrated in chapter 3 section 3.7). Figure 5.6 shows
a sample 8s seizure epoch, pseudo periodic Duffing oscillator atom and their
corresponding TFDs.
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8 features were derived from the TFD of the atoms selected from the dictionary
during AD. These features were initially used by Boashash et al. (derived from
the TFD of the EEG signal) for multichannel-based newborn seizure detection
(Boashash et al., 2012b). However in this study, the features extracted from the
TFD of atoms selected during the AD from the dictionary were used; this should
reduce the effect of artefacts on the performance of NSDA. Here the atoms are
represented as φ[n], sampling frequency as fs and TFD as ρAD[n, p]. The following
8 features were used in this study.

1. Instantaneous frequency (IF) features: The instantaneous frequency (IF)
of a nonstationary signal provides information about its change in fre-
quency content with time (Boashash, 1992). For a given signal, the peaks
of the constant-time cross-sections of the TFD provides the IF of the signal
(Boashash et al., 2012b). The IF can be obtained from the TFD of the
selected atoms as

fi[n] = fs
2N arg

{
max
p

ρAD[n, p]
}
. (5.17)

The mean
F1 = 1

N

N∑
n=1

fi[n] (5.18)

and deviation
F2 = ∆fi = max

n
(fi[n])−min

n
(fi[n]) (5.19)

are selected as features 1 and 2 respectively.

2. Singular value decomposition (SVD) based features: The SVD of the TFD
matrix, ρAD can be obtained as

ρAD = USVH . (5.20)

The diagonal entries of S represent the singular values of ρAD and it was
shown that these singular values provide useful information about EEG
abnormalities (Hassanpour et al., 2004, Temko et al., 2011). The maximum
(F3 ) and the variance (F4) of the diagonal entries of the singular values (S)
are taken as features 3 and 4, respectively.

3. Time-frequency complexity measure (TFCM): The TCFM was initially pro-
posed in (Greene et al., 2008) and was extended to the TF plane by Boashash
et al. in (Boashash et al., 2012a). This feature provides information about
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both SVD and Shannon entropy measures defined as

F5 = −
N∑
j=1

S̄jlogS̄j (5.21)

where S̄j = Sj∑N

1 Sj
, for j = 1, 2, . . . , N are the normalized singular values.

4. Energy concentration measure (ECOME): The concentration of the impor-
tant element at each grid in the TF domain can be obtained using ECOME
(Sejdić et al., 2009) which is used as feature 6, given by

F6 =
(∑∑

|ρAD[n, p]| 12
)2

(5.22)

5. Energies in sub-bands: Additionally, two features which capture the sub-
band energies corresponding to δ = 0− 4Hz and θ = 4− 8Hz respectively
(Boashash et al., 2011) defined as:

F7 =
N∑
n=1

Nδ∑
p=1

ρAD[n, p] (5.23)

F8 =
N∑
n=1

2Nδ∑
p=Nδ

ρAD[n, p] (5.24)

where Nδ = b8N/fsc and b.c is the floor operator are used as features 7 and 8
respectively. These features provides information about the energy of the EEG
signal x[n] corresponding to their sub-bands.

5.5 Automated neonatal seizure detection sys-
tem architecture

Figure 5.7 shows the architecture of the automatic NSDA. The initial step involves
the preprocessing of signals from the EEG channels and segmenting into epochs.
Features are extracted from each segmented EEG epoch. The feature vectors
are then fed to the SVM classifier and the probability of seizure is obtained for
each EEG epoch. The outputs of the SVM are then converted to probability-like
values. The maximum of the probabilities across all channels is then computed to
represent the final support of a seizure. The sharp transients in the SVM output
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are then suppressed using a median filter. An adaptive collar that is related to
the duration of the detected seizure is applied to the binary output to extend the
detection. An automated seizure annotation is then obtained.
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Figure 5.7: Atomic decomposition based neonatal seizure detection system.

5.5.1 Preprocessing

The 8 channel EEG signal is passed through an anti-aliasing filter set at 12.8Hz,
downsampled from 256 to 32 Hz as the significant energy in the newborn EEG
(> 95%) does not exceed the alpha band (8-12 Hz) (Scher et al., 1994). The data is
also filtered with a single pole highpass filter with a cutoff frequency of 0.5Hz. The
EEG is then segmented into 8 s epochs with 50% (4 s) overlap between epochs.
The minimum seizure duration recommended by the International Federation of
Clinical Neurophysiology (IFCN) (Boylan et al., 2010) is 5 s for normal EEG
background and 10 s in case of abnormal background EEG. Since most babies
suffering from HIE or seizure have abnormal background EEG, a window length
of 8 s was chosen in this work.

5.5.2 Feature extraction

Each 8s epoch was decomposed using OMP using a complex pseudo-periodic
duffing dictionary (DD̃). The number of atoms was restricted to 5 as it was
shown in chapter 4 that the dictionary of size 2N (here N = 256 is the length of
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the signal) and decomposition level of 5 atoms provided optimal performance in
seizure detection. The TFD of the individual atoms selected during this process
was then obtained which was later combined to form a joint TFD of atoms.
Eight features were then extracted from this joint TFD. This was repeated for
all 8 channels.

The parameter of the MBD was chosen as β = 0.01 and a Hanning window
of length bN/4c was chosen for SPWVD (here N = 256) as it was shown to
provide good performance for the TFD of neonatal and adult seizure detection,
respectively (Boashash et al., 2012b). It should be noted that the window function
was not optimized in this work. The TF features from the pre-processed EEG
signal were also obtained for the purpose of comparison.

5.5.3 SVM classification

SVM classification using a Gaussian kernel was used to classify the extracted fea-
ture vectors. More details about the working of the SVM classifier is described
in section 5.3. The classification stage was divided into two parts - training and
testing. The performance of the proposed NSDA was estimated using a leave-
one-out (LOO) cross validation as it provided almost an unbiased estimation of
the true generalization error. In this validation method 17 patients data were
used in training and the left-out patients data was used for testing. This process
was repeated until data from each patient was used for testing (18 different com-
binations of test/train sets). The mean and median value across all 18 test folds
were then obtained.

To select suitable model parameters for the SVM, a nested cross-validation model
selection on the training data was performed. Probability-like values were then
obtained from the SVM. A subset of 5 minutes of seizure and 50 minutes of non-
seizure were selected from 17 neonates at each step (a total of 85 minutes of seizure
and 850 minutes of non-seizure data at each training iteration). The features
extracted during training were then fed to an SVM classifier with a Gaussian rbf
kernel and then tested on the full recording of the remaining neonate to generate
an automated annotation of seizure.

All features were normalised using a Box-Cox transformation during training to
have similar mean and standard deviation of the distribution of each feature (Box
and Cox, 1964). The obtained SVM classifier was then used to test the testing
data for each channel and the final decision was obtained after post-processing
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described below.

5.5.4 Post-processing

The outputs of the SVM from each channel were converted to pseudo-probabilistic
values using Platt’s method (Temko et al., 2011). The maximum of the probabil-
ities across all channels was computed to represent the final support of a seizure.
Sharp transients in the support were suppressed using a median filter of 8s in du-
ration. An initial decision was obtained after comparing the postprocessed value
to the threshold of 0.5 (equal priority for seizure and nonseizure classes). The
adaptive collar technique was then applied in which every seizure decision was
extended proportional to the duration of the detected seizure on either side (illus-
trated in figure 5.8). An automated annotation of the seizure was then obtained.

5.5.5 Performance assessment metrics

Similar to the assessment used in chapter 4, the area under the receiver operator
characteristic (ROC) curve (AUC) was used as an epoch based performance met-
ric for the training stage as well as for each unseen test subject. In addition, the
event based good detection rate (GDR) for varying number of false detections
per hour (FD h−1) is also reported.

5.6 Results and discussion

Table 5.2 shows time and event based metrics at selected thresholds for the TF
feature-sets generated with both SPWVD and MBD. It can be seen that the
TF features set based on MBD provided slightly superior performance than SP-
WVD. This was also noted in Boashash et al. (SPWVD=0.93 and MBD=0.96)
(Boashash et al., 2012b). Moreover, the performance of the NSDA obtained
using features from AD was better when compared to that obtained from the
pre-processed EEG signal at clinically relevant threshold (< 1 FD/h).

The performance of individual features for the detection of EEG seizures is shown
in figure 5.9. Features F1 and F8 provide the highest discrimination between
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Figure 5.8: Illustration of the post-processing scheme. (a) The ground truth,
where 1 indicates seizure. (b) The output of SVM converted to a probability via
a sigmoid function. (c) The binary decisions resulting from applying a threshold
of 0.5 to the probability of seizure . (d) The final binary decision after median fil-
tering and adaptive collar operation, which increases the duration of the detected
seizure proportional to its duration on either side.

seizure and non-seizure. The results obtained using the proposed NSDA for indi-
vidual recordings is shown in Fig. 5.10. The median AUC of the NSDA obtained
using AD was 0.91 and 0.93 (SPWVD and MDB, respectively). These values
are significantly lower than outlined in Boashash et al. (0.96 vs 0.93) (Boashash
et al., 2012b). This was expected as the large unedited dataset used in this study
includes a large proportion of confounding EEG, such as artefact, that may not
be available in smaller selected datasets. The performance of the proposed NSDA
compared to other NSDA’s are shown in figures 5.11 and 5.12.

From these results, it can be concluded that proper detection and measurement of
the components of the nonstationary EEG signal can provide improved features
for seizure detection in neonatal EEG. The proposed NSDA using AD offers
significant improvement over other stationary and nonstationary methods for
the detection of nonstationary variations observed in neonatal EEG. However, it
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Table 5.2: Testing results (mean, median, IQR)% using the proposed NSDA. The
performance using MBD outperforms SPWVD.

FD/h SDR Sensitivity Specificity
AD based TF features

0.01 42.1, 47.3 40.3, 41.2 97.5, 99.6
(36.5–51.2) (38.1–45.7) (99.1–100)

0.1 53.5, 55.3 41.3, 43.6 98.1, 97.2
MBD (51.6–58.4) (40.8–51.3) (95.4–99.4)

1.0 83.5, 87.2 75.2, 78.9 83.8, 85.4
(84.6–93.3) (72.6–84.3) (81.5–93.2)

0.01 40.5, 45.6 38.1, 40.4 97.1, 98.7
(35.4–50.6) (37.6–44.4) (98.5–100)

0.1 52.1, 54.2 40.2, 42.3 97.5, 96.3
SPWVD (50.1–57.2) (38.9–49.8) (93.4–97.6)

1.0 81.4, 85.7 73.5, 76.7 81.2, 83.8
(83.5–92.1) (71.5–82.6) (80.1–91.3)

EEG signal based TF features
0.01 6.8, 7.2 4.2, 5.1 99.5, 99.8

(6.1–8.8) (3.5–5.8) (99.2–100)
0.1 26.5, 28.3 13.8, 16.6 98.1, 99.3

MBD (22.6–30.4) (10.8–20.3) (97.2–99.8)
1.0 90.8, 92.5 81.7, 83.6 91.4, 94.8

(86.6–94.3) (74.6–89.3) (86.5–97.2)
0.01 6.1, 6.4 3.6, 4.0 99.6, 99.8

(5.8–8.6) (3.2–5.4) (99.5–100)
0.1 23.2, 25.1 12.6, 14.2 97.3, 98.5

SPWVD (21.4–28.7) (11.5–18.7) (96.8–99.6)
1.0 89.5, 91.4 78.3, 80.2 90.6, 93.4

(85.3–93.2) (73.5–88.2) (85.8–96.7)

should be noted that there are several issues in comparing the results with other
NSDA’s. The difference in databases can have a high impact on the performance
of an NSDA as short duration EEG recordings have low artefact burden and
have approximately equal seizure to nonseizure duration ratios (Stevenson et al.,
2012b).

The performance of the proposed NSDA based on the TF feature-set obtained
from AD is less than the methods of Temko et al. and Thomas et al. which are
reported on the same datasets (AUCs of 0.96, 0.93) (Temko et al., 2011, Thomas
et al., 2010). A more useful comparison at a clinically relevant threshold of 0.1
FD/h shows approximately a 20% reduction in seizure detection rate (62% vs
42.5%) as can be seen from figures 5.12 and table 5.2. It must be noted that the
TF feature-set is significantly smaller than the feature-set used in these methods
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Figure 5.9: Performance of individual features obtained using OMP and MBD.
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Figure 5.10: Performance of the proposed AD based NSDA for each neonate using
MBD. It be clearly seen that the AUCs for all neonates are above 0.90 (marked
as red dotted line) except for neonates 1,2 and 13 which also underperformed in
the method proposed in chapter 4.

(8 vs 55 features) and may not be able to represent the variety of seizure and
non-seizure EEG seen in the larger dataset.

Nevertheless, it was surprising that the TF feature-set which was developed on
such a small dataset of neonatal EEG (Boashash et al., 2012b) has relatively
good performance in the large dataset used in this thesis. This suggests the TF
feature-set using AD is robust and its incorporation in the larger feature-set used
in Temko et al. (Temko et al., 2011) and Thomas et al. (Thomas et al., 2010)
may further improve NSDA performance.
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Figure 5.11: Comparison of the performance of the proposed AD based NSDA
(median values) with several methods (epoch based metrics) currently disclosed
in the literature using MBD (Aarabi et al., 2007, Navakatikyan et al., 2006, Smit
et al., 2004, Temko et al., 2011).
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Figure 5.12: Comparison of the performance of the proposed AD based NSDA
(median values) with several methods (event based metrics) currently disclosed
in the literature using MBD (Deburchgraeve et al., 2008, Navakatikyan et al.,
2006, Smit et al., 2004, Temko et al., 2011).

5.7 Summary

In this chapter, the robustness of TF features for neonatal seizure detection was
studied. The proposed seizure detection system is based on the ability to track
the nonstationarity of the EEG signal using QTFD analysis.

It has been previously shown that a SVM based seizure detection system us-
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ing QTFD based TF features can provide good seizure detection performance
(Boashash et al., 2012b). In this chapter, it was seen that the TF features ob-
tained from pre-processed EEG signal provides poor performance at clinically
relevant false detection thresholds in the larger dataset. Alternatively, an AD
based NSDA using TF features obtained from the novel pseudo-periodic Duffing
dictionary was proposed which provided improved performance when compared
to the TF features obtained directly from the EEG signal.

The performance of the proposed NSDA was also compared with several NSDA’s
proposed in literature. It was concluded that the TF features obtained from the
QTFD of the pseudo-periodic Duffing dictionary is robust and can be incorpo-
rated in the larger feature-set used proposed by Temko et al. (Temko et al., 2011)
and Thomas et al. (Thomas et al., 2010) to improve the NSDA performance.
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Chapter 6
Automatic Grading of EEG Abnormality
with Hypoxic Ischaemic Encephalopathy
using Atomic Decomposition and the
Support Vector Machine

Music does not influence research work, but both are nourished by
the same sort of longing, and they complement each other in the
release they offer. −−Albert Einstein

6.1 Introduction

Hypoxic-ischaemic encephalopathy (HIE) is a brain injury caused by the lack
of supply of oxygen and impairment to the blood supply in the neonatal

brain. HIE due to fetal or neonatal asphyxia is a leading cause of death or severe
impairment among infants, with an incidence of 2-3/1000 births (Graham et al.,
2008, Inder and Volpe, 2000). The babies with such complications are monitored
closely in the neonatal intensive care unit (NICU) for further assessment. It is
difficult to determine the state of the baby’s brain at an early stage (Scher, 2001).
Within the first 24 hours of life, the infant with such complications can develop
symptoms of apnea and seizures with abnormal EEG. Some of the clinical symp-
toms include stupor or coma, irregular breathing, absence of neonatal reflexes,
disturbances of ocular motion, irregular heart rate and blood pressure (Fenichel,
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2009).

Within the NICU the heart rate, blood pressure, oxygen saturation of the babies
are monitored regularly (Nicklin et al., 2004), but these parameters only provide
information on their general condition. It is important to obtain the long term
functioning of the brain which can be done through the electroencephalogram
(EEG) (Boylan et al., 2013). Through EEG, continuous monitoring of the brain
can be carried out over a long time with high time resolution.

The severity of the HIE insult determines the outcomes of HIE. Mild HIE can
result in a normal outcome: moderate encephalopathy can increase the risk of
neurological disability to 20-40% and severe encephalopathy can lead to severe
neurological disability, or in some cases, death (Gray et al., 1993). It was shown
that the effects of the developing encephalopathy could be reduced by Thera-
peutic Hypothermia (which is also known as cooling of brain) for the newborn
(Azzopardi et al., 2009) within 6 hours of birth. Since the treatment is less
effective after 6 hours of birth (Shankaran, 2012), it is important for the clini-
cal neurophysiologists to detect the severity of the HIE brain injury as early as
possible.

The grading of HIE can be done either by clinical assessment or by using the EEG
or amplitude integrated EEG (aEEG). EEG based HIE grading is mainly done
through visual analysis of the background activity. Several features such as the
continuity of the EEG signal, interhemispheric symmetry and synchrony, ampli-
tude, frequency content, and presence or absence of sleep-wake cycling (SWC) are
used to grade HIE (Murray et al., 2009). HIE is graded into four main types which
are summarized in Table 6.1 and various patterns corresponding to each grade of
HIE-EEG across different patients are shown in figures 6.1 and 6.2. The grading
of HIE is usually done over an hour-long recording of EEG. It can be seen from
figures 6.1 and 6.2 that the HIE-EEG exhibits various patterns across different
HIE grades. Sometimes, these patterns may be similar across HIE grades, how-
ever the measurement of the variability of these patterns over the entire duration
of the EEG is important for assigning grades.

Automatic grading of HIE using EEG (HIE-EEG) is a relatively new area. A first
attempt to classify HIE-EEG based on the quantitative analysis of background
EEG was investigated by (Korotchikova et al., 2011). In this approach, 9 quan-
titative EEG (qEEG) measures that replicates the neurophysiologist’s approach
of visually classifying neonatal EEG were used to grade HIE and are given in
Table 6.2. The authors reported a classification accuracy of 91% on a dataset
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Table 6.1: Properties of HIE
EEG/HIE grade Abnormality level Characteristics

1 normal/mild Continuous background pattern with mild
asymmetries and voltage depression (30-50 µV ).
Presence of poorly defined SWC.

2 moderate Discontinuous activity with IBI ≤10 s. Presence of
clear asymmetry or asynchrony and disrupted SWC.

3 major Discontinuous activity with IBI 10-60s,severe
disruption of background patterns (<30 µ V),
absence of SWC.

4 severe Background activity of ≤ 10 µV , or
severe discontinuity with IBI ≥ 60 s.
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Figure 6.1: Clear examples of 60s EEG from different patients showing grades of
HIE (a) Grade 1: Normal/Mild abnormalities. (b) Grade 2: Moderate abnormal-
ities.

consisting of approximately one hour long EEG selected from the recordings of
54 full term neonates with HIE. However, the results obtained were estimated
on artefact free data and their performance dropped to 72% when validated on
artefactual data. Stevenson et al. extended this study by using features ob-
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Figure 6.2: Clear examples of 60s EEG from different patients showing grades of
HIE (a) Grade 3: Major abnormalities. (b) Grade 4: Inactive.

Table 6.2: Quantitative measures replicating visual characteristics used to grade
HIE in (Korotchikova et al., 2011) .

Visual characteristics Quantitative measure
Continuity of EEG signal Skewness, kurtosis,

discontinuity
Amplitude Amplitude integrated EEG
Frequency content Fractal dimension, relative delta power,

spectral edge frequency
Symmetry Revised brain symmetry index
Synchrony Linear correlation coefficient

tained from the background EEG model (Stevenson et al., 2013). An automated
grading system (AGS) using 15 features from the model of background EEG was
proposed in this study. The AGS was trained on artefact free data and tested on
unseen data with artefacts. The AGS provided an accuracy of 83.3% and it was
reported that the majority of misclassifications were due to the presence of arte-
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facts and several abnormal patterns in the EEG such as sharp waves, asymmetry
and asynchrony. Ahmed et al. proposed an AGS based on a cross disciplinary
method of using support vector machine (SVM) and supervectors (Ahmed et al.,
2014). This system used a total of 55 features which provided a generic EEG
description computed from the frequency, time and information theory domains.
The AGS was trained and tested on data with artefacts and an accuracy of 85%
was reported. Recently, an holistic approach for grading background EEG was
proposed by Matic et al. (Matic et al., 2014) based on adaptive EEG segmen-
tation and its mapping on segment’s feature space. This AGS was trained and
tested on 272 EEG epochs (each epoch was 1 hour in duration) selected from 34
neonates which provided an accuracy of 89% in grading HIE.

The main aim of developing an automated grading system (AGS) is to mimic the
visual interpretation of the neurophysiologist for grading HIE-EEG. It has been
shown that neonatal EEG background is a band-limited nonstationary process
(Boashash and Mesbah, 2001, Notley and Elliott, 2003). Prior work on neonatal
seizure detection used short epochs of 8s in duration based on the assumption
that the neonatal EEG is nearly stationary over such a short duration (Nagaraj
et al., 2014, Temko et al., 2011). However, for grading the background EEG a
much longer duration epoch is necessary to capture the variation of several time
varying components such as burst suppression which plays an important role in
discriminating different HIE grades. It was shown that an epoch length of 64 s
provided optimal performance in grading HIE-EEG (Korotchikova et al., 2011,
Stevenson et al., 2013) on the same database used in this thesis.

In this chapter, the performance of several methods to automatically classify HIE-
EEG using the support vector machine (SVM) are compared. This includes the
Hilbert transform methods described in (Stevenson et al., 2013), AD based meth-
ods (Tropp and Gilbert, 2007) and the multichannel matching pursuit (MMP)
method (Durka et al., 2005). After several post-processing steps, the automatic
grading of HIE is obtained. The misclassified recordings were further examined
for the presence of abnormal patterns such as artefacts, runs of sharp waves,
asymmetry, and asynchrony.

6.2 HIE dataset

The dataset used in this study consisted of EEG recordings from 54 full term
neonates with HIE with each recording approximately one hour long. The EEG
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data were free of seizures and major movement artefacts (amplitude higher than
250 µV lasting for more than 3s). The data were recorded in the NICU of Cork
University Maternity Hospital (CUMH), Cork, Ireland using the NicoletOne EEG
system (Carefusion Neurocare, Wisconsin, USA) with a sampling frequency of 256
Hz. The EEG was recorded within 12h of birth and it was continued for 24-72h to
monitor the evolution of the developing HIE (Mizrahi et al., 2004, Niedermeyer
and da Silva, 2005). The neonates were not treated with therapeutic hypothermia.
The data were annotated using eight EEG channels in bipolar montage: F4-C4,
C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3, and C3-T3. The segments of the
EEG recording selected had constant HIE grade within an hour. The one hour
EEG recordings were graded independently by two neonatal EEG experts (IK and
GBB)1 using the system proposed in (Murray et al., 2009) which is summarized
in Table 6.1. The neonatal EEG was assigned one of the 4 grades based on the
degree of abnormality: grade 1 -moderate/mild abnormalities, grade 2 - moderate
abnormalities, grade 3 - major abnormalities and grade 4 - inactive EEG. Overall
the database used in this study consisted of 62h of 8-channel EEG recordings with
a median duration of 65 min per recording (IQR: 62-67 minutes). There were 22
neonates with grade 1 EEG, 14 neonates with grade 2 EEG, 12 neonates with
grade 3 EEG and 6 neonates with grade 4 EEG. The same dataset had been
previously used in (Stevenson et al., 2013) and a direct comparison of the results
can thus be obtained.

6.3 Neonatal background EEG models

Several newborn EEG models have been proposed in literature based on the
assumption that the neonatal EEG background is a random process. The neona-
tal background EEG signal consists of both stochastic and chaotic characteris-
tics with amplitude and frequency contents varying over time (Niedermeyer and
da Silva, 2005, Varsavsky et al., 2010). This change with time (nonstationarities)
can last for a few seconds or sometimes can extend to hours. The model pro-
posed by Roessgen et al. uses a colored noise process to simulate the neonatal
background EEG (Roessgen et al., 1998). However, this model does not take
into account the nonstationary characteristics of the neonatal EEG background.
As an extension to the Roessgen model, Celka and Colditz proposed a Weiner
filter based model to incorporate the nonlinear nature of the neonatal EEG back-

1IK - Dr. Irene Korotchikova and GBB - Prof. Geraldine B. Boylan are in Department of
Pediatrics and Child health, CUMH.
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ground (Celka and Colditz, 2002). This model was stationary (time-invariant)
and therefore failed to incorporate the nonstationary behaviour of the neonatal
EEG background (Boashash and Mesbah, 2002, Liu et al., 1992).

An alternate neonatal EEG background model was proposed by Rankine et al. in
which the EEG background was modelled as a random signal with time varying
spectrum using the inverse power law (Rankine et al., 2007). Since large num-
ber of parameters were randomly selected, this model failed to account for the
dependence between parameters; the background EEG generated by this model
were not representative of real newborn EEG background. An improved version
of the newborn EEG background model was proposed by Stevenson et al. using
a minimal set of model parameters (Stevenson et al., 2010). A nonlinear dynamic
system driven by stationary white Gaussian noise was used in this model to sim-
ulate neonatal EEG background. The nonlinear dynamic system used different
parameters to best represent neonatal EEG background. The nonlinear and non-
stationary characteristics of the neonatal EEG background were incorporated by
the models proposed by (Rankine et al., 2007) and (Stevenson et al., 2010).

In all the above mentioned models, the neonatal background EEG has been mod-
elled as a colored noise process. The general form of the model can be written as
(Stevenson et al., 2013)

EEG(t) = X(t) = Tfilter{Y (t)}, (6.1)

where Tfilter{.} is the linear or nonlinear transformation and Y (t) is white Gaus-
sian noise. The frequency response of the simulating filter Tfilter follows a power
law response of 1/fα (Celka and Colditz, 2002, Roessgen et al., 1998, Stevenson
et al., 2007). However, this model fails to take into account the presence of am-
plitude modulation (AM) seen in trace alterant (associated with quiet sleep) and
burst-suppression (associated with EEG grades 2 and 3) EEG patterns of the
term neonates (Walsh et al., 2011). With the inclusion of AM in equation 6.1,
the EEG model can be written as (Stevenson et al., 2013)

EEG(t) = am(t)X(t), (6.2)

where am(t) is the component representing AM. Due to the dual form of equation
6.2, several combinations of am(t) and X(t) can be used to generate the back-
ground EEG signal, EEG(t). However, by constraining the frequency content
of the am(t) to be much less than X(t), the frequency domain representation of
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X(t) can provide information on the underlying signal transformation Tfilter{.}
via Instantaneous Frequency (IF) estimates. Therefore, the interpretation of the
am(t) and Tfilter{.} can be considered similar to the interpretation of the EEG
made by a neurophysiologist based on the amplitude and frequency contents re-
spectively (Stevenson et al., 2013). Moreover, the AM and IF components may
also represent the influence of the cortico-cortical and thalamo-cortical activities
on EEG (Steriade et al., 1993, Vanhatalo and Kaila, 2006).

Inspired by the model of the neonatal EEG background in (Roessgen et al., 1998,
Stevenson et al., 2007, 2010), a model of the background EEG was proposed by
Stevenson et al. in the joint energy time-frequency domain in terms of AM and
IF as (Stevenson et al., 2013):

|EEG(t, f)|2 =
∣∣∣∣∣am(t)
fα(t)

∣∣∣∣∣ . (6.3)

6.4 Automatic grading system using time-frequency
(TF) features

An overview of the proposed multiclass SVM based background EEG automatic
grading system (AGS) is shown in figure 6.3. This is a multichannel system
which consists several pre-processing and post-processing steps for extracting
time-frequency features and classification. In the pre-processing step, N chan-
nels of the EEG were filtered with a highpass filter with a cutoff frequency fc

(which will be determined in section 6.9)and a transition width of 0.5 Hz. Since
the EEG activity of interest in neonates is negligible over 32 Hz, the EEG was
down-sampled to 64 Hz from 256 Hz. The EEG was then segmented into 64 s
epochs with a 32 s overlap (50% overlap). The duration of the epoch was se-
lected based on the definition of EEG grade 4 which states an interburst interval
(IBI) > 60s (see Table 6.1). In the feature extraction step, a basic statistical
summary (mean, standard deviation, skewness, kurtosis) of the amplitude mod-
ulation (AM) and Instantaneous frequency (IF) obtained from the EEG epoch
were estimated and used as key features to characterize the EEG summarized in
table 6.1. 8 features were estimated from the AM and IF measures of the EEG
epoch which are summarized in table 6.3 (Stevenson et al., 2013).

Each EEG epoch was therefore represented by 8 measures estimated from the
AM and IF. These features provide basic statistical analysis of the variations in

113



N channels

   of EEG

Preprocessing

         +

segmentation

Extraction 

       of

TF features

Multi-class

    SVM

EEG

grade

Post processing

Figure 6.3: Illustration of the proposed AGS.

Table 6.3: The features obtained from AM and IF of each epoch.

Feature no. EEG feature
1 mean(AM)
2 standard deviation (AM)
3 skewness(AM)
4 kurtosis(AM)
5 mean(IF)
6 standard deviation(IF)
7 skewness(IF)
8 kurtosis(IF)

the amplitude and frequency characteristics of the EEG epoch. This process was
repeated for all 8 channels. Figures 6.4 and 6.5 provides the distribution of TF
features across different HIE grades for a sample one hour long EEG recording
from each grade using the Hilbert transform method (discussed in section 6.5).
It can be seen that there is sufficient discriminatory information provided by
these features that can be used to automatically classify different HIE grades.
Moreover, these features mimic the amplitude and frequency characteristics of
the visual interpretation of the EEG used to grade HIE (described in Table 6.2)
and can be useful in automatic classification.

2

4

6

8

10

12

grade1 grade2 grade3 grade4

F
ea

tu
re

 1

2

4

6

F
ea

tu
re

 2

0

2

4

6

F
ea

tu
re

 3

10

20

30

40

F
ea

tu
re

 4

grade1 grade2 grade3 grade4

grade1 grade2 grade3 grade4 grade1 grade2 grade3 grade4

(a) (b)

(c) (d)

Figure 6.4: Boxplots showing the distribution of AM features across different HIE
grades for a sample one hour EEG recording, from each grade.
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Figure 6.5: Boxplots showing the distribution of IF features across different HIE
grades for a sample one hour EEG recording, from each grade.

6.4.1 Multichannel information fusion

In this study, since there are 8 EEG channels, selection of optimal channel/channels
for classification is important, this can be considered as a feature selection prob-
lem. However, unlike feature selection where only certain features are selected,
it is important to consider all features obtained from the individual channel to
preserve the information. Selection of channels is important because:

1. with the increase in number of channels, the computational complexity of
the classification model increases, and

2. irrelevant features or signals may result in additional noise which can reduce
the accuracy of the classification model.

There are various approaches to deal with the multichannel nature of the data
for grading HIE. Most EEG analysis algorithms do not utilize the information
present in multichannel EEG and are limited to using single channel EEG. To
overcome this limitation, there are several fusion approaches to include the EEG
information present across all the channels (Wald, 1999) which are briefly de-
scribed below.

1. Multichannel feature fusion: Multichannel feature fusion is most commonly
used for the fusion of several features which is illustrated in figure 6.6. In
this approach, the fusion combines features obtained from the individual
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channels into a single global set of features. By this way, a large feature
vector is obtained which can be used for classifying multiple channel EEG.
The fusion can be done by taking the max or mean or median across the
features obtained from different channels. The major advantage of this
approach is that it requires only one classifier for the classification of N
channel EEG.

Channel1

ChannelN

Features1

   Final

Features
Classifier Decision

FeaturesN

max

median

mean

Figure 6.6: Overview of the multichannel features fusion method. The features
from individual channels are combined to obtain a single feature set which is then
used for classification.

2. Multichannel classifier fusion: In this approach, the outputs of each channel
classifier are fused prior to making a decision as illustrated in figure 6.7.
For each channel separate multi-class classifiers are used and the output of
classifiers are fused (mean, max, median, majority voting etc) to make the
final decision. The major disadvantage of this approach is that it requires
N multi-class classifiers for N channel EEG data and therefore increases
the computational complexity.

Channel1

ChannelN

Features1

FeaturesN

Classifier1

Decision

ClassifierN

Multichannel

   classifier

      fusion

Figure 6.7: Overview of the multichannel classifier fusion method. The outputs
from individual classifiers are combined to obtain a single classifier which is then
used for decision making.

3. Multichannel decision fusion: As illustrated in figure 6.8, the decision mak-
ing is done in two steps in this approach. The classifier output from each
channel is used to make the initial decision. The individual channel based
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decisions are then combined to make a final decision by postprocessing,
majority voting etc. This approach also uses N multiclass classifiers.

Channel1
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ClassifierN

  Final 
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Multichannel
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Decision1

DecisionN

Figure 6.8: Overview of the multichannel decision fusion method. The decisions
from individual classifiers are combined to obtain the final decision.

6.4.2 Classification using a multiclass support vector ma-
chine

The support vector machine (SVM) is basically a binary classifier. Ideally, the
SVM maps the inseparable data in the input feature space to a high dimensional
feature space to separate the data into two classes using hyperplanes. Several
methods of extending the use of the SVM for multiclass problems have been
suggested in the literature, which can be grouped into two categories:

Category 1 : In this category, the whole dataset with all the classes is used simul-
taneously and solves the multiclass problem directly (Crammer and Singer, 2002,
Vapnik and Vapnik, 1998). The main drawback of these methods is that due to
the large number of variables that need to be optimized, they present numerical
difficulties and are difficult to implement.

Category 2 : In this category, the classification is decomposed into a binary classi-
fication problem (Vapnik and Vapnik, 1998) and is commonly used for multiclass
classification problems. The methods used in this approach are: one-against-all
and one-against-one. In both these methods, a binary SVM classifier is con-
structed separating the datapoints of one class against the other. After testing,
each SVM classifier provides a decision value or class for the test datapoint and
the label is assigned to the datapoint from the classifier with the highest positive
decision value. One-against-all was used in the present study due to its feasibility
and reduced computational complexity (Hsu and Lin, 2002).

In the one-against-all method, m SVM models corresponding to m classes are
constructed. From the samples used for training, the ith SVM is trained with the
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examples in the ith class assigned positive labels and all other examples with nega-
tive labels (Hsu and Lin, 2002). GivenM training data, (x1,y1), (x2,y2), . . . (xM ,yM)
where xi ∈ Rn, i = 1, . . . ,M and yi ∈ {1, . . . ,m} is the class of xi, the problem
of classification for the ith SVM can be written in terms of optimization problem
as:

minimise 1
2 ||w

i||2 + C
M∑
j=1

εij suchthat (6.4)

(wi)Tφ(xj) + bi ≥ +1− εij, if yj = i

(wi)Tφ(xj) + bi ≤ −1 + εij, if yj 6= i

εij ≥ 0, j = 1, . . .M.

Using the maximum operation, a final decision for a feature vector xj could be
determined as,

ŷ(xj) = arg
i∈1,2,...,m

max
(
(wi)Tφ(xj) + bi

)
. (6.5)

Similar to the method described in chapter 5, the output of the SVM can be
converted to a probabilistic measure of a HIE grade, bounded within [0,1] via
Platt scaling (Platt, 1999) using a sigmoid function as:

P (w1|x) = 1
1 + exp(Af(x) +B) , (6.6)

where P (w1|x) is the probability of the HIE grade assigned by the classifier for
an epoch, f = f(x) is the output of the SVM classifier, A and B are the sigmoid
function parameters which are estimated over the training dataset (Platt, 1999).

6.4.3 Postprocessing

Majority voting is used here to obtain the final grade of a given sequence vector
obtained from the multiclass SVM. In the first step, the output of the ith SVM
model is stored in a vector Si. The majority voting of the decisions from these
vectors (Si) is performed to obtain the best grade from each SVM classifier in a
vector SCL. Later, in the second step, the output of the best performing SVM
classifier is assigned as the final grade to the HIE-EEG. This process of majority
voting for a 4-class classification problem is illustrated in figure 6.9.
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Figure 6.9: Illustration of the majority voting system for assigning an overall HIE
grade.

6.5 AGS based on the Hilbert transform

The Hilbert transform based TF feature extraction method was proposed in
(Stevenson et al., 2013). In this method, it was assumed that the quadratic
time-frequency distribution (QTFD) of the EEG signal can be used to obtain the
time varying amplitude and frequency measures which can be used to grade the
severity of brain injury in the EEG of neonates with HIE. The general form of
QTFD is given by

ρz(t, f) = F
τ→f

G(t, τ) ∗
t
z
(
t+ τ

2

)
z∗
(
t− τ

2

)
=
∫ ∞
−∞

∫ ∞
−∞

G(u, τ)z
(
t− u+ τ

2

)
z∗
(
t− u− τ

2

)
due−2πfτdτ,

(6.7)

where z(t) = EEG(t) + jH{EEG(t)} is a complex signal, H{EEG(t)} is the
Hilbert transform of EEG(t), z∗(t) is the complex conjugate of z(t), f is fre-
quency, t is time, τ is the time lag and G(t, τ) is the time-lag kernel.

From ρz(t, f), the AM and IF can be approximated as:

am(t) =
√∫ ∞
−∞

ρz(t, f)df (6.8a)

fi(t) =
∫∞
−∞ fρz(t, f)df∫∞
−∞ ρz(t, f)df . (6.8b)

With an assumption of a slowly time-varying transformation, Tfilter = 1/fα(t)

and a bandlimited process constrained by lower (f1) and upper (f2) frequencies,
the relationship between IF and α(t) can be estimated as (Stevenson et al., 2013):

fi(t) =

(
f

2−2α(t)
2 − f 2−2α(t)

1

)
(1− 2α(t))(

f
1−2α(t)
2 − f 1−2α(t)

1

)
(2− 2α(t))

, α(t) > 1 (6.9)
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where f2 is the Nyquist rate (f2 = 32Hz in this case) and f1 is optimally selected
between 0.5 and 5 Hz for the purpose of eliminating low frequency artefacts from
the EEG recording.

The QTFD of a given real discrete time signal x[n], n = 0, 1, . . . , N−1, is defined
in terms of its analytic associate z[n] as (Boashash, 2003):

ρ[n, p] = 2G[n,m] ∗∗
n,m

N∑
m=1

z[n+m]z∗[n−m]e
−j2πpm

N (6.10)

where G[n,m] is the kernel of the TFD and ρ[n, p] is an N × N matrix. From
ρ[n, p], the AM and IF can be approximated as:

am[n] =

√√√√ N∑
p=1

ρ[n, p] (6.11a)

fi[n] =
∑N
p=1 f [p]ρ[n, p]∑N
p=1 ρ[n, p]

. (6.11b)

A smoothed ρ[n, p] using a two-dimensional Hamming window was used to esti-
mate the AM and IF of the EEG signal. The bandwidth-time product must be
greater than one (which will be estimated in next section) for a smoothed ρ[n, p]
to provide a non-negative representation of the EEG signal (Janssen and Claasen,
1985). This provides non-negative AM and IF of the EEG signals. The AM and
IF for a sample 64 s epoch of different HIE grade is shown in figure 6.10. We can
clearly see the variation in AM and IF components across different grades. The
measurement of these variations could provide important information about the
particular HIE-EEG epoch.

The AGS using the Hilbert transform is shown in figure 6.11. In the preprocessing
step, the 8 channel EEG was initially filtered with a highpass filter with a cutoff
frequency fc and down-sampled to 64 Hz from 256 Hz. The EEG was then seg-
mented into 64 s epochs with a 32 s overlap (50% overlap). Since HIE is assumed
to be a global injury in this study, the median feature vector across 8-channels
(multichannel feature fusion) was obtained which combines the information across
the EEG channels to form a single feature set (Stevenson et al., 2013). When
compared to the mean, the median operator is a better option for skewed distri-
butions as it is much more robust and not influenced by outliers. The features
were normalized using Box-Cox transformation (Box and Cox, 1964). The nor-
malized features were then passed to a multiclass support vector machine (SVM)
classifier to obtain the HIE grade. The performance of the AGS was also tested
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Figure 6.10: Example AM and IF of 64 s ideal EEG epochs for channel F4-C4 of
HIE (a) grade 1, (b) grade 2, (c) grade 3 and (d) grade 4 using Hilbert transform
method.
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Figure 6.11: Illustration of the proposed AGS using the Hilbert transform and
feature fusion method.

for other fusion techniques described in section 6.4.1.
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6.6 AGS based on orthogonal matching pursuit

Given a complex dictionary of M atoms, D ∈ CN×M , any EEG signal X ∈ RN×1

can be represented as
X = 2<{Dγ}, (6.12)

where D is the overcomplete dictionary (N ≤ M), N is the length (samples) of
the signal, M is the number of atoms in the dictionary and γ ∈ RM×1 is the set
of sparse coefficients selected by the decomposition algorithm. The sparsity of
the EEG signal representation can be increased using an appropriate dictionary
D which is highly coherent with the given class of signals and thus minimizing
the residual error.

The performance of the AD algorithm depends mainly on the choice of the de-
composition dictionary. Several dictionaries have been proposed in the literature
that can be used with AD including wavelets (Vera-Candeas et al., 2004), wavelet
packets (Yang et al., 2007), Chirplets (Ghofrani et al., 2003), Fourier dictionary
(Saito, 1999), Gabor dictionaries (Mallat and Zhang, 1993, Rubinstein et al.,
2010) and so on. It is necessary to select a suitable dictionary that can encapsu-
late the nonstationary characteristics of the HIE-EEG signals. For this purpose,
three different dictionaries were used in this section which include:

1. A Gabor dictionary (time-frequency dictionary) consisting of translated,
scaled and modulated versions of a Gaussian window (Mallat and Zhang,
1993).

2. A Fourier dictionary (frequency dictionary) consisting of sinusoidal atoms.

3. AWavelet packet dictionary (time-scaled dictionary) built from a Daubechies
4 quadrature mirror filter, consisting approximately Nlog2N waveforms
which is a family of orthonormal wavelet basis (Daubechies, 1988).

The OMP algorithm was applied to 50 one minute relatively artefact free HIE
grade 1 EEG epochs using different dictionaries. The HIE-EEG epochs were
down-sampled from 256Hz to 64 Hz since EEG activity is negligible in neonates
in frequencies higher than 32Hz. The signal-to-error ratio (SER) which is defined
as

SERK = 20log10

(
||x||2
||rK||2

)
, (6.13)

where x is the input EEG signal and rK is the residual obtained after K iterations
of OMP was used to assess the performance of different dictionaries.
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Up to 100 atoms were used to decompose grade 1 HIE-EEG epochs using OMP
algorithm for different dictionaries. Figure 6.12 shows the mean SER obtained
across 50 one minute HIE-EEG epochs using different dictionaries. Since the
Fourier dictionary consists of non-local signals or atoms, it requires a large num-
ber of atoms for representation. Similarly, as the Daubechies 4 dictionary is a
time-scale dictionary and does not span the TF plane completely, it requires more
atoms to represent the HIE epoch when compared to the Gabor dictionary. Sim-
ilar performance was obtained across all HIE-EEG grades (grades 2, 3 and 4)
in which the Gabor dictionary outperformed other dictionaries in representation.
Using Gabor atoms resulted in the lowest reconstruction error (or higher SER)
when compared to the Daubechies 4 or the Fourier dictionary using the same
number of atoms. This suggests that the Gabor dictionary is more suited for
TF localized signals as it uses finite duration band limited signal or atoms for
representation. This would provide flexibility to capture the time and frequency
localization of HIE-EEG signals.
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Figure 6.12: Comparison of the mean SER across 50 one minute HIE-EEG grade
1 epochs for increasing number of atoms using Gabor, Fourier and Daubechies 4
wavelet dictionaries. We can clearly see that the Gabor dictionary outperforms
other dictionaries in representing HIE-EEG epoch.

Based on the experiment in this section, an overcomplete complex Gabor dic-
tionary was used to extract TF features for classification using AD. The Gabor
dictionary offers high time-frequency resolution of the HIE-EEG signal consisting
of translated (α), scaled (m) and modulated (β) versions of a Gaussian window,

gG(t;λG) = 1√
m
e−π(

t−α
m )2

sin(βt). (6.14)

Here λG = [α,m, β]T ∈ ΛG are the time-frequency parameters, T = 64s is
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the time duration of the EEG epoch, Ts = 1/fs, fs = 64 Hz and N = 4096. 7
subdictionaries were constructed to form the overcomplete Gabor dictionary, with
atom parameters chosen from the dyadic sequence of integers: m = 2q, 0 ≤ q ≤ L,
N = 2L, α ∈ {2, 4, 8, 16, 32, 64, 128} and β ∈ {128, 64, 32, 16, 8, 4, 2}. Thus, the
dictionary consisted of 28672 Gabor atoms each of length 4096. The analytic
associate of each atom was then generated using the Hilbert transform.

The AGS using OMP is shown in figure 6.13. The 8 channel EEG was initially

8 channel

 EEG

HP filter,

 downsampling,

 segmentation

estimate 8 TF

features from

reconstructed

epoch

Multi-class

SVM

SVM 1-2,3,4

SVM 2-1,3,4

SVM 3-1,2,4

SVM 4-1,2,3

majority

voting

EEG

grade

median across

8 channels

Pre-processing Feature extraction

Post-processing

Classification

    decompose 

 the EEG epoch

   using OMP

Figure 6.13: The proposed AGS using OMP and feature fusion method.

filtered with a highpass filter with a cutoff frequency fc and down-sampled to
64 Hz from 256 Hz which was later segmented into 64 s epochs with a 32 s
overlap (50% overlap). Each EEG epoch was then decomposed using OMP for a
given number of atoms K. Later the TFD of the reconstructed EEG epoch was
obtained as

ρAD1[n, p] = TFD
{

K∑
k=1

γkφk

}
(6.15)

whereK is the number of iterations/atoms used in AD and γk is the weight associ-
ated with the corresponding atom φk in the dictionary Dk. After decomposition,
the AM and IF measures were estimated from ρAD1 for each channel. This process
can also be considered as a feature selection process in which only the significant
set of features from a large feature space are considered for classification. The
vital information from the signal for discrimination could be obtained from a few
high energy basis vectors which is similar to the process where OMP selects these
vectors by discarding the largest residual energy. This means that the initial few
atoms selected by OMP will contain the most significant information which can
be considered as the most significant features. By this way, OMP reconstructs
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the essential parts of the signal using the most significant atoms which can then
be used to obtain essential information for discrimination.

An example of the AM and IF for a 64 s reconstructed EEG epoch of different HIE
grade obtained after OMP using 50 atoms is shown in figure 6.14. When compared
to figure 6.10 we can see that the AM and IF components for certain components
of the EEG epoch is non-zero which means that only certain components of the
signal will be used by the AGS for grading HIE-EEG. For the sake of simplicity,
this method is referred as OMPmethod1 .
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Figure 6.14: Example AM and IF of the reconstructed 64 s epochs using 50 atoms
of HIE (a) grade 1, (b) grade 2, (c) grade 3 and (d) grade 4 using OMPmethod1 .

In another approach, similar to chapter 5, the TFD of the atoms from the Gabor
dictionary selected during OMP was obtained as

ρAD2 [n, p] =
K∑
k=1

TFD {γkφk} , (6.16)

whereK is the number of iterations/atoms used in AD, γk is the weight associated
with the corresponding atom φk. The TFD of each atom selected during AD is
first obtained which is then combined to form a joint TFD of all the atoms. In
this method, the TF features are obtained from the linear combination of the
TFD of the atoms as compared to the above method in which the TF features
are obtained from the TFD of the reconstructed EEG epoch. This method is
referred as OMPmethod2 .
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This method in which the features are extracted directly from the atoms se-
lected during AD is used assuming that the most significant information of the
EEG signal can be obtained by synthesizing atoms with maximum energy. Since
atoms in the Gabor dictionary completely span the TF plane, by extracting the
information from the atoms selected during OMP, the characteristics of the EEG
signal could be extracted efficiently. In addition, the TFD obtained from OMP
provides a noise-free representation and increased the time-frequency resolution
(demonstrated in chapter 3) when compared to the TFD obtained directly from
the signal. An example of the AM and IF features obtained using 50 atoms is
shown in figure 6.15.

The TFD of the 64 s grade 1 HIE EEG epoch is shown in figure 6.16a, along with
the TFD determined using OMPmethod1 based on 50 atoms in figure 6.16b, and
the TFD determined using OMPmethod2 in figure 6.16c. We can clearly note the
difference in TFD’s obtained from OMPmethod1 and OMPmethod2 from figure 6.16.
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Figure 6.15: Example AM and IF of 64 s ideal EEG epochs for channel F4-C4
of HIE (a) grade 1, (b) grade 2, (c) grade 3 and (d) grade 4 obtained using
OMPmethod2 .

In both these methods, the median feature vector across 8-channels (multichannel
feature fusion) was used to obtain the performance of AGS for HIE grading as it
was found to be optimal (this will be demonstrated in section 6.9).

126



Frequency (Hz)

T
im

e 
(s

)

Frequency (Hz)

T
im

e 
(s

)

Frequency (Hz)

0 5 10 15

T
im

e 
(s

)

0

10

20

30

40

50

60

0 5 10 150 5 10 15
0

10

20

30

40

50

60

0

10

20

30

40

50

60

(a) (b) (c)

Figure 6.16: Example QTFD’s of (a) 64 s ideal EEG epoch from HIE grade 1, (b)
reconstructed EEG epoch using OMP and 50 atoms, and (c) 50 atoms selected
from the Gabor dictionary during the decomposition of EEG epoch using OMP.

6.7 AGS using multichannel matching pursuit
(MMP)

Matching pursuit (MP) is an iterative algorithm that is used to obtain a subopti-
mal solution to represent a given signal signal using a redundant signal family of
atoms known as dictionary (Mallat and Zhang, 1993). It finds linear approxima-
tions of signals by iteratively projecting them over a redundant, non-orthogonal
set of atoms in the dictionary. The atomic decomposition algorithms: matching
pursuit (MP), orthogonal matching pursuit (OMP) and basis pursuit (BP) de-
scribed in chapter 3 are single-channel sparse approximation algorithms in which
they try to sparsely model a single channel signal. In certain cases which requires
the extraction of certain coherent information from multiple channel observa-
tions, simultaneous approximation of a group of signals is necessary by using an
identical set of expansion atoms with distinct expansion coefficients.

MP algorithm extension for the simultaneous decomposition of multichannel EEG
signal was proposed by (Durka et al., 2005). The main objective of this approach
is to identify a set of atoms from the decomposition dictionary which best repre-
sents the multichannel input signals. This means that the same atoms are used
to model the EEG signal across multiple channels but with distinct expansion
coefficients.
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The outline of the MP and MMP algorithms are summarized in table 6.4. In short,
the MMP algorithm identifies an atom in a dictionary of Gabor atoms that is
highly correlated simultaneously across all the channels. The weighted selected
Gabor atom is then used to reconstruct the signals across all the channels with
the corresponding weighted coefficients. The subsequent steps to approximate
the residues follow the standard MP principle. By this way, the MMP algorithm
decomposes multichannel data into sum of parameterized MMP atoms.

Table 6.4: Comparison of the algorithm outlines of MP and MMP pursuit. Here
l = 1, 2, . . . denotes the number of channels.
MP MMP
Initialize the residual r0 = x, Initialize the residual rl0 = xl,
the index set Ψ0 = ∅, the dictionary D0 = ∅ the index set Ψ0 = ∅, the dictionary D0 = ∅
and the iteration count k = 1. and the iteration count k = 1.

Find ǐ = max
i
|rTk−1φi|, φi ∈ D . Find ǐ = max

i
|∑l rl

T

k−1φi|, φi ∈ D .

Update the index set Ψk = Ψk−1 ∪ ǐ Update the index set Ψk = Ψk−1 ∪ ǐ
and the active dictionary, Dk = [Dk−1 : φǐ] ∈ RN×k. and the active dictionary, Dk = [Dk−1 : φǐ] ∈ RN×k.

Estimate γk by finding maximum inner product Estimate γ l
k by finding maximum inner product

|〈Dk,γ〉| |〈Dk,γ
l〉| ;∀ l.

Update the residual, rk = rk−1 −Dkγ. Update the residual, rlk = rlk−1 −Dkγ
l for each l.

Update the iteration count, k = k + 1. Update the iteration count, k = k + 1.

After K iterations, x̂ = DKγK . After K iterations, x̂l = DKγ l
K ; ∀ l.

From Table 6.4, we can see that the MMP preserves the MP algorithm structure.
Figure 6.17 demonstrates the working of the MMP algorithm when compared to
the OMP algorithm. A sample 8s epoch was used from three channels of grade
1 HIE-EEG for the purpose of demonstration. We can clearly see that the OMP
algorithm has better reconstruction accuracy (high SER) when compared to the
MMP algorithm (low SER).

MMP implements the single MP for each individual signal across different chan-
nels; however, the pursuit search to identify the correlated atoms is not performed
separately for individual channels. Instead, the search is performed once to iden-
tify the best correlated atoms based on the summation of individual channel met-
rics across multiple channels. In this manner, the computational cost is reduced
significantly since the pursuit is performed only once across all the channels.

Similar to OMPmethod1 , the TF features were obtained from the reconstructed
signal using MMP for each channel. The median feature vector across 8-channels
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Figure 6.17: Illustration of the decomposition techniques using OMP and MMP
using 30 atoms per channel. (a) Sample EEG signal (blue) and its reconstructed
version (red) using OMP, (b) the first five Gabor atoms selected during OMP for
all three channels, (c) the sample EEG signal (blue) and its reconstructed version
(red) using MMP, and (d) the first five Gabor atoms selected during MMP. Note
that the SER obtained using OMP is higher when compared to MMP.
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(multichannel feature fusion) was used to obtain the performance of the AGS for
HIE grading.

6.8 Performance assessment of the AGS

A LOO cross validation was used to assess the performance of the proposed AGS
since it provides nearly an unbiased performance estimate of the proposed AGS
(Vapnik, 1982). Approximately 530 minutes of data from 53 neonates (10 min of
randomly selected data from each neonate) was used to train the SVM model in
the LOO routine. Several parameters given in Table 6.5 were greedily searched
within the training process using a nested LOO cross-validation on the training
set of 53 subjects:

Table 6.5: The pre-processing and feature extraction parameters and their search
range.

Parameter Search range
Pre-processing HPF cutoff frequency, (fc) [0.5, 5]Hz
Duration of the Hamming window [1,4]s
Bandwidth of the Hamming window [1,4]Hz
Number of atoms, K (for OMPmethod1, OMPmethod2 and MMP) [10,200]

The parameters that provided highest classification accuracy over the training set
were selected. This trained AGS with the optimal parameters was then tested
on the EEG data from the remaining (left out) neonate and the accuracy was
obtained. This process was repeated until the recording from each neonate had
been used once for testing (total number of iterations here is 54). The overall
mean accuracy across 54 iterations is then reported.

6.9 Results of the AGS system

6.9.1 Hilbert transform method

The results of the proposed AGS with multi-class SVM is shown in Table 6.6.
Figure 6.18 shows the effect of the HP cutoff frequency (fc) on the AGS decision.
The highest accuracy was obtained for either fc = 2.5 or 4 Hz (using a Hamming
window of duration = 2s and bandwidth =2Hz). The overall accuracy of the AGS
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using SVM and fc = 2.5 Hz was 87% (47/54). Using the same set of TF features
extracted from the HIE-EEG signal and a simple multi-class linear discriminant
classifier, an accuracy of 77.8% was reported in (Stevenson et al., 2013). This
suggests that by using an advanced classifier, the performance of the AGS can
be improved. The classification accuracy of the AGS in this study was slightly
better when compared to the accuracy obtained in (Ahmed et al., 2014) where an
accuracy of 83.3% was reported using the same dataset. However, these results
were obtained using 55 generic features when compared to 8 features obtained
from the TF analysis in this study.

From Table 6.6, it can be seen that the proposed AGS can classify grade 1 and
grade 3 efficiently (>90%) but the performance reduces in the case of grade 2.
Only one grade 4 recording was misclassified as grade 3. The performance of
each TF feature for the HIE-EEG grading is shown in figure 6.19. The mean
and standard deviation of AM and IF (features 1, 2, 5 and 6) provided highest
discriminatory information when compared to other features.

Table 6.6: Confusion matrix of the AGS output using Hilbert transform method
(with feature fusion shown in figure 6.11) and the actual HIE grade assigned by
the EEGer.

Actual HIE AGS output
grade

1 2 3 4 Total Misclassified
1 22 0 0 0 22 0
2 4 9 1 0 14 5
3 0 1 11 0 12 1
4 0 0 1 5 6 1

Total 26 10 13 5
Accuracy(%) 100 64 78.5 83.3

The performance of the AGS using several fusing methods described in section
6.4 was compared. In this study, the multichannel feature fusion was achieved
by taking the median of the EEG feature vectors across multiple channels. For
the multichannel classifier fusion (shown in figure 6.20a), the majority voting
was performed across the channels to assign a grade for each epoch. Later, the
final HIE grade was assigned to the EEG recording after the majority voting
of the classifier fusion output. Similarly, in the case of multichannel decision
fusion (shown in figure 6.20b), two stage majority voting was performed. In the
first stage, the initial HIE grades were obtained by the majority voting of the
individual classifier output. This gives different/similar grades for each channel.
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Figure 6.18: Classification accuracy of the AGS using Hilbert transform method
(with feature fusion) for variable HP cutoff frequency.
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Figure 6.19: Performance of the individual TF features for discriminating HIE-
EEG grades using Hilbert transform based AGS (with feature fusion).

Later, in the second stage, the majority voting of the initial HIE grades was
obtained to get the final HIE grade. The results are summarized in Table 6.7.

From Table 6.7 we can see that the AGS based on multichannel feature fusion
outperforms other fusion methods. In the multichannel classifier and decision
fusion approaches, the outputs of each multichannel classifiers were combined
to obtain the final HIE grade. Both these approaches do not take into account
the simultaneous recording nature of the EEG channels and assume that the
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Figure 6.20: Illustration of the (a) multichannel classifier fusion, and (b) multi-
channel decision fusion techniques for assigning an overall HIE grade.

Table 6.7: Comparison of the Hilbert transform based AGS classification accuracy
using different fusion techniques.

Fusion type Accuracy (%)
Multichannel feature fusion 87%
Multichannel classifier fusion 74%
Multichannel decision fusion 72%

EEG channels are statistically independent from each other. As a result, the
classification accuracy of the AGS reduced. However, the multichannel feature
fusion approach was primarily developed based on the assumption of global injury
nature of the HIE and the existence of the inter-dependence between some of
the recorded EEG channels. By taking the median across the channels, the
simultaneous recording nature of the EEG channels was taken into account which
resulted in increased classification accuracy.

In total, the EEG recordings of 47 neonates were correctly classified by the AGS
and 7 recordings were misclassified. In 4 misclassified recordings, the majority
of the segments in the recording were grade 1 but were annotated as grade 2
by the neurophysiologists due to the presence of asymmetry, asynchrony, runs of
sharp waves. Since the proposed AGS uses majority voting over one hour during
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the post-processing stage for decision making, these abnormal patterns were not
detected by the AGS and the recordings were misclassified. The presence of these
abnormal patterns resulted in the downgrading of the EEG which are usually
present in grade 2 and grade 3 EEG recordings. The remaining misclassifications
were caused due to the presence of long periods of artefacts incorrectly graded by
the AGS. In these recordings, the artefact free periods were correctly classified.

Figure 6.21 shows the distribution of certain and uncertain decisions made by the
AGS. The post-processing stage was modified which required at least two thirds
majority votes for a certain decision. Anything below this level was considered as
uncertain decision. In total, 36 neonates were correctly classified with certainty,
11 neonates were correctly classified with uncertainty, 7 neonates were misclas-
sified with uncertainty. It was interesting to note that there were no certain
misclassifications. The distribution of decisions made by the proposed AGS for
individual grades is shown in figure 6.22.
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Figure 6.21: The distribution of the certain and uncertain AGS decisions using
Hilbert transform method. CC = certainty in correct classification, UC = uncer-
tainity in correct classification, CM = certainty in misclassification and UM =
uncertainty in misclassification.

All grade 1 recordings were correctly classified. It can be seen that grade 2 was
most commonly misclassified as grade 1 due to the similar morphology of the
EEG signal present in both the grades (see figure 6.10). Even though some of
the sequences were graded as grade 3 and grade 4, the final grading was not
affected. Similarly, grade 2 sequences had a major influence on grade 3 decisions.
As expected, grade 4 had no major influence on other grades since there are no
major activities in grade 4 EEG. Most of the misclassifications occurred between
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Figure 6.22: The mean distribution of the epochs classified by the proposed AGS
using Hilbert transform method for (a) grade 1, (b) grade 2, (c) grade 3, and (d)
grade 4.

grades 1 and 2.

6.9.2 Orthogonal matching pursuit methods

The classification accuracy obtained using AD methods is given in table 6.8.
The best performance was obtained using TF features from the TFD of the
reconstructed epoch when compared to the TF features obtained directly from
the TFD of atoms. The overall accuracy of the OMP based AGS system was
83.3% (45/54) which was less than that using the Hilbert transform method
(87%). However, from table 6.8, it can be concluded that by using OMP, one
can reconstruct the important components of a given signal for the purpose of
discrimination.

Table 6.8: Classification accuracy obtained using AD methods

AD method No. of atoms Accuracy
OMPmethod1 150 83.3%
OMPmethod2 30 74%

Some of the key findings using OMP methods are as follows:

1. The OMP selected different atoms for different HIE grades which suggests
that different HIE grades exhibit different characteristics and each decompo-
sition set contains the essential information within each EEG signal. How-
ever, between HIE grade 1 and grade 2 signals, the decomposition was
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similar and the same atoms were selected in most of the epochs. Due to
this, the performance of AGS was poor and the features obtained directly
from the atoms of the Gabor dictionary (OMPmethod2) were not discrimi-
natory enough to distinguish between HIE grades. This is due to the fact
that the atoms in the Gabor dictionary are not trained for any particular
HIE grades which means that the atoms in the dictionary are not coherent
with any particular HIE-EEG structure. As a result, the type of features
proposed in chapters 4 and 5 cannot be used for the classification of HIE
grades.

2. The main aim of using OMP is to extract several discriminatory features for
HIE classification without any intention to recover or compress the actual
EEG signal. OMP provides sparse representation of the signal and reduces
the residual energy of the EEG signal with few iterations or atoms. The
main assumption using OMP for feature extraction is that the most impor-
tant characteristics of the EEG signal are provided by the first few atoms
with the highest energy selected by the OMP which provides a simple rep-
resentation of the underlying EEG signal structure. OMP reconstructs the
given EEG signal using the most useful atoms in just a few iterations. By
extracting several features from the linear combination of atoms (or recon-
structed signal) in OMPmethod1 , it was possible to improve the performance
of the AGS when compared to OMPmethod2 .

The results of the AGS using OMPmethod1 is shown in Table 6.9. The overall
accuracy of the proposed AGS system was 83.3% (45/54). Table 6.9 also provides
the accuracy obtained for individual grades. It can be seen that the proposed
AGS can classify grade 1 and grade 4 efficiently (>90%) but the performance
reduces in the case of grade 2 and grade 3 with grade 3 being the lowest among
others. The performance of each TF feature for the HIE-EEG grading is shown in
figure 6.23. The mean and standard deviation of AM (features 1 and 2) provided
highest discriminatory information when compared to other features.

Figure 6.24 shows the distribution of certain and uncertain decisions made by the
AGS. A modification to the post-processing stage was performed which required
at least two thirds majority votes for a certain decision. Anything below this
level was considered as an uncertain decision. In total, 35 neonates were correctly
classified with certainty, 10 neonates were correctly classified with uncertainty, 7
neonates were misclassified with uncertainty. It was interesting to note that only
2 neonates were certainly misclassified. The distribution of the decisions made
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Figure 6.23: Performance of individual TF features for discriminating HIE-EEG
grades using OMPmethod1 .

Table 6.9: Confusion matrix of the AGS output and the actual HIE grade assigned
by the EEGer using OMPmethod1 .

Actual HIE AGS output
grade

1 2 3 4 Total Misclassified
1 21 1 0 0 22 1
2 3 10 1 0 14 4
3 1 3 8 0 12 4
4 0 0 0 6 6 0

Total 25 14 9 6
Accuracy(%) 95 71 66.6 100

by the proposed AGS for individual grades is shown in figure 6.25. It can be
seen that grade 2 is most commonly misclassified as grade 1. Similarly, grade 2
sequences had influence on grade 3 decisions. As expected, grade 4 had no major
influence on other grades since there are no major activities in grade 4 EEG. Most
of the misclassifications occurred between grades 2 and 3.

In order to demonstrate the working of the proposed AGS, a one hour long grade
1 EEG recording was graded using the proposed AGS and is shown in figure 6.26.
Figures 6.26(a-d) shows the probability outputs of the individual grades obtained
from all four SVM models. We can clearly see that the probability output of SVM
model for grade 1 is greater than 0.5 for most of the epochs. Figure 6.26(e) shows
the initial grading by taking the maximum of the overall probability outputs.
The final grade is assigned to the EEG by the majority voting which is shown in
figure 6.26(f).
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Figure 6.24: The distribution of the certain and uncertain AGS decisions using
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Figure 6.25: The mean distribution of the epochs classified by the proposed AGS
using OMPmethod1 for (a) grade 1, (b) grade 2, (c) grade 3, and (d) grade 4.

Nine recordings were misclassified in total and these recordings were further anal-
ysed. It was observed that the presence of abnormalities such as asymmetry, asyn-
chrony and runs of sharp waves resulted in the misclassification of five recordings
by the AGS. An example of the presence of a sharp wave in grade 2 EEG is shown
in figure 6.27. Examples for the presence of asymmetry and asynchrony are shown
in figures 6.28 and 6.29 respectively. Due to the presence of these abnormalities
in the EEG recording, the AGS decision was downgraded. This means that if
the original EEG grade assigned by the EEGer was grade 2, the AGS decision
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Figure 6.26: Illustration of the probabilistic method of assigning HIE grade by
the AGS for a complete 1 hour grade 1 EEG recording.

was grade 1. It is difficult to determine the presence of these abnormalities as
they appear intermittently. The incorporation of the methods to detect these
abnormalities has a potential to improve the performance of the proposed AGS.

The remaining misclassifications were caused by the presence of long periods
of EEG artefacts, however the artefact-free periods were correctly classified by
the AGS. Overall, the influence of artefact resulted in an incorrect decision of
33% of the misclassified EEG recordings in which the majority was due to the
presence of several artefacts ≥ 16s in duration (29%). In three misclassified EEG
recordings, more than 50% of the recording were contaminated with artefacts
which influenced the decision during the majority voting. An example of a 16s
duration artefact is shown in figure 6.30. An example of the AGS output for a
misclassified recording is shown in figure 6.31.

It can be seen from figure 6.31 that the presence of artefacts has a great influence
on the AGS decision using OMPmethod1. Even though the presence of these arte-
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Figure 6.27: Example of sharp wave in a 64 s HIE grade 2.
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Figure 6.28: Example of an asymmetry event in a 64 s HIE grade 2 EEG.
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Figure 6.29: Example of an asynchrony event in a 64 s HIE grade 2 EEG.

facts had no influence on the decision of the AGS on most of the EEG recordings
due to post-processing and majority voting in the Hilbert transform method, the
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Figure 6.30: Example of a long duration artefact in channels T4-C4, C3-T3.
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Figure 6.31: Illustration of the effect of artefacts on the OMPmethod1 based AGS
decisions. (a) output of the AGS, (b) Artefact annotation where ‘1’ indicates the
presence of artefact. The red solid box highlights the presence of artefacts and
red-dotted box highlights sample artefact free epochs.

incorporation of an artefact detector to detect these long duration EEG artefacts
could improve the performance of the OMP based AGS by removing the artefacts
from the misclassified data.

6.9.3 MMP method

Figure 6.32 shows the accuracy obtained using MMP for increasing number of
atoms. The confusion matrix of the AGS output using MMP method and the
actual HIE grade is given in Table 6.10. The highest accuracy obtained using
MMP was 76% using approximately 100 atoms which was less that the accuracy
obtained using OMPmethod1 (83.3%). The possible reasons for decreased accuracy
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using MMP can be due to the presence of active sources from several channels
at the same time. This means that for a given duration, source waveforms are
assumed to have similar frequency and phase. Increase in number of sources
may result in lower stability of inverse solutions (Achim, 1995) and could lead
to an unrealistic approximation of the EEG signal (Nunez and Srinivasan, 2006).
This was also observed in (Lelic et al., 2011) where it was demonstrated that the
performance of the MMP algorithm was sensitive to the number of EEG channels
used for simultaneous decomposition.

Table 6.10: Confusion matrix of the AGS output using MMP method (with
feature fusion) and the actual HIE grade assigned by the EEGer.

Actual HIE AGS output
grade

1 2 3 4 Total Misclassified
1 19 3 0 0 22 3
2 3 8 3 0 14 6
3 1 2 9 0 12 3
4 0 0 0 6 6 0

Total 23 13 12 6
Accuracy(%) 86 57 75 100
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Figure 6.32: MMP accuracy versus variable number of atoms.
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6.10 Artefact detection system using orthogo-
nal matching pursuit

From the analysis of the results using OMP in section 6.9.2, it was observed that
the performance of the AGS using OMP was sensitive to artefacts. In this section,
a system for artefact detection in neonatal EEG using AD is proposed that could
improve the performance of the AGS for HIE grading. Several types of artefacts
are present in the neonatal EEG which includes body movement, respiration, eye
blinking, etc. The normal background EEG is usually free from burst or seizure
patterns. Artefacts that are about 10-100 times larger than the normal back-
ground EEG can be easily distinguished visually from the background EEG. In
some cases, high energy artefacts mimic burst patterns which makes it difficult
to distinguish from bursts. In addition, these artefacts are nonstationary which
includes variations in the amplitude and shape (or morphology) over time and
across channels. So a method for automatic EEG pattern detection should first
properly detect and discard the artefacts from further consideration. AD using
OMP is an ideal choice for this purpose as it decomposes signals into parame-
terized atoms. Based on the parameters of the atoms designed in the dictionary,
the artefacts from clean EEG signal and bursts can be separated.

The structure of the proposed artefact detection system (ADS) is shown in fig-
ure 6.33 which is similar to the neonatal seizure detection system illustrated in
chapter 5. The input signal is initially passed through a bandpass filter [1 70]Hz
with a transition width of 0.5Hz. The signal was then downsampled from 256 Hz
to 64 Hz and then segmented into 8s epochs with 4s overlap. Each epoch was
then decomposed using OMP using a set number of atoms K. Several features
were then extracted from the reconstructed EEG epoch after AD. The maximum
of the SVM across all channels was obtained and sharp transients in the SVM
output were then suppressed using a median filter of 4s in duration. The SVM
decision threshold was varied and the artefact was detected if it exceeded a set
threshold. A collar of 2s was applied that extends the initial decision 2s forward
and backward in time. An automated annotation of artefacts is then obtained.
Different types of dictionary can be used for OMP. In this study, a Gabor dictio-
nary was used (see section 6.14) since Gabor atoms offer optimal time-frequency
localization. With a highly redundant Gabor dictionary, it is possible to recon-
struct an approximation of artefact using relatively a small set of parameterized
atoms.
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Figure 6.33: Overview of the proposed atomic decomposition based artefact de-
tection system.

6.10.1 Performance assessment of the ADS

The dataset described in section 6.2 was used to test the performance of the pro-
posed ADS. Three recordings were not used since they did not have any artefacts
≥ 16s. The parameter α which is the scale of the Gabor atom was varied in the
range [2, 4, 8, 16, 32, 64, 128]. The decomposition level for OMP was varied from
1-10. A LOO cross-validation method was used in this work to assess the per-
formance of the proposed ADS for patient independent artefact detection. The
parameters of the dictionaries (scale of the Gabor atom and decomposition level)
were then selected to provide the optimal performance over the training set. The
training set consisted of features from randomly selected artefacts and clean EEG
from 50 neonates (2 minutes of artefacts and 10 minutes of clean EEG from each
neonate). This trained algorithm was then tested on the full recording of the left
out neonate. This process was repeated (total number of iterations here is 51)
until the data from each neonate had been used once for testing. The AUC was
used as an epoch based performance metric for the training phase and for each
unseen test neonate. The mean and median AUC were then obtained.

6.10.2 Feature extraction for artefact detection

Several amplitude and frequency related features were calculated from the recon-
structed EEG epoch which are given below:

1. Relative structural complexity (RSC): As mentioned in chapter 4, the RSC
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at a given level of decomposition, K, is given by

F1 = RSC = SERK = 20log10

(
||x||2
||rK||2

)
, (6.17)

where x is the input EEG epoch, SER is the signal-to-error ratio and
r = x − x̃ is the residual obtained after K iterations of AD. An example
illustrating the behaviour of the RSC corresponding to artefacts and clean
EEG is shown in figure 6.34 using the Gabor dictionary with α = 8 and a
decomposition level of 6 atoms (this provided optimal AUC which will be
discussed in section 6.10.3). It can be seen that the RSC increases in the
presence of artefacts since the atoms selected during AD are coherent with
artefacts, thereby decreasing the reconstruction error.

Figure 6.34: Class specific histogram for RSC.

2. Root mean square (RMS) amplitude: The RMS of the reconstructed epoch
x̃ can be obtained as

F2 = RMS(x̃) =
√

1
N

x̃T x̃. (6.18)

The distributions of the classes over the sample epochs are plotted in figure
6.35. It can be confirmed from this plot that there is an increase in RMS
amplitude for many artefacts. However, since there is overlap between the
two classes, it indicates the presence of low amplitude artefacts as well.
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Figure 6.35: Class specific histogram for RMS amplitude.

3. Nonlinear energy: Nonlinear energy (NLE) was initially used for seizure
prediction in epileptic patients by (D’Alessandro et al., 2003). The non-
linear energy is a function of both the amplitude of the signal, as well as
the variation in the amplitude of the epoch. This feature for reconstructed
epoch x̃ is calculated as:

F3 = NLE(x̃) = 1
N − 2

N−1∑
j=2

(x̃(j))2x̃(j − 1)x̃(j + 1) (6.19)

The distribution of classes for nonlinear energy is shown in figure 6.36. Sim-
ilarly to RMS amplitude, artefacts show higher energy values for a number
of epochs when compared to clean epochs.

4. Dominant/peak frequency: Several explicit (using the fast fourier trans-
form) and implicit (periodicity of the EEG signal) properties are utilised
by the neurophysiologists to examine EEG. Therefore it is important to
include frequency domain features from the EEG to quantify changes in
the spectrum of the EEG during the presence of artefact. By using a 256
point fast Fourier transform (FFT), the power spectral density (PSD) of
the EEG epoch was obtained. The absolute value of the ns complex co-
efficients from the FFT were extracted as the frequency coefficients a =
[a(0), a(1), ..., a(i), ..., aj(ns2 )], where a(i) is the amplitude of a sinusoid of
frequency i fs

ns
, which represents the spectrum of a reconstructed EEG epoch
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Figure 6.36: Class specific histogram for nonlinear energy.

x̃, several frequency features can be obtained.

Gotman et al. initially proposed the use of dominant-peak frequency for
detecting seizure in neonates (Gotman et al., 1997) which can be obtained as
the frequency corresponding to the largest amplitude in the power spectral
density (PSD) as:

F4 = fpeak(x̃) = ipeak
ns
fs

(6.20)

where fs = sampling frequency, and ipeak = arg
i

max a(i) is the index
corresponding to the largest amplitude in the PSD. However, from figure
6.37 is can be seen that there is high overlap between the peak frequencies
of both classes. Thus, despite several studies employing this feature, very
little discriminating power is provided by the dominant frequency of the
PSD.

6.10.3 Results of the ADS

The effect of the decomposition level is shown in table 6.11. A Gabor dictionary
with α = 8 and a decomposition level of 6 atoms provided an optimal performance
of a mean AUC of 0.8853 (median = 0.9279 , IQR: [0.8355 - 0.9619]). Figure 6.38
shows an example 16s artefact and its reconstruction using 6 Gabor atoms. Figure
6.39 shows the median receiver-operator-characteristic (ROC) curve over the 51
unseen neonates in the LOO cross-validation.
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Figure 6.37: Class specific histogram for peak/dominant frequency.

Table 6.11: The mean, median(IQR) AUC obtained for varying number of atoms
using OMP and a Gabor dictionary.

No. of atoms (K) Mean AUC Median AUC (IQR)
1 0.8475 0.8753 (0.7967 - 0.9487)
2 0.8515 0.8870 (0.8061 - 0.9426)
3 0.8600 0.8959 (0.8056 - 0.9460)
4 0.8767 0.9182 (0.8403 - 0.9566)
5 0.8712 0.9242 (0.8235 - 0.9564)
6 0.8853 0.9279 (0.8355 - 0.9619)
7 0.8795 0.9229 (0.8462 - 0.9511)
8 0.8825 0.9311 (0.8605 - 0.9630)
9 0.8820 0.9382 (0.8533 - 0.9581)
10 0.8708 0.9281 (0.8387 - 0.9665)

The ADS incorporates features that were integrated from the existing artefact or
seizure detection methods (Nagaraj et al., 2014, Temko et al., 2011). The detec-
tion of major artefacts is important as they contribute to a total of 29% of the
misclassifications by the AGS. The detection of minor artefacts (duration ≤ 16s)
is more difficult due to limited data availability for the feature extraction. More-
over, it was observed that the minor artefacts only contributed to 4% of the total
misclassifications by the AGS. The performance of the proposed ADS suggests
that there is clearly a room for the development of real-time artefact detection of
all durations. The novelty of the proposed ADS is that it is a patient independent
artefact detection system and also takes into account the multichannel nature of
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Figure 6.38: Example of a 16s artefact (blue) and its reconstruction (dotted
red) using 6 Gabor atoms. Since the selected atoms during OMP were coherent
with artefacts, we can see that Gabor atoms reconstruct some/most of the high
amplitude sections of the artefact.
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Figure 6.39: The performance curve (ROC) of the proposed ADS determined as
the median over the 51 unseen neonates in the LOO cross-validation.

the artefacts in EEG. This is important as certain types of artefacts are present
on multiple channels simultaneously. The proposed ADS in this chapter is thus
suitable for artefact annotation of neonatal EEG recorded in a noisy environment.
The proposed ADS could be incorporated into an automated neonatal EEG event
detection (seizure detection, sleep states detection, HIE classification) either dur-
ing the pre-processing (as an artefact rejector) or during post-processing stage
(as a fusion of classifiers).
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6.11 Combining the ADS with AGS using OMP
for HIE-EEG grading

The architecture of the AGS using OMPmethod1 which includes the ADS in the
post-processing stage (AGS-ADS) is shown in figure 6.40. In order to generate
an artefact annotation for the proposed AGS, a threshold for the ADS SVM
output was selected corresponding to a specificity of 75% (from figure 6.39). The
SVM output less than the threshold represents a clean EEG and greater than the
threshold corresponds to an artefact. The features corresponding to artefacts were
removed before passing it to the multi-class SVM for grading HIE. In this way,
the effects of high energy, high amplitude artefacts were removed which mainly
contribute to the false decisions made by AGS. The threshold was selected with
an intention of preserving all clean EEG epochs and rejecting the majority of the
high amplitude, high energy artefacts.
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Figure 6.40: Illustration of the proposed AGS using OMPmethod1 in combina-
tion with ADS. The inclusion of ADS removes the influence of artefacts on HIE
grading.

Table 6.12 shows the performance of the proposed AGS-ADS system. We can
clearly see that the overall performance is increased by 4% with the inclusion of
the ADS. Two EEG grade 3 recordings that were misclassified as grade 2 in table
6.6 were correctly classified in this system since the artefacts were removed by the
ADS. This shows that the fusion of the ADS into the AGS improves performance
of the AGS to grade HIE-EEG. Table 6.13 compares the performance of the
proposed AGS with several HIE grading algorithms in literature.
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Table 6.12: Confusion matrix of the AGS-ADS output and the actual HIE grade
assigned by the EEGer.

Actual HIE AGS-ADS output
grade

1 2 3 4 Total Misclassified
1 21 1 0 0 22 1
2 3 10 1 0 14 4
3 2 0 10 0 12 2
4 0 0 0 6 6 0

Total 26 11 11 6
Accuracy(%) 95 71 83 100

Table 6.13: Performance of the proposed AGS with several methods in literature.
(∗)Same dataset was used in all these methods.

Method No. of neonates Duration Accuracy
(h) (%)

Proposed∗(Hilbert, AGS+ADS) 54 62 87
Stevenson et al.∗ (Stevenson et al., 2013) 54 62 83.3
Korotchikova et al.∗ (Korotchikova et al., 2011) 54 62 72
Ahmed et al.∗ (Ahmed et al., 2014) 54 62 85
Matic et al. (Matic et al., 2014) 34 272 89

6.12 Discussion

The classification accuracy of the AD based AGS with multi-class SVM is shown
in Table 6.14. The highest accuracy of the OMPmethod1 based AGS obtained
was 83.3% (43/54) using OMP alone and it increased to 87% with the inclusion
of the ADS which was comparable to the accuracy obtained using the Hilbert
transform method (87%). This suggests that TF features obtained directly from
the TFD of the atoms selected during AD are not discriminative since the atoms
in the dictionary are not coherent with particular HIE grades. Moreover, the
computation time (calculated using a dual-core i5 Intel processor and 8gb ram)
using this approach was very high as shown in figure 6.41. As we can see, it
takes around 2 minutes to extract the features from a single channel of EEG, of
1 hour duration. Since this has to be repeated for all 8 channels, it takes around
16 minutes to obtain all 8 TF features from one EEG recording. This is due to
the computation of TF features from every atom selected during AD. This means
that if 10 atoms were used, then the TFD was obtained 10 times to compute the
TF features from the final TFD. However, it only takes 30s to compute the TF
features using the Hilbert based AGS for one hour EEG recording.
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Table 6.14: Comparison of the performance of different AD techniques for auto-
matic HIE-EEG grading.

AD type Accuracy (%)
OMP(TF features from reconstructed signal) 83.3%
Multichannel matching pursuit (MMP) 77.8%
OMP (TF features from atoms) 74%
OMP(TF features from reconstructed signal)+ADS 87%
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Figure 6.41: The computation time (in minutes) versus the number of atoms to
extract TF features from a single channel 1 hour EEG recording (grade 1) using
OMP.

Although AD provided promising results for seizure detection (chapters 4 and
5), its application to automatically grade HIE-EEG is limited. Table 6.14 gives
the accuracy obtained using different versions of matching pursuit algorithm to
automatically grade HIE-EEG. Due to the following reasons, AD based AGS may
not be suitable for automatic grading of HIE-EEG:

1. The major limitation of using AD based techniques for automatic HIE-EEG
grading is that each epoch can require up to 100 atoms for accurate repre-
sentation and due to this it is a tedious process to study individual patient’s
data per channel for an hour long EEG recording. Moreover, since there
is no inherent order of atoms (for example: the first atom selected across
different patients of similar grade may not necessarily be same) selected
during AD, it is difficult to obtain the general overview of a patient’s EEG
signal characteristics.
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2. The choice of the decomposition dictionary is an important factor for AD.
Since the Gabor dictionary provides optimal time-frequency resolution, it
was used for grading HIE-EEG. However, it is a tedious process to identify
the optimal number of atoms required to efficiently classify HIE grades.
In addition, since the atoms in the dictionary are not coherent with any
particular HIE-EEG grade, the information extracted from the atoms was
not sufficiently discriminative.

3. The computation complexity of the AD based AGS was very high when com-
pared to the Hilbert transform based AGS. Since the HIE-EEG is graded
based on a decision taken over an hour long EEG, it is necessary to decom-
pose the entire one hour EEG recording using AD. Moreover, the accuracy
obtained using AD based methods were lower.

4. The performance tradeoff in AD is mainly regulated by the residual error.
Smaller residual error results in larger amount of atoms in the dictionary
and increased resolution of the AD but at a price of increased computation
complexity. Since the residual error is directly dependent on the number of
atoms used for decomposition, more effort is required to find the optimal
threshold for accurate classification.

5. Another major issue in using AD is the size of the dictionary. Increasing the
size of the dictionary increases the time-frequency resolution but will also
significantly increase the computational cost. Moreover, it is a challenging
task to find the exact resolution required for signal representation using
AD.

6.13 Summary

In this chapter, a novel SVM based automated HIE-EEG grading system is pro-
posed. The proposed AGS is based on the ability of the features obtained from
QTFD analysis to track the nonstationarity of the EEG signal. Several methods
to extract these TF features were studied and their performance was reported.

It has been previously shown that an HIE-EEG AGS using QTFD based TF
features obtained from the Hilbert transform method can provide good HIE-EEG
grading (Stevenson et al., 2013). In this chapter, it was seen that the performance
of this AGS improved significantly using an SVM with an overall accuracy of 87%.
It was also shown that the TF features obtained from the QTFD of the linear
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combination of the Gabor atoms (or reconstructed signal) selected during AD
provided highest accuracy when compared to other AD methods. The AD based
AGS provided an accuracy of 83.3% in grading HIE-EEG.

A novel AD based patient independent artefact detection system was proposed to
improve the performance of the proposed AD based AGS. Only the artefacts that
were ≥ 16s in duration were considered in this system since their contribution
was higher for the misclassifications by the AGS. The proposed AD based ADS
resulted in a mean AUC of 0.89 for artefact detection. With the additional help
of an AD based artefact detector, this performance was increased to 87% when
the ADS was included as an artefact rejector in the OMPmethod1 based AGS. A
multiclass SVM was used in this study for classification. From the analysis of the
misclassified recordings it was concluded that the presence of abnormal patterns
such as asymmetry, asynchrony, runs of sharp waves should influence the decision
of the AGS. Several limitations of AD based methods to automatically grade HIE-
EEG were also discussed in this chapter.

The presented SVM based approach showed promising results in HIE-EEG grad-
ing, however there are certain opportunities to improve the performance of the
proposed AGS. Detection of the short duration physiologically variable neonatal
EEG artefacts is a challenging problem, in particular for the analysis and grad-
ing of HIE-EEG. In addition, the proposed AGS does not detect certain short
duration abnormalities present in EEG such as asymmetry, asynchrony and runs
of sharp waves. Inclusion of parallel detectors to detect such abnormalities has
the potential to improve the performance of the proposed AGS significantly.
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Chapter 7
Conclusions and future work

Life is like riding a bicycle. To keep your balance, you must keep
moving. −−Albert Einstein

This thesis focussed on a detailed study of the application of atomic decomposi-
tion techniques to classify neonatal EEG. Several time-frequency signal processing
techniques were studied in this thesis which led to the development of:

1. A novel automated neonatal EEG seizure detection system.

2. An automated HIE grading system.

Several time-frequency based features were developed for this purpose. Based
on the results obtained in this thesis, this chapter concludes and summarises
the contents of each chapter. The contributions of this thesis are highlighted in
the summary. Several future directions of this research are proposed which were
identified during this study.

7.1 Summary of the thesis

A large number of topics have been discussed and analyzed in this thesis, related
to neonatal EEG classification. This section briefly summarises the contents of
individual chapter in terms of the analysis and experiments performed in this
thesis.

Chapter 1 provided the aim and scope of this thesis. Several limitations in the
current automated neonatal EEG analysis were described based on the literature
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review of the current research in this field. It was observed that several neona-
tal EEG analysis algorithms reported in literature either use a small dataset of
artefact free neonatal EEG or simulated or selective datasets and report their
performance with no apparent validation of results. Moreover, a lack of datasets
that can best represent the real-time situation in the NICU also hinders the
development of automated algorithms. In order to effectively implement the
automated neonatal EEG analysis systems in real-time, the algorithm must be
robust enough to deal with variety of EEG signals that may arise in noisy, medical
environments. Due to this, an automated detector was found to be useful to con-
tinuously monitor sick newborn patients in the NICU that could help clinicians
with the interpretation of neonatal EEG. The primary objective to significantly
improve the performance of previously reported neonatal seizure detectors and
HIE grading systems was proposed in this chapter.

Chapter 2 provided a brief overview about the properties of neonatal EEG
signals in terms of signal processing. From several case studies, it was shown
that electroencephalogram (EEG) monitoring was required to identify neonatal
seizures as they are often clinically silent. In addition, several characteristics of
the background EEG with HIE were also reviewed. Several abnormal patterns in
the background EEG were described including the grading of HIE-EEG based on
several characteristics used by clinicians. It was deemed necessary to design an
automated system to detect neonatal seizures and also to grade EEG based on
HIE severity. This is required for continuous monitoring of sick newborn patients
as early detection can have great impact on predicting of neurological outcome
and choice of therapy.

Chapter 3 provided a detailed description of time-frequency analysis and its
applications in nonstationary signal analysis. Several limitations of traditional
stationary analysis for nonstationary signals were demonstrated and it was shown
that time-frequency analysis was an ideal choice for analyzing nonstationary sig-
nals. Several atomic decomposition (AD) techniques were investigated in this
chapter and it was shown that AD is mainly useful for randomly appearing sig-
nal components in the time series. It was demonstrated that the time-frequency
representation (TFR) based on the AD offered a step-wise adaptive compromise
between the time and frequency resolution which provides a time and frequency
invariant decomposition. Also since the TFR derived from the AD has explicitly
no cross-term, it can be used to obtain clean and easy-to-interpret time-frequency
maps of the signal. Several properties of different types of dictionary were also
discussed in this chapter.
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Chapter 4 investigated several AD techniques for the analysis of neonatal EEG.
AD is mainly used to provide sparse signal representations using redundant dici-
tonaries. However, in several applications only a certain level of signal approxima-
tion is sufficient for the purpose of discrimination. It was demonstrated that the
orthogonal matching pursuit (OMP) provides better discrimination of seizures
from non-seizures when compared to basis pursuit (BP) and matching pursuit
(MP). For this reason, OMP was used as a preferred AD technique throughout
this thesis.

It was demonstrated that as the number of atoms in OMP decomposition in-
creased, the coherence between signal structures and the atoms in the decom-
position dictionary decreased. Based on this, it was shown that the number of
atoms used in OMP decomposition can be used to discriminate between neonatal
EEG seizure and nonseizure. A novel measure known as relative structural com-
plexity (RSC) which is defined as the number of atoms requires to reach a set
signal to error ratio (SER) was used as a measure to distinguish between seizure
and nonseizure states. It was observed that the RSC was mainly dependent on
the signal structures and the atoms in the dictionary.

A novel time-frequency dictionary denoted as the pseudo-periodic Duffing dictio-
nary was designed based on a recent neonatal seizure model using the Duffing
oscillator. The atoms in this dictionary were highly coherent with the neonatal
EEG seizure structures. This dictionary was based on the TF characterization of
the neonatal EEG seizure. Atoms in this dictionary had a high correlation with
seizure waveforms and a low correlation with nonseizure waveforms. As a result,
the RSC will increase in the presence of seizure. A novel RSC based neonatal
seizure detection algorithm (NSDA) was then developed using the proposed novel
dictionary and OMP. The OMP based NSDA achieved an overall mean AUC of
0.88 when tested on a large dataset using several post-processing techniques.

Chapter 5 improved the performance of the neonatal seizure detection algo-
rithm (NSDA) proposed in chapter 4 using additional time-frequency distribu-
tion (TFD) features obtained from the pseudo-periodic Duffing dictionary. The
main advantage of using the TFD was that key instantaneous frequency values
can be obtained which can characterize the nonstationary nature of the EEG
signal. A brief description about the support vector machine (SVM) classifier
was presented. An AD based seizure detection algorithm using nonstationary
features obtained from the TFD of the atoms from the pseudo-periodic Duffing
dictionary was proposed in this chapter using SVM. This approach provides a
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noise-free representation and increased the time-frequency resolution of the un-
derlying signal. 8 features were derived from the TFD of the atoms selected from
the dictionary during AD. It was seen that the proposed method had relatively
good performance in the large dataset using minimal number of features when
compared to the current state-of-the-art methods.

Chapter 6 proposed an automated grading system (AGS) for grading EEG
based on the severity of HIE injury. The proposed AGS uses a nonlinear EEG
background model to describe the characteristics of EEG. The proposed AGS used
8 TF features which provided simple statistics (mean, median, skewness, kurtosis)
of the amplitude modulation and instantaneous frequency characteristics of the
EEG signal over the window of 64s. The performance of the AGS proposed in
(Stevenson et al., 2013) was improved using support vector machine (SVM). By
using a multiclass SVM, the HIE-EEG classification accuracy was improved from
78% proposed in (Stevenson et al., 2013) to 87% using a leave-one-out (LOO)
cross validation.

The performance of the AGS using several AD methods were also studied in
this chapter. Several limitations of the application of AD for automatic grading
of HIE-EEG was described. With the help of an additional artefact detection
system, the AD based AGS resulted in an accuracy of 87% in classifying HIE
EEG. It was concluded that the AD based AGS for automatic HIE-EEG may not
be feasible due to increased computational complexity and poor performance.

Misclassified recordings were further analysed and it was observed that the pres-
ence of abnormalities such as asymmetry, asynchrony and runs of sharp waves
resulted in the misclassification. Due to the presence of these abnormalities in
the EEG recording, the AGS decision was downgraded. This means that if the
EEG was graded as grade 2 by the annotators due to the presence of these abnor-
mal patterns, the output of the AGS was grade 1. In addition, the influence of
artefacts resulted in an incorrect decision of 33% of the misclassified EEG record-
ings in which the majority (29%) was due to the presence of artefacts ≥ 16s in
duration.

7.2 Future research work

The features and methods described in this thesis provides a starting point for
further investigation into neonatal EEG analysis and abnormality detection. In
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this section some suggestions for further investigation are provided that take
the advantages of atomic decomposition and time-frequency analysis to further
improve the performance of the proposed systems in this thesis.

7.2.1 Neonatal seizure detection

In this thesis, a novel time-frequency dictionary using Duffing oscillator model
which was coherent with newborn EEG seizures was proposed to detect neonatal
EEG seizures. Several TF features were extracted from this dictionary and an
automated neonatal EEG seizure detection system was developed. This is a
model based dictionary and it is worth investigating the design of a data based
dictionary where the seizure epochs from the database can be directly used to
design a TF dictionary. With the help of available dictionary learning algorithms,
a TF dictionary coherent with seizure epochs can also be designed to detect
neonatal EEG seizures. It is interesting to test the performance of the proposed
TF dictionary using the seizure detection algorithm used by Temko et al (Temko
et al., 2011).

It was shown in (Boashash et al., 2012, Nagaraj et al., 2014) that the addition of
image processing features can improve the performance of the seizure detection
system. However, it is computationally expensive and more research is required to
analyze the potential of image processing features for seizure detection. Inclusion
of spatial and temporal information (Bye and Flanagan, 1995) of the seizures
can also be useful in improving the performance of proposed seizure detection
algorithm in this thesis .

Since most of the false detections were due to the presence of artefacts such
as respiration and movement traces, an artefact detection system proposed by
Stevenson et al. can be incorporated to reduce the false alarms (Stevenson et al.,
2014). Furthermore, it will be interesting to develop a separate seizure detection
system for short duration seizures (≤ 30s) and then cascade it with the NSDA
proposed in this thesis to efficiently detect short duration seizures as well.

7.2.2 Background EEG classification

The EEG of the fullterm infants have clear sleep patterns which can describe the
continuity of their EEG signals. In EEG, the sleep-wake cycle normally appears
as alternating discontinuous (sleep) and continuous (awake) periods. Therefore,
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it is worthwhile designing an automated sleep-stage detector with which the state
of the infant brain can be obtained from the continuity of the EEG (Stevenson
et al., 2013). This can be implemented in parallel with the automated grading
system proposed in this thesis to obtain the sleep-state disorders in neonates.

Only Gabor dictionary was used in this thesis for background classification. Since
there is no well defined pattern in background EEG, it is difficult to design a
model based dictionary for HIE classification. However, with the help of several
dictionary learning algorithms the atoms in the dictionary can be trained to be
coherent with specific HIE grades (Mairal et al., 2009, Yaghoobi et al., 2009, Yang
et al., 2011, Zhang and Li, 2010). Several features can then be obtained from
these trained dictionaries to grade HIE-EEG.

7.3 Asymmetry and asynchrony measurements

It was reported in (Ahmed et al., 2014, Stevenson et al., 2013) that the presence of
background EEG abnormalities such as artefacts, asymmetry, asynchrony, spike
and sharp waves decreased the performance of the automated grading systems
(AGS) which was also observed in chapter 6 of this thesis. The incorporation of
methods to detect asymmetry, asynchrony and runs of sharp waves has the po-
tential to improve the AGS. The presence of these patterns in the EEG recording
results in a downgrade of the estimated AGS grade (i.e if the actual grade of the
EEG is grade 2 then the output of the AGS grades the EEG as grade 1). It is dif-
ficult to detect these abnormalities as they appear intermittently. In this section,
a few symmetry and synchrony measures are analyzed and their effectiveness for
the data is also demonstrated.

Traditionally, neonatal EEG is classified based on visual assessment of several
clinical features such as symmetry, synchrony, amplitude, continuity. It was
observed that the presence of these features was not detected by the AGS for
automatic grading of HIE. In this section, some standard features are explored
that provide some information about presence of symmetry and synchrony in
an EEG signal on the misclassified recordings. Their ability to detect asyn-
chronous/asymmetric events in the EEG signal is tested The main aim is to
identify certain features that could be used as an additional feature to detect the
abnormal patterns in HIE-EEG AGS.
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7.3.1 Asymmetry measurement

Symmetry provides information about the similarity of the two hemispheres.
Symmetry is mainly concerned with the general pattern observed in both hemi-
spheres and how they are similar to each other. The EEG recording is said to
be asymmetric if a particular pattern is present in one hemisphere and absent
in the other. Symmetry is generally expected from EEG traces of all infants re-
gardless of age or state. Asymmetry usually indicates brain injury or a delay in
development in one of the hemispheres.

Symmetry is commonly present on most of the physiological recordings and its
measurement is important in evaluation of several clinical conditions. Measure-
ment of left-right symmetry is an important characteristic of EEG which provides
information about different rhythms in left and right hemispheric EEG (Nieder-
meyer and da Silva, 2005). Several features such as the change in the spectral
edge frequency, changes in relative power have been proposed in the literature
to measure symmetry between the channels (Hanowell et al., 1992, Laman et al.,
2005). Recently, a measure known as brain symmetry index (BSI) was proposed
which quantifies the interhemispheric spectral symmetry of the EEG (Van Put-
ten, 2006, Van Putten and Tavy, 2004). This measure was introduced to assist
the visual interpretation of EEG. Later, the revised BSI was proposed which
has an improved sensitivity in detecting interhemispheric asymmetry and diffuse
changes (Van Putten, 2007). The revised BSI is used in this section to measure
the asymmetry between the channels of the misclassified recordings. An example
of asymmetry present in the misclassified recording is shown in figure 7.1.
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Figure 7.1: Example of an asymmetry event in a 64s HIE grade 2 EEG.
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The standard BSI proposed in (Van Putten, 2006) is defined as:

BSI = 1
N

P∑
i=1

wwwwww 1
M

M∑
j=1

Ri,j − Li,j
Ri,j − Li,j

wwwwww (7.1)

where N is the number of channel pairs, M is the number of Fourier coefficients,
Ri,j, Li,j is the Fourier coefficient corresponding to right and left hemispheres,
respectively. The revised BSI is based on the square value of the Fourier coeffi-
cients instead of the absolute value. This approach becomes more sensitive to the
changes in hemispheric asymmetry. The revised BSI is defined as (Van Putten,
2007):

rBSI = 1
P

P∑
i=1

∣∣∣∣∣R∗i − L∗iR∗i + L∗i

∣∣∣∣∣ (7.2)

where
R∗i = 1

M

M∑
j=1

a2
ij (7.3)

for the right hemisphere. A similar expression is defined for left hemisphere. Here,
a2
ij correspond to the magnitude of the Fourier coefficient at the ith frequency for

the jth channel. If the signals are symmetric, then rBSI is close to zero. On
the other hand, if they are asymmetric, then rBSI is closer to 1. In the current
study, the rBSI measurements were obtained across the bilateral electrode pairs:
F3-C3/F4-C4, CZ-C3/C4-CZ, C3-O1/C4-O2, T4-C4/C3-T3.

Figure 7.2 shows the distribution of the mean rBSI across symmetric and asym-
metric epochs in the EEG signal ( for channel F3-C3/F4-C4 and using 3 misclas-
sified recordings). We can clearly see that the rBSI measurement was not able
to detect interhemispheric asymmetry and diffuse changes. It was demonstrated
that the BSI measure was sensitive to ischemia and captures the normalized dif-
ference in the spectral density of the two cerebral hemispheres when compared to
other measures (Van Putten et al., 2004) in adult EEG. It was also shown that
presence of artefacts also influenced the values of BSI. Currently, the BSI was
implemented on the real EEG data and free from artefacts, however it still failed
to detect asymmetry.

7.3.2 Asynchrony measurement

Synchrony of the EEG provides information about the activities with respect
to time. In synchronous EEG trace activities present in one hemisphere are
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Figure 7.2: Box plot showing the distribution of rBSI measures for channel
F3-C3/F4-C4. There is no clear separation between the box plots.

also present in the other hemisphere of the brain at the same time. By finding
the correlation between the two channels/hemispheres, the synchrony between
the two channels can be obtained. An example of asynchrony present in the
misclassified recording is shown in figure 7.3.
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Figure 7.3: Example of an asynchrony event in a 64s HIE grade 2 EEG.

Several signal processing methods are available to detect the fluctuations of inter
hemispheric synchrony (IHS) in EEG traces (Dauwels et al., 2010, Lachaux et al.,
1999, Pereda et al., 2005, Uhlhaas and Singer, 2006). Recently, a quantitative
measure to detect IHS in neonatal EEG known as activation synchrony index
(ASI) was proposed in (Räsänen et al., 2013). The ASI measures the temporal
delay between two signal energies and it was shown to correlate with the visu-
ally annotated IHS events. In this section, the ability of ASI to detect IHS on
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the misclassified EEG recordings in the database is tested. The details of the
algorithm to estimate ASI can be found in (Räsänen et al., 2013). The basic
steps involved in estimating ASI are shown in figure 7.4. The ASI measure for
synchronous signals is higher when compared to asynchronous signals. Figure
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Figure 7.4: Schematic representation of the ASI feature extraction algorithm.
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Figure 7.5: Box plot showing the distribution of ASI measures for channel F3-
C3/F4-C4. We can observe that box plots are less separated.

7.5 shows the box plot of the distribution of ASI values obtained using three mis-
classified EEG recordings. Even though the median ASI was slightly lower for
asynchronous signals when compared to that of synchronous EEG signals, there
is no clear difference obtained that best separates two measures which makes it
difficult to classify the recordings. It was also observed that the ASI measures
obtained were very sensitive to the values of λ, the spectrum analysis window
length and also the high-pass cutoff frequency. This suggests that using ASI for
measuring interhemispheric synchrony from the neonatal EEG is not robust and
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is relatively sensitive to the parameters used to measure ASI.

7.4 Conclusion

This thesis focussed on developing several time-frequency features using atomic
decomposition technique for the anbalysis of neonatal EEG. Several newborn
automated EEG techniques were proposed in this thesis. The thesis developed
automated systems for seizure detection and HIE grading. The system uses EEG
for brain function monitoring of neonates which can be used for early detection
and prognosis of the brain abnormalities. The proposed systems were tested on
unedited EEG recordings which makes it robust for NICU applications. The
SVM based neonatal seizure detection system provides an accuracy of 91% and
the features developed in this system can be used to improve the performance of
state-of-the-art NSDA (Temko et al., 2011).

The SVM based AGS proposed in Chapter 6 results in an accuracy of 87% for
grading HIE-EEG and there are several opportunities to improve the perfor-
mance of the proposed AGS. Detection of the abnormal patterns (asymmetry,
asynchrony, and sharp waves) is not trivial and is a challenging problem. It was
observed that the standard measures to detect these abnormalities were not dis-
criminatory between the grades and cannot be used as a feature in AGS. Measures
to detect such abnormalities have a potential to improve the performance of the
proposed AGS significantly.
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